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ABSTRACT 
Online testing is indispensable in decision making for information 
retrieval systems. Interleaving emerges as an online testing method 
with orders of magnitude higher sensitivity than the pervading A/B 
testing. It merges the compared results into a single interleaved 
result to show to users, and attributes user actions back to the sys-
tems being tested. However, its pairwise design also brings practical 
challenges to real-world systems, in terms of efectively comparing 
multiple (more than two) systems and interpreting the magnitude 
of raw interleaving measurement. We present two novel methods 
to address these challenges that make interleaving practically ap-
plicable. The frst method infers the ordering of multiple systems 
based on interleaving pairwise results with false discovery control. 
The second method estimates A/B efect size based on interleaving 
results using a weighted linear model that adjust for uncertainties 
of diferent measurements. We showcase the efectiveness of our 
methods in large-scale e-commerce experiments, reporting as many 
as 75 interleaving results, and provide extensive evaluations of their 
underlying assumptions. 

CCS CONCEPTS 
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1 INTRODUCTION 
Online evaluation drives decision making for information retrieval 
(IR) and recommender systems [12, 13]. Typical IR system develop-
ment follows an ofine-online user feedback loop: formulate users’ 
information need as an objective function, optimize the objective 
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on historical user data, and fnally evaluate the models on real users. 
Online evaluation is indispensable because there have always been 
gaps between ofine formulation and user behavior in reality; and 
it becomes even more important to guide ofine model tuning with 
the increased complexity in machine learning techniques. 

A/B testing has been the predominant method for online evalua-
tion. It shows candidate IR systems to randomized groups of users 
and compares user feedback metrics such as clicks or views. De-
spite being straightforward, A/B testing can slow down innovations 
as they require weeks and high user trafc to reach statistically 
signifcant conclusions. This happens when user metrics are noisy 
(e.g. clicks, views) and sparse (e.g. streams, purchases), and when 
IR systems grow mature with smaller-efect innovations. 

Interleaving emerges as a more sensitive online testing method 
to free up experimentation bandwidth and expedite innovations 
[2, 4, 9, 11, 15–17]. Instead of presenting separate users with control 
and treatment results, interleaving merges their results into a single 
interleaved result and presents to all users. User actions on the 
interleaved result are attributed back to the two IR systems being 
compared, and the better one is whichever received (statistically 
signifcantly) more attributed actions. Literature report orders of 
magnitude higher sensitivity (10-100x) from interleaving than A/B 
testing when comparing which IR system is better [2, 4, 8, 10]. 

However, practical challenges have limited applicability of in-
terleaving in IR and search systems. Since it is a paired test that 
directly evaluates user preference between two candidate systems, 
interleaving measures user feedback metrics in presence of both 
systems, which is not the same as A/B testing where absolute met-
rics are measured on each individual system. This means the raw 
results cannot directly order multiple (more than two) systems [4]. 
Methods have been proposed in dueling-bandits domain [19–21] 
that fnd the best candidate by minimizing regret; however, we 
would want to order all candidates up to certain confdence and 
select a subset for subsequent development or a follow-up A/B test 
for launching decisions. Moreover, the bandits methods require 
running multiple rounds of experiments that have practical dif-
culties in large-scale implementation. Another practical need is to 
interpret raw interleaving results in the magnitude of A/B mea-
surements, to decide whether launching the new system worth the 
development cost. These magnitudes are also useful for applications 
that optimize and trade of multiple user metrics. 

In this paper, we present two novel methods that address the 
aforementioned challenges to make interleaving practically appli-
cable to IR system improvement. The frst method infers ordering 
of multiple candidates based on interleaving pairwise results, with 
false discovery rate control under a hypothesis testing framework. 
We can now run interleaving to select a few top candidates from a 
large pool for a follow-up A/B test. The second method estimates 
the A/B efect size based on interleaving results using a weighted 
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linear model that adjust for uncertainties of diferent measurements, 
so that history experiments with varying statistical confdence and 
power can all be utilized to improve the accuracy. Based on the 
estimated A/B efect size, we further introduce a power analysis 
to evaluate the statistical power required for the follow-up A/B 
test to detect the treatment efect of the selected systems. We will 
illustrate the efectiveness of our methods in real world e-commerce 
experiments at Amazon search, as well as provide theoretical and 
empirical evaluations of the assumptions behind our methods. 

Contributions. To our best knowledge, our methods are novel 
in making inference on the ordering of multiple IR systems and 
estimating the practical efect size based on interleaving pairwise 
measurements. These methods improve interpretation of interleav-
ing results and boost its applicability in real-world IR systems. We 
can rely less on the ofine-online loop and expedite innovations 
by directly testing online with the highly sensitive interleaving. 
Furthermore, we report as many as 75 large-scale online experi-
ments that apply interleaving to e-commerce search and showcase 
the practical benefts of our methods. Finally we evaluate the tran-
sitivity and linearity assumptions as proposed in literature with 
extensive theoretical and empirical analysis. 

2 INTERLEAVING FOR SEARCH SYSTEMS 
Interleaving is a paired test that evaluates user preference between 
two IR systems. Figure 1 illustrates the basic idea in the search 
ranking context. First, zip the ranking results from two compared 
systems into one combined list to present to all users. Then, attribute 
user engagement credit on the interleaved list back to the compared 
systems, and decide the winner that receives more credit (through 
a statistical test). [4, 8, 11]. 

Figure 1: Ranking interleaving. Interleaving methods de-
sign algorithms to merge items and attribute user credits 
for whether two ranking lists overlap or not, to ensure fair 
comparison between two rankers. 

Interleaving shows sensitivity boost ranging from 10 to 100 times 
over A/B testing in terms of required trafc to reach signifcance [2– 
4, 15], while preserving high fdelity to A/B conclusions. It resonates 
with perceptual test designs where users give binary responses of 
their preference which are more informative than absolute scores 
for each candidate. It also ensures a fully within-subject test that 
compare two systems on the same users, searches, and context, 
reducing heterogeneity variation in A/B testing design [16]. 

To compare multiple (more than two) ranking systems, transi-
tivity property was introduced [4] to defne consistency among 
multiple interleaving pairs: for any ranker triplet A > B > C, the 
interleaving efect sizes should follow �� ≥ max{��, ��}. Meth-
ods have been proposed in dueling bandits framework that fnd 
the best ranker in multi-round experiments by minimizing regret 
[19–21], but it can be hard to apply them in practice. First, it is not 
straightforward to interpret the regret in business terms. Second, 

these methods run a lot of rounds (at least log of number of rankers) 
to minimize regret, while multi-round experiments require non-
trivial infrastructure for automation and dynamic trafc allocation 
that are unbiased of treatment exposure from previous rounds. Ex-
tensions of interleaving such as multileaved methods [3, 18] can 
directly compare more than two rankers, but their implementation 
in large scale experiments is challenging [2]. Instead, in section 3 
we propose to run data-efcient interleaving pairs among rankers 
and utilize transitivity to infer their ordering, so that an arbitrary 
number of top rankers can go to subsequent development. 

Besides ordering multiple rankers, we want to interpret inter-
leaving results in the magnitude of A/B measurements. This helps 
gauge the treatment efect size if launching the new ranker. It also 
puts diferent user feedback metrics in the same picture when opti-
mizing for multiple metrics. Empirical studies report strong linear 
correlations between interleaving and corresponding A/B testing 
metrics [2, 4, 14]. In section 4 we exploit linearity property and ft 
a weighted least squares model to estimate A/B efect size based on 
interleaving measurement. Then we empirically evaluate linearity 
assumption by quantifying sign agreement probability between 
interleaving and A/B results. 

3 COMPARING MULTIPLE SYSTEMS 
Denote the outcome of an interleaving comparison as ��,� between 
two rankers �, �. Depending on the application, the analysis unit 
can be a query or a session, and the outcome can be binary (win or 
lose) or real-valued (the amount of attributed credit diference) [2]. 
Assume ��,� is i.i.d. with unknown distribution of mean ��� and 
variance �2 . Defne ranker A is better than B (� > �) if ��� > 0.

��
We run a z-test on observations of ��,� , and conclude ranker A is 
better than B if it is signifcantly positive. Defne the transitivity 
property on true mean ��� . 

Defnition 3.1 (Transitivity Property of the Means (TPM)). For 
any triple �, �,� , with true ordering � > � > � , their session 
means satisfy that ��� ≥ max{���, ��� }. 

[TPM] says that interleaving results keep the magnitudes with 
respect to ordering of rankers. In Appendix A.1 we discuss the close 
connection between [TPM] and the original transitivity introduced 
in literature [20, 21]. In Appendix A.2 we prove that A/B testing 
results satisfy [TPM] by defnition. Now we introduce a transitiv-
ity property [WTP] which is the fundamental assumption for our 
method that compare multiple rankers with interleaving results. 
[WTP] is implied by [TPM], see the proof in Appendix A.3. 

Defnition 3.2 (Weak Transitivity Property (WTP)). For any triple 
�, �,� , if � > � and � > � , then it must be true that � > � . 

Our method is as follows. Describe interleaving results in a graph. 
For � rankers and an arbitrary � of interleaving pairs among 
them, denote the rankers as nodes, and draw an edge pointing from 
ranker A to ranker B if there is an interleaving pair comparing 
them and ranker A is signifcantly better than B under confdence 
level � . Once fnished with all the signifcant pairs, any ranker X 
is signifcantly better than any ranker Y if there is a directed path 
from node X to node Y. 
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This method is a direct application of [WTP]. One can treat each 
connected component in the graph as essentially a separate exper-
iment, and apply Bonferroni correction [7] to control the overall 
family-wise error rate for each connected component. Specifcally, 
� can be the targeted overall error rate �� divided by the number 
of interleaving pairs in the connected component. One can also 
consider Benjamini-Hochberg procedure for a less conservative 
control on false discovery rate [1]. 

This method can also evaluate [WTP] with experiment data. 
Specifcally, we declare a violation to [WTP] at the overall conf-
dence level �� if and only if there exists a directed circle in the 
graph, which indicates interleaving results that are signifcant and 
directionally inconsistent. If there is no violation at �� , then there 

′is no violation at any more stringent confdence level � < �� . 

4 TREATMENT EFFECT MAPPING 
While transitivity is useful for comparing multiple rankers, it com-
pares rankers qualitatively and ignores insignifcant pairwise com-
parisons that might still carry useful information. On the other 
hand, A quantitative understanding of the treatment efect is often 
necessary in cases when a model is launched and we would like 
to learn the business impact, or when we optimize the trade-of 
between multiple metrics. Although interleaving provides quantita-
tive measurements on users’ preference, it cannot directly translate 
to business metrics measured in standard A/B experiments. 

In this section, we provide a quantitative method for mapping 
the efect size measured in an interleaving experiment to the corre-
sponding efect size in an A/B experiment that assesses the same 
treatment efect. We will refer to such A/B experiments as compan-
ion A/B experiments throughout the rest of the paper. 

It has been shown in [2, 14], that there exists a strong linear 
correlation between the efect sizes in interleaving experiments 
and their companion A/B experiments. Assuming linearity, it is 
straightforward to consider ftting a linear model over the estimated 
efect sizes of interleaving experiments and their companion A/B. 
In practice, however, there exists heterogeneity among these data 
as they are measured under diferent statistical power. Hence, it is 
more appropriate to use the following weighted least square model: 

ATE�� = ATE�� � + �� 

� ∼ � (0, �2/�) � = Var(ATE�� ) 

where ATE�� is the average treatment efect (ATE) of interleaving 
experiments, ATE�� is the average treatment efect of the compan-
ion A/B experiments and � is the observation error. This formula 
weight data points inverse proportionally to their uncertainty. Note 
that we do not include the intercept coefcient for two reasons. 
First, when there is no treatment efect, we expect to see zero in 
both A/B and interleaving metrics. Second, both A/B and inter-
leaving measurements should be symmetric w.r.t. the ordering of 
rankers, i.e. the treatment efect of ranker � versus � is negative of 
the efect of � versus �. These assumptions are solidifed by using 
A/B testing results that have adjusted for pre-experiment biases [6] 
and that pairwise interleaving are immune to such bias by design. 

Practically, we may ft this model to historical data and apply the 
mapping to any incoming interleaving measurements to estimate 

the corresponding A/B metrics, which then can be used for business 
decision making as in standard online testing schema. 

4.1 Power Analysis 
A common use case of interleaving is to select top rankers from a 
large candidate pool for a follow-up A/B experiment. With treat-
ment efect mapping, we can calculate the power required for the 
follow-up A/B experiment to detect the treatment efect of these 
selected rankers by integrating over the distribution of the mapped 
treatment efect:∫ 

ATE�� ATE�� ˆ ˆ� (detect the efect|�)�� (� ; , Var( )) 

Here � (fnding the efect|�) is the power function of the A/B ex-
periment given a constant efect size � , which is often available 

ATE�� ATE�� ˆ ˆ 
distribution of the mapped treatment efect, where the mean is 

ATE�� 

from standard power analysis. � (� ; , Var( )) is the 

ˆATE��E[�̂], and the variance Var( ) is: 

� (ATE�� )2Var(�̂) + Var(ATE��)� (�̂)2 + Var(�̂)Var(ATE��) 

Here �̂  is the estimated coefcient, whose mean and variance 
are easily obtainable. 

4.2 Sign Disagreement 
Although the treatment efect mapping provides a quantitative 
alignment between these interleaving and A/B, it cannot handle the 
case where there exists a sign disagreement between their estimated 
ATE. Notice such disagreement cannot be completely avoided due 
to the intrinsic uncertainty of experiments. Therefore, it is impor-
tant to understand whether such disagreement is natural or due 
to unknown failures in interleaving. In this regard, we introduce 
summary statistics to track reliability of interleaving in terms of its 
sign disagreement with A/B experiments. 

For any metric in an experiment, we assume the estimated av-
erage treatment efect has an approximate Gaussian distribution 
� (�, �2/�) centered at the true treatment efect �. Therefore, the 
probability of sign disagreement between ATE and � is: 

� (ATE > 0|� < 0) =� (ATE < 0|� > 0) 
ˆ=Φ(−� |� |/�) ≈ Φ(−|ATE|/�) 

(1) 

where � is the standard deviation of the estimated ATE. Clearly the 
probability of sign disagreement depends on the signal-to-noise 
ratio (SNR) |ATE|/� . This aligns with the intuition that a noisy 
measurement is likely to cause sign disagreement. 

For ease of analysis, we simplify the problem by assuming an 
interleaving experiment and its companion A/B experiment are 
merely two measurement on the same efect size � with diferent 
powers. For this interleaving experiment and its companion A/B, 
the probability of sign disagreement is the probability that one and 
only one of them has a sign disagreement with the truth: 

� (sign(ATE�� ) ≠ sign(ATE��)) = ��� + ��� − ������ 

where ��� and ��� represent the probability of sign disagreement 
between ATE and true treatment efect (equation 1) in A/B and inter-
leaving respectively. With this formula, for any pair of interleaving 
and A/B experiments, we know the probability of observing a sign 
disagreement. Theoretically, the principle of hypothesis testing can 
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be applied to determine whether a signifcant inconsistency exists 
between them. However, in practice, each pair of interleaving and 
A/B are not i.i.d. samples. Instead, we can monitor the empirical 
distribution of the sign disagreements as summary statistics and 
determine whether it aligns with our theoretical computation. We 
explain this in details in Section 5. 

5 ONLINE EXPERIMENT RESULTS 
We present empirical results applying our methods to a range of 
e-commerce experiments at Amazon search. We follow the setup of 
[2] to use sessions as analysis unit and user feedback metrics such 
as clicks and purchases as real-valued outcome for interleaving 
comparisons. We demonstrate the efectiveness of our methods 
in real-world applications and also validate the assumptions of 
transitivity and linearity with these experiments. 

Compare multiple ranking systems. We have run multiple 
interleaving experiments that efciently compare rankers online, 
and observe no violations to transitivity property under the over-
all family wise error rate of 0.1. For illustration we show one ex-
periment that evaluates 10 ranking systems with all 10-choose-2 
interleaving pairs among them. We estimate that with classic A/B 
testing this would have taken more than 3x the time and 2.5x the 
trafc. Figure 2 plots the directed graph of the 10 rankers under 
overall confdence level of 0.1, and � = 0.1/45 for each interleav-
ing pair using Bonferroni correction. Here we trimmed some di-
rected edges for easier visualization: Nodes in the same dashed 
box are those not signifcantly diferent from each other; and for 
any nodes �, � that are not in the same box, a path from node 
� to node � indicates � > � . The overall inferred ordering is 
� > {�4, �6, �7, �8, �9} > �5 > {�2, �3} > �1. There are no 
directed loops so there is no violation of [WTP] detected at this 
confdence level. 

Figure 2: Compare multiple ranking systems. There are 10 
rankers with directed edges for signifcant interleaving pairs. 
A path from � to � indicates � > � . Nodes in a dashed box 
are not signifcantly diferent from each other. 

Treatment efect mapping. We use a dataset that consists of 
75 pairs of interleaving measurements and their companion A/B 
measurements. Figure 3 plots two user feedback metrics, both of 
which show strong linearity between A/B and interleaving mea-
surements up to their uncertainty. The regression lines with 95% 
confdence bands are also included. Most data points have their 
confdence intervals overlapped with the regression bands. 

After obtaining the coefcients for metric 1 and metric 2, we 
can predict the efect size of a new treatment if tested in an A/B 

Figure 3: Treatment efect mapping for two user feedback 
metrics. Each datapoint shows the interleaving (x-axis) and 
the companion A/B measurement (y-axis) with correspond-
ing 95% error bars. The orange dashed line is the ftted regres-
sion line with blue area indicating its 95% confdence band. 

experiment. As an example, table 1 shows the estimated A/B efects 
for metric 1 and metric 2, and their actual A/B measurements. Al-
though the estimated mean efects seem diferent from the actual 
A/B efects, we believe this is due to the uncertainty within both the 
interleaving and A/B experiments. It is considered a good alignment 
as their confdence intervals are largely overlapped. 

Table 1: Treatment efect mapping for a new treatment. The 
sample column indicates the percentage of samples used by 
interleaving versus A/B. The confdence intervals are largely 
overlapped, while interleaving requires much fewer samples. 

Metrics Estimated A/B efect Actual A/B efect Sample 

Metric 1 -0.32% (-0.43%,-0.21%) -0.15% (-0.42%, 0.12%) 1.15% 
Metric 2 -0.07% (-0.20%,0.09%) 0.15% (-0.22%, 0.51%) 2.24% 

Finally fgure 4 plots a frequency histogram of sign disagreement 
in our dataset. We obtain 3 user metrics for each of the 75 exper-
iment pairs. As a baseline, we also plot the expected probability 
of sign disagreement given the power of each experiment. Despite 
the variance, the overall trend matches the estimated probability, 
indicating the sign disagreement between A/B and interleaving 
measures are likely due to randomness. 

This analysis can be used in various scenarios in practice. The 
most straightforward takeaway from equation 1 is that we need suf-
fcient power in the experiments, no matter interleaving or A/B, to 
correctly measure the sign of the treatment efect. In addition, when 
seeing a disagreement between interleaving and its companion A/B 
experiment, we can calculate the probability of disagreement to 
explain whether such a disagreement is expected. Finally, we can 
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Figure 4: Observed sign disagreement proportions vs. ex-
pected probabilities. The histogram shows the numbers of 
total treatment pairs and the ones with sign disagreement. 
The blue line indicates the proportions of sign disagreement 
compared with the theoretical baseline in black dashed line. 

maintain a set of interleaving and companion A/B pairs to contin-
uously monitor the health of the interleaving system through a 
histogram similar to fgure 4. 

6 CONCLUSION 
We propose two novel methods to address the challenges of apply-
ing interleaving to real-world IR systems. The frst method com-
pares multiple systems with interleaving pairwise results while 
correctly controlling for false discovery rate. The second method 
estimates A/B efect size based on interleaving measurement, and 
utilize all history experiment results by taking their uncertainties 
into consideration. We demonstrate the applicability of these meth-
ods with 75 large-scale online experiment results, and further verify 
the underlying transitivity and linearity assumptions with exten-
sive theoretical and empirical analysis. For future work, we will 
build on these methods and explore online learning-to-rank in a 
multiple-objective setting [5]. 
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A APPENDIX 

A.1 [TPM] and Transitivity in the Literature 
We frst review the formulation of transitivity property as intro-
duced in the literature [20, 21]. Defne a "duel" as an interleaving 
comparison between two rankers for a query, with a binary out-
come of which ranker wins this query. The duels are i.i.d. according 
to a � × � preference matrix � , where ��, � is the probability that 
ranker � beats ranker � , i.e. each duel of � and � is a Bernoulli draw 
of ��, � . Denote the winning margin of � over � by Δ�, � = ��, � − 1/2. 
Ranker � is better than � (i.e. � > � ) if ��, � > 1/2 or equivalently 
Δ�, � > 0. The transitivity property is defned as below that says the 
probability of winning a duel keeps the ordering with respect to 
multiple rankers. 
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Defnition A.1 (Strong Stochastic Property (SST)). For any triple 
(�, �, �), with true ordering � > � > � , the preference matrix satisfes 
that Δ�,� ≥ max{Δ�, � , Δ �,� }. 

Our [TPM] is closely related to [SST]. It is an extension so that 
the outcome of interleaving comparison can describe the magnitude 
of metrics such as revenue. Suppose we consider ranker A beats B 
in their duel if it wins directionally � ¯ �,� > 0, and correspondingly 
��,� = � (� ¯ �,� > 0) in the preference matrix � . [TPM] will imply 
[SST] if the sample sizes and variances are approximately equal 
��� = ��� = ��� , ��� 

2 = �2 = �2 
�� . To see this, consider the 

��
¯ ��� −0defnition of Z statistic ��� = , where the null hypothesis ��� 

√�̂�� is �0 = 0, and standard error ��� = . The distribution of Z 
��� 

statistic under the true mean ��� is that 
¯ √ �√ ��� − ��� ��� ��� ��� 

��� = + ≈ � (0, 1) + = � ��� ��� 
��� ��� ��� ��� 

The probability of A winning over B is� � ��√ ��� 
� (� ¯ �� > 0) ≈ � � ��� , 1 > 0 

��� 

Nan Bi et al. 

Assume large sample size � , equal or close sample sizes and vari-
ances, and all positive means �, the winning probability increases 
with the magnitude of �, hence satisfes [SST]. 

A.2 A/B Testing Satisfes [TPM] 
[TPM] setup for classic A/B testing. Assume a ranker A’s session 
metric �� is i.i.d. with unknown distribution of mean �� and vari-
ance �2 . For a triplet of independent rankers �, �,� such that 

� 
� > � > � , the mean of the two sample T statistic for rankers 
A and B is ��� = �� − �� , and similar for �,� and �,� . Then 
because ���, ��� , ��� > 0, we have 

��� = ��� + ��� ≥ max{���, ��� } 

A.3 [TPM] Implies [WTP] � 
We know that ���, ��� > 0 from the fact that � > � and � > � . , 1 
[TPM] tells us that ��� ≥ max{���, ��� } > 0, which means 
� > � . 
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