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ABSTRACT 
Modern data management is evolving from centralized integration-
based solutions to a non-integration-based process of fnding, ac-
cessing and processing data, as observed within dataspaces. Com-
mon reference dataspace architectures assume that sources publish 
their own domain-specifc schema. These schemas, also known as 
semantic models, can only be partially created automatically and 
require oversight and refnement by human modellers. Non-expert 
users, such as mechanical engineers or municipal workers, often 
have difculty building models because they are faced with mul-
tiple ontologies, classes, and relations, and existing tools are not 
designed for non-expert users. The PLASMA framework consists 
of a platform and auxiliary services that focus on providing non-
expert users with an accessible way to create and edit semantic 
models, combining automation approaches and support systems 
such as a recommendation engine. It also provides data conversion 
from raw data to RDF. In this paper we highlight the main features, 
like the modeling interface and the data conversion engine. We 
discuss how PLASMA as a tool is suitable for building semantic 
models by non-expert users in the context of dataspaces and show 
some applications where PLASMA has already been used in data 
management projects. 
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1 INTRODUCTION 
Heterogeneous data management has risen to be one of the major 
directions in today’s data exchange architectures. Data lakes and 
dataspaces [7] continue the shift from (structured) data integration 
towards on-demand data aggregation from multiple data sources 
in a pay-as-you-go fashion. In dataspaces, data is not transferred to 
a single location (as done in data lakes), but resides in the original 
location that provides the data. In theory, the dataspace does not 
impose any requirements towards that data regarding structure 
or guarantees and the data itself is managed solely by the source 
owner. Those data sources (often referred to as Resources) therefore 
provide highly heterogeneous data and might even change the 
structure or content of the data at any time or cease publishing data 
altogether. Due to the lack of a data integration which is controlled 
by a centralized entity, almost no guarantees can be made towards 
structure or format of the ofered data. Still, in a dataspace, other 
participants expect to be able to obtain, process and extract data 
from the dataspace and therefore from those heterogeneous data 
sources. 

While this approach ofers several benefts over a pre-defned 
data integration using a fxed schema, like relational databases, 
fnding, accessing and processing data from heterogeneous sources 
poses a major challenge. The International Data Spaces Reference 
Architecture Model (IDS RAM) [16], defned by the International 
Data Spaces Association (IDSA), specifes how data sources should 
be accessible in a dataspace. The corresponding reference specifca-
tion is the IDS Information Model (IM) [1], which is an RDFS/OWL 
ontology defning fundamental concepts for describing actors and 
resources in dataspaces. It also provides building blocks for describ-
ing participant interactions, exchanged resources, as well as data 
usage restrictions. The upcoming IDS RAM 4.01 will expand on 
these concepts. Many dataspaces currently operational or in the 
making (e.g., Gaia-X [9], Catena-X2 and others) use the IDS RAM 
as a blueprint to their dataspace architecture. 

While existing reference specifcations provide a foundation 
to describe data sources inside a dataspace, the data ofered by 
those data sources remains largely undescribed3 as the reference 
specifcation is intended to be independent of concrete application 
domains [1]. Still, the usage of RDF and domain ontologies is ad-
vocated as the preferred technology in order to provide domain 

1https://docs.internationaldataspaces.org/ids-ram-4/ 
2https://catena-x.net/en/ 
3https://www.trusts-data.eu/data-spaces-semantic-interoperability/workshop-
report-pictures-slides/ 
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Dataset_movies

title directedBy score time year

Interstellar Christopher Nolan Hans Zimmer 169 2014

Star Wars George Lucas John Williams 121 1977

Dune Denis Villeneuve Hans Zimmer 155 2021

Figure 1: Example dataset containing information about 
movies 

specifc semantics which detail the contents (i.e., datasets) of data 
sources. 

Semantic models provide semantics to datasets in order to achieve 
a common understanding about the contents of that dataset [22]. 
They detail the single components (i.e., columns or felds) of a 
dataset while also providing context information to those compo-
nents through the use of relations and meta concepts. As elements in 
semantic models are usually taken from shared conceptualizations 
like ontologies, semantic models provide a machine readable repre-
sentation of the data contained. However, the necessary creation 
of semantic models poses two challenges. First, semantic models 
can rarely be fully generated in a completely automated fashion 
and often lack vital context information needed to properly inter-
pret the contained data [18]. Second, having to provide a semantic 
model for a data source up front somehow violates the premise of 
dataspaces, which is to require no initial commitment from data 
providers. Assuming that domain experts often want to share data 
in a dataspace, these individuals are forced to create semantic mod-
els, a task that requires knowledge of semantic technologies that is 
rarely found among those workers. 

In this paper, we frst present the main features of the PLASMA 
framework, a tool to build and edit semantic models with the focus 
on non-expert users. The initial semantic modeling platform was 
presented in [19] and has since then been extended to include a data 
processing component which allows the conversion from raw data 
into RDF, using the semantic model as a template. In the following, 
we showcase how PLASMA assists non-expert users during the 
semantic model creation phase, positioning it as a tool suitable for 
the application in dataspaces. 

The remainder of this paper is organized as follows. We briefy 
introduce the basics of semantic models and detail the semantic 
model creation process in Section 2. PLASMA and its components 
are then described in Section 3. We present three felds of applica-
tion where PLASMA has been used in productive environments 
with non-expert users in Section 4. Related work is summarized 
in Section 5. We conclude with a summary and an outlook towards 
future developments in Section 6. 

2 SEMANTIC MODELS 
We frst give a short introduction into the nature, shape and purpose 
of semantic models. In Section 2.2, a closer look will be taken at the 
process of creating a semantic model and which pitfalls might pose 
challenges to inexperienced users during their model creation. 

2.1 Data Interpretation and Semantic Models 
Relational databases defne a name and data type for each column 
in their tables. Although the data type reveals nothing about the 

rdfs:subClassOf

semantic_modeling_composers_schema

schema:
Person

schema:
Movie

schema:musicBy

schema:
Person

schema:
director

schema:
CreativeWork

title directedBy score time year

Interstellar Christopher Nolan Hans Zimmer 169 2014

Star Wars George Lucas John Williams 121 1977

Dune Denis Villeneuve Hans Zimmer 155 2021

schema:name schema:name schema:name

schema:duration

schema:datePublished

Figure 2: Semantic model for the dataset shown in Figure 1 

content of the data, most feld names are often helpful in under-
standing the data. Those feld names (and relations to other felds 
or tables) provide context to the raw data, helping data scientists 
or software developers to interpret the values stored in the feld 
or column. When it comes to dataspaces or open data portals, data 
is usually shared in an at least semi-structured form, e.g. as a CSV 
or JSON fle, that provides similar context as a database schema. 
Figure 1 shows an example dataset containing information about 
movies, their director, composer, run time and publication year 
which might be provided as a CSV fle. Without any context infor-
mation, some deductions towards the contents of each column can 
be done by a human observer: frst column identifes the movie 
title, second column the director. The name of the third column 
could either reference to the title of the accompanying soundtrack 
or the composer. From the examples values contained in the col-
umn one might identify the composer as the more natural choice 
as the contents refer to names of persons. While the forth column 
obviously contains a duration (deductible from the header and the 
values) it is not immediately clear if the contained values are in 
minutes or seconds. Only by regarding the context of that column, 
an observer might correctly identify the unit of measurements as 
minutes. However, even with this information, it is unclear if this 
measure refers to the movie or the soundtrack run time, as both 
appear to be suitable choices. The same conditions apply for the 
"year" column, which at frst has to be identifed as a year of release 
but could also refer to both the soundtrack and the movie itself. 

Human observers might be able to deduct the meaning of all 
those columns based on context information from other columns, 
possible known relationships between diferent combinations of 
candidate meanings, experience and intuition. Most of those tech-
niques are unavailable to computers and even if available (e.g. 
through the use of machine learning), would still not result in 
a fully confdent interpretation of the values (cf. Section 2.2). Ap-
plying those interpretation processes to a new dataset obtained 
from an unknown machine with partially cryptic column names 
will likely fail for both human and machines as context, intuition 
and experience are missing. 

In order to provide those necessary information, semantic tech-
nologies can be used. A semantic model is a formalization of the 
semantic information needed to interpret the data contained in the 
dataset. Therefore, a proper semantic model contains all informa-
tion, expressed as concepts and relations, needed to interpret the 
data correctly. Figure 2 shows the semantic model for the dataset 
presented in Figure 1, depicted as a graph. 

In a semantic model, nodes represent concepts (classes) while 
edges represent relations (predicates/properties) between those 
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classes or the data felds. Concepts and relations are usually ob-
tained from ontologies (e.g. schema.org4). Semantic models are 
coded using the RDF triple format (subject, predicate, object) [11], 
with each relation being expressed as a triple, e.g., (schema:Movie, 
schema:musicBy, schema:Person). As RDF is machine readable, 
semantic models empower machines to be aware of the internal se-
mantics of the dataset, similar to human observers, but also to index 
and query the data using the semantic model as schema information 
for a structured query (e.g. SPARQL [11]). 

2.2 Model Creation 
In recent years, automation in the feld of semantic model creation 
has seen some signifcant advances [18], while new techniques 
continue to improve diferent aspects of fully automated semantic 
model generation. The major focus in this feld lies on the semantic 
labeling step, which assigns initial concepts to felds of a data-
base. From this initial assumption, the advanced semantic modeling 
identifes additional relations and meta concepts to build an initial 
semantic model. 

However, various authors of state-of-the-art automation algo-
rithms still identify a need for manual refnement or creation of 
the generated models [8, 19, 23]. Since most modern automation 
approaches are substantially based on machine learning, the quality 
of predictions depends on the quality and quantity of training data. 
In domains where little or no historical data is available (cold start 
problem), automation fails to provide adequate results, requiring 
human modelers to step into the process. Additionally, in the con-
text of dataspaces where semantic models are supposed to interpret 
the values contained, some parts of semantic models can never be 
properly flled using automated approaches as those are dependent 
on the data collection environment [18]. Examples where manual 
editing is necessary include units of measurement, reference values 
(e.g., applied ofsets) as well as locations or any other information 
necessary for interpretation that is not contained in the actual data 
(e.g., an identifer of the machine from which the data was col-
lected). This information must be entered into the model by human 
supervisors, requiring engineers, municipal workers or other data 
providers to edit the semantic model after the initial automated 
generation. 

Editing semantic models poses some challenges to non-expert 
users. Available tools, such as SAND [26] or the RML Editor [10] 
require in-depth knowledge of RDF, ontologies and the mapping 
process, making these tools unsuitable for the target users (cf. Sec-
tion 5). Additionally, suitable ontologies, which provide the founda-
tion of semantic models, are often missing for specifc application 
domains, resulting in users being unable to model certain facts or 
requiring them to combine concepts and relations from various 
ontologies. 

3 THE PLASMA FRAMEWORK 
To overcome these issues, we introduced PLASMA (PLatform for 
Auxiliary Semantic Modeling Approaches) as a modular framework 
to serve as a baseline semantic modeling tool [19]. The main com-
ponent of PLASMA is the modeling web based UI paired with the 
Data Modeling Service (DMS) which stores the models and editing 

4https://schema.org 

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

history. Finished models are stored in the Knowledge Graph Service 
(KGS) which manages an internal knowledge graph as well as on-
tologies imported into PLASMA. An additional optional component, 
the Data Processing Service (DPS), can be used to convert raw JSON 
data into RDF using a semantic model obtained from the DMS. The 
platform architecture is realized as a collection of microservices, 
which allows PLASMA to be used as either a standalone modeling 
tool or embedded into a larger software construct (see Section 4). 

3.1 Semantic Model Creation in PLASMA 
PLASMA provides a graphical user interface (Figure 3) to display 
the current state of the semantic model as a two-layered graph. The 
background layer displays the syntax model which resembles the 
structure of the input data obtained through a schema analysis (low 
opacity elements like the ROOT node in Figure 3). The input of, e.g., 
a CSV fle is rendered in a simple tree structure with an artifcial 
ROOT node. In addition to tabular data, PLASMA is also capable 
of handling hierarchical data such as JSON or XML fles which are 
displayed in a tiered way to organize nested elements. The overall 
structure of the syntax model aims to provide an initial view that 
is similar to the data structure the modeler is familiar with. The 
graph’s foreground layer displays the current state of the semantic 
model. This layer expands with each element the user adds to the 
semantic model and is rendered on top of the lower layer. The visu-
alization resembles a graph representation of RDF triples. Nodes 
and edges indicate subjects/objects (classes and literals) and edges, 
respectively. By default, most RDF-specifc details are hidden for 
simplicity. The graph uses defned labels (if available) for classes 
and properties instead of URIs. A color coding helps distinguishing 
classes from literals. Users may freely arrange elements in both syn-
tax and semantic representation layers, e.g., to cluster nodes that 
represent data related to each other. A more detailed description 
of the modeling UI can be found in [17]. The majority of semantic 
model creation in PLASMA is done using drag & drop interactions. 
Creating a semantic model is achieved by dragging classes from an 
extensible drawer on the left and dropping them into the modeling 
area. Dropping a class onto the canvas creates a class used for meta 
information. In case a class is dropped onto a node in the syntax 
model, a mapping is created between that node and the class if the 
node contains data (leaf node). Relations can be drawn by selecting 
the desired item in the relations tab and dragging a line from one 
node to another. All available elements (classes and relations) are 
taken from a set of ontologies managed in PLASMA. The user may 
flter which ontologies to search but also upload new ontologies 
to PLASMA. Currently, only OWL ontologies are supported. On-
tologies in other formats (like schema.org) may be converted into 
the OWL format to be used in PLASMA. If no matching class or 
relation can be found in an ontology previously imported into the 
system, PLASMA ofers users the ability to create a provisional 
element manually during the semantic model editing using a local 
ontology managed by the KGS. This principle is inspired by the 
idea of Lipp et al. [14] to allow domain experts to quickly create 
ontologies. Each element can be defned by specifying a type (class 
or named entity and OWL ObjectProperty/DatatypeProperty), la-
bel, description and URI and added into a cache visible only to the 
current modeling process. The modeler can then use that element 
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Figure 3: Screenshot of the PLASMA modeling interface 

during the modeling similar to elements obtained from imported 
ontologies. It is also possible to edit the element later on during the 
modeling. The information gathered in the local ontology may be 
used later on to build a new, domain specifc ontology [14]. At any 
time during the modeling, the current model can be exported as an 
RDF graph. A video screencast showing an example basic modeling 
process is available online5. 

3.1.1 Assistance Technologies and Tools. While the modeling in-
terface is still the main focus, the PLASMA architecture allows 
to add components that provide assistance technologies. Those 
technologies have been added to speed up the modeling process 
and to provide some guidance during manual modeling. Assistance 
technologies include automation algorithms, e.g., for automated 
semantic labeling and modeling, as well as recommendations for 
the user to accept or reject. The underlying software components 
are called Auxiliary Recommendation Services (ARS) and can be 
consulted at any stage during the modeling phase. This allows the 
user to, for example, frst request a semantic labeling, correct any 
existing errors and only then let an ARS generate an initial seman-
tic model, reducing error propagation between those two steps. In 
case the computed result is undesired, PLASMA keeps track of the 
whole editing history and provides an undo function to return to 
previous modeling states. 

Alongside the ARS for automation, PLASMA also features the 
display of recommendations which are to be created by an ARS. 
Recommendations are displayed as highlighted nodes in the ac-
tual semantic model and contain possible additions to the semantic 
model. This way, missing context information might be added by 
the user through a recommendation to add this specifc fact to 
the model. Recommendations may also reduce the time to identify 
single elements matching elements from the ontologies, saving 
valuable modeling time. A single ARS for recommendations based 
on statistical information obtained from all models in the PLASMA 

5https://bit.ly/3OmeJlE 

instance is already available to provide a baseline for recommenda-
tion generation. In the future, we plan to integrate multiple other 
ARS into PLASMA, featuring recent approaches in the domains of 
semantic labeling (e.g. [4, 12, 20]), modeling [8, 27] and upcoming 
recommendation algorithms. We also encourage the community to 
add their algorithms to PLASMA as ARS. 

In addition to the ARS, the PLASMA modeling interface has 
undergone many other enhancements over the years to meet the 
changing needs of users and support them with additional assis-
tance technologies. For example, in newer versions it is possible 
to copy a whole semantic model from another modeling process. 
After defning the new mappings and optionally editing the model, 
it can be exported, saving a majority of time in case multiple similar 
datasets are to be modeled. 

3.2 RDF Data Conversion 

plsm :4 b1efca7 -2681 -2 
schema : name " 

rdf : type schema : Person ; 
Hans Zimmer ". 

plsm :4 b1efca7 -2681 -1 
schema : name " 

rdf : type schema : Person ; 
Christopher Nolan ". 

plsm :4 b1efca7 -2681 -0 rdf : type schema : Movie ; 
schema:datePublished "2014"; 
schema:director plsm:4b1efca7 -2681 -1 ; 
schema:duration "169"; 
schema:musicBy plsm:4b1efca7 -2681 -2 ; 
schema:name "Interstellar ". 

plsm:4b1efca7 -2681 -5 rdf:type schema:Person ; 
schema:name "George Lucas ". 

Listing 1: Turtle respresentation of data conversion result 
(partial) 

In addition to creating semantic models, PLASMA is also capable 
of converting raw data to RDF. PLASMA’s central internal data 
structure is called the Combined Model (CM), which contains all 
information about the contents of both syntax and semantic models, 
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existing mappings between those models, and provisional elements 
(see Section 3.1). From the CM, the current semantic model for a 
selected input fle is used as a blueprint for the RDF conversion. 
An engine parses the semantic model node by node and either 
creates an instance for each context class or flls a literal with 
either the respective data from the currently converted data point 
or a static value defned in the semantic model. Afterwards, all 
relations are copied from the CM to the generated RDF model. If, for 
example, the data shown in Figure 1 is converted using the semantic 
model shown in Figure 2, the resulting RDF output will resemble 
the triples in Listing 1. Identifers for output nodes are generated 
based on the (random) model id. The PLASMA conversion engine 
roughly behaves like the RMLMapper6, but adds some specifc 
features requested by previous users. As an example, in geospatial 
datasets, polygons are modeled as lists of points. Those can be 
mapped in RML too, but the necessary order is lost in the mapping 
step. PLASMA models the contained data using RDF lists, thus 
preserving order and also allowing relations to be created between 
other instances and single items in the list as well as the list itself. 

3.3 Setup 
All components of PLASMA are available from GitHub7 under an 
MIT license. The backend components are written in Java while the 
frontend is based on Angular. Due to the microservice architecture, 
other languages like Python may be used for the (mostly machine 
learning based) ARS. Execution is based on Docker images for 
each microservice. The deployment can be achieved by building the 
Docker containers locally using Maven and then using the provided 
compose script to start up PLASMA. A demo instance for testing is 
available at http://plasma.uni-wuppertal.de. 

4 APPLICATIONS 
As mentioned in Section 3, PLASMA can be used either as a stand-
alone modeling tool or integrated into other software applications. 
In the following, we outline application scenarios in which PLASMA 
is currently operated. 

4.1 PLASMA as Standalone Tool 
An instance of PLASMA is operated at a German conglomerate with 
focus on automation and digitization to create semantic models for 
time series data [17]. In this application, the structure of a data set, 
such as, a time series of measurements, is extracted and PLASMA is 
used by domain experts to create a semantic model using predefned 
ontologies, such as SOSA. Once the modeling creation is complete, 
the exported RDF model can be used to process the data, such as 
integrating it into a knowledge base such as an industrial knowledge 
graph. 

In the second application, PLASMA is currently being evaluated 
by the city of Wuppertal for the creation of 5-star open data [17]. 
Here, domain experts from the Geodata Management Department 
are creating semantic models for their open data. PLASMA’s data 
conversion functionality is then used to generate RDF data, to 
be published on the open data portal. To train the diferent staf 

6https://github.com/RMLio/rmlmapper-java 
7https://github.com/tmdt-buw/plasma 
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Figure 4: PLASMA in the City Dataspace 

members, a workshop was held to teach the basics of semantic 
modeling. 

4.2 PLASMA in the City Dataspace 
The third application uses PLASMA as an integrated component 
within a dataspace. The City Dataspace [21] aims to enable the 
data-driven smart city of tomorrow by enabling the compatibility 
of heterogeneous open and urban data from diferent municipalities, 
combined with data from other stakeholders across city boundaries. 
To this end, the City Dataspace relies on the established semantic 
data management mechanisms. Datasets added to the dataspace 
require the defnition of a semantic model in order to improve the 
data quality towards defned FAIR goals. When extracting data, 
the user can choose which parts of the data to export based on 
the semantic model, using the semantic descriptions as a guide. 
To date, more than 200 data sources have been created by eight 
municipal domain experts in the feld of geospatial information, 
who created the models without in-depth knowledge of semantic 
technologies. Figure 4 shows the user interface of PLASMA within 
the City Dataspace. A corpus of semantic models created using 
PLASMA has been published as the VC-SLAM dataset [5]. 

In a dataspace, PLASMA’s data converter can be used to provide 
data contained in a data source in a standardized format (i.e., RDF) 
that exactly matches the semantic structure observed in the seman-
tic model. This allows data consumers to query the data from the 
data source using a query language like SPARQL, strengthening 
interoperability between diferent data sources as the data may 
be processed inside a single query across multiple data sources. 
Alternatively, data has to be queried in a raw format, collected at 
the consumer and then manually processed afterwards, as multiple 
data schemes have to be aligned. 

5 RELATED WORK 
Increasing the accessibility of semantic technologies is not a task 
that is unique to the feld of semantic modeling. This approach is al-
ready being followed, especially in the feld of ontology engineering. 
A sizable number of ontology editors have been developed over the 
years, such as approaches presented in [3, 6, 15, 24]. However, their 
complexity makes them unsuitable for non-expert users that do not 
have any or only little prior knowledge in semantic technologies. In 
the last two years, several new approaches have been published that 
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feature convenient visual interfaces, highlighting the importance 
of proper visualization [2, 14, 25]. However, as ontology editors, 
they are not capable of handling data and including mappings, thus 
rendering them unusable for semantic model creation. 

One of the frst semantic model creation tools was Karma [13] 
which already visualized multiple diferent generated semantic mod-
els for the user to pick from. Its editing and building capabilities are 
however limited, narrowing the feld of application to inspection 
only. SAND [26], a semantic modeling tool that provides a visualiza-
tion of the model alongside a table view, allows creating semantic 
models and ofers the ability to convert the raw data to RDF or 
JSON-LD. The tool is limited to tabular data whereas PLASMA is 
able to convert hierarchical data too. The RML Editor [10] sup-
ports mapping hierarchical data, but is limited in the complexity 
of created semantic models as some relation combinations are not 
supported by the underlying RML mapping engine. 

6 CONCLUSION AND FUTURE WORK 
In this paper, we presented how PLASMA, a semantic model cre-
ation tool featuring a visual editing display, could be used in a 
dataspace environment. PLASMA is capable of (1) creating semantic 
models in an environment convenient for non-expert users, (2) pro-
vide continuous support during the model refnement through a 
modular assistance framework, (3) maintaining an internal knowl-
edge graph and extendable ontology, (4) export semantic models to 
provide a semantic description for datasets and (5) convert data into 
RDF to provide a unifed format for data exchange. We highlighted 
three scenarios in which PLASMA has been used so far to generate 
semantic models and optionally convert data into standardized RDF. 
While other tools partially provide similar functionality, none of 
the existing tools ofer all the benefts of PLASMA in one modeling 
environment. 

For future work, we would like to extend the initial set of ARS 
to include more support functions into PLASMA. Furthermore, we 
plan to include an export of the mapping as an R2RML confguration 
to increase compatibility to existing systems. In addition, a special 
modeling and export mode for JSON-LD is planned which adds 
semantic information to the original JSON structure instead of 
converting the data into RDF. This will increase usability of the 
data to consumers that require adherence to the original data format, 
which are often encountered in dataspaces. 
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