
Interaction techniques for ambiguity resolution in

recognition-based interfaces
Jennifer Mankoff 1, Scott E. Hudson2, and Gregory D. Abowd1

1 College of Computing & GVU Center
Georgia Institute of Technology

Atlanta, GA 30332-0280
{mankoff,abowd}@cc.gatech.edu

2 HCI Institute
Carnegie Mellon University

Pittsburgh, PA 15213
hudson@cs.cmu.edu

ABSTRACT
Because of its promise of natural interaction, recognition is
coming into its own as a mainstream technology for use
with computers. Both commercial and research applica-
tions are beginning to use it extensively. However the er-
rors made by recognizers can be quite costly, and this is
increasingly becoming a focus for researchers. We present
a survey of existing error correction techniques in the user
interface. These mediation techniques most commonly fall
into one of two strategies, repetition and choice. Based on
the needs uncovered by this survey, we have developed
OOPS, a toolkit that supports resolution of input ambiguity
through mediation. This paper describes four new inter-
action techniques built using OOPS, and the toolkit
mechanisms required to build them. These interaction
techniques each address problems not directly handled by
standard approaches to mediation, and can all be re-used
in a variety of settings.

INTRODUCTION
Because of its promise of natural interaction, recognition is
coming into its own as a mainstream technology for use
with computers. Recognition is being used in personal
assistants such as the PalmPilot™, as well as on the desk-
top (e.g. IBM’s ViaVoice™). Research initiatives in areas
such as multimodal computing are investigating how to
build effective, usable applications involving recognizers.

However, the errors made by recognizers can be quite
costly and annoying for users to correct, and this is in-
creasingly becoming a focus of research [7,11,23,28,30]
For example, when studying a speech dictation system,
Halverson et al. found that input speeds decrease from the
120 words per minute (wpm) of conversational speech to
25 wpm due in large part to time spent correcting recogni-
tion errors [11]. These errors are corrected through ex-
plicit user interaction. For example, a user can delete mis-
recognized words and then repeat them.

This repetition of input is one of the two common classes
of interaction techniques for correcting recognition errors.

The other common class gives the user a choice of differ-
ent possible interpretations of her input. We call repetition
and choice mediation techniques because they are mediat-
ing between the user and the computer to specify the cor-
rect interpretation of the user’s input. Tables 1 and 2 show
some of the variations of both repetition and choice tech-
niques that we found in the literature. Figure 1 shows an
example of a hybrid mediator from IBM’s ViaVoice™
system. It provides a choice technique (an n-best list) with
an escape path to a repetition technique. Other commer-
cial systems such as the Apple MessagePad™ and
DragonDictate™ provide similar hybrids. Choice and
repetition strategies have a fairly wide range of possible
instantiations, making mediation techniques ripe for reus-
able toolkit-level support.

In general, the goal of perfect recognition is difficult to
achieve because correct recognition is best defined as what
the user intends. Since a system cannot know this a priori,
we model possible interpretations of user input internally
as ambiguous input. Mediation techniques then serve to
resolve this ambiguity, helping to determine which of
those potential interpretations is the correct one, the one
the user intended. In order to do this properly, integrated
architectural support for ambiguity at the input-handling
level is required. This makes it possible to track which
interactors use ambiguous information and will need to be

Submitted to UIST’2000
Figure 1: An n-best list from the ViaVoice™ speech
system [3]. Note that it provides a text entry area for me-
diation by repetition. Illustration reprinted with permis-
sion from IBM Corporation.

notified when interpretations are accepted or rejected.
With such integrated support, we can treat all events the
same way whether they are generated by a recognizer, sen-
sor, mouse, or keyboard. We have developed a toolkit,
called the Organized Option Pruning System (OOPS) that
provides these features, introduced in [19,20].

The important contribution of OOPS is the separation of
recognition and mediation from application development.
The separation of recognition leads to the ability to adapt
mediation to situations which do not seem to be recogni-
tion-based, but where some problem in interaction causes
the system to do something other than what the user in-
tended (our ultimate definition of error). The separation of
mediation allows us to develop complex mediation inter-
actions independent of both the source of ambiguity and
the application. It also allows us to defer mediation for
arbitrary periods when appropriate. OOPS also provides
hooks that facilitate application-specific mediation in
situations that benefit from specific knowledge to do the
right thing, such as dealing with errors of omission.

In addition to an architecture, OOPS includes a library of
mediators that fill out the design space illustrated in Ta-
bles 1 and 2, described in the next section. In particular,
we have built re-usable, generic choice and repetition me-
diators that can be easily modified along the dimensions
shown.

The focus of the work presented here is on expanding the
repertoire of mediation techniques into settings where
standard techniques, such as the n-best list in Figure 1,
face problems. The work described in this paper involves
the design and implementation of re-usable mediation
techniques that address some of the deficiencies or prob-
lems not handled well by the standard set of techniques
found in the literature. We begin by describing the design
space in more detail in the next section. After introducing
the toolkit concepts necessary to understand our solutions

to these problems in the following section, we will discuss
each problem in detail. The first problem involves adding
alternatives to choice mediators, as the correct answer (as
defined by the user) may not appear in the list of choices.
The second problem, occlusion, occurs because choice
mediators may cover important information when they
appear. The third problem we address is mediation for
target ambiguity, which can arise when there are multiple
possible targets of a user action (such as selecting part of a
drawing). Finally, our fourth mediator illustrates one way
to deal with errors of omission, where the user’s input is
completely missed by the recognizer.

DESIGN SPACE
Mediation is the process of selecting the correct interpre-
tation of the user's input (as defined by the user). Because
of this, mediation often involves the user in determining
the correct interpretation of her input. Automatic media-
tion, which does not involve the user, is also fully sup-
ported by OOPS, although not a focus of this paper. Good
mediators (components or interactors representing specific
mediation strategies) minimize the effort required of the
user to correct recognition errors or select interpretations.
This section presents a survey of existing interfaces to rec-
ognition systems, including speech recognition, handwrit-
ing recognition, gesture recognition, word prediction, and
others (expanded from [19]).

The survey led us to identify two basic categories of inter-
active mediation techniques. The first, and most common
mediation strategy, is repetition. In this mediation strat-
egy, the user repeats her input until the system correctly
interprets it. In the second strategy, choice, the system
displays several alternatives and the user selects the correct
answer from among them.

Repetition
When the user specifies the correct interpretation of her
input by explicitly repeating some or all of it, we refer to

I/O System Repair Modality Undo Repair Granularity

Handwriting
/ Words

MessagePad™[1], Microsoft
Pen for Windows™

Soft keyboard, or individual
letter writing

Automatic Letters

ViaVoice™[3] Speech, letter spelling, typing Automatic Letters or wordsSpeech
/ Words,
 Phrases Suhm speech dictation [30] Voice, pen User must select

area to replace
 Letters or words

Speech
/ Names
(non GUI)

Chatter [22] Speech, letter spelling, military
spelling, with escape to choice

Automatic Letters

Word Prediction [2,10,25]Typing
/ Words

POBox [21]

Letters (as user enters addi-
tional characters, new choices
are generated)

Unnecessary (user
has to explicitly
accept a choice)

Letters

Table 1: A representative set of systems (as defined by their input and output modalities) that vary along the dimensions of repetition
mediators. All of these systems provide additionally unmediated repetition, in which the user deletes an entry and repeats it using the
original system modality. In contrast, a system which does not provide mediated repetition is the PalmPilot™. I/O gives input/output
of recognizer. Systems are representative examples. Military spelling uses “alpha” for ‘a’, “bravo” for ‘b’, etc.

this as repetition. For example, when a recognizer makes
an error of omission (and thus generates no alternatives at
all), this option is available to the user. Specific examples
are given in Table 1. See [28] for a discussion of how such
variations may affect input speeds. Below are the three
dimensions of repetition:

Modality: The user often has the option of repeating her
input in a different (perhaps less error-prone) modality.
However, research in speech systems shows that users
may choose the same modality for at least one repair be-
fore switching [11], despite the fact that the repair will
have lower recognition accuracy [7].

Undo: In order to repeat her input, the user may first have
to undo some or all of it. This is most often required of
systems without explicit support for mediation (e.g. the
PalmPilot™).

Repair granularity: Repair granularity may differ from
input granularity. For example, the user may speak
words or phrases, yet repair individual letters [30].

Choice
When the user selects the correct interpretation of her in-

put from a set of choices presented by the system, we refer
to this as choice mediation. The n-best list in Figure 1 is
an example of this. Like repetition, choice mediators vary
along a set of common dimensions. We illustrate the di-
mensions below by comparing two examples, the n-best
list used in ViaVoice™ (Figure 1) and the Pegasus draw-
ing beautification system (Figure 2). Pegasus recognizes
user input as lines and supports rapid sketching of geomet-
ric designs [14]. Additional examples are given in Table 2.

Layout: The n-best list uses a menu layout. In contrast,
Pegasus does layout “in place”. Possible lines are simply
displayed in the location they will eventually appear if
selected (Figure 2(c&e)).

Instantiation time: The n-best list can be instantiated by a
speech command, or can be always visible (even when no
ambiguity is present). Pegasus shows the alternative
lines as soon as they are generated.

Contextual information: Pegasus also shows contextual
information about the lines by indicating the constraints
that were used to generate them (Figure 2(c&e)). The n-
best list, which is more generic, shows no additional in-
formation.

I/O System Layout Instantiation Context Interaction Feedback

Handwriting
/ Words

MessagePadTM

[1]
Linear menu Double click Original ink Click on choice ASCII words

Speech
/ Words

ViaVoiceTM [3] Linear menu Speech command
/ Continuous

None Speech command ASCII words

Speech/Comma
nds (non GUI)

Brennan and
Hulteen [4]

Spoken
phrases

On
completion

System state
(audio icons)

Natural language Pos.&neg.
evid.-nat. lang.

Handwriting
/ Characters

Goldberg et Al.
[9]

Below
top choice

On
completion

None Click on choice ASCII letters

Assistive Tech.
[2, 10]

Bottom of
screen (grid)

Continuously None Click on choice ASCII wordsTyping
/ Words (Word
prediction)

Netscape™
[25]

In place Continuously None Returns to select,
arrow for more

ASCII words

Gesture
/ Commands

Marking Menu
[15]

Pie menu On pause None Flick at choice Commands,
ASCII letters

Gesture
/ Lines

Beautification
[14]

In place On prediction
/ completion

Constraints Click on choice Lines

Context
/ Text

Remembrance
Agent [27]

Bottom of
screen,
linear menu

Continuously Certainty, result
excerpts

Keystroke com-
mand

ASCII sen-
tences

UI description /
Interface spec.

UIDE [29] Grid On command None Click on choice Thumbnails
of results

Multimodal
/ Commands

Quickset [23] Linear menu On
completion

Output from mul-
tiple recognizers

Click on choice ASCII words

Email / Ap-
pointment

Lookout [12] Pop up agent,
speech, dia-
logue box

On
completion

None Click OK ASCII words

Table 2: The layout, instantiation mode, context, selection, and representation used by commercial and research choice mediators. Note
that feedback in the mediator may differ from the final output result of recognition. I/O gives input/output of recognizer. Systems are
representative examples.

Interaction: In both examples, interaction is quite
straightforward. In ViaVoice™, the user says “Pick
[#].” In Pegasus, the user can select a choice by clicking
on it (Figure 2(e)). Drawing a new line will automati-
cally accept the currently selected choice in Pegasus
(Figure 2(d&f)). The n-best list is only used to correct
errors, the top choice is always sent to the current docu-
ment as soon as recognition is complete.

Feedback: As stated earlier, feedback in Pegasus is in the
form of lines on screen. Contrast this to the ASCII
words used in the n-best list.

In summary
We have identified a rich design space of mediators which
fall into two major classes of techniques. Each system we
reference implemented their solutions from scratch, but as
Tables 1 and 2 make clear, the same design decisions show
up again and again. The space of mediation techniques is,
therefore, amenable to toolkit-level support, and that is
why we built OOPS. OOPS includes both an architecture
and a library of mediators, including a generic repetition
and a generic choice mediator that can be varied along the
dimensions described above in a pluggable fashion
[19,20]. We expand upon that work in this paper by iden-
tifying some significant gaps in the design space. We were
able to use OOPS to create new mediators which address
the problems responsible for those gaps.

TOOLKIT-LEVEL SUPPORT FOR AMBIGUITY
OOPS is an extension of the subArctic toolkit [6]. Here we
will review the basic features of OOPS discussed in [20],

and describe additional features that facilitated the devel-
opment of the mediators described in this paper.

In the past, GUI toolkits have separated recognized input
from mouse and keyboard input. Even when a recognizer
generates the same data type as a device (such as text), the
application writer has to take responsibility for informing
interface widgets about information received from the rec-
ognizer. Both the Amulet [17] and the Artkit [13] toolkits
go beyond this model for pen gesture recognition by al-
lowing interactors to receive gesture results through the
same API as mouse and keyboard events.

OOPS takes a step further by allowing recognizers to pro-
duce arbitrary input events that are dispatched through the
same input handling system as any raw events produced by
mouse or keyboard. Thus, they may be consumed by the
same things that consume raw events including, possibly,
other recognizers. Here we use the term “event” in the
traditional GUI toolkit sense, to mean a single discrete
piece of input (e.g. “mouse down” or “key press (a)”).

A recognizer produces events that are interpretations of
other events or raw data (such as audio received from a
microphone). This is a very broad definition of recogni-
tion. Essentially, a recognizer is a function that takes
events or raw data as input and produces interpretations
(also events) as output. For example, a recognizer might
produce text from mouse events (which, as described
above, is dispatched and might then be consumed by a
standard text entry widget such as the one in Figure 4). It
could start with text and produce more text. Or it could
start with audio and produce mouse events (which might
cause a button to depress). It might also produce a new
event type such as a “command” or “interaction” event.

As mentioned in the previous section, a recognition error
is defined by the user's intent and neither the recognizer
nor OOPS necessarily knows what the correct interpreta-
tion is. It is through automatic or interactive mediation
that this is determined. Until mediation is completed,
OOPS stores information about all known possible inter-
pretations. We refer to the input as ambiguous at this
point. Information about ambiguity is kept in a hierarchi-
cal ambiguous event graph in OOPS (which can be seen as
an extension of the command objects described in [24]).
Raw input such as mouse down, drag, and up events make
up the root nodes of that graph. Whenever input is inter-
preted, a node representing the new interpretation is added
to the graph. For example, the graph shown in Figure 3(b)
represents a series of mouse events that have been inter-
preted as a stroke, and then recognized as either a 'c ' or an
's '. The 'c ' and 's ' are ambiguous (only one of them is
correct). A graph node is considered ambiguous when it is
one of multiple interpretations.

OOPS provides infrastructure for tracking ambiguity and
for resolving ambiguity (mediation). By providing a con-
sistent, recognizer-independent internal model of ambigu-

Figure 2: A choice mediator in the Pegasus drawing beautifica-
tion system (Figure 7 in [14]). The user can click on a line to
select it (e). © ACM (reprinted with permission).

ity, OOPS is able to provide re-usable support for media-
tion. For example, when the stroke in Figure 3(a) is inter-
preted as a ‘c ’ or an ‘s ’, OOPS automatically sends the
event hierarchy to the mediation subsystem because part of
it is ambiguous. The default choice mediator (Figure 3(a))
simply displays the leaf nodes of the hierarchy. When the
user selects his intended input, it is accepted, and the other
interpretation is rejected, resolving the ambiguity.

Most interpretations in OOPS are generated and dis-
patched during an initial input cycle before the start of
mediation. When a new interpretation is created after me-
diation has begun, it is dispatched as well, and the event
hierarchy being mediated is updated, along with any cur-
rent mediators. Any events that have already been ac-
cepted or rejected remain that way.

OOPS supports both automatic mediation and a variety of
interactive choice and repetition techniques. Mediation in
OOPS may occur immediately or at any later time deter-
mined by the current mediator. Thus, a mediator may
choose to wait for further input, or simply defer mediation
until an appropriate time in the interaction.

When separation is too separate
As stated, we provide a recognizer-independent internal
model of ambiguous input in OOPS which allows the sepa-
ration of recognition, mediation, and application develop-
ment. However, there are times when two or more of these
pieces may need to communicate. For example, recogniz-
ers may wish to know which interpretations are accepted
or rejected by mediators in order to facilitate learning.
OOPS stores information about who created each event in
order to inform those recognizers about which of their in-
terpretations are accepted or rejected by the user.

In addition to creating events and receiving accept/reject
messages, recognizers in OOPS may support guided re-
recognition. Guided re-recognition allows a recognizer to
receive more detailed information than a simple reject.
This information may be domain specific, and includes an
event that should be re-recognized. The intent is to allow a

recognizer to make a better guess as to how to interpret the
user's input. Recognizers supporting guided re-recognition
must implement the rerecognize(event, Object) method,
where event is an event that the recognizer interpreted at
some time in the past and Object may contain additional
domain-specific information.

For example, a choice mediator could have a “none of the
above” option. If the user selects it, that mediator could
ask the recognizer(s) that generated the current set of
choices to rerecognize() each of their source events. If
there is more than one source event for a given interpreta-
tion, the mediator may call the resegment(Set, Object)
method instead. This tells the recognizer that a mediator
has determined that the events in Set should be treated as
one segment and re-interpreted.

Thus far, we have described the minimal architectural
support required by all of our example mediators. In addi-
tion to this architecture, we provide a library of standard
mediators in OOPS. Since OOPS allows separation of
mediation from recognition and from the application, it is
possible to swap between different mediation strategies
without redesigning any recognizers or the application.

The next four sections consider four new mediation tech-
niques. Each of these techniques is designed to illustrate a
method for overcoming a problem with existing mediation
techniques. In each section, after discussing the identified
problem area (adding alternatives, occlusion, target ambi-
guity, and omission), and a new interaction technique that
addresses it, specific toolkit mechanisms necessary to sup-
port these solutions will be considered.

ADDING ALTERNATIVES TO CHOICE MEDIATORS
One problem with choice mediators is that they only let the
user select from a fixed set of choices. If none of those
choices is right, the choice mediator is effectively useless.
For example, as Figure 1 illustrates, if the user intended to
say ‘for ’, the choice mediator cannot help her—she must
escape to a repetition technique (spelling the word).

Our goal is to support a smooth transition from selection of
an existing choice to specification of a new one. Our solu-
tion is to extend an n-best list to include some support for
repetition. We allow the user to specify new interpreta-
tions as well as to select from existing ones using the same
mediator.

For example, in the application shown in Figure 4, the
user can sketch Graffiti™ letters, which are recognized as
characters (by [18]). A word predictor then recognizes the
characters as words, generating many more choices than
can be displayed by the mediator. When the graffiti letters
are ambiguous, the word-predictor returns words starting
with each possible letter. Once mediation is completed,
the text edit window updates to show the correct choice.
Our goals in this mediator are:

c

stroke

down drag up• • • • • •

s

(a) (b)

Figure 3: (a) A sketched letter and associated mediator.
(b) Our internal representation of the events making up the
sketched, recognized stroke.

Provide choice at the word level: The user can select
from among choices as he did in a standard choice me-
diator, by clicking on the gray button to the right of a
word.

Allow users to control filtering: By clicking on a charac-
ter, the user specifies a prefix. The mediator reflects this
by displaying only words starting with the same prefix.
Although word-predictors support dynamic filtering, in
most cases, a prefix can only be specified by entering
each letter in the prefix in turn. If the user filters repeat-
edly on the same prefix, the mediator will display a new
set of words each time.

Allow users to specify length: by clicking on the space at
the end of a word, the user causes the mediator to add a
character to that word.

Allow users to specify individual characters: The user
can right-click on a character to cycle through other pos-
sible characters. This can be used to generate words not
returned by the word-predictor.

Allow users an escape: if the user sketches a new letter,
only the current prefix will be accepted.

Suppose the user enters an (for which the graffiti rec-

ognizer returns ‘m’ and ‘w’). The word predictor returns
words starting with ‘m’ and ‘w’ (derived from a frequency
analysis of a corpus of email messages), of which the me-
diator displays the top choices: was, wed , mon , …
(Figure 4(a)). The user, who intended ‘messages ’, fil-
ters for words starting with ‘me’ by clicking on the ‘e’ in
‘me.’ The resulting list (Figure 4(b)) includes ‘message ’,
but not ‘messages .’ The user indicates that a word one
character longer than ‘messages ’ is needed by clicking
on the space at the end of the word, and ‘messages ’ ap-
pears as the top choice (Figure 4(c)). The user selects this
choice by clicking on the gray button to its right.

Was this mediator really useful? Without word prediction,
the user would have had to sketch 8 characters. Given an
85% accuracy rate (typical for many recognizers), she
would have to correct at least one letter (with a total of at
least 9 strokes). Here, the user has sketched one letter and
clicked 3 times. While this is only one data point, it
should be noted that the mediator is built with appropriate
defaults so that if the user simply ignores it and sketches
the 8 characters, the result will be identical to a situation
without word-prediction.

(a) (b) (c)

Figure 4: A choice mediator which supports specification. The user is writing ‘messages’. (a) The user sketches a
letter which is interpreted as either a ‘m’ or a ‘w’ by a character recognizer. A word predictor then generates options for
both letters. The user clicks on the ‘e’ in ‘ me.’ (b) This causes the mediator to filter out all words that do not begin with ‘me.’
The word ‘message ’ is now the top choice, but it needs to be pluralized. The user clicks on the space after ‘message’ indi-
cating that the mediator should generate a word beginning with ‘message ’ but one character longer. (c) The resulting word.

stroke

down drag up• • • • • •

wm

mon • • • me wed• • • message • • •

(a)

stroke

down drag up• • • • • •

wm

mon • • • me wed• • • message • • •messages

(b)

Figure 5: (a) The original event hierarchy in Figure 4 (a-c) and (b) the final hierarchy after mediation.

Toolkit support for adding alternatives
This example dynamically generates new interpretations
during mediation. In the example of Figure 4, a new in-
terpretation (‘messages ’) is created. All other interpre-
tations are rejected. Figure 5 shows the original and
changed hierarchy. The new event is accepted immedi-
ately since the user just specified that it was correct using
the mediator. It is then dispatched, with the result that it
is consumed by the text edit window. No further media-
tion is necessary since neither the new event nor the event
hierarchy it is added to is ambiguous.

Reusability
This mediator can be used with any recognizer that returns
text, including speech recognition or handwriting recogni-
tion, since the alternatives generated by these recognizers
tend to have some similarities to the intended word. For
example, some of the characters in a written word may be
recognized correctly while others are not. The general
idea, to add interactivity supporting repetition to a selec-
tion task, can be applied to other domains as well. For
example, the automatic beautifier, Pegasus, uses a choice
mediator to display multiple lines [14]. Repetition could
be added to this by allowing the user to drag the end point
of a line around. This would also allow Pegasus to display
fewer alternatives in cases where too many are generated,
in which case the line could snap to hidden interpretations.

OCCLUSION IN CHOICE MEDIATORS
Choice mediators generally display several possible inter-
pretations on the screen for the user to select from. They
are fairly large, and may obscure important information
needed by the user to select the correct choice. Since they
are also temporary, it doesn't make sense to leave screen
space open just for them. An alternative is to dynamically
make space for them.

For example, consider Burlap, the application shown in
Figure 6 [20]. Burlap is a drawing program for sketching
user interface elements, based on SILK [16]. The user can
sketch buttons, scrollbars, and so-on. These interactors are
recognized and become interactive. However, recognition
is error-prone. For example, checkboxes are easily con-
fused with radiobuttons.

The n-best list in Figure 6(b) is obscuring two buttons. Is
the leftmost sketch a checkbox or a radiobutton? This type
of ambiguity is not mediated in Burlap until the user tries
to interact with a button. So he may have drawn the hid-
den buttons some time ago. In order to be consistent, the
user may need to see the buttons now in order to determine
their status.

Our solution moves the sketches occluded by the mediator
into a more visible location (Figure 6(c)). This approach
is based on one of the interface techniques used in fluid
negotiation, a concept that Chang et al. developed for
handling temporary displays of information [5]. Some of
the possible approaches they suggested include shrinking,
fading, and call-outs. In [5], the temporary display negoti-
ated the best approach with the underlying document.
Because our mediator is used for input as well as output,
and is the focus of the interaction, we have chosen a tech-
nique that only changes the underlying document (the
sketched interface), not the size or shape of the mediator.

Toolkit support for dealing with occlusion
This is accomplished in a way that requires no changes to
the underlying application. The only difference between
the application shown in Figure 6(b) and (c) is which me-
diator is installed. The new mediator is based on a lens
that uses the subArctic interactor tree to pick out all of the
interactors that intersect its bounding box. It then uses the
techniques described in [6] to modify the way they are
drawn (without changing the interactors themselves). This

(a) (b) (c)

Figure 6: An example of fluid negotiation to position a mediator in the Burlap application. (a) The user needs to mediate whether
the object on the bottom left edge is a checkbox or radiobutton. (b) This mediator (an n-best list) occludes some of the sketched
interactors. (c) This mediator repositions all interactors that intersect with it so as to remove any occlusion.

mediator is modal, the user is required to resolve the am-
biguity before continuing his interaction.

Reusability
This mediator can be used anywhere an n-best list might
be used. For example, considering the mediators described
in Table 1, this includes word-prediction, speech and
handwriting recognition in GUI settings, and the Remem-
brance Agent [27]. More generally, similarly to the fluid
negotiation work, the lens responsible for moving screen
elements out from under the mediator could be combined
with any mediator that is displayed on screen in a GUI. Of
course, there are some situations where occlusion is appro-
priate, such as in the next example.

TARGET AMBIGUITY
We have encountered three major classes of ambiguity in
our work. These are recognition ambiguity (which word
did she write?); segmentation ambiguity (was that "sew
age" or "sewage"?) and target ambiguity. In [20], we
described these classes of ambiguity in more detail, and
introduced a mediator of segmentation ambiguity. In al-
most all previous systems, mediation has only addressed
recognition ambiguity. Here we demonstrate mediation of
target ambiguity.

Target ambiguity arises when the target of the user's input
is uncertain. For example, it is unclear if the circle around
the word circle is intended to include "is" or not.

We are interested in using target ambiguity to model
situations that, although they may seem ambiguous to the
user, are commonly treated as straightforward by the com-
puter. In particular, we are interested in situations where
mouse motion becomes difficult. For example, people use
the term “fat finger syndrome” to refer to situations in
which the user's finger is larger than the button they want
to press (very small cell phones, touch screens). In addi-
tion, misalignment on something like a digital white board
can cause a mouse click to go to the wrong interactor.

Also, certain disabilities may make it difficult to control a
mouse, as can age. For example, research shows that older
users have trouble selecting common GUI targets [31] as
do people with disabilities such as cerebral palsy.

These problems can be addressed by treating the mouse as
an area instead of a point [31]. However, the resulting
area may overlap more than one interactor (an example of
target ambiguity). We mediate this target ambiguity using
a magnifier (Figure 7(b&c)). This magnifier only appears
when there is a need due to ambiguity. For context, we
include an area four times the size of the area mouse. The
magnified area is interactive and users can click on inter-
actors inside it just as they would on an unmagnified por-
tion of the screen. As soon as the user completes his
action, or the mouse leaves the magnifier, it goes away.

Toolkit support for target ambiguity
First, target ambiguity is generated by a recognizer that
checks for multiple mouse targets. If only one target ex-
ists, the input is processed normally. If several targets
exist, the results are passed to the mediator.

It is because of our extremely general support of recogni-
tion that this is possible. For example, when the extended
mouse area (but not the mouse itself) intersects a single
interactor, this recognizer creates a new mouse event over
that interactor as an interpretation of the raw mouse event
it gets as input. This interpretation is dispatched and con-
sumed by the interactor, which does not even know that a
recognizer was involved. As far as the interactor is con-
cerned, the user clicked on it.

Our mediator makes use of a lens that magnifies the area
under the input [6]. In addition, the lens is responsible for
adjusting any positional input it gets based on the new size
and position of the pixels it is magnifying.

Reusability
The magnification mediator works with any interface built
in OOPS. This includes animated (moving) interactors;

(a) (b) (c)

Figure 7: (a) The user is trying to click on a button. Which one? (b) A mediator magnifies the area in order to let the user specify
this (The ambiguous choices are displayed in darker colors). (c) An example of the same mediator being used in Burlap.

Burlap; and any other interface which uses mouse clicks.
Although it is currently limited to mouse input, in theory it
could be generalized to any positional input.

ERRORS OF OMISSION
The last problem area addressed in this paper is errors of
omission. An error of omission occurs when some or all of
the user's input is not interpreted at all by the recognizer.
For example, in Figure 8, the user has sketched a radio
button in the lower right, but those strokes were not recog-
nized. An error of omission has occurred.

The rules used for recognition in Burlap are taken from
[16] and are based upon the shape and size of individual
strokes drawn by the user and the graphical relationships
between sets of strokes (such as distance, orientation, etc.).
When the user draws something too big, too far apart, or
so on, it is not recognized. In general, the causes of errors
of omission are very recognizer-dependent. For example,
an error of omission may occur in speech recognition be-
cause the user speaks too quietly.

One solution to this problem is repetition. The user can
simply try the sketch again. However, research in both
pen [8], and speech [7], recognition has found that re-
recognition accuracy rates are no better than recognition
rates

We address this with guided re-recognition. The user can
initiate re-recognition by selecting the strokes that should
have been recognized using the right mouse button. By
doing this, the user is giving the system important new
information. In Burlap’s case, the new information is that
the selected strokes should be interpreted as an interactor.
We can use this information to eliminate options, such as
interactors that have a different number of strokes.

Toolkit support for guided re-recognition
Essentially what the user is doing in this example is pro-
viding segmentation information to the recognizer. Al-
though the unistroke gesture recognizer used in Burlap (a

third party recognizer [18]) does not support guided re-
recognition, the interactor recognizer does. We pass the
selected strokes to the interactor recognizer using reseg-
ment(Set, Object) method described in the toolkit section
of this paper. The recognizer generates a new set of inter-
pretations based on those strokes. Because the recognizer
now knows the number of strokes, it can quickly narrow
the possible interactors and generate alternatives.

Since the recognizer generates new events during media-
tion, those events must be dispatched, potentially resulting
in further interpretations. The new events are ambiguous
and OOPS will mediate them (Figure 8(c)), and tell any
currently visible mediators to update themselves to show
the new interpretations. Any events that were already ac-
cepted or rejected in the hierarchy remain that way.

Reusability
The same mediator could be applied in other graphical
settings with segmentation issues such as handwriting rec-
ognition. This mediator must be told which recognizer it
should work with (in the case of Figure 8, the interactor
recognizer). It will automatically cache any events gener-
ated by that recognizer. Alternatively, it may be given a
filter that knows enough about the domain to cache the
correct events. In either case, once the user specifies an
area, any cached events inside that area are sent to appro-
priate recognizer to be re-recognized.

CONCLUSIONS AND FUTURE WORK
Recognition today is used in many applications and these
applications make use of some common user-interface
techniques, called mediators, for handling the recognition
errors and ambiguity. However, there are problems with
existing techniques. Some recognition errors, such as
those caused by target ambiguity and errors of omissions,
are harder to deal with. Also, there are limitations to how
choice interfaces are commonly handled.

(a) (b) (c)

Figure 8: (a) An interface sketched in Burlap. In the lower right is an unrecognized radiobutton. (b) The user has selected the
radiobutton in order to indicate that re-recognition should occur. (c) Re-recognition is completed, and the result is further ambigu-
ity. One of the possible interpretations generated was a radiobutton. If that is correct, should the new button be in sequence with
the old one, or should it be separate?

The work described in this paper addresses these problems.
All of the mediators presented in this paper were enabled
by the OOPS toolkit. They were built with the intent to be
re-used in many situations.

We have shown that it is possible to build a variety of
techniques that go beyond the current state of the art in
correction strategies. Beyond our exploration of the previ-
ously known classes of mediation techniques, we have
shown how principled handling of ambiguity at the input
level allows for mediation in other important settings.

In the future, we wish to explore mediation strategies ap-
plicable to segmentation errors, non-GUI applications, and
command recognition. All are difficult to mediate because
they have no obvious representation (unlike, for example,
the text generated in handwriting recognition).

We also plan to use the OOPS toolkit to support empirical
work comparing the effectiveness of different mediation
techniques. OOPS can allow us to build a framework for
evaluating existing and new mediation technologies in a
more controlled setting. Because we can build a variety of
mediators and easily apply them to the same application,
controlled studies to compare the effectiveness of the me-
diation strategies is now made much simpler.

ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under grants IRI-9703384, EIA-9806822, IRI-
9500942 and IIS-9800597. Many thanks to Chris Long for
the use of his recognizer [18], and to the reviewers.

REFERENCES
1. Apple Computer, Inc. (1997) MessagePad 2000 User’s Man-

ual.

2. Alm, N. et al. (1992) Prediction and conversational momen-
tum in an augmentative communication system. Communica-
tions of the ACM, 35(5), pp. 46–57.

3. Baumgarten et al. (2000) IBM® ViaVoice™ QuickTuto-
rial® . South-Western Educational Publishing.

4. Brennan, S. and E. A. Hulteen. (1995) Interaction and feed-
back in a spoken language system: A theoretical framework.
Knowledge-Based Systems, 8(2–3):143–151.

5. Chang, B. et al. (1998) A negotiation architecture for fluid
documents. In Proc. of UIST’98. pp.123–132.

6. Edwards, K. et al. (1997) Systematic output modification in a
2D UI toolkit. In Proc. of UIST'97. pp. 151–158.

7. Frankish, C. et al. (1992) Decline in accuracy of automatic
speech recognition as function of time on task: Fatigue of
voice drift? International Journal of Man-Machine Studies
36(6):797–816.

8. Frankish, C. et al. (1995) Recognition Accuracy and User
Acceptance of Pen Interfaces. In Proc. of CHI’95. pp. 503-
510.

9. Goldberg, D. and A. Goodisman (1991) Stylus user interfaces
for manipulating text. In Proc. of UIST’91, pp.127–135.

10. Greenberg, S. et al. (1995) Predictive interfaces: What will
they think of next? In Extra-ordinary human-computer inter-

action: Interfaces for users with disabilities, A.D.N. Ed-
wards, editor, pp. 103–139.

11. Halverson, C. et al. (1999) The beauty of errors: Patterns of
error correction in desktop speech systems. In Proc. of
INTERACT’99.

12. Horvitz, E. (1999) Principles of mixed-initiative user inter-
faces. In Proc. of CHI’99, pp. 159–166.

13. Henry, T. et al. (1990) Integrating Gesture and Snapping into
a User Interface Toolkit Interaction Techniques. In Proc. of
UIST’90, pp.112–122.

14. Igarashi, T. et al. (1997) Interactive beautification: A tech-
nique for rapid geometric design. In Proc. of UIST’97, pp.
105–114.

15. Kurtenbach, G. et al. (1994) User learning and performance
with marking menus. In Proc. of CHI’94, pp. 258–264.

16. Landay, J. A. et al. (1995) Interactive sketching for the early
stages of user interface design. In Proc. of CHI'95. pp.43–50.

17. Landay, J.A. and B.A. Myers. (1993) Extending an existing
user interface toolkit to support gesture recognition. In Proc.
INTERCHI'93. pp. 91-92.

18. Long, A.C. et al. (1999) Implications for a gesture design
tool. In Proc. of CHI’99. pp. 40–47.

19. Mankoff, J. et al. (2000) Techniques for handling ambiguity
in recognition-based input. Computes and Graphics, special
issue on calligraphic interfaces. Elsevier. To appear.

20. Mankoff, J. et al. (2000) Providing integrated toolkit-level
support for ambiguity in recognition-based interfaces. In
Proc. of CHI'2000, pp. 368–375.

21. Masui, T. An efficient text input method for pen-based com-
puters. In Proc. of CHI’’98, pp.328–335

22. Marx, M. et al. (1994) Putting people first: Specifying proper
names in speech interfaces. In Proc. of UIST’94. pp. 29-37.

23. McGee, D. R. et al. (1998) Confirmation in multimodal sys-
tems. In Proc. of COLING-ACL '98, Montreal, Canada.

24. Myers, B.A. and D.S. Kosbie. (1996) Reusable hierarchical
command objects. In Proc. of CHI’96, pp. 260–267.

25. Netscape Communications, Corp. Netscape Navigator.
http://www.netscape.com.

26. Nigay, l. and Coutaz, J. A Generic platform addressing the
multimodal challenge. In Proc. of CHI'95. pp.98–105.

27. Rhodes, B.J. and T. Starner. (1996) Remembrance Agent. In
Proc. of PAAM’96, pp. 487–495.

28. Rudnicky, A.I. and A.G. Hauptmann (1991). Models for
evaluating interaction protocols in speech recognition. In
Proc. of CHI’91, pp. 285-291.

29. Sukaviriya, P. et al. (1993) A second-generation user inter-
face design environment: The model and the runtime archi-
tecture. In Proc. of INTERCHI’93, pp. 375–382.

30. Suhm, B. et al. (1999) Model-based and empirical evaluation
of multimodal interactive error correction. In Proc. of
CHI'99, May, 1999, pp. 584-591.

31. Worden, A. et al. (1997) Making Computers Easier for Older
Adults to Use: Area Cursors and Sticky Icons. In Proc. of
CHI’97, pp. 266–271.

