Check for
Updates

A Programming Model for Active Documents

Paul Dourish, W. Keith Edwards, Jon Howell, Anthony LaMarca, John Lamping,
Karin Petersen, Michael Salisbury, Doug Terry and Jim Thornton

Computer Science Laboratory
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto
CA 94304 USA
paul @dourish.com

ABSTRACT

Traditionally, designers organize software system as active
end-points (e.g. applications) linked by passive infrastruc-
tures (e.g. networks). Increasingly, however, networks and
infrastructures are becoming active componentsthat contrib-
ute directly to application behavior. Amongst the various
problemsthat this presentsisthe question of how such active
infrastructures should be programmed.

We have been developing an active document management
system called Placel ess Documents. Its programming model
isorganized in terms of properties that actively contribute to
the functionality and behavior of the documents to which
they are attached. This paper discusses active properties and
their use as a programming model for active infrastructures.
We have found that active properties enable the creation of
persistent, autonomous active entities in document systems,
independent of specific repositories and applications, but
present challenges for managing problems of composition.

Keywor ds. Active properties, document management, com-
ponent software, customization.

INTRODUCTION

As computer systems become more powerful and network
bandwidth and capacity increases, new models are emerging
for the development of infrastructure technologies. One of
theseiswhat we call “active infrastructures.”

Traditional approaches have typically concentrated compu-
tational power in fixed locations. So, for example, the
mainframe approach concentrates computing power in one
large, centralized system. Client/server computing distrib-
utes it between two points, but regards the channel between
those points — the network or infrastructure that connects
them — as a static channel. Active infrastructure approaches
explore the opportunities to devolve some computation into
the infrastructure itself. In this model, application semantics
can migrate into infrastructure, which itself becomes an
active entity that can specializeitself to the needs of different
applications. Active infrastructures have been explored in a

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

UIST ’00. San Diego, CA USA

[J 2000 ACM 1-58113-212-3/00/11... $5.00

CHI Lettersvol 2, 2

range of domains. For example, the Bayou distributed data-
base system alows database updates to carry with them
procedures that can resolve conflicts that are encountered as
they move through the network [24]; or again, active net-
working allows codeto be “injected” into the network so that
routers and other network components can be speciaized to
the needs of different applications[27]. Activeinfrastructure
approaches provide a number of advantages. They provide
applications with specialized infrastructure arrangements
providing cleaner implementation models; they make more
efficient use of infrastructures by incorporating specialized
facilities rather than working only in terms of generic fea-
tures; and they allow infrastructures to adapt to variationsin
application demands.

Since active infrastructures are a new approach, however,
they are unfamiliar to programmers, and are not directly sup-
ported by conventional programming tools (be those
“conceptual” tools or standard softwaretools). A set of ques-
tions arise, then, about the programming model through
which active infrastructures can be presented and controlled.

In the Placel ess Documents project, we have been exploring
an active infrastructure approach to the provision of docu-
ment and document management services. Our approach is
based on a distributed infrastructure in which activity can be
directly associated with documents, rather than being locked
inside applications that are invoked to process those docu-
ments. By pushing activity into the infrastructure, we can
make it independent of particular repositories and applica-
tions, so that users can organize activity around their tasks
rather than around the details of applications. The Placeless
Documents design explores compositional approaches to
document service functionality, and new relationships
between applications, infrastructures, and services.

Research Questions

Our system is designed as an infrastructure for interactive
document applications. Active infrastructure approaches are
normally visible only to systems programmers; their use at
the application level is relatively novel. This opens up two
sets of questions that this paper will address.

The first is how active infrastructures and the extensibility
techniques they introduce can be incorporated into an inter-
active system model. What sort of conceptual model can be

41

http://crossmark.crossref.org/dialog/?doi=10.1145%2F354401.354410&domain=pdf&date_stamp=2000-11-01

offered to end users to understand how activity is incorpo-
rated into the infrastructure, and how can this be
incorporated into a component model that allows different
activities to be present at the same time?

The second (related) issue isthat of the programming model
that the system will present. How can we combine interac-
tive system programming with active infrastructures? What
conseguences does an active infrastructure approach hold for
interactive system design and how can these design concerns
be manifest to programmers? How can the active infrastruc-
ture approach be incorporated into current design practice?

In this paper, we reflect on the experiences of designing the
Placel ess Documents infrastructure and devel oping applica-
tions on top of it. We explore the programming model that
we developed and some of its consequences, and show how
it was exploited in applications that we and others devel-
oped. On the basis of these experiences, we draw out some
lessons and discuss our current approach to the provision of
active infrastructure in follow-on work.

PROPERTY-BASED DOCUMENT INFRASTRUCTURE

The Placeless Documents system has been in devel opment
since late 1997. By this stage, we have gained experience
with a variety of prototype implementations as well as a
range of applications of different styles, scopes and models.

The name Placeless Documents reflects the core of our
underlying motivations. Most information management sys-
tems employ hierarchies as the dominant paradigm for
information management — files and directories, email mes-
sages and folders, etc. Hierarchies are used to perform
multiple functions. They are used to present information;
they are used to retrieve information; they are used to store
information; and they are used to control information. So, for
example, when | store a document in the filesystem, | put it
at some particular placein the filesystem hierarchy that both
reflects some features of the document (e.g. when | put it in
T:\ hone\ paper s\ dr af t s\ ui st\ pl acel ess. doc) and where
| think I will remember to look for it again; and, by putting it
in certain places (e.g. the Microsoft Windows “ briefcase”), |
control something of how that document behaves.

In our model, we want to separate the expression of docu-
ment features and document control from the system of
“places’ that the hierarchy describes (hence, “Place-less’).
Our alternative model is based on document properties.
Properties are document metadata tags that users and appli-
cations can associate with documents. They areimplemented
as arbitrary pairs of string names and Java object values,
their values can be set, tested, retrieved and searched. A doc-
ument can have many different properties associated with it.
We use properties to encode information that is relevant to
the users of the documents (e.g., that a document is a paper,
that it is a draft, that it is being prepared for UIST, etc.) as
well asto associate application information with documents
(e.g. the history of application actions over that document).
Users add properties to documents either directly through
drag-and-drop interfaces such as those explored in a previ-
ous UIST paper [6], or indirectly through property-based
applications[10, 14].

CHI Lettersvol 2, 2

Active Properties

We introduced the document property model in a previous
UIST conference, where we outlined the development of our
initial prototype, called Presto! [6]. Presto used document
propertiesto provide a persistent associative document store
for end users and applications, but in Presto the store was
entirely static. In the full Placeless Documents system, the
property store is used as an active infrastructure through the
addition of active properties.

Like attributesin Presto, Placeless' active propertiesinclude
both a name component and a value component. However,
active propertiesinclude athird component — runnable code.
This code is designed to be run inside the infrastructure in
response to various actions upon the document. By attaching
active properties to a document, users can make the docu-
ment responsive to the situationsin which it is used. Sincea
document can have any number of properties attached, active
properties provide users with compositional control over
document behaviour.

What sort of behaviours can users achieve through active
properties? Active properties can ensure that document are
automatically backed up, or are maintained consistently in
multiple places (e.g. on alaptop and a server). Active prop-
erties can take functionality normally associated with
specific applications such as workflow, format or content
conversion or specialised presentation, and associate them
directly with the document so that they travel with the docu-
ment wherever it goes, as it is emailed around, transferred
between systems and so on. Active properties can automati-
cally detect document content changes and implement
features such as notification, summarisation, or version con-
trol. Further, these can al be controlled compositionally,
available over all document under user control.

We have built the Placeless Documents infrastructure and
used it extensively, exploring its opportunities by building
property-based applications and functional elements includ-
ing those described above. Elsewhere, we describe the
technical concerns in extending a document management
system to incorporate active properties, including the distri-
bution and efficiency issues that are involved [7]. In this
paper, however, we are concerned with the programming
model that active properties offer, and with the ways in
which infrastructure activity can be encapsulated and pro-
vided to application developers.

THE ACTIVE PROPERTY PROGRAMMING MODEL

The Placeless Documents infrastructure is written in Java
We provide anumber of interfacesto interoperate with exist-
ing application infrastructures. For instance, we offer access
to the Placeless Documents repository through HTTP, so
that existing web clients can operate with Placeless Docu-
ments; similarly, we provide access through other standard
Internet protocols such as IMAP and FTP, and offer an NFS
interface so that filesystem-based clients can gain access to
Placeless without any adaptation. New applications, includ-

1. Presto used the term “attribute” rather than “property,” but oth-
erwiseits model is a subset of the property model in Placeless
Documents.

42

property 1 property 2

| e | ;. r— = - =11

I I verifiers I I
—

: : i —
C | (performerg A

T T T T)
(i i i i

i | notifiers i >

S | L - - - — 4

Figure 1. Phased execution of active property code.

ing new services to be written as active properties, are
typicaly written in Java, using custom APIs.

The infrastructure provides two sorts of active properties,
inline active properties and del egates.

Inline Active Properties

The standard form of active property isan inline active prop-
erty. Inline active properties change document behaviour by
intercepting and inserting themselvesinto the execution path
of document operations such as del et eDocunent , addPr op-
erty, readCont ent, and so on.

Placeless provides twelve of these core operations. Each
active property can be associated with any number of these
operations. An active property that transforms content might
insert itself into the execution path of both ther eadCont ent
and wri t eCont ent operations, so that it can transform con-
tent symmetrically; onethat logs all document activity might
insert itself into the execution path of all the document
operations.

Combining Active Properties

A document can have many properties, and since active
properties act just like normal properties, it follows that a
single document can have multiple active properties. Since
any active property can intercept any set of document opera-
tions, it follows that a document might have more than one
active property interested in a specific operation. For exam-
ple, the setProperty operation might be of interest to two
different active properties. an access control property that
wants to restrict write access to the document, and alogging
active property that wants to maintain a history of document
activities. Our infrastructure, then, must provide some mech-
anism for controlling how these active properties combine.

There are two mechanisms that control property combina-
tion: property ordering and phased execution.

In phased execution, the dispatch cyclefor asingle operation
on adocument is divided into three phases, called the verify,
perform and notify phases. Conceptually, the verify phase
determines that the operation is allowed; the perform phase
carries out the operation; and the notify phase carries out any
post-execution cleanup and notifications. When an active
property inserts itself into the execution path for an opera-
tion, it specifies which phase it should be associated with.
Although an active property may have many code methods,
each method is associated with just one phase.

CHI Lettersvol 2, 2

The overall model is shown in figure 1. Consider a specific
document operation. A user or application has invoked the
addPr operty operation on a document, to add a new prop-
erty to it. This operation dispatches into the Placeless
infrastructure, where the active property dispatcher takes
over. First, the dispatcher scans the active properties
attached to this document to determine which have associ-
ated themselves with the addProperty operation in the
verify phase. Thisresultsin aset of methods, each of which
is defined to take as arguments the set of arguments for the
addPr oper t y operation, and return a boolean value. Each of
these methodsiscalled in turn. If any of the functions returns
false, then the execution sequence is terminated and an
exception is thrown to the caling application, informing it
that an active property has declined the operation. Other-
wise, the dispatcher advances to the perform phase.

Again, each property is examined in turn, this time for per-
former methods. The addProperty operation does not
support performers, but for those operations that do, the per-
former methods may add functionality that alters the effect
of the original operation and its return value if there is one.
Theinterfaces are arranged so that each perform-phase prop-
erty has access to the result computed “so far” by the other
performers on the same document. For example, an output
stream for writing the document content will be built so that
each interposing active property may alter the content as it
flows down the stream.

Finally, the dispatcher advances to the notify phase. Again,
the active properties that have registered themselves for the
notify phase of the set Proper t y operation are called in turn.
Notify methods have no return value; they are entirely inde-
pendent of each other. Once they have all been executed, the
return value computed during the perform phase isretrieved
and returned as the outcome of the operation.

Phased execution allows us to control some of the effects of
combining properties, by allowing programmersto associate

Table 1: Operations and their Active Properties

Verify | Perform | Notify
AddProperty . - .
DeleteProperty . - .
AddMember . - .
GetMembers . . .
RemoveMember . - .
GetPropertyValue . - .
SetPropertyValue . - .
SetQuery . . .
DeleteDocument . . -
ReadContent . . .
WriteContent . . .
CloseOutputStream - - .
GetDelegateFor . - .

43

them with specific phases of execution. However, there are
other elements of property interaction, particularly in the
case of side effects. We will discuss these, along with the
property ordering mechanism, in more detail after laying out
the full programming model.

Writing Active Properties

Active property writers create a Java class that implements
the Acti veProperty interface. This interface requires some
standard methods for initializing the active property object
itself. In addition, this class will implement a number of
other interfaces. Theseinterfaces describe the operationsthat
the active property will intercept. For example, the class for
an active property that wants to intercept the verify phase of
the set PropertyVval ue operation and the notifier phase of
the writeCont ent operation will implement the interfaces
Set PropertyVal ueVerifier and WiteContentNotifier.
Table 1 shows the set of available interfaces that an active
property writer can use. Each interface defines the methods
that will be called by the dispatch engine at the rel evant point
in the dispatch cycle.

By providing inline active properties that intercept and redi-
rect document operations, programmers give end users
control over the interactive behavior of their documents.
Since active properties can be added to documents at any
point in their lifecycle, this control can be exerted at any
moment and continually revised. From the programmer’s
perspective, code can be incorporated automatically and
transparently with no prior knowledge on the part of the doc-
ument or application devel opers.

Delegates

The second sort of active property in the Placeless systemis
the delegate. Whileinline active propertiesinsert themselves
into the execution path of existing operations, delegates
extend the API of the documents to which they are attached,
providing new functionality and new call paths.

Conceptually, a delegate is an object which stands for the
document with respect to some operation (in fact, with
respect to a Java interface). If an application wants to make
use of apotential document interface extension for a specific
document, then it makes a call on the document object,
reguesting adelegate that implementsthe interface. The doc-
ument returns a delegate that implements the requested
interface, and that stands for the document for the purposes
of that interface. For example, there is no Backup operation
defined in the standard document operations. However, a
backup application might call a method on a document to
request a delegate that implements the Backupabl eDocurent
interface. If the document is capable of providing one, it
returns an object that implements that interface; calling the
method get Last BackupTi me() on the delegate would report
when that document was last backed up, and calling
backup() on it would place a copy of the document on a
stable backup medium.

There are three important features to note concerning the
programming model offered by delegates.

The first is that, while the execution of inline active proper-
ties is carried out in the Placeless infrastructure, the

CHI Lettersvol 2, 2

execution of delegates is carried out in the application. That
is, the delegate object is returned to the application and
becomes part of the application’s address space, with the
application in control of when the methods on that object are
invoked. In contrast, inline active properties are executed as
apart of the normal execution of the system, and so must run
in the Placeless Documents core since they must operate
across all applications.

The second feature is that delegates require coordination
between the document and the application. Delegates are
only provided when an application knows to ask for them,
and knows what interface is required. Delegates do not
become active for unspecialized applications.

The third important feature of delegates is that they are a
type-safe extension mechanism. Applications request adele-
gate specifying a specific Javainterface. The delegate that is
returned is an instance of a class that implements that inter-
face, and is cast to the interface type. Calls upon that
interface can then be made directly, and can be type-checked
by the Java compiler. In contrast to other extension mecha
nismsthat might rely on the use of features such asreflection
to map strings into method names, this approach can exploit
the language’ s type system.

Implementing Delegates using Inline Active Properties
Although we have contrasted delegates with inline proper-
ties here, inline active properties are in fact the mechanism
by which delegates are associated with documents.

One of the basic document operations that an inline active
property can specialize is called get Del egat eFor (). This
method takes a Java interface as its argument and returns an
object that implements that interface as a result. So, a pro-
grammer wishing to create the Backup delegate would create
two classes. The first class is an implementation of the
Backup interface, and performs the specialized backup oper-
ations. The second classisan active property that specializes
theget Del egat eFor () method and returns an instance of the
implementation class when it determines that the relevant
interface is being requested.

One of our designissuesishow asingle model supports both
programming and end-user interaction. Using inline active
properties to implement delegates allows users to extend
document behaviors through the same mechanism — attach-
ing properties to documents — that they use to perform all
other customizations of the system.

Delegates and Object-Oriented Delegation

Delegation is atechnique that has already been used to great
effect in object-oriented programming systems. In fact, pro-
totype-based object systems often employ delegation as a
means to achieve the same effects that can be achieved using
inheritance in class-based systems [21]. Our use of delega
tionissimilar, but we use the term in ways that do not match
the conventional structure of object-oriented delegation. In
an OO delegation system, a message sent to one object may
be “delegated” or redirected to a second object, which will
execute the method associated with that message on behalf
of the first object (or further delegate it). The result of this
method invocation will be returned to the object that origi-

nally sent the message. This can be seen to be structurally
equivalent to method inheritance; imagine that, by delegat-
ing the message, the first object seems to inherit from the
second object the ability to respond to the message.

Our use of the term “delegate” differs from this model in
three ways. First, our delegates are explicitly visible to the
application; we do not automatically delegate on message
sends. Second, we delegate “downwards’ rather than
“upwards.” In our model, ageneric object (a document) pro-
vides a more specialized object (the delegate) which will
respond to a set of messages onitsbehalf. Third, the delegate
does not appear to “subclass’ the document because it does
not, itself, implement the Docurent interface; instead, it
implements only the interface specified by the application.

Although the differences from OOP conventions are confus-
ing, the separation of the delegate functionality from the
document functionality provides some benefitsin the distrib-
uted environment of Placeless programs. In particular, it
means that the delegate can be shipped to other processes or
other nodes without creating the confusion about the identity
of the document that might result from two “document”
objects on different machines.

ACTIVE PROPERTIES AND INTERACTIVE BEHAVIOURS
One feature of the Placeless Documents system and its
approach to active documents that distinguishes it from ear-
lier explorations of active infrastructures is that Placelessis
primarily an infrastructure for interactive applications. The
interaction aspects of our model have two sets of
conseguences.

First, the control that active properties themselves offer over
document behavior is interactive control. Active properties
can be added, removed and controlled by end users. Indeed,
in some of our browsers, active properties are entities that
users simply drag-and-drop in order to change the behavior
of documents. This means that the procedures by which
active properties can be associated with documents must be
both simple and responsive, that active properties must be
consistent in their interactions, and that active properties
must support arbitrary compositions. Stronger class-based
approaches, for example, would not satisfy these
requirements.

Second, active properties may affect the interactive behavior
of documents. This affects the style of development; since
documents are interactive entities, active properties must
support interactive response times. In addition, active prop-
erties themselves sometimes manage other interactive
objects, such as when they “decorate” document interfaces
with buttons and widgets corresponding to currently-avail-
able actions. The interactive requirements ental a
lightweight approach to active property programming,
whichinturnsleadsto astyle of development involving mul-
tiple interacting active properties (which we will discuss in
more detail in the discussion of Programming |ssues).

EXAMPLES OF ACTIVE PROPERTIES

Active properties provide aflexible infrastructure for associ-
ating behavior with documents. To make some of this
discussion more concrete, we will briefly describe some of

CHI Lettersvol 2, 2

the applications we have developed using active properties,
and then go on to explore some of the issues that arise in
using active properties as a programming model for active
documents.

Workflow

One series of developments concerned the provision of
workflow and document management services via active
properties [5, 14]. Providing workflow in this way migrates
it into the infrastructure, and makes it independent of either
specific applications or specific repositories.

Our approach combines both inline active propertiesand del -
egates. A delegate encapsulates a workflow-specific API
that allows an application to explore the process instances
with which a document is associated, query their state,
progress a document from one state to another, associate
notifications and so forth. Sinceit is provided through a del-
egate, this functionality can be highly specialized but is
available only to special-purpose applications that under-
stand how to call onit. By using an inline active property, we
can connect workflow functionality with existing applica-
tions. An active property is associated with the read and
write operations for the document; it notices when those
operations are performed and passes notifications to the del-
egate, which can analyze the changes to the content and
associate them with the workflow process. So, for example,
if adocument represents aform with check boxes, the active
property can notice when the check boxes have been
selected, and the delegate can cause the document to be
moved to the next stage of the process, accordingly.

Our implementation uses an internal workflow engineto rep-
resent and control process instances. However, many
commercial workflow systems are organized according to
the reference model developed by the Workflow Manage-
ment Coalition and provide network-accessible mechanisms
through protocols such as SWAP [22]. A simpler way to
write our delegate would be to makeit aclient of such aser-
vice. In this way, we could use active properties to
coordinate document activity with an external workflow ser-
vice, but provide this “activation” independent of any
particular application that end users might want to use.

Delivering Services

The idea of using active properties to coordinate document
action with external mechanisms such as workflow leads to
avariety of ways in which active properties can be used to
deliver document services.

Obvious examples include format conversion (e.g. from
Microsoft Word to PDF) and interpolation (e.g inline recod-
ing of images to reduce bandwidth requirements [13]). We
have al so used these mechanisms to incorporate higher-level
document services such as content filtering, summarization
and language trand ation.

Delivering services such as these through active properties
offers two advantages over conventional approaches, one
technical and oneinteractive. The technical advantageisthat
the services can be offered independently of application or
repository. The service is delivered at a point between the
repository and the application, and so applies to any combi-

45

nation. The interactive advantage is that end users can
compositionally control the deployment of services on adoc-
ument by document basis. Since the functionality appears to
be associated directly with documents, it makes sense to
allow users to control it by acting directly on those docu-
ments, and so, notionally, control the behavior of the
documents rather than that of an abstract service.

Versioning

Finaly, we have also used active properties to augment the
servicestraditionally associated with repositories. For exam-
ple, using active properties, we can add versioning to a
repository that does not otherwise support it.

There are a number of implications of adding versioning via
active properties rather than building it directly into the
infrastructure. For instance, since the Placel essinfrastructure
isunaware of versioning, it provides no direct support for the
way in which versioning makes document identity more
complex. Theinfrastructure, for example, will not be ableto
recognize that two different versions are actually the “ same”
document. A second consequence isthat, since versioning is
added at the middleware level rather than the repository
level, we can, in fact, take advantage of underlying version-
ing facilities when they are provided. This flexibility comes
at acost; sincedifferent repositories often have different ver-
sion semantics, we need to be able to interpret and
interpol ate between them.

The versioning property maintains a chain of documents that
are earlier versions of the current content. Each time a user
opens the document for writing, a copy of the origina con-
tent is made and linked to the document as an “earlier”
version. Thisis done by attaching to the document an active
property that intercepts the get Qut put St ream() operation,
and hence notices all attempts to write new versions of the
content.? Previous operations can be retrieved either by
looking directly at the propertiesthat link adocument to pre-
vious versions, or through a delegate property which addsan
API for reviewing and retrieving earlier versions.

PROGRAMMING ISSUES

The Placeless Documents infrastructure first became opera
tional during the summer of 1998; since that time it has been
in daily use and we have refined and revised our core designs
significantly. We have also gained considerable experience
with active property-based applications, some of which we
developed ourselves, and some of which have been devel-
oped by colleagues elsewhere at PARC. A variety of
programming issues have arisen from our experiences devel-
oping applications with active properties.

Programming Using Static Properties

Before discussing active properties, we should first explore
how simple static properties impact programming style. The
combination of freely extensible static properties and fast
guery mechanisms alow programmers to exploit new
models for structuring their applications.

2. Intercepting property operations aso allowsthe property to keep
track of changes to the set of properties associated with the docu-
ment, but we focus on content operations here.

CHI Lettersvol 2, 2

Properties provide convenient associative storage. Informa-
tion can be stored alongside the documents to which it
applies, and retrieved by queries. At the same time, because
property objects store not just primitive types but arbitrary
serialized Java objects, a document’s properties can point to
other documents, and so on, allowing programmersto create
complex data structures as sets of related documents. Having
adocument store that can be used as a persistent object store,
programmers intuitively adopt a style in which data struc-
tures are distributed across documents, stored persistently,
and reconstituted through queries over the document space.>
Most importantly, since properties are compositional, a
single document may participate in many different applica-
tions or data structures. The compositional use of static
propertiesismirrored in the use of active properties.

Creating Responsive Documents

One way of interpreting the effect of active propertiesis to
consider that operations that would otherwise be fixed in
their consequences can now be made open and flexible. So,
for example, whereas reading a document’s content from
disk and displaying it in awindow is normally afixed oper-
ation with a fixed implementation, active properties give
users and documents individualized control over these oper-
ations. The result is that documents can be made responsive
to the contexts in which they are used. A trivial exampleis
that document content can be transformed according to the
person who reads it or the time at which it is read; similarly,
other document operations can be made responsive to the
contexts in which they are carried out.

Thisfacility, along with the associating storage facilities pro-
vided by static properties, makes Placeless Documents an
excellent platform for the development of interactive appli-
cations that exploit contextual factors such as location or
participants [1, 19]. Static properties encourage a context-
based approach in which documents and objects are anno-
tated with information that reflects how they have been used,
where, when, by whom, etc.; combinations of these proper-
ties can serve as retrieval cues or can be used to extract
relationshi ps between documents or application objects.

Using static properties, however, means that these contex-
tual features can be exploited only when specific
applications are running. Using active properties, context
dependence can be migrated into the infrastructure. The con-
textual behavior is associated directly with the documents
themselves. Thisisvaluable since exploiting context isakey
element of the ubiquitous or pervasive computing programs,
and so requires support at the infrastructure level rather than
in application space. Active properties provide a novel
means for making “passive” entities into active elements of
a ubiquitous computing environment. Through their active
properties, documents can be made responsive to different
aspects of their use. In addition to being responsive to the
person who acts on them, documents might also be made

3. Recognizing this feature of a number of early applications, we
provided specialized support for it by developing a package that
alowed programmers to reflect documents as Java Beans and vice
versa.

46

responsive to other aspects of the context in which they are
used; e.g. rendering themselves differently and with differ-
ent interface options depending on the viewing device, on
the time of day, or at different points in an organizational
process[10].

Combining Inline and Delegate Properties

In our initial proposals for active property applications, we
favored inline active properties. We proposed the use of
active properties for document format transcoding, for
mobile document services, for configuring the behavior of
external applications or services, and for specializing the ser-
vice characteristics of the infrastructure to application needs.
Our early application development experiences, however,
showed the power of delegatesfor exploring new application
opportunities. So, our applications emphasized the way in
which users could extend and augment document behavior
using delegate properties.

In fact, there is an important duality between the two forms
of active properties. Inline active properties intercept docu-
ment operations, while delegates provide new facilities. A
common active property idiom is to actually use both sorts;
use an inline property to observe that some operation has
taken place, and then activate a delegate to run some new
document behavior in response. The workflow serviceis an
example of thisidiom. This pairing relies on a natural sepa-
ration of “new” code from “interposed” code. It could, of
course, be written as a single active property, but the use of
two different sorts of active property seems to more accu-
rately reflect the programmer’ s expectations.

Exploded Applications

In conventional systems, functionality is restricted to appli-
cations. We have shown that active properties alow
functionality to be directly associated with documents and
moved into the infrastructure. So, the presence of active
properties causes us to reassess how applications work and
how they are structured. In Placel ess, we can start to think of
applications as consisting of a variety of active properties
that may be spread throughout the document space. We call
these “exploded” applications.

As an example, consider a system that supports document
linking, such as a hypertext system or adocument editor that
supports the inclusion of image files by reference. In a con-
ventional application, the relationship between the
documentsis only active when the application is running. If
auser deletes or moves alinked file, the application will not
know; the result isadangling link. Active properties provide
amechanism to prevent this problem. In Placeless, an appli-
cation that supports document linkage can attach an active
property to any linked document that will intercept move or
delete operations. When these operations occur, it can notify
the user that thisis a linked document (and so the user may
not want to move it), and/or notify the application that the
document has been moved (and so it should update its point-
ers). The application has been “exploded” or spread
throughout theinfrastructure; it can now be active even when
the central application is not running. So, active properties
change our notions of what constitutes an application.

CHI Lettersvol 2, 2

Ordering

One important set of issues arise around the ordering of
property invocations. Properties provide compositional con-
trol over the behavior of a document, and ordering affects
how their interactions are controlled.

Placel ess provides two mechanismsto control ordering. The
first is the three-phase model described earlier, where prop-
erties are invoked separately according to three roles
(verifier, performer, notifier). This mechanism moves some
of the more obvious potential property interactions (e.g. a
property that wants to veto the attempts of another to per-
form an operation) into the structural domain of the
infrastructure, rather than having the properties “fight it out
amongst themselves.” It also provides a more fine-grained
model which, in turn, encourages property writersto work at
amore fine-grained level.

However, it leaves many problems unaddressed. In particu-
lar, we observe conflicts between two active properties
involved in the same phase of the same operation. We
explored a variety of designs for this problem, and eventu-
aly fixed on a straight-forward numerical ordering for the
invocation sequence of properties. Thisallowsusto combine
properties that have interdependent effects. For example, if
we wanted to add to the same document one property that
encrypted file contents before they were written to disk, and
another that compressed them, we would want to ensure that
they were alwaysinvoked in the right order.

A numerical orderingis clearly flawed in anumber of ways;
it requires the properties themsel ves to manage the potential
negotiation to establish their relative order, rather than han-
dling it automatically. However, we believe more
complicated schemes to be overly complex; to establish a
language of property side-effects, for instance, would make
our API considerably more complex.

Notifications

Another idiom that we observed in early applicationswasthe
use of natifications. “Notifier”-phase active properties had
been included to support avariety of tasks such as audit trail
logging and operation post-processing that could be concep-
tualized as a “notification” from one element of the system
to another. However, more explicit notifications or callbacks
between different applications turned out to be more
common that we had anticipated. In particular, we found our-
selves frequently writing notifier active properties — which
run in the “kernel” or server —that ssimply looked up client
processes and informed them of the event. What is more, for
certain kinds of applications, such as applications that
present a representation of the activity of other clients or
over workspaces, we found these sorts of notifications being
added to many documents. Placeless provided a mechanism
for server-side notifications, but not for client-side
notifications.

We augmented our basic APIs to provide support for client
notifications. Clients can register their notifications with a

4. In fact, however, as we will discuss, there are some other bene-
fits to having such a descriptive language.

47

server; should the client disappear before the notification is
called, then the notification will be silently removed on the
server side. Client-side notifications are associated with pat-
terns of documents, properties or operations. So, an
application can register a single notification that will apply
to any number of documents, or to activities to groups of
properties on those documents, and so on. In addition to
reducing the number of notification instances® this facility
also allowed notifications to be registered that cannot be
attached to a specific document, such as a notification that a
new document has been created.

Introspection

Our experiences with the compositional effects of active
properties|ead to arecognition of theimportance of property
introspection — the ability to examine and reason about the
internal structure and behavior of active properties.

There are two reasons that we require some sort of introspec-
tion facility. The first is that properties, themselves, need to
be able to determine how their behaviors might interact, so
that they can potentially “negotiate” about ordering or cus-
tomize their behavior in order to better interoperate with
other properties. For instance, the versioning property might
behave differently when attached to adocument that al so has
areplication property. The second is that we need to be able
to provide end-users with an understanding of the conse-
guences of their actions. Since seemingly simple actions
such as adding a property to adocument might cause a vari-
ety of active properties to be executed, we need to be able to
provide a generic framework in which the potential out-
comes of actions can be determined. This also requires that
we be able to determine something of the structure and
behavior of active properties.

Our active properties are writtenin Java. Assuch, their “ con-
tents” — the code that they will execute — is largely
inaccessible from user space, outside of the minimal struc-
tural properties that are available through the standard Java
Reflection APIs. These are sufficient to be able to see what
operations and what phases are being intercepted by the
active property, but not to determine what that active prop-
erty will do. Instead, a number of our applications are forced
to depend on active property class names and “well-known”
properties to be able to reason about the behavior of proper-
ties attached to documents.

One alternative would be to write active propertiesin amore
declarative “little language’ with less expressive power than
full Java, and about which we might be able to reason more
carefully. Thisapproach has been used in other systems such
as DPF [12]. We deemed this approach inappropriate for the
initial explorations that Placeless Documents was designed
to support; when we were engaged in the design we lacked
sufficient experience with active properties to design such a
language. The experience we have now gained suggests that
the ability to use active properties to relate document behav-
ior to the functionality of external services (e.g. externa

5. In fact, our implementation allows multiple instances of an
active property to share code, so the overhead of multipleinstances
is not one of memory footprint, but one of actual code.

CHI Lettersvol 2, 2

workflow engines or format conversion services) is an
important feature of our design. In order to support this, we
must necessarily give up strong control over the semantics of
active property execution. A voluntary declarative specifica-
tion of the side-effects or performance requirements of
active properties may be incorporated in the future.

RELATED APPROACHES

There are two areas of related work relevant to our explora-
tion of programming models for active documents. One is
the set of investigations into active infrastructures of various
sorts; the other is the exploration of compositional program-
ming models for interactive behavior.

Active Infrastructures

Placel ess Documents represents one approach to the provi-
sion of active infrastructures. Similar issues occur in other
systems tackling similar problems.

The Bayou distributed databaseinfrastructure gave program-
mers active control over the database system’s policy for
managing conflicts. By weakening the traditional ACID
properties, replacing them with a more fluid set of “session
guarantees’ [23], Bayou provided a data storage layer more
attuned to the needs of application domains such as cooper-
ative work [9]. Bayou allowed programmersto attach pieces
of code called “mergeprocs’ to updates, which would be
executed to resolve conflicts encountered as they filtered
through the network of database servers. Like our active
properties, mergeprocs were written in afull high-level lan-
guage, raising the same sorts of introspection problems.
However, since different mergeprocs would not be associ-
ated with the same update, Bayou had little need to support
compositionality and so did not suffer the same problems of
ordering, etc., that occur in Placeless Documents.

Active databases more generally provide a mechanism to
incorporate dynamically computed data and “triggers’ with
data objects, allowing the datato respond actively to patterns
of access [17]. These tend to be written in restricted lan-
guages, and the waysin which they can interoperate and rely
on external services is much more restricted than we can
offer, alowing active databases to offer stronger perfor-
mance guarantees at the cost of expressiveness.

Active networking [27] is an approach to network architec-
ture in which programs are executed inside the network
architecture itself. This approach supports much more flexi-
ble management of network resources. For example, routers
can exploit downloaded code to dynamically control routing
patterns, allowing applications to specialize the network’s
response to their particular requirements. Thisis similar to
work on composable protocols[16] in that it affects the con-
figuration of networking behavior, but critically different in
where it locates computation, and in particular that it allows
computation to move around and to be configured dynami-
cally. Work on Active Names [26] has explored inserting
active mediation into just the name lookup process, so that
dynamic or call er-dependent bindings are managed in aprin-
cipled way.

Some interactive application toolkits, such as Prospero [4]
and Intermezzo [8], have incorporated extensibility tech-

48

niques so that application developers can extend toolkit
functionality or interfaces. However, they typically do not
attempt to expose this extensibility model to end users aswe
do in Placeless Documents.

This is also true of explorations of active infrastructures in
the operating systems domain. Work such asthat on Spin[3],
scheduler activations [2], exokernels [11] and the Mach
External Pager [18] have all explored mediating the behavior
of otherwise static infrastructure components. Much of the
effort has been directed towards finding a balance between
the expressiveness of the interface and the security and
resource management implications of broadening it too far.

Compositional Interactive Behaviors

Unlike other approaches to active infrastructures, Placeless
is focussed directly on interaction concerns. How does the
active property model compare to other approaches provid-
ing compositional interactive behaviors?

In contrast to traditional “widget” programming, Myers
“interactors” model provides an encapsulation of interactive
behavior that is separate from the graphical elements to
which it isconnected [15]. Interaction patterns and graphical
elements of the user interface are developed and specified
separately; interactors can then be attached to graphical ele-
ments to give those objects interactive behaviors. This is
similar to the separation between documents and active
properties; they also have similar compositional properties
which makefor similar programming experiences. However,
Myers' interactorsmodel isaimed specifically at the creation
of graphical user interfaces, while the active property model
ismore general.

Active properties also resemble the programming model of
prototype-based object-oriented programming languages
like Self [25]. Like objects of atraditional OO language, Self
objects combine data and activity (methods); but unlike the
traditional approach, Self provides no classes to encapsulate
object structures, but allows objects to inherit directly from
each other, through a prototype mechanism. Placeless Docu-
ments is similar to Self in the way that users experience
documents (objects) directly rather than in terms of pre-
defined structures; and similarly, a number of our user
interfaces are designed around the same principles of con-
creteness and uniformity that characterize Self user
interfaces [20]. However, although our early designs incor-
porated it, Placeless Documents does not provideinheritance
or the propagation of properties or activity through a“chain”
of documents. This is because of Placeless’ schizophrenic
nature, being both an application infrastructure and a system
for end users. While application developers might be
expected to understand a model structured around prototype
inheritance, we felt that end-user would not.

FOLLOW-ON WORK

The Placeless Document system isstill under active develop-
ment. In particular, a new “kernel” architecture (the core
property storage and activation engine) is currently being
developed, and explores more advanced ideas for the inte-
gration of Placeless's property mechanisms with the
relational database beneath the covers.

CHI Lettersvol 2, 2

Another featurethat is being explored in this new implemen-
tation is a richer mechanism for application programmers to
describe to the infrastructure the structure of their applica
tions and their use of properties for data storage. In the first
instance, this facility is aimed primarily at the use of static
properties and schemas, but it also offers the opportunity to
alleviate some of the problems associated with the composi-
tion of active properties. A declarative means for describing
application needs alows the system to adapt itself to the
needs of each application and to take a more active role in
managing their interactions.

We have already described a number of ways in which the
system has been changed to incorporate lessons|earned from
early application experiences (e.g. the introduction of client-
side notifications). By working closely with application
developers, we are till learning new ways to better match
the conceptual model that Placeless offers to the needs of
both programmers and end-users.

CONCLUSIONS

Infrastructures have traditionally been construed as passive
elements of computing systems; activity has been concen-
trated at the end-points of the system, on servers or clients.
However, researchers in a variety of systems arenas have
been exploring the use of active infrastructures in order to
specialise infrastructures to the needs of particular clients or
to better capitalize on the increased performance of modern
infrastructure components (e.g. increased network band-
width). In the Placeless Documents project, we have been
exploring an active infrastructure approach in the context of
interactive document services and applications.

Activeinfrastructures have been conceptualized in many dif-
ferent ways, encapsulating many different programming
models. The programming model for Placeless Documents
has been designed to meet two goals. On one hand, it is pow-
erful enough to allow application developersto create awide
range of applications that can take advantage of activity in
the infrastructure. On the other, sincewe are aiming at inter-
active document applications, the programming approach
must also encapsulate a conceptual model that is accessible
to end-users. The Placeless Documents system blurs the tra-
ditional boundary between users and developers, since it
gives users compositional control over the behavior of their
document systems. While our approach is not as general as
that of traditional end-user programming systems, it none-
theless requires that users be able to understand the
encapsulation and composition model that our system offers.

Our conceptual model has been based on active properties.
Static properties describe features of documents relevant to
user needs; active properties add encapsulated code that
affects how the document behaves. Properties can be con-
trolled individually by end-users and application developers,
can be composed to create complex behaviors, and provide a
consistent interface for managing documents.

We have worked with avariety of people outside the devel-
opment group to develop applications for Placeless
Documents organized in terms of active properties. On the
positive side, we have found that people take naturally to the

49

active property model, and can quickly and essily create
applications factored into active properties. Active proper-
ties al so encourage a decomposed model in which behaviors
are persistently associated with documents so that applica-
tion activity is distributed throughout the infrastructure and
permanently available. On the negative side, we have
encountered problems where active properties hide applica-
tion behavior, making it hard for users to understand the
consequences of their actions; document behavior may result
in unexpected and unforeseen active property invocations.
This has not caused any significant problems in the small
applications we have explored, but raises some issues to be
addressed in future explorations.

The active property model spans two worlds — the world of
end-user document management and the world of applica-
tion devel opment. As computers become more powerful and
applications need to be more and more radically adapted to
the needs of different users and different environments,
system developers will increasingly need to build bridges
between these two worlds. In the Placeless Documents sys-
tem, active properties have begun to provide us with some
clues asto the problems and opportunities that these require-
ments will present.

ACKNOWLEDGEMENTS

We would like to thank Dirk Bafanz, Jacek Gwizdka,
Minwen Ji, Eyal de Lara and lan Smith for their bravery in
experimenting with active properties.

REFERENCES

1. Abowd, G., Dey, A., Orr, R. and Brotherton, J. 1998. Context-
awareness in Wearable and Ubiquitous Computing. Virtual
Reslity, 3, 200-211.

2. Anderson, T., Bershad, B., Lazowska, E. and Levy, H. 1992.
Scheduler Activations: Effective Kernel Support for User-
Level Management of Paralelism. ACM Trans. Computer
Systems, 10(1), 53-79.

3. Bershad, B., Savage, S., Pardayk, P., Sirer, E., Fiuczynski, M.,
Becker, D., Chambers, C. and Eggers, S. (1995). Extensibility
and Safety in the SPIN Operating Systenm. Proc. ACM Symp.
Operating System Principles (Copper Mountain, CO). New
York: ACM.

4. Dourish, P. 1998. Using Metalevel Techniques in a Flexible
Toolkit for CSCW Applications. ACM Trans. Computer-
Human Interaction, 5(2), 109-155.

5. Dourish, P., Bentley, R., Jones, R. and MacLean, A. (1999).
Getting Some Perspective: Using Process Descriptionsto | ndex
Document History. Proc. ACM Conf. Supporting Group Work
GROUP’99 (Phoenix, AZ). New York: ACM.

6. Dourish, P., Edwards, K., LaMarca, A. and Salisbury, M.
(1999). Uniform Document Interaction with Document
Properties. Proc. ACM Symp. User Interface Software and
Technology UIST’ 99 (Asheville, NC). New York: ACM.

7. Dourish, P., Edwards, K., LaMarca, A., Lamping, J., Petersen,
K., Salisbury, M., Terry, D. and Thornton, J. (in press).
Extending Document Management Systems With Per-User
Active Properties. ACM Trans. Information Systems.

8. Edwards, K. 1996. Coordination Infrastructure in
Collaborative Systems. PhD dissertation, College of
Computing, Georgia Ingtitute of Technology, Atlanta, GA.

9. Edwards, K., Mynatt, E., Petersen, K., Spreitzer, M., Terry, D.,
and Theimer, M. 1997. Designing and Implementing
Asynchronous Collaborative Applications with Bayou. Proc.
ACM Symp. User Interface Software and Technology UIST’ 97
(Banff, Alberta). New York: ACM.

CHI Lettersvol 2, 2

10. Edwards, K. and LaMarca, A. 1999. Balancing Generality and
Specificity in Document Management Systems. Proc. Seventh
IFIP Conf. Human-Computer-Interaction Interact’99
(Edinburgh, Scotland).

11. Engler, D., Kaashoek, F. and O’ Toole, J. 1995. Exokernel: An
Operating System Architecturefor Application-Level Resource
Management. Proc. ACM Symp. Operating Systems Principles
SOSP-95, 251-266. New York: ACM.

12. Engler, D. and Kaashoek, F. 1996. DPF: Fst, Flexible Message
Demultiplexing using Dynamic Code Generation. Proc.
SIGCOMM'96. New York: ACM.

13. Fox, A., Gribble, S., Brewer, E. and Amir, E. 1996. Adapting to
Network and Client Variation viaReal-Time Distillation. Proc.
ACM Symp. Architectural Support for Programming
Languages and Operating Systems ASPLOS VII (Boston, MA).
New York: ACM.

14. LaMarca, A., Edwards, K., Dourish, P., Lamping, J., Smith, I.
and Thornton, J. 1999. Taking the Work out of Workflow:
Mechanisms for Document-Centered Collaboration. Proc.
European Conf. Computer-Supported Cooperative Work
ECSCW 99 (Copenhagen, Denmark). Dordrecht: Kluwer.

15. Myers, B. 1990. A New Model for Handling Input. ACM Trans.
Information Systems, 8(3), 289-320.

16. O'Malley, S. and Peterson, L. 1992. A Dynamic Network
Architecture. ACM Trans. Computing Systems, 10(2), 110-143.

17. Paton, N. and Diaz, O. 1999. Active Database Systems. ACM
Computing Surveys, 31(1), 63-106.

18. Rashid, R., Tevanian, A., Young, M, Golub, D., Baron, R,,
Black, D., Bolosky, W. and Chew, J. 1987. Machine-
Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures. Proc. ACM
Conf. Architectural Support for Programming Languages and
Operating Systems (Palo Alto, CA). New York: ACM.

19. Schilit, B., Adams, N. and Want, R. 1994. Context-aware
Computing Applications. Proc. Workshop on Mobile
Computing Systems and Applications (Santa Cruz, CA).

20. Smith, R., Maloney, J. and Ungar, D. 1995. The Self-4.0 User
Interface; Manifesting a System-Wide Vision of Concreteness,
Uniformity and Flexibility. Proc. ACM Conf. Object-Oriented
Programming Languages, Systems and Applications
OOPSLA'95 (Austin, TX). New York: ACM.

21. Stein, L., Lieberman, H. and Ungar, D. 1987. A Shared View of
Sharing: The Treaty of Orlando. In Kim and Lochovsky (eds),
Object-Oriented Concepts, Databases and Applications. New
York: ACM Press.

22. Swenson, K. 1998. Simple Workflow Access Protocol. IETF
Internet Draft.

23. Terry, D., Demers, A., Petersen, K., Spreitzer, M., Theimer, M.
and Welch, B. 1994. Session Guaranteesfor Weakly Consistent
Replicated Data. Proc. Intl. Conf. Parallel and Distributed
Information Systems (Austin, Texas).

24. Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M.
and Hauser, C. 1995. Managing Update Conflicts in Bayou, A
Weakly Connnected Replicated Storage System. Proc. ACM
Symp. Operating Systems Principles SOSP'95 (Copper
Mountain, CO). New York: ACM.

25. Ungar, D. and Smith, R. 1987. Self: The Power of Simplicity.
Proc. ACM Conf. Object-Oriented Programming Languages,
Systems and Applications OOPSLA'87 (Orlando, FL). New
York: ACM.

26. Vahdat, A., Dahlin, M., Anderson, T., and Aggarwal, A.1999.
Active Names: Flexible Location and Transport of Wide-Area
Resources. Proc. 1999 USENIX Symposium on Internet
Technologies and Systems (USITS).

27. Wetherall, D. 1999. Active Network Vision and Reality:
Lessons from a Capsule-Based System. Proc. ACM Symp.
Operating System Principles SOSP-17 (Liawah Island, SC).
New York: ACM.

50

