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ABSTRACT

Text entry user interfaces have been a bottleneck of non-
traditional computing devices. One of the promising
methods is the virtual keyboard on touch screens. Various
layouts have been manually designed to replace the
dominant QWERTY layout. This paper presents two
computerized quantitative design techniques to search for
the optimal virtual keyboard. The first technique simulated
the dynamics of a keyboard with “digraph springs” between
keys, which produced a “Hooke’s” keyboard with 41.6
wpm performance. The second technique used a Metropolis
random walk algorithm guided by a “Fitts energy”
objective function, which produced a “Metropolis”
keyboard with 43.1 wpm performance.

The paper also models and evaluates the performance of
four existing keyboard layouts. We corrected erroneous
estimates in the literature and predicted the performance of
QWERTY, CHUBON, FITALY, OPTI to be in the
neighborhood of 30, 33, 36 and 38 wpm respectively. Our
best design was 40% faster than QWERTY and 10% faster
than OPTI, illustrating the advantage of quantitative user
interface design techniques based on models of human
performance over traditional trial and error designs guided
by heuristics.
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INTRODUCTION

Pervasive computing on small, mobile or wall size devices
are one of the most important trends in the evolution of

computing technology. These devices include personal
digital assistants (PDAs), tablet computers, electronic
whiteboard or communication devices such as two-way
pagers and mobile phones. As an extension of the Internet,
these devices may free us from desktop or laptop
computers, moving us to a future of pervasive information.

One obstacle to the progress of pervasive computing is text
entry. For example, a recent study [13] clearly
demonstrated the value of tablet computers in home
environments, but the lack of efficient text input techniques
in these tablet computers made many common applications,
such as chat, email, or even entering a URL, very difficult.

Currently there are many types of text entry methods for
mobile devices, including reduced physical keyboards,
handwriting recognition, voice recognition, and virtual
keyboards. Each has critical usability shortcomings.

Physical keyboards. There are two ways to reduce the size
of physical keyboards. One is to shrink the size of each
key. This is commonly seen in electronic dictionaries.
Typing on these keyboards is slow and difficult due to their
reduced size. The other method is to share each physical
button with multiple letters, as in a telephone pad.
Resolving ambiguity is a difficult challenge to the usability
of such a method [15].

Handwriting. Although reducing error rate has been the
major goal in handwriting recognition, the ultimate
bottleneck is the human handwriting speed limit. It is very
difficult to write legibly at a fast speed. Our informal tests
showed that a well practiced user of Graffiti on a PalmPilot
PDA can write about 20 words per minute  (wpm), far
slower than a well practiced typist on a physical keyboard.
20 wpm is good enough to enter names and telephone
numbers, but not satisfactory for online chatting or email.

Voice recognition. Speech has been expected to be a
compelling alternative to typing for text input. Despite the
progress made in speech recognition technology, however,
a recent study [7] showed that the effective speed of text
entry by continuous speech recognition was still far lower
than that of the keyboard (13.6 vs. 32.5 corrected wpm for
transcription and 7.8 vs. 19.0 corrected wpm for
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composition). Interestingly, the study also revealed many
more human-factors issues that were not well realized
before. For example, many users found it “harder to talk
and think than type and think” and considered the keyboard
to be more “natural” than speech for text entry.

The present paper focuses on virtual keyboards displayed
on screen and tapped with a stylus or a finger. The most
commonly used virtual keyboards today adopt the
traditional QWERTY layout (Figure 1). As we will see the
QWERTY layout is particularly inefficient for stylus
tapping. There is a long, fascinating, and controversial
history of inventions and studies of the layout of the
physical keyboard, well documented by Yamada [18].
Various attempts of replacing QWERTY with more
efficient layouts, such as Dvorak, have been made but the
performance gain has not justified the cost of retraining the
great number of users [3, 14, 18]. The opportunity of
designing an optimized layout for the physical keyboard
seems forever lost.

This may not be true for the virtual keyboard. First, it is not
yet too late to form a new layout standard for the virtual
keyboard. Second, the ten-finger touch typing skills on a
physical keyboard do not necessarily transfer to on screen
stylus tapping on the same layout [19]. The perceptual,
memory, and motor behavior of using a virtual keyboard is
sufficiently different from that of a physical keyboard to
justify a different design. Third, the efficiency of a virtual
keyboard depends on very different, if not opposite,
mechanisms from that of a physical keyboard. For a
physical keyboard, one key factor influencing its efficiency
is the frequent alternation between the two hands. This
means that frequent adjacent letter pairs (digraphs) should
be on the opposite sides of the keyboard. For a virtual
keyboard tapped with a stylus,  however, the frequent
digraphs should be close to each other so the hand does not
have to travel much.

PERFORMANCE MODELLING OF VIRTUAL KEYBOARD

To minimize the hand travel on a virtual keyboard, the
transitional frequencies from one letter to another in a
given language have to be taken into account. The goal is to
lay out the letters so that the statistical total travel distance
is the shortest when typing in that language. This means
that the most frequent keys should be located in the center
of the keyboard and frequently connected letters  (such as T
and H) should be closer to each other than the less

frequently connected letters.

MacKenzie and colleagues [16], [11] were the first to use a
quantitative approach to model virtual keyboard
performance. Their model predicts user’s performance by
summing the Fitts’ law movement times between all
digraphs, weighed by the frequencies of occurrence of the
digraphs. The use of Fitts’ law made it possible to estimate
performance in absolute terms, giving us a comparison to
speed we are familiar with, such as 60 wpm for a good
touch typist.

According to Fitts’ law (Figure 2), the time to move the
tapping stylus from one key i 1 to another j for a given
distance (Dij) and key size (Wj) is

MT = a + b Log2(Dij/Wj + 1), (1)

where a and b are empirically determined coefficients. In
order to be able to make comparisons to the results in [11],
we choose the same values a = 0, b = 1 / 4.9. In other
words, we consider the Fitts’ index of performance (IP) [4]
to be 4.9 bits per second. We will return to this choice of
this parameter later.

If the frequency of letter j to follow letter i (digraph i-j)
among all digraphs is Pij, then the mean time in seconds for
typing a character is:
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Assuming 5 characters per word (including space key), this
equation allows us to calculate tapping speed in words per
minute (wpm = 60 / 5 t ).

Note that a special case has to be made for equation (2)
when i = j. This means tapping on the same key
successively (e.g. oo as in “look”). In this case, the second
term in equation (1) is 0 but a is set at 0.127 sec. Previous
authors [19] [11] have used both 0.127 or 0.135 second.
We choose 0.127 because it was closer to what we

                                                           

1 i and j here represent any pair of keys from A to Z and the
space key.

Figure 1: The virtual keyboard in a PDA, with a
QWERTY layout (30 wpm)
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Figure 2. For given key size and distance, Fitts’ law
predicts the time of tapping from one key to another
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measured (7.8 repeats on the same location). The influence
of this number is small, however, due to the low frequency
of such cases.

Equation (2) only estimates the movement time of tapping
on a virtual keyboard by an “expert”. A novice or
intermediate user has to visually search for the destination
key before tapping on it. In that sense, Equation (2) only
predicts the upper bound of a user’s performance [16].
However, the Fitts’ law coefficient in the model is based on
average human tapping performance. Some users therefore
could surpass this “upper bound”.

Digraph frequency

The digraph frequency Pij in equation (2) is numerically
calculated by the ratio between the number of i-j digraphs
and the total number of digraphs in an English text corpus.
One commonly used digraph table is by Mayzner and
Tresselt, extracted from an English text corpus of 87,296
characters [12]. There are two shortcomings to this table.
First it is not clear if their corpus still reflects the usage of
English in today’s digital media. Second, they limited their
selection of words to those of length 3 to 7 letters, which
eliminated some of the most common words such as I, in,
on, is, at, to, of, if.

We hence constructed two digraph tables ourselves. One
was from a text corpus consisting of news articles from
sources such as the San Jose Mercury News, New York
Times, and the LA Times. The articles covered a range of
topics from technical to social. The size of the corpus was
101,468 characters (no spaces). The second 1364497-
character corpus was gathered from logs of six on line chat
rooms. The names of the chat rooms were Teen, Atheism,
ChristianDebate, Myecamp, CityoftheGreats, and
MaisonlkkoguRPG.   The text consists of very informal
conversations.  Most input strings are less than 80
characters, and many are not complete sentences.  They are
frequently a one or two word answer to a question or
comment about a previous statement.  Capitalization at the
beginning and periods at the end of sentences are
frequently missing. We included only those records that
appeared to be typed by a person. Computer-generated
headers, etc. were deleted.

Due to the space constraint of this paper, we have to
publish our digraph analyses elsewhere. For the purpose of
the virtual keyboard design, however, the differences
among the three corpuses were small, despite the very
different styles of English used. This means that a keyboard
layout does not have to be tuned to a specific area of
application.

To be consistent with the literature, we continued to use the
Mayzner and Tresselt table in evaluating existing keyboard
designs. We used all three tables in designing the
Metropolis keyboard presented later in this paper.

EXISTING LAYOUTS AND THEIR PERFORMANCE
ESTIMATION

This section reviews various existing layouts of virtual
keyboards and applies the Fitts-digraph model (2) to
estimate the performance of these layouts. This is necessary
for two reasons. First, other than informal arguments and
promotional data, some of the existing layouts have never
been scientifically evaluated. Second, previously published
estimates of QWERTY and OPTI keyboards in the
literature [11] [19] are incorrect.

The Performance of QWERTY layout

The space key in the QWERTY layout has a much greater
length than the rest of the keys. The Fitts’ law distance
between a character key and the space key varies
depending on what point of the space key is tapped.
MacKenzie and Zhang [11] [19] [9] used a “sub-optimal”
model to handle the space key, which divided the space key
into multiple segments, each was equal in length to a
regular character key. For each character-space-character
“trigraph”, they chose the segment of the space key that
yielded the shortest total distance of character-space-
character path. They then calculated the two Fitts’ law
times of character-space and of space-character according
to the distances along that path. Finally, they summed the
Fitts’ tapping times of all of character-space-character
trigraphs, weighted by the probability of each trigraph
occurrence.  Using this approach, they estimated the
QWERTY performance of 43.2 wpm.

Following the same methodology, we could not replicate
their result. Upon close examination, we found a subtle
error in MacKenzie’s and Zhang’s calculation of the
probability of each character-space-character trigraph.
Taking the combination of i-space-j as an example, they
incorrectly used the Pi-space x Pspace-j to calculate the
probability of this path (Pi-space-j). Note that Pspace-j is the
probability (or frequency) of the transition at any given
tapping to be from the space key to the J key. It is not the
conditional probability of Pspace-j/space ( = Pspace-j  / Pspace .)
needed to calculate the probability of two serial events. The
correct calculation should be:

Pi-space-j = Pi-space x Pspace-j/space = Pi-space x Pspace-j  / Pspace, 

 (3)

where Pi-space is the probability of i-space digraph at any
given tapping, Pspace-j is the probability of space-j at any
given tapping, Pspace-j/space is the conditional probability of
space-j, given the last tapped key is space, and Pspace is the
probability (frequency) of the space key.

Using this corrected Pspace-j/space calculation but following
the same “sub-optimal” methodology as in [19], we found
the performance of  QWERTY layout to be 30.5 wpm.

In order to ensure the correctness of our estimation, we also
applied two much simpler methods, one conservative and
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one liberal, both involved only digraphs and avoided
character-space-character trigraphs. By the conservative
method, character to space distance was always measured
to the center of the space key. Obviously the result of this
should be lower than the estimation of sub-optimal model.
Indeed, the performance was 27.6 wpm calculated by this
method. By the liberal method, the distance between the
space key and any character key was always measured
along the shortest (vertical) line from the character to the
space key. Due to the “free warping” effect – the stylus
goes into the space key from one point and comes out from
another point of the space key without taking any time.
This should produce a higher estimate than the sub-optimal
model. Indeed, we found the tapping speed to be 31.77
wpm by this method.

In conclusion, the performance of a QWERTY keyboard is
about 30 wpm, assuming the user always taps on the
portion of the space key that minimizes the character-
space-character total path. If the user does not plan one key
ahead, the performance would be lower than 30 wpm.

The Performance of the OPTI layout

MacKenzie and Zhang [19] [11] designed a new layout,
dubbed OPTI (Figure 3). They first placed the 10 most
frequent letters in the center of the keyboard. Then assiging
the 10 most frequent digraphs to the top 10 keys, they
placed the remaining letters.  The placement was all done
by trial and error. They later made a further improved 5X6
layout, shown in Figure 4. For convenience, we call the
5X6 layout OPTI II in this paper.

There are four space keys in both OPTI keyboards, evenly
distributed in the layout. The user is free to choose which
one to tap. The optimal choice depends on both the

preceding and following key to the space key. For example,
for the sequence of M - space – V (Figure 4), the upper
right space key is the best choice. However, the upper right
space key is not the optimal choice if the tapping sequence
is M - space -Y. In practice, the use of the optimal space
key ranged from 38% to 47%, depending on the user’s
experience [11].

Assuming optimal choice of space keys, MacKenzie and
Zhang predicted 58.2 wpm performance of the OPTI
keyboard and 59.4 wpm of the OPTI II layout. These were
surprisingly high performance scores that we could not
replicate. As in their QWERTY performance estimation,
MacKenzie and Zhang [19] [11] used the character-space-
character “trigraph” approach to handle the multiple space
keys. They made the same probability miscalculation of the
trigraphs on the OPTIs as they did on the QWERTY.

We re-calculated the performance of the OPTI II keyboard.
The first approach was the same as that of MacKenzie and
Zhang, except we used the corrected conditional probability
in calculating trigraph probabilities. Our result of the OPTI
II performance is 40.3 wpm. This result was based on the
assumption that the user always used the optimal choice of
space keys.

Our second approach took the non-optimal choice of space
keys into account. We assumed that the user would make
use of the optimal space key 50% of time, which was still
higher than the highest actual rate. For the rest of the time,
the average distance from the character key to the three
non-optimal space keys was used. By this approach, we
found the OPTI II performance to be 36 wpm.

In conclusion, the OPTI II performance should be between
36 and 40.3 wpm, depending on the optimality of the space
key choice. If we take 38 wpm as a fair (but optimistic)
estimate, this is a 27% improvement over QWERTY
performance (about 30 wpm). 38 wpm is beyond what
legible handwriting could achieve.

MacKenzie and Zhang conducted an experiment to
investigate how quickly users could reach the predicted
performance. In their test, participants reached 44.3 wpm
after 20 sessions of text entry, each for 45 minutes, on the
OPTI design [11]. This is higher than our predicted
performance of 38 wpm. We think this disparity is due to
the low value of Fitts’ law index of performance (IP) used
in equation (2). Originated in [10], 4.9 bits/s might be an
overly conservative estimate of human tapping
performance.  For two adjacent keys (1 bit), 4.9 bits/s
means 204 ms per tap. This is a much longer than what we
measured (average 160 ms). The rate of index of
performance reported in the literature for tapping varied
widely. For example, Fitts’ original report was 10.6 bits/s
[4]. This rate dropped to 8.2 bits/s after adjusting for the
effective width and for the Shannon-MacKenize
formulation [8], but it is still much higher than 4.9 bits/s. In
order to make comparisons to previous studies, we

Figure 3. MacKenzie’s and Zhang’s  OPTI layout

Figure 4. The improved OPTI layout in a five by 6
layout (OPTI II) [18]  (38 wpm)
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maintain the 4.9 bits/s index of performance used in (2).
One should be aware, however, that all predicted
performance scores in this paper can be proportionally
scaled according to the IP rate. For example, if we use 6
bits/s instead of 4.9 bits/s. The OPTI II performance would
be 38 x 6/4.9 = 46.5 wpm.

The Performance of the FITALY keyboard

The FITALY keyboard (Figure 5) is a commercial product
by Textware Solutions. The design rationale behind this
layout included center placement of more frequent keys,
dual double sized space keys, and the consideration of
digraph frequencies [17].

In a loosely controlled contest (self reporting with a
witness, best performer rewarded with a prize), Textware
Solutions collected 34 entries of text entry speed on a Palm
Pilot PDA, with 19 contestants using FITALY, 9 using
Graffiti, and 6 using QWERTY. FITALY received the
highest average score (44.4 wpm), followed by QWERTY
keyboard and Graffiti handwriting (both 28.2 wpm) [17].
Note that these scores were collected from motivated
contestants.

Applying the Fitts-digraph performance model (2), we did
a formal estimation of the FITALY layout. In our
calculation, the two double sized space keys were treated
differently from other regular keys. First, the width of the
space keys was considered twice the size of a regular key in
the Fitts’ law calculation. This clearly was an overestimate
when the movement was primarily vertical. Second, there
was again the issue of which space key to use in calculating
distances. Two methods were used to deal with this issue.
The first always used the closest space key to each
character, with “free warping” between the two space keys.
By this method, the FITALY keyboard performance was
estimated as 37.07 wpm. The second method used the
shortest character-space distance 75% of the time. The rest
of the time the further space key was used in calculating
distance. By this method, performance of 35.2 wpm was
found.

In summary the performance of the FITALY keyboard is
about 36 wpm, far more efficient than QWERTY, as the
company advertised, but less efficient than OPTI II is.

The Performance of the Chubon keyboard

Figure 6 shows the Chubon keyboard layout [5]. Using the
same approach as in the case of the QWERTY layout, we
estimated its performance to be 33.3 wpm, assuming free
warping. If we assume the user always taps at the center of
the space key, the performance will be 32 wpm. Both
estimates are slower than OPTI and FITALY but still faster
than QWERTY.

IN SEARCH OF THE OPTIMAL -  COMPUTERIZED
QUNTITATIVE DESIGN

We have reviewed three designs of virtual keyboards
alternatives to QWERTY. The best so far is MacKenzie’s
and Zhang’s OPTI II keyboard. Has the OPTI II reached
the optimal? Can we design an even better keyboard? The
existing designs are all based on manual trial and error
approaches, with the help of letter and digraph frequency
tables. Given the great number of possibilities, human
manual exploration can only try out a small fraction of
arrangements.

In a departure from the manual exploration approach, we
decided to explore computerized techniques to design the
optimal virtual keyboard. The first method that comes to
mind could be an exhaustive algorithmic searching
approach. However, the complexity of that search - O(n!) -
is approximately 1028, an impossible number for
computing.  Thus, we designed and implemented two
systematic, physics-based techniques to search for the
optimal virtual keyboard. This section presents the
methodologies and results of these two techniques.

The Dynamic Simulation Method

As analyzed earlier, the goal of a good keyboard design is
to minimize the statistical travel distance between
characters. The more frequent digraphs should be closer
together than less frequent digraphs. In order to achieve this
goal, we first designed a dynamic system technique.
Imagine a spring connecting every pair of the 27 keys
whose initial positions were randomly placed with spaces
between the keys. The elasticity of the springs, when turned
on, were proportional to the transitional probability
between the two keys so that keys with higher transitional
probability would be pulled together with greater force. InFigure 5.  The FITALY keyboard  (36 wpm)

[17] Copyright Textware Solutions 1996-1998

Figure 6. The Chubon Keyboard (33 wpm)
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addition, there is viscous friction between the circle shaped
keys and between the key surface and the table surfaces.
The steady state when all keys are pulled together forms a
candidate virtual keyboard design. Figure 7 illustrates one
part of this dynamic system model.

Fortunately, we did not need to build physical models to
create the spring-viscosity-mass dynamic systems. Instead
we used a mechanical simulation package (Working
Model) to simulate it.  In the simulation, the springs were
“virtual”. They did not stop other objects passing through
them, hence preventing the springs from being tangled.

The final positions of the keys might still not be at the
minimum tension state, because some keys could block
others from entering a lower energy state. Two methods
were used to reduce the deadlock or local minimum states.
First, we experimented with different initial states, which
had very significant impact to the end result. Second, each
spring had an extended segment  - a strut - that held the
keys apart so other keys could be pulled through these gaps
to reach a lower level of tension. The length of this segment
was manually adjusted in the dynamic simulation process.
At the end of each simulation cycle, we reduced the length
of the adjustable struts to zero so all the keys were pulled
against each other, forming a layout of a virtual keyboard.
The performance of the design was then calculated
according to equation (2) and compared with known
results.  When not satisfactory, the layout could be
‘stretched’ out to serve as another initial state for the next
iteration of the same process. The iteration was repeated
until a satisfactory layout is formed. Figure 8 shows the
best layout we achieved with this approach. To capture the

gist of the spring simulation technique, we call the best
design achieved through this method Hooke’s keyboard
(after Hooke’s Law). The performance estimate of the
Hooke’s keyboard shown in Figure 8 is 41.6 wpm, higher
than the best previous design (OPTI II, 38 wpm).

Fitts’ Energy and the Metropolis Method

The idea of minimizing energy, or tension, in the keyboard
layout brought us to explore a better known optimization
method - the Metropolis algorithm.  The Metropolis
algorithm is a Monte Carlo method widely used in
searching for the minimum energy state in statistical
physics [1]. If we define equation (2) as “Fitts’ energy”, the
problem of designing a high performance keyboard is
equivalent to searching for the structure of a molecule at a
stable low energy state. Applying this approach, we
designed and implemented a software system that did a
“random walk” in the virtual keyboard design space. In
each step of the walk, the algorithm picked a key and
moved it in a random direction by a random amount to
reach a new configuration. The level of Fitts’ energy in the
new configuration, based on equation (2), was then
evaluated. Whether the new configuration was kept as the
starting position for the next iteration depended on the
following Metropolis function [2]
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In equation (3), W (A-B) was the probabilty of changing
from configuration A (old) to configuration B (new), ∆E
was the energy change, k was a coefficient, T was
“temperature”, which could be interactively adjusted. The
use of equation (3) makes the Metropolis method superior
to our previous spring model because the search does not
always move towards a local minimum. It occasionally
allowed moves with positive energy change in order to be
able to climb out of a local energy minimum.

Again, the initial state where the random walk starts from
had a significant impact on the search process. An existing
good layout stretched over a larger space was used as an
initial state.

In addition to the automatic random walk process itself, we
also applied interactive “annealing” as commonly used in
the Metropolis searching process. The annealing process
involved bringing “temperature” – T in equation (3)
through several up and down cycles. When temperature
was brought up, the system had a higher probability of
moving upwards in energy and jumping out of local
minima. When temperature was brought down, the system
decended down to a lower energy level. This annealing
process was repeated until a sufficiently efficient keyboard
layout was found. Figure 9 to 11 are snapshots from the
Metropolis random walk process in one annealing cycle.

Figure 7. (Part of) the dynamic simulation model: frequent
digraphs are connected with stronger springs

Figure 8. Hooke’s Keyboard (41.6 wpm)
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We call layouts produced by this process Metropolis
keyboards. Various layouts with similar performance were
produced. Figure 12 shows one of them. Particularly
interesting with this layout is that the vowels are connected
symmetrically. These vowel keys may potentially serve as
“landmarks”, making the layout more structured and easier
to remember. In Figure 12, we replaced the circle shapes
used in the design process with hexagons. Each hexagon

Figure 12. The Metropolis keyboard (43.1 wpm)

encapsulated the circle it replaced and filled the gaps
between the circles, making more efficient use of the total
space.

The performance of this layout is 43.1 wpm2 based on the
Mayzner and Tresselt digraph table. This is over 40%
improvement over QWERTY and more than 10%
improvement over OPTI II.  When we applied our digraph
tables constructed from current news and chat room text
corpuses, the performance is 42.2 wpm and 42.3 wpm
respectively.

Different from the manually designed previous layouts,
neither the Hooke’s nor the Metropolis layouts came in a
rectangular shape that exactly fits on part of a PDA screen.
However, this does not pose a problem. So far we have
only considered the alphabetical keys. A fully functional
keyboard needs punctuation and other auxiliary keys. These
keys can be packed around the alphabetical keys to form a
total rectangle shape, as we partially did in Figure 12.  We
could also apply the Metropolis method to search for the
best design to fit any shape such as a rectangle. We could
also possibly constrain the design to a triangle shape in
order to fit the lower right corner of a mobile computing
device. This may make it easier to tap for right handed
users.

Multiple Space Keys and Varying Key Sizes

Both the OPTI keyboard and the FITALY keyboards used
more than one space key to accommodate the high
frequency of space in English writing (Figure 13). We
decided against that for the following reasons. First,
multiple space keys take more space from the real estate

                                                           

2 In a brief preliminary publication [6],  we reported 43.7
wpm performance for a different Metropolis keyboard. This
was due to a less conservative measurement used in
calculating the width of each key. Instead of the diameter
of the inscribed circle of a hexagon, we previously used the
average of diameters of the inscribed and circumscribed
circles of a hexagon.

Figure 11. Later stage of Metropolis random walk.
Keys moved to a lower still energy state.
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Figure 9. Early stage of Metropolis random walk. The
system is at a high energy state, moving towards
lower energy state.

Figure 10. Middle stage of Metropolis random walk.
Keys have been descended to a lower energy state.
They are getting packed.
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available to regular keys, which may reduce the total
efficiency of the keyboard. Second, as revealed by our
analysis, the performance of a multiple space key keyboard
highly depends on the optimal choice of the space key,
which requires planning one key ahead of tapping. Third,
the space key is not the only one with high frequency
(Figure 13).
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Related to the multiple space key issue is the size of the
space key. Should the space key be given a greater size
than other keys? Should other more frequent keys also be
given greater size? According to Fitts’ law tapping time is
related to both distance and target size. We have optimized
the statistical distance in order to reduce tapping time. By
the same principle, shouldn’t we also optimize the relative
key sizes so more frequent keys are given a greater share of
the real estate?

We have indeed explored the issue of varying key sizes but
we have not come to a positive conclusion. There are at
least four issues to resolve.  First, the optimization of both
size and distance is much more complex. One of the
complicating factors is that unequal sized keys cannot be as
tightly packed and still be optimized in positional layout.
We have made several versions of search algorithms to
optimize both the key sizes and the position layout, but so
far we have not produced a keyboard that had higher
performance than the equal size Metropolis keyboard
shown in Figure 12.

Second, from Fitts’ law point of view, frequently used keys
should be given a greater size. However, these frequent
keys also should be placed toward the center of the
keyboard. Crossing these bigger sized keys to reach other
keys introduces a performance penalty.

Third, there is an asymmetrical effect to size gain and loss
in Fitts’ law. To reciprocally tap on the two adjacent targets
shown in Figure 14, the performance gain of tapping the
enlarged right target is less than the loss of tapping the
reduced left target. Figure 15 illustrates tapping time from

the left to right and vice versa. As we can see, as the
asymmetry factor x changes from 0 to positive, the time
reduction from the left to the right target does not
compensate for the time increase in the reverse direction.
The lowest sum of the two is when x = 0, assuming equal
frequency of entering the left and the right target.

Fourth, even if we found a more efficient layout with
varying key sizes, there could be a cost of varying control
precision depending on which letter is being typed. The
loss of consistency in control precision may be detrimental.

In summary, varying size remains an open problem in user
interface design, although the factors we have considered
suggest against it.

IMPLEMENTATION

We have implemented the virtual keyboard both in Java
and in Windows (Figure 16). Here we do not have space to
discuss the implementation details. One interesting feature
with the Metropolis keyboard is that the letters of some
common parts of a word or an entire word, such as “the”,
are connected. Experienced users might be able to stroke
through these letters instead of tapping on each of them.
Such a strategy not only may save time but also enriches
the input gestures.

Figure 13. Relative character frequency distribution in our
English new corpus
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Figure 14. Asymmetrical Fitts’ targets,
with asymmetry coefficient factor x
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Has our exploration achieved the best possible design? We
have run a large number of simulations but all reached
approximately 43 wpm performance, suggesting we are
very close, if not at, the best possible. However it is
theoretically interesting to estimate the lowest upper bound
performance. To that end, we have produced three
reference points, based on three physically impossible
layout designs. The first was that all keys were co-located
in one spot, hence the user only needed to tap on the same
spot. With such a hypothetical “keyboard”, the estimated
performance was 95 wpm. The second estimate assumed
the next key needed was always next to the current key,
requiring tapping with Fitts ID = 1 bit. Performance
dropped to 59 wpm with this assumption. In the third
estimate, when calculating Fitts’ law performance for any
key, all the rest of the keys were optimally placed
according their digraph frequency to the current key. The
performance of this more realistic but still impossible
keyboard was 53 wpm, about 10 wpm faster than our best
design. Finding the lowest upper bound of virtual keyboard
performance is another open research issue.

DISCUSSION: USER INTERFACE DESIGN TECHNIQUES

Although sharing the same ultimate goal, user interface
design and user interface evaluation are traditionally two
entirely separate processes involving totally different
methodologies. User interface evaluation tends to be
measurement based while user interface design tends to be
intuition, heuristics, and experience based. The design
exploration presented here is a departure from that norm.
First, the design process was quantitative and
computerized. Second the design process was integrated to
the highest degree with evaluation – every step of the
design space search was guided by the evaluation function.
Third, the quantitative design process was based on
previous evaluation research, particularly the work on Fitts’
law. Without Fitts’ law, we could still construct an
evaluation function simply based on the digraph frequency
and travel distance, so we could know the relative
superiority of one layout to another based on statistical
distance. We would not, however, be able to relate the
statistical distance to user performance. With Fitts’ law

modeled in the evaluation function, we could instantly
estimate the eventual average user performance and
compare it to known benchmarks (such as 40 wpm).

FUTURE WORK

A UI design is not complete without user studies. A user
study merely to confirm the performance predictions
presented here, however, would not be very informative.
First, the very foundation of our design, Fitts’ law, has
already been repeatedly tested. Second, previous user
studies have shown that users could indeed master a new
layout and eventually reach the performance level of over
40 wpm on the OPTI design [11]. The more meaningful
experiments would be on the learnablity of the keyboard.
How quickly can users reach the level of Fitts’ law
performance? How do they learn the keyboard layout? Do
they learn the paths of words or do they learn the positions
of the keys? Or is it a combination of both? In the early
learning stage, users have to scan the keyboard to find a
particular key. Do they scan randomly or do they scan
systematically?  The Metropolis keyboard is designed such
that the next letter key in a word is statistically close to the
current letter key. Does it help to instruct users to scan by
degree of vicinity? There are many fascinating cognitive
issues here to be investigated. In short, our future work will
switch from the “physics” to the “psychology” of the
virtual keyboard.

CONCLUSIONS

Motivated by the increasing importance of pervasive
computing devices and built upon the work of MacKenzie
and colleagues [16] [11] [19], this paper explored the
design of an optimal virtual keyboard and made the
following contributions. First, the paper thoroughly and
quantitatively analyzed the expert performance of existing
virtual keyboards and corrected erroneous performance
estimations of virtual keyboards in the literature. We found
the performance of QWERTY, CHUBON, FITALY and
OPTI keyboard to be in the neighborhood of 30, 33, 36 and
38 wpm respectively. Second, we introduced two
computerized, quantitative techniques to virtual keyboard
design. One technique used physical simulation of digraph
springs and produced a “Hooke’s” keyboard with 41.6
wpm performance. The other method used the Metropolis
random walk algorithm, guided by the “Fitts’ energy”
object function.  This method produced a Metropolis
keyboard with 43.1 wpm performance, which was more
than 40% faster than QWERTY keyboard. The 43.1 wpm
was based on a very conservative assumption of 4.9 bits/s
Fitts’ law IP and can be scaled up with the IP value3. Third,
the paper illustrates the benefits of quantitative design
combined with the knowledge of human performance

                                                           

3 If we assume IP = 6 bits/s, then the performance of the
Metropolis keyboard is 52 wpm.

Figure 16. A Metropolis keyboard
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modeling over traditional UI design methods based on
manual trial and error and heuristics. We demonstrated the
importance of quantitative techniques and basic human
performance modeling to the field of user interface
research.
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