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Federated learning (FL) is a privacy-preserving paradigm for multi-institutional collaborations, where the ag-

gregation is an essential procedure after training on the local datasets. Conventional aggregation algorithms

often apply a weighted averaging of the updates generated from distributed machines to update the global

model. However, while the data distributions are non-IID, the large discrepancy between the local updates

might lead to a poor averaged result and a lower convergence speed, i.e., more iterations required to achieve

a certain performance. To solve this problem, this article proposes a novel method named AggEnhance for

enhancing the aggregation, where we synthesize a group of reliable samples from the local models and tune

the aggregated result on them. These samples, named class interior points (CIPs) in this work, bound the

relevant decision boundaries that ensure the performance of aggregated result. To the best of our knowledge,

this is the first work to explicitly design an enhancing method for the aggregation in prevailing FL pipelines.

A series of experiments on real data demonstrate that our method has noticeable improvements of the con-

vergence in non-IID scenarios. In particular, our approach reduces the iterations by 31.87% on average for

the CIFAR10 dataset and 43.90% for the PASCAL VOC dataset. Since our method does not modify other pro-

cedures of FL pipelines, it is easy to apply to most existing FL frameworks. Furthermore, it does not require

additional data transmitted from the local clients to the global server, thus holding the same security level as

the original FL algorithms.
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1 INTRODUCTION

Deep learning models typically need training on large-scale samples to obtain excellent perfor-
mance. However, in the real world, data are often distributed at a large number of devices (e.g.,
smartphones and wearable sensors). It is challenging to collect data from these devices due to the
limitations of communication, power, and privacy issues. To tackle this problem, Google proposed
the concept of federated learning (FL) [19] recently. In FL scenarios, data are distributed at mul-
tiple devices, but at the training mode, only the model weights instead of the original data are
transmitted to the server. Since the sizes of model weights are much smaller than the training
data and do not contain personal information, FL alleviates the communication and privacy issues.
Federated learning has been applied to smartphone applications such as keyword spotting [14]
and keyboard prediction [6]. In the medical field, References [10, 16, 20, 21] reported potential
federated learning applications in medical image processing and digital health.
Figure 1 illustrates the fundamental pipelines of federated learning. First, the server broadcasts

the weights of the global model to a number of selected clients. Initialized by the global weights,
each client updates the model by its local data and uploads the updated parameters to the server.
After collecting all updates, the server applies an aggregation operator to update the global model
and then broadcasts its new weights for the next round of training. There is no doubt that aggrega-
tion is an essential step in federated learning. In conventional aggregationmethods, represented by
Federated-Averaging (FedAvg) [19], the server takes a weighted average of the local weights as
the new weights of the global model. However, these methods take effect based on the assumption
that the discrepancy between updates from different clients is small. In heterogeneous scenarios,
where the training data are non-independent identically distributed (non-IID) on the clients,
the assumption does not hold. Since the weighted average of feasible solutions may be infeasible
for complex models, the averaging-based aggregation methods converge slowly. A proper aggre-
gation method is a significant factor in the convergence of federated learning with non-IID data,
where it is harder to converge and requires more iterations to train, transmit, and aggregate to
reach a certain performance than IID data settings.
This article focuses on enhancing the aggregation without any sensitive data. We propose a

novel method, AggEnhance (aggregation enhancement), to enhance the aggregation results.
As Figure 1 shows, our method inserts an enhancing procedure in FL after updating the global
model and before the next training round, which means that it is compatible with most feder-
ated learning frameworks. The proposed method generates a group of reliable synthetic samples
(named class interior points, CIPs) for each class in the enhancing procedure, which contain class-
specific information. Then, we tune the global model on these synthetic samples tomodify the deci-
sion boundaries and help the global model reach a better solution. Our contributions are as follows:

(1) We point out that the vanilla weighted average is not a good aggregation strategy, which will
cause slow convergence of FL in Non-IID scenarios, and then we propose a novel method
named AggEnhance to overcome it. In AggEnhance, we generate a certain amount of consen-
taneous CIP samples and fine-tune the aggregation results on them and achieve a non-linear
aggregation of local model weights through the above aggregation enhancement. Further-
more, our method does not require any additional local privacy data, while the existing
methods (e.g., knowledge distillation) require the server to access the local intermediate re-
sults or share certain real data among all clients.

(2) We explore an available and easy-to-follow method to generate the CIPs and experimentally
verify the validity of CIPs. The method generates a group of samples based on the local
model that do not reveal privacy, so the gradient of the optimization function at these few
points is approximated over the entire local data. We also propose a heuristic initialization
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Fig. 1. Illustration of our aggregation enhancement method in federated learning. The sequence of steps in
basic FL framework is 1©→ 2©→ 3©→ 4©→ 1©. Our method only needs to insert a module 5© between 4© and 1©
to enhance the aggregated result.

and consensus CIP screening method to help obtain more efficient CIPs. Moreover, our ex-
periments show that the model trained only on the CIPs set could achieve 78.2% prediction
accuracy on the test set of MNIST, and the global model enhanced by CIPs is even better than
taking the same amounts of raw data, which means that the CIPs contain enough effective
information about the decision boundary.

(3) We perform expensive experiments on image classification tasks to show that our method
makes the convergence faster to achieve a certain predictive performance, i.e., less communi-
cation cost. In non-IID scenarios, our method reduces the communication rounds by 31.87%
on average to achieve 50% predictive accuracy on CIFAR10, 43.90% to achieve 30% accuracy
on the PASCAL VOC dataset, and 18.64% to achieve 40% accuracy on the FER dataset.
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(4) We provide discussion about the privacy security of our method. The experiments show that
it is impossible to distinguish the CIPs by the naked eye, and our method is still applicative
to FL even though we apply differential privacy to prevent deep leakage. And it requires
only a few changes to apply to secure aggregation-based FL. The AggEnhance algorithm is
able to improve FL without hindering the privacy-preserving capability of FL.

2 RELATEDWORK

Federated learning aims to train models among multiple machines collaboratively without expos-
ing sensitive data to each other. Fully-batch gradient descent method is available to address the
problem. Denote w as the model weights, N as the number of devices, and ni as the number of
samples in the ith device. The global objective function is to minimize the average of all clients’
training loss as:

min
w
L �
�w ;

N⋃
i=1

Di
�
� ≈

N∑
i=1

αiL (w ;Di ), (1)

where the local objectiveL (w ;Di ) is usually themean of loss function on the local data distribution
Di , e.g., cross-entropy in classification problems, and the averaging coefficients α is the proportion
vector of data volumes:

αi =
ni∑N
j=1 nj

. (2)

Whereas, in many scenes, there are such massive devices in the federation that it is hard to op-
timize the global objective. Inspired by mini-batch stochastic gradient descent (SGD) method,
the FedSGD algorithm [19] provides an approximate solution. For each round, FedSGD randomly
selects K (K ≤ N ) devices, d1, . . . ,dK . The server broadcasts the global model weights to the se-
lected clients for computing the mean of gradients on all local private data. Then each selected
device dk sends its local gradient ∇wL (w ;Dk ) to the global server. After receiving the gradients
from all selected devices, the server updates the global weights by:

w ← w − η 1∑
k ∈{d1, ...,dK } nk

∑
k ∈{d1, ...,dK }

nk∇wL (w ;Dk ), (3)

where η is the learning rate. After certain rounds of communication, the global model converges
to a local minimum of Equation (1). Since the local model wk is initialized by w and updated on
the training process by:

wk ← w − η∇wL (w ;Dk ), (4)

Equation (3) is equivalent to the following Equation (5):

w ← 1∑
k ∈{d1, ...,dK } nk

∑
k ∈{d1, ...,dK }

nkwk . (5)

Nevertheless, FedSGD needs to communicate between the server and the selected clients for
each training iteration, leading to massive communication costs. In the real world, particularly
on edge networks and mobile networks, communication between devices is usually limited. The
FedAvg framework [19] alleviates it by the extension of FedSGD. The local machine trains the
model on local data for E epochs in FedAvg, instead of computing the gradients for only one
time. FedAvg retains the aggregation step by Equation (5). References [11, 17] provided necessary
conditions to guarantee its convergence for FedAvg.
However, the statistical heterogeneity is still a huge challenge of federated learning, primar-

ily referring to non-independent identically distributed (non-IID) data across different
clients. Reference [26] showed that the non-IID data might cause a significant decrease in the
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performance. More iterations are needed for convergence on non-IID datasets than that on the IID
distributions, i.e., more communication is required, and the predictive performance of the final
model is also declined. To address this problem, Reference [18] introduced local representation
learning and proposed LocalGlobal-Federated-Averaging (LG-FedAvg). The local represen-
tation learner and the classifier are trained collaboratively at the training phase in LG-FedAvg.
The global server only aggregates the local classifiers at the federated aggregation phase, which
enables LG-FedAvg to alleviate data heterogeneity by using flexible local representation learners.
FedProx [15] adds a proximal term to the local objective function that constrains the local
update to be small. The performance of FedAvg is degraded in non-IID scenarios due to the large
discrepancy among all local updates. Hence, the local constraints of FedProx make the averaging
result more robust than FedAvg. Besides, Reference [14] found that using Adam optimizer could
significantly reduce communication rounds.
Client selection is another direction to tackle this problem. Since the data on different devices

are in various levels of quality, filtering the poor-quality clients out might be helpful for federated
learning. The principle is to select the clients that have data distribution as close to IID as possible;
e.g., Reference [3] applied active learning to federated learning for selecting efficient clients. Their
results showed that the method reduced the training iterations by 20%–70% to achieve the same
accuracy.
The above methods to deal with non-IID data primarily consider the training process on local

devices. From the perspective of the server, Reference [5] developed a one-shot federated learning
algorithm where the server distills all local models for the ensemble to obtain a useful student
model. This process only needs one round of communication. However, this algorithm requires
the server to store data for distillation, which might cause insecurity for data privacy. Reference
[27] applied dataset distillation techniques to each local dataset. The server collects all distilled
datasets from clients and trains the model only on them. Reference [25] aggregated all updates
by the median-based and trimmed-mean-based gradient descent algorithms. Reference [2] applied
clustering algorithms to detect and abandon aggregated models’ outliers. Due to these robust ag-
gregation methods, the aggregated results are more robust to handle the poor-quality data, e.g.,
non-IID data to some extent. Handling the permutation invariance of neurons by matching the
weights in a layer-wise manner, Federated-Matched-Averaging (FedMA) [23] decreases the
discrepancy of local updates and improves the performance on non-IID settings.
In this work, we design a novel framework for aggregation enhancement for federated learning

pipelines. As shown in Figure 1, after the aggregation step of each round, we design a procedure
to enhance the aggregation result. We define a type of data, the class interior points, which helps
refine the decision boundaries. Our method synthesizes these data from all collected local models
and tunes the aggregated result on them in the enhancing procedure. This method requires no
additional modification of the above existing FL algorithms and is easy to be applied to them. We
provide a series of experimental results to verify the efficiency of our method.

3 METHODS

3.1 AggEnhance

This work addresses the problemwhere deep learningmodels are not easy to converge in federated
systems with non-IID data in a novel perspective. Due to the non-IID data, the local models trained
on different data distributions might not have a consistent update direction, which causes their
weighted average uncertain to move towards the global optimum after each communication round.
Moreover, the aggregated global model is the initial model in the next local update round, and a
bad aggregation result might make the training process of deep models unstable in the averaging-
based frameworks. The above factors cause that FL converges slowly with non-IID data.
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Therefore, we propose a novel method named AggEnhance to enhance the aggregation result
rather than to modify the training process or to adjust the weighted coefficients to tackle this
problem, which is shown in Algorithm 1.

ALGORITHM 1: AggEnhance algorithm

Input: number of communication rounds T, number of clients K, number of local epochs E, batch size B,

learning rate η, number of AggEnhance epochs Es , AggEnhance learning rate ηs
Output: the global modelwT

1: Initialize the global modelw0, the class interior points set S
2: for communicate round t = 0, 1, 2, . . . ,T − 1 do
3: for client k = 1, 2, ..,K do

4: wt
k
← wt

5: wt+1
k
←ModelTraining(wt

k
,Dk ,E,η)

6: end for

7: S ← UpdateCIPSet(wt+1
1 , . . . ,w

t+1
K

; S) (Follows Algorithm 2)

wt+1 ← ∑i |Di |
|D | (w

t+1
i )

8: wt+1 ←ModelTraining(wt+1, S,Es ,ηs )
9: end for

10: return wT

ModelTraining (w ,D,E,η):
11: for epoch e = 1, 2, . . . ,E do

12: for each batch B ⊂ D do

13: w ← w − η∇�(w,B)
14: end for

15: end for

16: return w

We consider constructing a global set of synthetic samples S and fine-tuning the averaging
results on it by:

w ′ ← w − η∇wL (w ; S ), (6)

wherew is the averaging result andw ′ is the final one.
Denote D as the whole federated system’s data distribution, which approximates to the union

of all training samples in the federation:

D ≈
N⋃
i=1

Di . (7)

The Taylor approximation of the objective function is:

L (w ′;D) ≈ L (w ;D) − η∇TwL (w ; S )∇wL (w ;D). (8)

While S contains enough information of D to guarantee that L (w ; S ) and L (w ;D) hold similar
gradient directions at the solutionw , i.e.,

∇TwL (w ;S )∇wL (w ;D) ≥ 0, (9)

we obtain that:

L (w ′;D) ≤ L (w ;D). (10)
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In other words, if we find a set of data S whose distribution approximates to the whole distri-
bution D, then tuning the result of averaging on S may enhance the aggregation process. We will
introduce in detail how to construct an appropriate S in the next section.

3.2 Update CIP Set

One essential step in the proposed algorithm is to obtain an appropriate S that contains enough
global information in the server without additional training data from the clients. This work pro-
vides an alternative solution by generating the class interior points from the collected models,
which are defined by Definition 3.1. We define S to be a continuously updated dataset that is made
up by the class interior points of all labels, and the whole algorithm about obtaining S is described
as Algorithm 2. This section elaborates on the motivation and theoretical reliability of Algorithm 2.
Denote F as the feature encoder that maps the input x to a d-dimensional hidden space, C as

the classifier that constructs a decision surface in a d-dimensional feature space and outputs the
category probability of a sample. The entire model is represented as C (F (·)) and parameterized
by w = {wF ,wC}. Denote Cj (F (·)) as the jth element of C (F (·)), a sample x is discriminated as
the category ci when i = argmaxj Cj (F (x )). Specifically, if Ci (F (x )) > 0.5, then the input x must
be discriminated as the category ci .

Definition 3.1. For a decision model C (F (·)), an input s is defined as a class interior point

(CIP) of the category ci if and only if ∃R > 0, s.t.∀Δf ∈ Rd , ‖Δf ‖ < R, argmaxj Cj (F (s ) +
Δf ) = i .

Obviously, i = argmaxj Cj (F (s )) is a necessary condition for s to be a CIP of the category ci ,
i.e., s belongs to the category ci .

Corollary 3.2. Let L (·; ·) be a continuous loss function, for all feasiblew = {wF ,wC}, ∃ϵ > 0, s
is determined to be a class interior point of category ci when L (w ; {(s, ci )}) < ϵ .

Proof. Let f = F (s ), and regard L (w ; {(s, ci )}) as a function of f . Performing a first-order
Taylor expansion on L ( f ), we have

L ( f + Δf ) ≈ L ( f ) + ∇Tf L ( f )Δf ≤ L ( f ) + R‖∇f L ( f )‖,∀‖Δf ‖ < R .
The value of ϵ is given by the specific form of the loss function, as long as it satisfies that

argmaxj Cj (F (s )) = i when L (w ; {(s, ci )}) < ϵ . Taking the cross-entropy loss as an example, we
can choose ϵ = log 2, because L (w ; {(s, ci )}) < log 2 is equivalent to Ci (F (s )) > 0.5.

When L ( f ) < ϵ , note that if we take R = ϵ−L (f )
2‖∇f L (f ) ‖ , then we have L ( f + Δf ) ≤ ϵ+L (f )

2 ≤ ϵ ,

which means that Ci (F (s ) + Δf ) > 0.5 and argmaxj Ci (F (s ) + Δf ) = i . By Definition 3.1, s is a
class interior point of category ci . �

Therefore, we identify a CIP by calculating L (w ; {(s, ci )}) according to Corollary 3.2. Further-
more, we hope that these data are able to represent a certain category of samples effectively and
contain some information about their embedding space. Let Ωi be the region in the embedding
space that is discriminated as the category ci ; it is considered that the point at the center of Ωi

is more representative of a certain category of samples. For example, if the feature of a certain
category obeys the Gaussian distribution that is usually assumed in machine learning theory, then
the center point of the embedding space is obviously the mean of this Gaussian distribution. To ef-
fectively find the class interior points that are more representative of a certain category of sample,
we define the confidence of CIP as shown in Definition 3.3.

Definition 3.3. Define R̃ (s, ci ) as the confidence of CIP, where R̃ (s, ci ) = sup{R > 0 | ∀Δf ∈ Rd ,
‖Δf ‖ < R,Ci (F (s ) + Δf ) > 0.5}.
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ALGORITHM 2: UpdateCIPSet algorithm in the server

Input: The local models’ weights w1, . . . ,wK , the class interior points set S , and the numbers of categories

C .
Output: The updated class interior points set S̃ .
1: Fetch the last C points from S → {ŝ1, . . . , ŝC }.
2: for c = 1 to C do

3: Sample a random noise rc from the uniform distribution with the same shape of ŝc .
4: Initialize a new point by ŝc ← (ŝc + rc )/2.
5: for k = 1 to K do

6: sc
k
← optimize ŝc by Equation (11).

7: end for

8: end for

9: for c = 1 to C , k = 1 to K do

10: scorec
k
= 0.

11: for i = 1 to K do

12: (prob, ĉ)←ModelPredict(wi ,s
c
k
).

13: if ĉ is c then
14: scorec

k
← scorec

k
+ prob.

15: end if

16: end for

17: end for

18: S̃ ← S .
19: for c = 1 to C do

20: Select the top-1 point s̃c from {sc
k
|k = 1, . . . ,K } according to their scores.

21: S̃ ← S̃ ∪ {s̃c }.
22: end for

23: return S̃

Corollary 3.4. From the proof of Corollary 3.2, we obtain that R̃ (s, ci ) = ϵ−L (w, {(s,ci ) })
‖∇f L‖ .

For a suitable loss function that promotes correct classification, such as cross-entropy loss, we
have that ‖∇f L‖ ∝ ‖C ( f ) − Ii ‖ ∝ L (w, {(s, ci )}), where Ii is the one-hot encoding of label ci .

Therefore, according to Corollary 3.4, R̃ (s, ci ) and L (w, {(s, ci )}) are negatively correlated, which

guides us to minimize L (w, {(s, ci )}) to obtain a larger R̃ (s, ci ).
Motivated by the above, for the model with weightswk , a method to generate the relevant class

interior point of category c is to minimize the loss function by:

sck ← argmin
s
L (wk ; {(s, c )}). (11)

More concretely, given a category c , we fix the model weights wk and view the input s as the
objective variable. Then, we optimize Equation (11) by an optimizer (e.g., SGD-based optimizer)
with respect to the input s . After certain iterations (e.g., 100 iterations), we get a feasible input
that is usually a local optimum of the loss function. According to Corollaries 3.2 and 3.4, if the
loss function reaches a low value, then the relevant input is a class interior point of category c .
Moreover, the lower the loss, the larger the confidence of CIP.
Applying the above method, We synthesize a sequence of local class interior points {s1

k
, . . . , sC

k
}

for each collected model wk , where k ∈ {d1, . . . ,dK }. Since these points contain coordinate infor-
mation about the relevant class spaces in some way, their relative positions provide constraints of
the decision boundaries, making the updates approximate to the gradient direction of the real data.

Corollary 3.5. Let S = {(si , ci ) |i = 1, 2, . . . ,C} be a great CIP set for the local model wk where

R̃ (si , ci ) is as large as possible, we have ∇TwL (w ;S )∇wL (w ;Dk ) ≥ 0.
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A simple proof of Corollary 3.5 is that −∇wL (w ;Dk ) is the direction of the negative gradient
pointing to the optimal model wk , while −∇wL (w ;S ) points to the model where each si is suc-
cessfully discriminated as ci with large category probability. However, si is exactly the point that
maximizes the category probability of ci by Equation (11) related towk . Therefore, −∇wL (w ;Dk )
and −∇wL (w ;S ) point to the same optimal modelwk , which means ∇TwLT (w ; S )∇wL (w ;Dk ) ≥ 0.
However, in federated learning, each client trains a biased localmodelwk due to the non-IID data,

causing the category embedding spaces and decision boundaries of models to not be completely
overlapping. Nevertheless, The intersection of all CIP sets, related to local models, represents the
generalization characteristics of multiple local datasets. Specifically, the global class interior points
defined by Definition 3.6 contain information about the whole category embedding space.

Definition 3.6. Clientk with dataDk produces a local modelwk . Define s as a global class interior
point of category ci , when s is also a class interior point of ci for all local models.

Corollary 3.7. Let S = {(si , ci ) |i = 1, 2, . . . ,C} be a global CIP set where R̃ (si , ci ) is as large
as possible for each wk . Note that ∇wL (w ;D) =

∑
k
‖Dk ‖
‖D ‖ ∇wL (w ;Dk ), from Corollary 3.5, we have

∇TwL (w ; S )∇wL (w ;D) ≥ 0, i.e., meeting the Equation (9).

According to Corollary 3.7, we obtain a greater benefit from AggEnhance when these class
interior points meet more properties of global class interior points. Thus, we should select the most
representative points that have highest probability to be the global class interior points. According
to Definition 3.3 and Corollary 3.4, we score each local point in {s1

k
, . . . , sC

k
|k = d1, . . . ,dK } based

on the principle of voting. Then for each class, we only select one point with the top-1 score and
add them to the global class interior points set S .
Algorithm 2 describes this method generating interior points for each class. The lines 1 to 8

apply a heuristic algorithm to search the alternative local points, where we explore the search
space around the solutions synthesized in the last round. While the first line fetches a group of
points from the class interior points set S , the third and fourth lines add random noises to the
points and take them out of the local optimal solutions (heuristic initialization step). These steps
enable the algorithm to search more points in the space. The lines 9 to 17 score each generated
sample (consentaneous samples’ selection step), and the remaining lines are to add the selected
points into the global class interior points set.
Our proposed method would not cause “deadlock” problem. Since the CIPs depend on all local

models and they are used to fine-tune the global one, the CIPs and the global model are not cou-
pled. Besides, the random seeds of local SGDs and stochastic noise on CIPs enable it to break the
potential “deadlock”. When the CIPs cannot influence the model’s performance, the enhanced Fe-
dAvg degenerates into the original one. After a new round of local training and global aggregation,
if the global model’s performance is the same as or not much different from its previous version,
then the FedAvg converges to a local optimum and the global model is a fixed point of FedAvg.
There is a toy example of our method about a two-class classification problem, as shown in

Figure 2, wherewe split a set of synthetic data into three partitions. Since the data are imbalanced, it
is difficult to get a reasonable decision boundary in the local distributionsD1 andD2. However, the
decision boundaries are in different directions due to the non-IID data. These factors lead to worse
performance of the aggregation result than that of training on the whole set of data. The global
class interior points selected by voting provide constraints for the decision boundary to avoid
incorrect directions and locations, while some unreliable local CIPs might mislead it. Therefore, in
Figure 2, the predictive accuracy increases after our enhancing procedure.
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Fig. 2. A toy example of our AggEnhance algorithm. In these illustrations, the solid green line represents
the best decision boundary of the relevant data distribution, the dashed yellow line represents the decision
boundary of the averaging-based aggregation result, and the dotted blue line represents that of the enhanc-
ing result. The points with triangular shapes are the class interior points. The prediction accuracies on the
whole data distribution are 77%, 71%, and 76% of the best model, the aggregation result, and the enhanced
result.

3.3 Convergence Analysis

In this section, we conduct a theoretical analysis on the convergence of the algorithm and prove
that it converges on strongly convex and smooth functions and non-IID data. Let w∗ and w∗

k
be

the optimum of global model and local model, respectively. We use the term Γ = L∗ − ∑k pkL∗k
for quantifying the degree of non-IID, where L∗ = L (w∗;D), L∗

k
= L (w∗

k
;Dk ) and pk is the

normalized weight of the kth device usually taken as ‖Dk ‖/‖D‖. From the global optimization
problem defined by federated learning, we have that

Γ = L∗ −
∑
k

pkL∗k =
∑
k

pk (Lk (w
∗) − Lk (w

∗
k )) ≥ 0. (12)

If the data are IID, then w∗ = w∗
k
, which means that Γ obviously goes to zero as the number of

samples grows. If the data are non-IID, then Γ ≥ 0, and its magnitude reflects the heterogeneity of
the data distribution.
We first give some common assumptions about the function Lk and ∇�k (w,Bk ), which is the

unbiased stochastic gradient of Lk .
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Assumption 1. For all k , Lk has the properties of μ-strong convexity and L-smooth:

μ-strongly convex:Lk (v ) ≥ Lk (w ) + 〈(v −w ),∇Lk (w )〉 + μ

2
| |v −w | |22 ,

β-smooth: Lk (v ) ≤ Lk (w ) + 〈(v −w ),∇Lk (w )〉 + L

2
| |v −w | |22 .

Assumption 2. Bounded variances and second moments: There exists constants σ > 0 and G > 0
such that

EBk∼Dk
‖∇�k (w ;Bk ) − ∇Lk (w )‖22 ≤ σ 2,∀w,∀k,

EBk∼Dk

[
‖∇�k (w,Bk )‖22

]
≤ G2,∀w,∀k .

Let w̄t be the average model in the t th communication round that is used as the aggregated
result in vanilla FedAvg, and wt be the enhanced model based on the CIPs data in our AggEn-

hance method. Let Δ
Avд
t+1 = E

��w̄t −w∗��2 denote the gap between the optimal model and the global

model in the t th round for vanilla FedAvg, and ΔEnh
t+1 = E

��wt −w∗��2 denote the gap between the
optimal model and the global model in the t th round for our AggEnhance method. Theorem 3.8
demonstrates that our method can converge faster than FedAvg with the help of aggregation en-
hancement. The detailed proof is in Appendix A.1.

Theorem 3.8. Let Assumptions 1 and 2 hold, and assume we can obtain a global CIP set, which

means that cos(w̄t − w∗,∇wL (w̄t ;S )) > 0. Then let B =
∑

k p
2
k
σ 2 + 6LΓ + 2I 2G2, where I denotes

the iterations of SGD in each local update phase. If the learning rate ηt < min{ 1
μ
, 1
4L }, then we have

∃τ ∈ (0, 1) s.t.

Δ
Avд
t+1 ≤ (1 − ηt μ )I ΔAvд

t + η2t IB, (13)

ΔEnh
t+1 ≤ (1 − τ ) (1 − ηt μ )I ΔEnh

t + (1 − τ )η2t IB. (14)

In Theorem 3.8, the value of τ indicates that how our method AggEnhance converges faster
than FedAvg, The larger the τ that can be taken, the faster our algorithm converges. Moreover, we
point out in Appendix A.1 that τ ≤ cos2 (w̄t −w∗,∇wL (w̄t ;S )), which means The more efficient
the global CIP set can bring the faster convergence. Further, we give the relevant analysis of the
convergence of the above equation, as shown in Theorem 3.9, which shows that the algorithm
converges at the rate of O(1/t) under the assumption of decreasing learning rate.

Theorem 3.9. Assume the assumptions in Theorem 3.8 hold, and let γ = max{2, 8L
μ
} and a dimin-

ishing learning rate ηt =
2

μ (γ+t ) , then we have

ΔEnh
t+1 = E

���wt −w∗���2 ≤ 1 − τ
γ + t

(
γ ‖w0 −w∗‖2 + 4IB

μ2

)
. (15)

4 EXPERIMENTAL SETTINGS

4.1 Datasets

We test our method with image classification tasks on the following datasets:

—MNIST [13], which consists of 70,000 gray images about handwritten digits from “0” to “9.”
— CIFAR10 [12], which contains 10 categories of images, and each class contains 6,000 32 × 32
color images.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 6, Article 104. Publication date: September 2022.



104:12 J. Ou et al.

— PASCAL VOC Dataset, a dataset we provide for classification task that derived from the
object class recognition dataset PASCAL VOC2007 [1], where there are totally 8,243 32 × 32
color images for 20 categories in the training set and 5,000 images in the testing set.

— Facial Expression Recognition Challenge Dataset (FER) [4], where there are 28,709
48 × 48 color images in the training set and 7,178 testing images with seven different facial
expression.

In many FL applications, only a few nodes store numerous data, and most client nodes keep a
small number of samples. The sample sizes across clients subject to an approximate long-tailed
distribution. We simulate this imbalanced property by a logarithmic normal distribution, i.e.,

ln( |Di | − bias ) ∼ N (μ,σ 2), (16)

where N (μ,σ 2) is a normal distribution with the mean value μ and variance σ 2, and bias is an
offset of this logarithmic normal distribution.
Besides, we utilize the splitting method [8] that applies a Dirichlet distribution to generate the

non-IID dataset. First, we calculate each category’s prior density, which is denoted as a weight
vector qi (sum to 1). Second, we sample a pi from a Dirichlet distribution, where pi is a proportion
of all categories on the device i and γ is the distribution parameter, i.e.,

pi ∼ Dir (γqi ). (17)

We split the data into several subsets proportionally. Since the proportion generated randomly
from the Dirichlet distribution assigns larger weights on some categories than the others, the
distributions among different devices are non-IID.
In our experiments, we partition each of the above datasets into 100 non-IID and imbalanced

slices to simulate 100 local clients. We set the parameter of Dirichlet distribution γ = 1 as default,
and the parameters of logarithmic normal distribution as μ = 1, σ = 2, and bias = 10.

4.2 Hyper-parameter Settings

We use different depths of networks to test the performance of our method. For the MNIST dataset,
we apply a multilayer perceptron to recognize the digit images. We use a simple convolutional
neural network (CNN) on CIFAR10 with three convolutional blocks, each of which consists of a
convolutional layer, a ReLU activation, and a Max Pooling layer. The sizes of the output channels
are 16, 32, and 32, respectively. The same CNN framework is used for our PASCAL VOC dataset but
with 16, 64, and 256 output channels. Another CNNwith four convolutional blocks is applied to the
FER dataset, where there is an additional normalization layer between the convolutional layer and
the activation layer. Its output channels’ sizes are 16, 32, 64, and 64. Since batch normalization [9]
utilizes the local batches’ distribution, it does poorly in distributed learning, especially in highly
non-IID settings where the discrepancy among batches is large. Thus, we use GroupNorm [24]
with four groups in place of BatchNorm here.

The proximal coefficient of FedProx is set as 1, 0.1, 0.1, and 0.1, successively. In the frame-
work with trimmed-mean-based aggregation, we apply the averaging operator to the updates in
[−0.5, 0.5].
On each device, we train the above models for 20, 10, 10, and 10 epochs per round using SGD

optimizers with the learning rates 0.01, 0.01, 0.005, and 0.001, and the batch sizes 10, 32, 32, 32.
We tune the averaging results on the global class interior points set for 10 epochs separately

on the enhancing process, where batch sizes are both 32 and learning rates are the sample as the
above. When generating the CIPs, each point is searching for 100 steps with a 0.1 learning rate.
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Fig. 3. The metrics to measure the non-IID degree across the local datasets. In the left figure, the mean
number of categories increases as γ increases. In the right figure, the divergence of distribution displays the
negative correlation with γ .

4.3 Metrics

We design two metrics to demonstrate the relationship between the Dirichlet distribution param-
eter γ and non-IID distribution. While the number of categories per device is small, each device
holds only the data of few categories, and the combinations of categories are various, leading to the
non-IID distributions across different devices. Therefore, we apply the mean of categories’ num-
ber to show the non-IID degree intuitively. As Figure 3(a) shows, the mean value of categories’
number is growing and the variance decreases as γ increases, i.e., the data are becoming more IID.
Meanwhile, we use the mean of Kullback-Leibler divergence to quantify the non-IID degree:

Div =
1

N (N − 1)
N∑
i�j

pi (loд(pi ) − loд(pj )). (18)

Shown in Figure 3(b), when we turn up the hyper-parameter γ , the divergence of local dis-
tributions decreases significantly, proving that the non-IID partition method works well in our
experiments.
We study the convergence by the descending speed of loss curves and the ascending speed of

accuracy curves qualitatively. Quantitatively, we compare the communication rounds required to
achieve a certain accuracy to demonstrate the gain of our method’s performance. Specifically, in
MNIST dataset the target is to achieve 85% accuracy, and 50% in CIFAR10, 30% in PASCAL VOC,
and 40% in FER datasets.
We estimate the information in the class interior points about the training sets in these experi-

ments. After running the enhanced FedAvg framework, we save all generated class interior points.
Then, we train the same model from scratch only on these points. If the latter model does a good
decision in testing set, then we say these points contain sufficient information about the training
set.
Besides, we design a series of procedures to quantify the information, as Figure 4 shows. First,

we train a Variational Auto-Encoder (VAE) on the training set, whose encoder is applied to
extract the features of data. We quantify the relativity of two sets by their cosine distance:

Distance (F1, F2) = 1 − 1

N1N2

N1∑
i=1

N2∑
j=1

(F i1 )
T F j2

| |F i1 | | · | |F j2 | |
, (19)
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Fig. 4. The procedures to estimate the distance across two different datasets. We extract their features by
the encoder from a VAE and then calculate the inter-dataset distance of these features.

where F1, F2 are two feature sets, consisting of N1, N2 feature vectors. The distance from the gen-
erated points to training data is expected to be lower than that from random noises significantly
and approximate to the distance between training set and testing set.

5 EXPERIMENTAL RESULTS

5.1 The Effectiveness of AggEnhance

This work explores the effects of our AggEnhance by comparing the convergence of FedAvg with
that of enhanced FedAvg, which are visualized by the relevant loss and accuracy curves. We also
apply our method to other baseline frameworks of FL, e.g., FedProx, and trimmed-averaging-based
aggregation. Figure 5 shows that the loss values and accuracy values vary as the communication
rounds increase. We find that the federated learning frameworks enhanced by our method con-
verge faster and better than the original pipelines without enhancing step, no matter how complex
the datasets and the models are.
Table 1 summarizes the communication rounds required to obtain the certain accuracy men-

tioned in Section 4.3 for the first time.We find that the enhanced frameworks’ communication costs
are the same as those of the frameworkswithout enhancing process onMNIST, since themultilayer
perceptron model and the MNIST dataset are too simple. Nevertheless, the enhanced methods still
converge better than the original ones, shown in Figure 5(a). For more complex datasets and mod-
els, the enhanced FedAvg converges faster than its original version and reduces the communication
rounds on average by 31.87% on CIFAR10, 43.90% on our PASCAL VOC dataset, and 18.64% on FER.
Besides, the combinations with our AggEnhance also achieve better performance for other base-
line frameworks than the frameworks alone in most cases, demonstrating the compatibility of our
enhancing algorithm. Since the proposed method develops the module between the aggregation
phase and the next training phase, it is compatible with most existing FL frameworks.
The experiments explore our method’s capability to deal with non-IID data by learning from

different degrees of non-IID distribution on the CIFAR10 dataset. As Figure 3 shows, the distribu-
tion of the data becomes more IID while the γ increases. We vary γ from 1 to 2, 4, 8, and 16 to
instantiate different degrees of non-IID distribution. The metric to evaluate this capability is the
communication rounds required to get a certain accuracy. As Figure 6 shows, as γ decreases, the
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Fig. 5. The performance of FL with/without enhancing process on MNIST, CIFAR10, PASCAL VOC, and FER.
Each point’s vertical ordinate indicates the mean value of metric in the last five rounds before current round.
All experiments here are repeated three times with different random seeds.
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Table 1. The Communication Rounds to Achieve a Certain Accuracy of Several
Federated Frameworks with/without Enhancing Process, Specifically, 85% on

MNIST, 50% on CIFAR10, and 30% on PASCAL VOC and 40% on FER

MNIST PASCAL VOC CIFAR10 FER

FedAvg 11±2 41±14 91±8 59±5
Enhanced FedAvg 11±2 23±5 62±14 48±8
FedProx 37±5 42±13 98±8 57±6
Enhanced FedProx 37±5 29±9 73±17 46±6
tr-mean-based 10±2 54±8 108±15 102±10
Enhanced tr-mean-based 9±1 57±9 107±10 109±15
This table shows the means and standard deviations of experiments by repeating three times.

“Enhanced *” indicates a certain federated framework “*” with the enhancing method

AggEnhance. The best results are marked in bold.

Fig. 6. The communication rounds needed to obtain a certain accuracy with different non-IID levels on
CIFAR10. The heights of blue bins indicate the FedAvg pipeline with the enhancing process, while the red
parts indicate the reductions by our aggregation enhancement method. The more non-IID the data are, the
more communication federated learning needs and the more rounds our enhancing method reduces.

reduction of communication costs by the enhanced FedAvg is more noticeable. Even if the data
distribution is approximate to IID, the proposed method still maintains its advantages. To sum up,
our enhancing method is flexible to handle various non-IID scenarios.
This work also tests the algorithms on CIFAR10 with the simple CNN mentioned in Section 4.2,

ResNet18 [7], and VGG16 [22]. Demonstrated as Figure 7, our AggEnhance method achieves less
communication than the original FedAvg, no matter what the model structure is, which means
that AggEnhance has wide applicability to different neural networks.

5.2 The Validity of CIPs

We verify the validity of the class interior points, taking the MNIST dataset as an example. Shown
in Figure 8, the model only trained on the class interior points from scratch achieves up to 78.2%
accuracy on the testing set. Besides, the distance from class interior points’ feature set to the one
of training set is closer than that from random noises. As the training round increases, the distance
is closer to that from testing set, which implies that the class interior points are storing more and
more meaningful class-specific information about data distribution.
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Fig. 7. The communication rounds needed to achieve 50% accuracy on CIFAR10 by different deep models.

Fig. 8. The generated class interior points on MNIST contain valid information about the training set.

Particularly, the real data are a special type of class interior points. If there are real samples on
the server, then we can enhance the aggregated result by tuning it on these real data rather than
the generated ones, as shown in Figure 9. We fetch one real sample per class and put them into a
prior dataset in advance and compare the effect of our generated points with that of the real data
in FedAvg framework. The real data may contain more information about the whole distribution
than the generated points if the prior real dataset is enough large. However, while the prior dataset
is small, our generated class interior points achieve better performance than the prior real data.
Besides, it is insecure for transmitting real data to the server and saving on it for the privacy issue.
When the server stores real data, it is easy for the server to infer the related data by attacking the
local models. Therefore, to generate class interior points is a more safe alternative.

5.3 Discussions about the Privacy Security

In our AggEnhance algorithm, we generate the feasible class interior points of the local optimal
solutions instead of the real data. Therefore, it is hard to guess the real data due to the lack of
information. In Figure 10, the generated data might follow certain patterns but is entirely different
from the real one. We cannot infer the training data from the set of class interior points. Since the
major difference between the enhanced framework and the non-enhanced one is that the former
inserts an enhancing procedure with our AggEnhance algorithm after the aggregation, they still
have the same privacy security level.
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Fig. 9. The loss and accuracy curves of different types of class interior points on CIFAR10 dataset. The curve
named “enhanced by prior data with DA” indicates the FedAvg enhanced by the real data with data augmen-
tation techniques, while the “enhanced by prior data alone” indicates that without data augmentation.

Fig. 10. Instances of the class interior points about CIFAR10. We cannot recognize the generated data by the
naked eye without any prior knowledge.

Besides, it is easy to apply other privacy-preserving techniques, e.g., differential privacy (DP),
to our enhanced frameworks. This work explores the influence of DP on our AggEnhance method.
The experiment applies Laplace mechanism to achieve differential privacy, which adds Laplace
noises to the model weights. Equation (20) is the probability density function of Laplace Distribu-
tion, where μ is the location of the peak value and b > 0 is the scale of the distribution. Zhu [28]
demonstrated that DP prevents the deep leakage from gradient (DLG) well, while the scale
of Laplacian noise is higher than 10−2. As Figure 11, though the performance of FL degrades af-
ter applying DP, the AggEnhance method still achieves better convergence than the original Fe-
dAvg. Therefore, our method still takes effect after using differential privacy to protect the model
weights.

Pr (x |μ,b) = 1

2b
exp

(
− |x − μ |

b

)
(20)

It is also applicable for secure aggregation-based FL, where the local models are not accessible
to the server. It only requires the CIP data to be generated on local devices. The global CIP data
are reachable by broadcasting and scoring all the local ones via the server (with encryption if
necessary), as Figure 12 shows. Finally, fine-tune the results of secure aggregation on the global
CIP data to attain a better result.
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Fig. 11. The results after applying differential privacy on CIFAR10 dataset.

Fig. 12. The process to generate global CIP data in secure aggregation-based FL.

5.4 Discussions about the Computation

At the same time, the additional computation of our method is done only on the global server. We
spend extra time inferring the class interior points from models, and it costs extra space to store
them. In normal scenarios, the extra time is far less than the local machines’ response time due to
the global server’s enormous computing resources. Besides, we can store the class interior points
in a length-limited queue to save the space resources. Overall, the extra computation costs are
negligible.

6 CONCLUSIONS

In this work, we provide a novel idea to accelerate the convergence of federated learning frame-
works with non-IID data. Specifically, we design an independent module for aggregation en-
hancement in existing federated learning pipelines. We find that a type of data, defined as the
class interior points, is helpful to refine decision boundaries. This work provides an alternative
method to synthesize these data from the collected models. Since our method requires no addi-
tional data transmitted from the clients, it still has the security level of existing federated learn-
ing frameworks. Our results provide empirical evidence to show that the enhanced frameworks
outperform the frameworks without the enhancing process. Our method still performs well even
though differential privacy is applied to prevent the deep leakage from gradient. It is easy to ap-
ply the proposed method to the prevalent frameworks, including the secure aggregation-based
FL.
In our future research, wewill explore the advantage of the class interior points in the local train-

ing step, which might help generalize the local models. Besides, we will explore the applications
of this method to other types of data, e.g., text data. We will also try other methods to generate
the class interior points that maintain knowledge of the population distribution.
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A APPENDIX

A.1 Proof of Theorem 3.8

To prove the Theorem 3.8, we give some additional notations and lemmas as follows: In the local
update phase between the two server aggregation phases, let wk,i , i = 1, 2, . . . , I be the model
weights maintained in the kth device at the ith step, where I denotes the iterations of SGD for each
client in each local update phase. Note that all local models have the same initializationwk,0 = w0.
We assume that the learning rate η is constant throughout the local update phase of a certain

round, then we have wk,i+1 = wk,i − η∇w�k (wk,i ,Bk,i ). We define that w̄i =
∑

k pkwk,i , дi =∑
k pk∇w�k (wk,i ,Bk,i ) and д̄i = ∑k pk∇wLk (wk,i ). Therefore, w̄i+1 = w̄i − ηдi and Eдi = д̄i .
According to the proof of Reference [17], there is a lemma about the results of one step SGD as

follows:

Lemma A.1. Assume Assumption 1 holds. If η ≤ 1
4L , then we have

E ��w̄i+1 −w∗��2 ≤ (1 − ημ ) E ��w̄i −w∗��2 + η2E ��дi − д̄i��2 + 6Lη2Γ + 2E∑
k

pk ��w̄i −wk,i
��2 , (21)

where Γ = L∗ −∑k pkL∗k ≥ 0.

Moreover, assume Assumption 2 holds, we have

E ��дi − д̄i��2 = E
������
∑
k

pk
(∇�k (wk,i ,Bk,i ) − ∇Lk

(
wk,i
))������

2

=
∑
k

p2kE
��∇�k (wk,i ,Bk,i ) − ∇Lk

(
wk,i
)��2

≤
∑
k

p2kσ
2,

(22)

E

∑
k

pk ��w̄i −wk,i
��2 = E∑

k

pk ��(wk,i − w̄0) − (w̄i − w̄0)��2
(a)≤ E
∑
k

pk ��wk,i − w̄0
��2

= E
∑
k

pk

������
i∑

τ=0

η∇w�k (wk,i ,Bk,i )
������
2

(b )≤ E
∑
k

pki
i∑

τ=0

��η∇�k (wk,i ,Bk,i )��2
≤
∑
k

pki
2η2G2

≤ η2I 2G2,

(23)

where (a) follows E‖X − EX ‖2 ≤ E‖X ‖2 and (b) follows the Jensen inequality. Hence, from Equa-
tions (21), (22), and (23), it follows that

E ��w̄i+1 −w∗��2 ≤ (1 − ημ ) E ��w̄i −w∗��2 + η2∑
k

p2kσ
2 + 6Lη2Γ + 2η2I 2G2. (24)
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Let B =
∑

k p
2
k
σ 2 + 6LΓ + 2I 2G2, then we have

E ��w̄I −w∗��2 ≤ (1 − ημ ) E ��w̄I−1 −w∗��2 + η2B
(recurrence )≤ (1 − ημ )I E ��w̄0 −w∗��2 + 1 − (1 − ημ )I

1 − (1 − ημ ) η
2B

≤ (1 − ημ )I E ��w̄0 −w∗��2 + η2IB.
(25)

Note that for the local update phase before the t th aggregation round in vanilla FedAvg algo-
rithm, we have w̄0 = w̄

t−1 and w̄I = w̄
t , which means Equation (13) holds.

Then, according to the Algorithm 1, in our AggEnhance method, we have w̄0 = wt−1,w̄I = w̄t

andwt = w̄t − η∇wL (w̄t ;S ). Assume cos(w̄t −w∗,∇wL (w̄t ;S )) = ϵ > 0, we have

〈(w̄t −w∗),∇wL (w̄t ;S )〉 = ϵ ���w̄t −w∗��� ���∇wL (w̄t ;S )��� . (26)

Then, we have

‖wt −w∗‖2 = ‖w̄t −w∗ − ηs∇wL (w̄t ;S )‖2
= ‖w̄t −w∗‖2 − 2ηs 〈(w̄t −w∗),∇wL (w̄t ;S )〉 + η2s ‖∇wL (w̄t ;S )‖2
= ‖w̄t −w∗‖2 − 2ηsϵ ���w̄t −w∗��� ���∇wL (w̄t ;S )��� + η2s ‖∇wL (w̄t ; S )‖2
= (1 − ϵ2)‖w̄t −w∗‖2 + (ϵ ‖w̄t −w∗‖ − ηs ‖∇wL (w̄t ;S )‖)2.

(27)

Hence, when we choose an enough small ηs satisfies 0 < ηs <
2ϵ ‖w̄ t−w∗ ‖
‖∇w L (w̄ t ;S ) ‖ , might as well set

ηs ‖∇w L (w̄ t ;S ) ‖
‖w̄ t−w∗ ‖ = k , it follows that

‖wt −w∗‖2 = (1 − ϵ2)‖w̄t −w∗‖2 + (ϵ − k )2‖w̄t −w∗‖2
= (1 − k (2ϵ − k ))‖w̄t −w∗‖2. (28)

Then, exists τ = k (2ϵ − k ) ∈ (0, 1), because 0 < k < 2ϵ and k (2ϵ − k ) ≤ ϵ2 ≤ 1. Therefore, from
Equation (25), we can derive that

E‖wt −w∗‖2 = (1 − τ )E‖w̄t −w∗‖2

≤ (1 − τ ) (1 − ημ )I E ���wt−1 −w∗���2 + (1 − τ )η2IB. �
(29)

A.2 Proof of Theorem 3.9

We use the same notations as the proof of Theorem 3.8 in Appendix A.1. For a diminishing learning

rate, ηt =
β

γ+t
for some β > 1

μ
and γ > 0 such that ηt < min{ 1

μ
, 1
4L }, we can derive that γ >

max{μβ, 4Lβ } from above. Let v = max{γΔ0,
β 2I B

μβ−1 } where Δ0 = ‖w0 − w∗‖2, we will prove that

Δ
Avд
t ≤ v

γ+t
by induction first.
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First, the definition of v ensures that it holds for t = 0. Assume the conclusion holds for some t ,
from Theorem 3.8, it follows that

Δ
Avд
t+1 ≤ (1 − ηt μ )I ΔAvд

t + η2t IB

≤
(
1 − μβ

γ + t

) I
v

γ + t
+

β2IB

(γ + t )2

=
(γ + t − μβ )I + (μβ − 1) (γ + t )I−1

(γ + t )I+1
v +

β2IB

(γ + t )2
− (μβ − 1)

(γ + t )2
v

≤ (γ + t − μβ ) (γ + t )I−1 + (μβ − 1) (γ + t )I−1
(γ + t )I+1

v + 0

≤ γ + t − 1
(γ + t )2 − 1v

=
v

γ + t + 1
.

(30)

Specifically, when β = 2
μ
and γ = max{μβ, 4Lβ } = max{2, 8L

μ
}, we have

v = max

{
γΔ0,

β2IB

μβ − 1
}
≤ γΔ0 +

β2IB

μβ − 1 = γΔ0 +
4IB

μ2
(31)

Δ
Avд
t = E

���w̄t −w∗���2 ≤ v

γ + t
≤ 1

γ + t

(
γΔ0 +

4IB

μ2

)
=

1

γ + t

(
γ ‖w0 −w∗‖2 + 4IB

μ2

)
. (32)

Therefore, from Equations (28) and (32), we can derive that

ΔEnh
t = E‖wt −w∗‖2 ≤ 1 − τ

γ + t

(
γ ‖w0 −w∗‖2 + 4IB

μ2

)
. � (33)

A.3 Experimental Results with Different Hyper-parameters

This work trains the models on CIFAR10, PASCAL VOC, and FER datasets by FL with differ-
ent settings of hyper-parameters. We set the hyper-parameters mentioned in Section 4.2 as the
default settings and adjust a certain hyper-parameter while other hyper-parameters remain un-
changed. Shown as Figure 13, in all experiments of different hyper-parameter combinations, the
FedAvg method enhanced by AggEnhance outperforms the original one without aggregation
enhancement.

A.4 Instances of CIPs in Other Settings

Figure 10 shows the CIPs generated in the settings that the number of local training epochs is 10.
Here show the CIP instances in other settings. Specifically, the CIPs in Figure 14 are generated
when the model is trained for only 1 epoch on local devices per round. We cannot still recognize
the CIPs by the naked eye even if the local epoch is less.
While adding a 0.05 scale of Laplace noise into the gradients, the generated CIPs are demon-

strated in Figure 15. Compared with those generated in no-DP settings, more pixels of CIPs reach
their extremum values. It is still impossible to distinguish the CIPs after applying differential
privacy.

A.5 The Number of CIPs for Aggregation Enhancement

The 21st line of Algorithm 2 applies all CIPs generated in history instead of the new ones to fine-
tune the global model, which reduces the biases of the last CIPs and makes the results smoother.
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Fig. 13. The accuracy curves of experiments with different training hyper-parameters.

Fig. 14. Instances of the class interior points
about CIFAR10 while #local_epoch = 1.

Fig. 15. Instances of the class interior points
about CIFAR10 while applying DP.

Figure 16 shows the experimental result using different sizes of CIPs for aggregation enhance-
ment, where “0 CIPs” indicates the original FedAvg without aggregation enhancement, “The Last
10 CIPs” indicates using the new 10 CIPs to enhance the results, and so on. “All CIPs(Weighted)”
means using all points in CIP set for AggEnhance with decayed weights, whose decay rate is
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Fig. 16. The rounds required to achieve 50% accuracy on CIFAR10 in different CIPs settings.

0.01 by time. In Figure 16, the larger the CIPs queue, the less the communication rounds required
to achieve the same accuracy. Compared with unweighted settings, the weighted CIPs perform
poorly, since the model overfits the newest points.
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