
Positional Paper: Schema-First Application Telemetry

Yuri Shkuro, Meta Benjamin Renard, Meta Atul Singh, Meta

ABSTRACT
Application telemetry refers to measurements taken from
software systems to assess their performance, availability,
correctness, efficiency, and other aspects useful to operators,
as well as to troubleshoot them when they behave
abnormally. Many modern observability platforms support
dimensional models of telemetry signals where the
measurements are accompanied by additional dimensions
used to identify either the resources described by the
telemetry or the business-specific attributes of the activities
(e.g., a customer identifier). However, most of these
platforms lack any semantic understanding of the data, by not
capturing any metadata about telemetry, from simple aspects
such as units of measure or data types (treating all dimensions
as strings) to more complex concepts such as purpose
policies. This limits the ability of the platforms to provide a
rich user experience, especially when dealing with different
telemetry assets, for example, linking an anomaly in a time
series with the corresponding subset of logs or traces, which
requires semantic understanding of the dimensions in the
respective data sets.

In this paper, we describe a schema-first approach to
application telemetry that is being implemented at Meta. It
allows the observability platforms to capture metadata about
telemetry from the start and enables a wide range of
functionalities, including compile-time input validation,
multi-signal correlations and cross-filtering, and even
privacy rules enforcement. We present a collection of design
goals and demonstrate how schema-first approach provides
better trade-offs than many of the existing solutions in the
industry.

1. INTRODUCTION
Observability is a critical capability of today’s cloud native
software systems that power products such as Facebook,
Gmail, WhatsApp, Twitter, Uber Rides, etc. Originally
defined in control theory, observability provides operators
with deeper insight into various aspects of the complex
behavior of systems, including their performance,
availability, correctness, and efficiency. When the systems
behave abnormally, observability is used to troubleshoot the
incidents and mitigate them to bring the behavior back to
normal, with mean time to mitigation being one of the critical
success measures.

To provide observability, the systems are instrumented to
produce various telemetry signals. The most common types

of application telemetry used with today’s cloud native
systems are metrics, logs, events, and traces [12], [21]. A
common characteristic of different telemetry types is that
they usually combine one or more measurements with a set
of identifying dimensions. For example, a metric is a numeric
observation typically associated with a name, such as
“request_count”, and some dimensions, such as “host” or
“endpoint”. Similarly, in a semi-structured log message, the
measurement part is played by the message text,
accompanied by searchable dimensions such as log level,
thread name, etc.

Modern telemetry platforms, in addition to ingesting vast
amounts of telemetry data, usually perform extensive
indexing of the dimensions to allow rich querying and
aggregations over the raw measurements [17], [10], [2]. Most
of them treat dimensions as free-form collections of key-
value pairs. Platforms like OpenTelemetry [15] or Jaeger [20]
allow associating basic types with dimension values, while
systems like Prometheus [6] allow associating descriptions
with the metrics while treating all dimensions as strings.
Little, if any, additional metadata is captured or understood
by these systems. This puts a burden on the user to understand
how to interpret the dimensions and how to leverage them
when querying data.

The complex nature of cloud native systems often requires
investigations that involve more than a single source of
telemetry. A spike in error rate in a single zone might warrant
a look at the logs or traces from the same zone for better
diagnosis of the issue. This is where many modern telemetry
platforms fall short, as they lack semantic understanding of
the data. Two telemetry signals might share a dimension
“region”, but in one case referring to the region where the
software runs and in the other case to the region where the
user is located. Joining telemetry by this dimension as if it is
the same thing is probably meaningless. Metadata can be the
missing link in solving these problems.

In this paper we define metadata as additional information
that provides semantic meaning to telemetry data and helps
in identifying the nature and features of the data. Examples
of observability metadata include data types, units,
descriptions, ownership, purpose policies, semantic
identifiers, etc.

There are different ways to associate metadata with
telemetry, such as using naming conventions to imply
semantic meaning or defining metadata a-posteriori, after the
telemetry data has been produced and stored. In this paper we

propose a schema-first approach to capturing metadata for
application telemetry that we believe provides better trade-
offs compared to other solutions. Schema-first development
is a well-known technique, especially in the areas of data
management and API design. However, it is rarely used with
application telemetry because it can create significant friction
to developer experience compared to the simplicity of
conventional telemetry APIs, like logging a message or
incrementing a counter in a single line of code.

This paper makes the following contributions:

• Provide analysis of the existing approaches to telemetry
metadata that are prevalent in the industry.

• Demonstrate how schema-first approach can be applied
to telemetry by addressing the usability and change
management issues.

• Propose a comparison methodology for evaluating
metadata approaches.

The rest of the paper is organized as follows. Section 2
describes our motivations for associating metadata with
application telemetry. In Section 3 we present our design
goals and evaluation criteria. In Section 4 we review the
existing approaches from the industry for associating
metadata with telemetry. In Section 5 we present our schema-
first solution, discuss its implementation details and features,
and evaluate it against our design goals. And in Section 6 we
discuss the conclusions, applicability of the approach to other
situations, and future work.

2. MOTIVATION FOR METADATA
Metadata in application telemetry is a means to an end: the
users of observability platforms do not consume metadata
directly. However, it is an essential building block to solving
higher-level problems.

Discoverability of data: defined as the ability to find the
relevant telemetry assets at the right time. Discovery has a
dependency on metadata to answer search queries based on
metadata (e.g., what are all the telemetry artifacts owned by
my team?), and to provide semantic information, such as
human-readable descriptions, so that users can validate that
the results of the search query match their needs.

Exploration of data: once a user has discovered the right
asset, they need to explore it to extract the information they
are looking for. Exploration has a dependency on metadata
(a) to determine which operations are allowed on a particular
asset, e.g., which dimensions are available for filtering or
grouping, and (b) to allow exploration of data across assets,
e.g., by joining or cross-filtering on shared dimensions.

Investigative assistance: the ability to automatically extract
insights that can help users speed up an investigation. As a
form of automated data exploration, it depends on metadata

to have a semantic understanding of the data, for example to
know which dimension is a region or whether that region is a
source or destination region in a message transmission.

Privacy: while application telemetry is generally not meant
to contain sensitive user data that may be subject to privacy
policies, it may be possible for the applications to leak
sensitive data into telemetry by accident, or sometimes to
include it intentionally with the expectation of certain access
controls. Metadata helps the systems understand which parts
of the telemetry assets may contain sensitive data, what
ownership and access controls exist for this data, what
policies may govern the retention of this data, and how
lineage tooling may be used to automatically identify
sensitive data both entering the telemetry data streams or
being transformed into other aggregate data sets.

3. EVALUATION CRITERIA
When analyzing the costs and benefits of different
approaches to telemetry metadata, we found the following
design goals and evaluation criteria to be important to
engineers at Meta.

Design considerations.

• C0: does the approach encourage engineers to think
through the implication of adding new data to telemetry,
such as whether it is privacy-sensitive, or whether the
semantic type of the data already exists somewhere and
should be reused for possible cross-asset correlations?

Authoring experience. Most of the existing telemetry APIs
are designed to make it as simple as possible for developers
to log telemetry data points. Most logging frameworks
support the simplicity of a printf statement; many metrics
libraries allow emitting a new counter with a single line of
code. This simplicity and low friction are very important
because if it is cumbersome for engineers to add
instrumentation to the code, we end up with code that emits
no telemetry and provides no observability. We consider the
following criteria in this category:

• C1: does the approach require more lines of code to emit
telemetry?

• C2: does the approach make it more difficult to deploy a
change, e.g., by requiring the developer to run an
equivalent of ALTER TABLE command before the code
hits production?

• C3: how does the approach affect distributed authoring
workflow when multiple teams own different parts of a
data set?

• C4: can the solution enforce schema consistency across
different log sites? For example, preventing Java and Go
programs from emitting the same type of time series with
incompatible shapes.

Change management. While many telemetry APIs are
designed to support free-form dimensions on telemetry, this
is not a full picture of the life cycle of telemetry data. Once
an application emits a time series, it can have many
consumers for that data, from automated detectors analyzing
the time series for anomalies to visual dashboards configured
with a certain understanding of the available dimensions.
Changing the shape of the emitted telemetry, such as adding,
removing, or renaming a dimension, can easily break those
consumers, so we pay attention to change management
practices that a given approach to metadata affords.

• C5: does the approach allow evolution of telemetry
shapes and schemas over time, such as the need to
sometimes rename fields?

• C6: can the approach automatically identify breaking
changes to telemetry, e.g., in the form of continuous
integration checks?

• C7: can the approach provide compile-time safety
against incompatible changes, such as supplying
semantically incompatible value to a dimension, e.g., a
fully qualified host name instead of a short host name?

• C8: does the approach support automated code changes
(often called “codemods” at Meta), like renaming a
column in both producers and consumers?

Querying.

• C9: does the collected metadata allow automated
introspection of telemetry assets and presenting to users
only the choices that are applicable?

• C10: does the metadata allow understanding of
semantically identical dimensions across data sets, to
enable cross-asset filtering and consistent querying?

4. EXISTING APPROACHES
The need for telemetry metadata is well understood,
evidenced by solutions going back more than a decade. In this
section we evaluate some of the popular existing solutions
against our design goals. We mostly limit the discussion to
open-source observability products.

4.1. STATSD

The Statsd protocol [13] became very popular for system
metrics due to its simplicity and plain-text exposition format.
It provided little in the way of capturing metadata of the
metrics, restricting the observation to a single string name
and a value associated with a type like “counter” or “gauge”.
The data model did not provide any dimensional support, but
in the existing backends, such as Graphite [4], the metric
name was understood to be structured as a collection of dot-
separated segments, which were used by operators to encode
interesting dimensions into the metric name. For example, if

we wanted to count the number of requests received by a
service and further partition this time series by dimensions
like service name, protocol, and status code, we could encode
it as {service}.reqs.{protocol}.{status}. The
backends explicitly supported query functions that
understood such notation, e.g., to aggregate all metrics for all
services but partition them by the status code we could use a
function groupBy(4), which refers to the fourth segment
in the metric name.

It is obvious that Statsd protocol meets none of our metadata
requirements. In particular, the lack of true dimensional
model made writing queries on Statsd metrics very
unintuitive because users needed to refer to segments by their
index, which also made queries very easy to break by changes
in the way metrics were produced.

4.2. DIMENSIONAL MODELS

Seeing the wide adoption of Statsd protocol, the industry
practitioners wanted to improve the dimensional aspects of
the model. Google’s Monarch [2], Uber’s M3 [19], and
Prometheus [6] are examples of metrics backends that
explicitly support dimensional data models where a metric
name can be associated with a group of string key-value pairs
(often referred to as labels or tags), such that users could write
queries explicitly referring to dimensions by name, e.g.,
http_requests{job="foo",	 group="canary"}
in Prometheus query language.

Similar free-form dimensional models are supported by other
telemetry platforms, including the open-source distributed
tracing systems Jaeger [20] and Zipkin [3], as well as
instrumentation-oriented projects like OpenTelemetry [15].
In OpenTelemetry, every telemetry asset (metrics, traces, and
structured logs) can be associated with attributes, which are
still mostly free-form key-value pairs, except that the values
have types, either primitive (string, number, Boolean) or
complex types built with nested arrays and maps.

Named dimensions were a vast improvement over Statsd
model, resulting in much more intuitive query expressions.
The queries are also more resilient to upstream changes in the
telemetry signals, because the order of dimensions is
irrelevant. Yet the free-form format of the dimensions is still
far from meeting our requirements for metadata. Essentially,
all these systems adopt a code-first approach, where the code
producing the telemetry is the final authority on the schema,
shape, and semantic meaning of the data, yet none of this
metadata is captured or made available to the consumers.
When users query the data, they need to find out, through
other means, which dimensions are present in the telemetry
assets, what those dimensions are called, and what values are
allowed. Usually, this leads to large inconsistencies between
telemetry data produced by different components. Change
management is also very complicated; it is very easy to break

the consumers by changing the producing code, and the
framework provides no mechanism for a feedback loop.

4.3. SEMANTIC CONVENTIONS

To impose more structure on the telemetry data, different
projects define semantic convention that prescribe how
certain common dimensions should be named in the
telemetry and which values can be assign to them. One such
example is the Elastic Common Schema (ECS) [8], an open-
source specification that defines a common set of fields to be
used when storing event data, such as logs and metrics, in
Elasticsearch. ECS specifies field names and datatypes for
each field and provides descriptions and sample usage. For
example, instead of dealing with potentially many ways of
representing a source IP address in different data sets, the
consumers of ECS-compliant data can rely on this dimension
always be called source.ip.

Similar mechanism exists in the OpenTelemetry project
called semantic conventions [16]. As of v1.9, the conventions
are defined for metrics, traces, and resources (resource is a
software component whose behavior is described by the
telemetry, e.g., a host, a process, or a Kubernetes cluster).
Similar to ECS, the OpenTelemetry semantic conventions
specify dimension names, their descriptions and semantic
meaning, units of measure, and value types. This metadata is
formally encoded in the YAML files that are a part of the
OpenTelemetry specification.

The OpenTelemetry attribute names also use dot-separated
notation, but it is treated differently than in the Statsd
protocol. The dot-segments are not used to encode dimension
values, only to represent dimension namespaces and to group
attributes by some common characteristic. For example, all
keys of the form net.* refer to network-related attributes in
general, while all keys of the form net.peer.* refer to
network attributes of a remote peer communicating with the
component producing telemetry. Concrete examples of the
keys are net.peer.ip and net.peer.port, which
respectively refer to the IP address and port of the remote
peer.

Semantic conventions for telemetry address some of our
design goals for metadata. Producers have well-defined
expectations for the shape of the telemetry dimensions and
for using compatible values across different assets.
Consumers can rely on the conventions to know which
dimensions they can use when querying the data. The
authoring experience of generating compatible telemetry is
not particularly burdensome, especially when language
implementations expose static constants for different
attributes defined in the semantic conventions.

The main downside of the semantic conventions approach is
that they are, after all, only conventions. There is no built-in
mechanism to guarantee that the conventions are used

correctly and consistently. There is no strict type and value
checking, for example, to ensure that a field that is meant to
contain milliseconds is not assigned a value in seconds. There
is no systematic way of warning developers at coding time if
they are going to break consumers by changing the shape of
the data.

Another downside is the difficulty of retrofitting existing data
sets to match the new conventions. It requires either full
migration of the producers and consumers of the data set to a
new format, which is usually cost prohibitive, or introducing
a data transformation process into ingestion pipelines, which
is a more common approach, but it incurs performance
overhead and a long-term maintenance burden.

4.4. OPENTELEMETRY SCHEMAS

The OpenTelemetry authors understood that change
management is an important aspect of the framework. As of
v1.8, the OpenTelemetry Specification introduced the notion
of telemetry schemas [14]. The schemas, despite the name,
do not actually provide a formal definition of the telemetry
attributes, as those are already defined by the semantic
conventions themselves. Instead, schemas support versioning
of the semantic conventions by describing the changes
between versions, specifically renaming of the attributes,
with more transformations possibly supported in the future.
The emitted telemetry is expected to contain a URI, such as
https://opentelemetry.io/schemas/1.9.0,
referring to the schema and its version used by the producer.
The telemetry backend can use that to automatically upgrade
or downgrade the telemetry representation for the producers
or consumers that are using an older version of the
specification.

Similar methods are used by other specifications. ECS
defines a field ecs.version [9] that encodes the version
of the specification employed by the ingestion pipeline. The
CloudEvents specification [7] uses a dataschema field to
encode the URI of the schema used by the events. Both ECS
and CloudEvents only allow identifying which version of the
schema is used by a specific instance of telemetry data, but
do not describe the mechanism for transformation between
versions that is possible with the OpenTelemetry schemas.

While knowing the version of the schema used by a telemetry
asset is important, it does not fundamentally change the
limitation of the semantic conventions approach that we
discussed previously.

4.5. EXTERNALLY AUTHORED METADATA

So far, we discussed the approaches that attempt to introduce
some a-priori knowledge of the metadata, before the
telemetry is produced. The alternative to that is an a-
posteriori enrichment where the metadata is defined after the
telemetry is produced and captured in the storage backends.

This approach requires a designation of some system as an
authoritative source of metadata about various data sets, a
metadata store. The consumers of telemetry can consult the
metadata store to know how to interpret the data. At Meta,
the concept of metadata store has been used for several years,
especially for the vast amounts of data stored in the data
warehouse.

The metadata authored externally in the metadata store
addresses many of our querying requirements but falls short
in other areas. One of its drawbacks is the lack of consistency
between the telemetry authoring and the metadata, which
means the actual schema of the produced telemetry can easily
get out of sync with the metadata, since the latter needs to be
proactively updated after the fact (although some automation
can be helpful for this). Another challenge is poorly defined
identity of the telemetry assets. A metadata store requires a
unique identifier with which it can associate the metadata, but
not all telemetry types are able to provide that. For instance,
a stream of structured events written to a Kafka [18] stream
or a Scribe [11] category may be uniquely identified by the
name of the destination stream/category, but a certain shape
of data logged by a specific microservice into a distributed
tracing platform like Jaeger [20] or Canopy [10] has no well-
defined identity to which a metadata can be attached a-
posteriori.

4.6. AUTOMATIC DATA ENRICHMENT

Certain classes of telemetry can be automatically enriched by
the publishing libraries or the collection pipelines with
standardized dimensions describing the resources, based on
the inherent knowledge of the underlying infrastructure. For
example, an application may emit a time series
requests_total_count without providing any
additional dimensions, and the collection pipeline can
automatically add attributes like service ID, host name, pod
name, zone, etc. This approach is widely used by commercial
Observability vendors whose collection pipelines and agents
support integrations with dozens of popular infrastructure
components. Because the ownership of all these enriched
dimensions is centralized, the Observability platforms can
provide consistent view of telemetry metadata to consumers.
Automatic data enrichment is complimentary to the schema-
first approach we propose, and can itself be implemented as
schema-first, but in isolation it does not fully meet our
requirements because it does not help with any custom, non-
infrastructure related dimensions that applications often want
to use with the telemetry.

5. SCHEMA-FIRST TELEMETRY
After evaluating many options, we concluded that a schema-
first approach to application telemetry will be the most
beneficial for engineers at Meta, and our team is currently
working on building the necessary tooling to support it. In

contrast to the code-first approach that is most prevalent in
the observability industry, schema-first means that the design
of the new telemetry assets starts with the schema; the
schema is formally specified using some interface definition
language (IDL, in our case, Thrift); and this schema becomes
the single source of truth about the metadata of the asset. In
this section we describe some of the implementation details
of this approach and evaluate it against our design criteria.

Schema-first approach to data management is not a new
concept for engineers at Meta, especially for business
analytics data. A typical path for this type of data starts with
structured events being logged into Scribe [11], from where
they are ingested either into Scuba [1] for real-time analytics
or into the data warehouse for batch processing. Historically,
the events were written to Scribe using a code-first, free-form
API, which only captured the types of the fields but no other
metadata, and the real metadata was then curated in the
metadata store. Because this approach, as we discussed
earlier, is prone to emerging inconsistencies between the
metadata and the data itself, the company developed a
schema-first logging framework to which many important
data sets have been migrated, resulting in much better
stability and reliability, improved controls and privacy,
automated lineage, and better efficiency. We are extending
that approach to all types of application telemetry by reusing
many of the building blocks of the schema-first logging
framework.

5.1. IMPLEMENTATION

Perhaps the biggest trade-off in the schema-first approach is
the introduction of extra steps in the authoring process. Our
goal was to minimize this impact, but we were not able to
eliminate it completely. In the end, we consider this a worthy
trade-off given the other benefits that we get from strong
metadata support. It is also helpful that many engineers at
Meta are already familiar with the proposed workflow.

Let us first consider the base case of adding an extra piece of
data to an existing telemetry asset, e.g., a shard ID dimension
to the request counter in an RPC server. In the code-first
approach this requires adding a single line (Listing 1). In the
schema-first approach, this counter would already have a
schema defined using an IDL (Listing 2) and the application
code to increment the counter gets one extra line (Listing 3).
Compared to the code-first approach, the schema-first
solution requires at least one extra line of IDL code to define
a new field, or even more lines if we want to provide
additional metadata, in this example by defining a custom
type ShardID that later can allow stricter validation of the
values.

It is worth noting how the schema-first approach provides
potential efficiency improvements: in Listing 1 the
dimensions are passed as a map, so the keys will have to be

included in the wire format, while in Listing 3 we are using a

strongly typed data structure that can be efficiently serialized
into a binary Thrift payload.

Besides the extra lines of code, we can also see that the
schema-first solution requires some developer tooling
support. First, the RequestCounter type is auto-
generated from the Thrift definition. At Meta, this is a
standard and fully automated process, because the Buck build
tool [5] knows how to handle Thrift IDL files. Second, if the
telemetry is indeed serialized on the wire using Thrift binary
format, then the consumers of this data must have access to
the schema before they can parse the payload. This part has
been already solved by Meta’s schema-first logging
framework we mentioned earlier, which implements a
schema actualization process executed automatically when
the code change passes the continuous integration (CI) tests
and is merged into the main branch. Actualization involves
validation of the schema changes against backwards-
incompatible changes (such as changing a field type). If the
validation fails, the code change fails the CI and will not be

merged. If the validation is successful, then the schema

change is pushed as a new version to the metadata store,
where it can be distributed to real-time consumers such that
when the new shape of telemetry is produced in production
the consumers already have the new schema and are able to
parse the data.

Figure 1 shows the overall process of authoring and
deploying a change to telemetry. Both the schema change (1)
and the application code change (3) can be done in a single
merge request, an important attribute of the solution for a
better developer experience. CI checks integrate with
actualization service to validate and update the schema in the
metadata store. The telemetry is serialized by the SDK into a
binary payload on the wire (or into Scribe), which is
deserialized by the telemetry backend having runtime access
to the updated schema. Consumers and Observability tools
can consult the metadata store when discovering or accessing
the data.

For authoring new telemetry assets, the process requires more
work on the schema part, that may involve such steps as:
(a) creating a new IDL file with new data type, (b) adding a
dependency reference to the application build file to let the
build system know that Thrift code generation step is required
before building the application, (c) importing the generated
package into the application code to make the new data type
accessible in the code. We envision that these steps can be
easily automated with a wizard-like command line tool or a
build target.

There are several reasons why we chose Thrift as the
language for defining the schemas. Thrift is the de-facto
standard at Meta for defining interfaces between services, so
most engineers are already familiar with it. It has strong
tooling and IDE support for authoring, code-generation, and
automatic cross-repository syncing. The code generation and
serialization are well supported across most languages used

counter.Increment(
 service_id = 'foo',
 endpoint = 'bar',
 status_code = response.code,
 shard_id = 'baz', // added line
)

Listing 1. Adding new dimension with traditional API.

typedef string ServiceID
typedef i32 StatusCode
typedef string ShardID // added line

struct RequestCounter {
 1: ServiceID service_id
 2: string endpoint
 3: StatusCode status_code
 4: ShardID shard_id // added line
}

Listing 2. Adding new dimension to the schema.

counter.Increment(RequestCounter(
 service_id = 'foo',
 endpoint = 'bar',
 status_code = response.code,
 shard_id = 'baz', // added line
))

Listing 3. Emitting new dimension via a struct.

Figure 1. Schema-first authoring process.

(1) Schema change:

struct RequestCounter {
. . .
4: ShardID shard_id
}

(2) Generated code:

struct RequestCounter {
. . .
shard_id: string
}

(3) Application code:

counter.Inc(RequestCounter(
. . .
shard_id = 'baz',
))

code
gen

Telemetry SDK

Scribe

binary

Telemetry backend

Actualization
service

single pull request

(5) ok to commit

Metadata
store [[parse with schema]]

struct

UI surfaces

Continuous
integration

checks

(4) validate

(6) commit

Consumers

schema

in the company. The IDL itself is language-neutral and very
expressive, with support for type aliases and annotations, that
are critical for the rich metadata needs discussed in the next
section. Thrift also supports namespaces and composition,
which is important for the reuse of data types and semantic
annotations, as well as for collaborative authoring of large
data sets that are shared across multiple teams.

Special handling is needed when trying to apply schemas to
distributed tracing data [21]. The other types of telemetry
usually have a well-defined identity and owners and are
isolated from each other, e.g., a stream of structured logs
from a service can have its own schema that is independent
of all other telemetry assets; similarly, a set of metrics
produced by an RPC framework can be represented by a
schema owned by the library authors. In contrast, a single
trace contains information collected across many different
services. Some of the data in the trace could follow a common
schema (such as the infrastructure dimensions that describe a
service), while other data could be unique to each
participating service.

Traces are usually modeled as a collection of spans, where a
span represents a certain operation performed by the
software. The granularity of the operation is arbitrary; it
could represent the whole RPC request handled by a service,
or it could wrap a single function call within the code. A span
provides a single generic envelope for capturing debugging
and performance data, and it is up to the application code to
decide which data to store there. In order to keep this open-
ended nature of tracing data yet still allow strong
schematization of the data, our approach is to allow different
teams to define the schema for their portion of the data and
their use case, and extend the span model to store these
schematized binary payloads keyed by the fully qualified
name of the schema data type, e.g., in a string→[]byte
dictionary. For example, the Canopy tracing platform
provides an out-of-box instrumentation for our standard RPC
framework. The tracing team can define a common schema
for the way we want to capture data about RPCs; the
instrumentation will populate this data type and store it in the
trace under canopy.core.rpc key. Meanwhile, an
individual service team X that wants to capture some data
specific to their service can define another schema and store
the data with serviceX.dataY key. This way we preserve
the existing flexibility of traces being able to store any kind
of data, while enjoying all the benefits of the schema-first
approach. On the reading side, the consumers can access the
data via strongly typed data structures auto-generated from
the schema. In cases where more dynamic access is needed,
e.g., in a generic layer that transfers the data from a queue
into the data warehouse, the data can be parsed using the
runtime schema information available from the metadata
store.

struct HostResource {
 @DisplayName{"Host ID"}
 @Description{"Unique host ID.
 For Cloud, this must be the
 instance_id assigned by the
 cloud provider."}
 1: string id

 @DisplayName{"Hostname (short)"}
 @Description{"Name of the host as
 returned by the 'hostname'command."}
 2: string name

 @DisplayName{"Architecture"}
 @Description{"The CPU architecture
 the host system is running on."}
 3: string arch
}

// Example: devvm123
@DisplayName{name="HostName"}
@SemanticType{InfraEnum.DataCenter_Host}
typedef string HostName

// Example: devvm123.zone1.facebook.com
@DisplayName{name="HostName (with FQDN)"}
@SemanticType{InfraEnum.DataCenter_Host}
typedef string HostNameWithFQDN

enum OneWayMsgExchangeActorEnum {
 SOURCE = 1, TARGET = 2,
}
@SemanticQualifier
struct OneWayMsgExchangeActor {
 1: OneWayMsgExchangeActorEnum value
}
struct RPC {
 @OneWayMsgExchangeActor{SOURCE}
 @DisplayName{"Source service"}
 1: ServiceID source_service

 @OneWayMsgExchangeActor{TARGET}
 @DisplayName{"Target service"}
 2: ServiceID target_service
}

Listing 4. Schema-first model for OpenTelemetry
semantic conventions for host resources.

Listing 5. Defining two different representations
of the same semantic type.

Listing 6. Qualifying rich type fields with
additional semantic meaning.

5.2. RICH METADATA

The basic workflow we described so far makes the solution
roughly equivalent to the code-first approach with a-
posteriori metadata. However, once we have a data type
described in the schema file, we have a strong foundation to
start adding more metadata that can meet our design goals,
using annotations and rich types.

The version of Thrift used at Meta supports adding metadata
to the basic schema definitions using annotations, which are
similar to annotations in the Java language. Annotations
themselves are first declared as data types with fields, and
then used to annotate the other data. For example, we can
annotate fields in a struct with additional metadata, such as
description or a display name. Listing 4 shows how the
OpenTelemetry semantic conventions for a host resource
could be represented in the schema.

The annotations mechanism allows us to describe very rich
metadata about the fields, such as the types of query operators
that should be allowed for a field, or the validation rules for
the input data (e.g., a regular expression). The annotations
can be used to describe not only the dimensions, but the
measurements as well, e.g., to emphasize that a numeric field
represents duration in milliseconds rather than seconds.

The rich types allow us to take this even further and assign
semantic meaning to the fields. Notice how the “name” field
in Listing 4 is described as the short form of the host name,
as opposed to the fully qualified name that includes the
domain and sub-domains. This information is only encoded
in the metadata intended for human readers. Instead, we can
define HostName as an alias to a string type that can capture
this additional semantics (Listing 5) and use it as the data type
for the name field in the HostResource type.

Listing 5 illustrates several additional benefits of this
approach. The two rich types share the same semantic type,
DataCenter_Host, which allows the consumers to
recognize that even though two telemetry assets may have
different representation of the host name field, they
nonetheless refer to the same kind of data, so that, for
example, we could apply host name filter to both assets
simultaneously when querying or plotting the data. On the
other hand, the short-form host name may not have a one-to-
one mapping to the fully qualified host names, which is a fact
that can also be encoded in the annotation on the rich types.
In general, we can use annotations to describe detailed
relationships between the types, such as how to convert
values from one representation to another.

The other significant benefit is that these definitions of rich
types can be easily reused across different telemetry schemas.
In our example the description and display name annotations
are defined on the rich type itself, so that they do not need to
be repeated across field definitions using this type, which

provides more consistent experience to the consumers of the
data.

The semantic annotations allow encoding custom meaning of
the fields in different data sets. For example, let us assume
that we defined rich semantic types for such dimensions as
region, host, service. Now consider a stream of events or
metrics produced by a service mesh about the RPC activity
between microservices. It is not enough to have rich types for
region, host, and service, because an RPC involves two of
each, a source and a target. If we simply encode this aspect in
the field names, such as source.service and
target.service, we are back to the semantic
conventions situations that relies on the naming of fields.
However, with annotations we can attach this metadata
explicitly in machine-accessible way. In Listing 6 we add a
new annotation type OneWayMsgExchangeActor that
allows us to distinguish between the source and target service
IDs at the metadata level, not just the field name level. The
new annotation is itself tagged as SemanticQualifier
to allow the platform to recognize it as special type of
metadata.

Finally, the annotations can be used to capture privacy-
related metadata on the fields, such as owners and required
access controls, retention policies, purpose and allowed
usage policies, etc.

5.3. EVALUATION

We can now evaluate the proposed schema-first approach
against our design goals.

Design considerations

• C0: the schema-first approach encourages engineers to
think through the implication of adding new data to
telemetry, such as whether it is privacy-sensitive, or
whether the semantic type of the data already exists
somewhere and should be reused for possible cross-asset
correlations.

Authoring experience

• C1: the approach requires slightly more code (usually
one extra line in the IDL) to emit telemetry compared to
the code-first approach.

• C2: deploying a change is not more complicated
provided that the necessary automation exists.

• C3: the Thrift IDL approach can scale when multiple
teams own different parts of the same data set, by using
composition of type definitions. It may require minor
enhancements to the Thrift compiler to support flattening
of nested structs into a single struct (similar to struct
embedding in the Go language).

• C4: emitting telemetry is done by interacting with the
datatypes auto-generated from the schema definitions,
which provides consistent authoring experience and
shape of data, even when the emitting code is in different
languages or located in different source repositories. In
case of different repositories, extending the shape of
telemetry may require more than one merge request, one
to author the actual schema change in the repository
where the primary schema source is defined, and the
other to sync the changes to the schema to another repo
(a workflow that is fully automated at Meta).

Change management

• C5: the approach is designed to allow evolution of
telemetry shapes and schemas over time. The schema
actualization service ensures that the schema changes are
backwards compatible.

• C6: in addition to guarding against breaking changes
purely at the schema level, the approach can also warn
about breaking the consumers that depend on specific
shape of telemetry. Specifically, when consumers use
datatypes auto-generated from Thrift IDL, we can use
static code analysis or lineage frameworks to identify
affected consumers.

• C7: since the application code populates the telemetry by
invoking setter functions on the datatypes auto-
generated from the Thrift IDL, these functions provide a
leverage point for enforcing data validation rules, either
at runtime, or at compile time by using strong types (if at
all possible, in a given language).

• C8: the approach is theoretically compatible with
automated code changes, but we have not yet invested
the time to integrate it with the existing codemod
frameworks.

Querying

• C9: all changes to the schema end up in the metadata
store, from where they can be retrieved by the tools and
consumers to allow automated introspection.

• C10: rich types and semantic annotations in the schema
provide the consumers with semantic understanding of
the telemetry data and its dimensions, and support
building rich functionality, from introspection and cross-
asset filtering to machine-learning based analysis.

6. DISCUSSION
Access to metadata about application telemetry has many
benefits across the whole data pipeline, from producers to
consumers, with use cases ranging from data validation and
change management to cross-dataset correlations and privacy
enforcements. There are many projects in the industry that are
trying to associate metadata with telemetry, usually by means

of semantic conventions and schemas. This paper introduces
a schema-first approach to capturing telemetry metadata that
has not found its place in the observability industry so far.
We described its implementation details and demonstrated
that it provides better trade-offs than many of the existing
solutions.

The schema-first approach to application telemetry described
in this paper is aspirational and a work-in-progress at Meta.
While it is based on the existing solutions in the company for
business data, it has not been applied at scale to system
telemetry. Our analysis indicated that it can be implemented
at Meta, but we do recognize that it has certain trade-offs,
namely in making the authoring developer experience more
complicated, and these trade-offs may not be acceptable in
different organizations and engineering cultures.

We contrasted this approach with many other solutions that
exist in the industry. Since some of the paper authors are
closely involved in the open-source projects like
OpenTelemetry, a reasonable question is whether the
schema-first approach should be attempted there. We hesitate
to make such a recommendation at this time, because we still
want to prove the approach at scale at Meta, and because the
approach requires a significant level of consolidation and
enhancements in the tooling specific to a certain developer
experience ecosystem. For example, the centerpiece of the
approach is authoring of schemas in Thrift IDL, which is only
one of the competing interface languages in the industry.
Open-source projects like OpenTelemetry aim to be
applicable across many different technologies, so it is
difficult for them to take a hard dependency on any specific
IDL.

There are areas of the schema-first solution that require
additional design decisions and future work. We do not have
a fully developed framework for versioning and A/B testing.
For example, if the schema changes introduced in a merge
request are automatically pushed to the metadata store, how
can a merge request be tested in a staging environment or
canary deployments before rolling out to production? The
schema change may be backwards compatible, but if it needs
to be reverted, it could leave the emitted telemetry data in an
inconsistent state. This problem is not unique to our solution,
since any data store with schematized data must deal with
this.

Another area that will require attention is data governance
mechanisms. The success of our approach is predicated on
good reuse of semantic annotations in the schema, to allow
the consumers to see similarities between data sets. We are
too early in the process to decide how such reuse will be
achieved. We are starting with developing a curated set of
data types for common infrastructure dimensions that are
shared by many telemetry data sets (the OpenTelemetry
semantic conventions provide a good starting point for this).

REFERENCES
[1] Abraham L. et al (2013). Scuba: diving into data at

Facebook. Proc. VLDB Endow. 6, 11 (August 2013),
1057–1067.

[2] Adams C. et al (2020). Monarch: Google's planet-scale
in-memory time series database. Proc. VLDB Endow.
13, 12 (August 2020), 3181–3194.

[3] Aniszczyk C. (2012). Distributed Systems Tracing with
Zipkin. Twitter Engineering Blog (June 2012).
https://blog.twitter.com/engineering/en_us/a/2012/distri
buted-systems-tracing-with-zipkin.

[4] Asay M. (2008). (Graphite) Orbitz paves the way to
enterprise open-source contributions. CNET (June
2008). https://www.cnet.com/culture/orbitz-paves-the-
way-to-enterprise-open-source-contributions/.

[5] Bolin M. (2013). Buck: How we build Android apps at
Facebook. Engineering at Meta blog (May 2013).
https://engineering.fb.com/2013/05/14/android/buck-
how-we-build-android-apps-at-facebook/.

[6] Brazil, B. (2018). Prometheus: Up & Running:
Infrastructure and Application Performance
Monitoring. O'Reilly Media, Inc.

[7] CloudEvents. (2022).
https://github.com/cloudevents/spec/blob/v1.0/spec.md
#dataschema.

[8] Elastic Common Schema (ECS) Reference, v8.1.
(2022).
https://www.elastic.co/guide/en/ecs/8.1/index.html.

[9] Elastic Common Schema - ECS Fields, v8.1. (2022).
https://www.elastic.co/guide/en/ecs/8.1/ecs-ecs.html.

[10] Kaldor J. et al (2017). Canopy: An End-to-End
Performance Tracing and Analysis System. In
Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP '17). ACM, New York, NY,
USA, 34–50.

[11] Karpathiotakis M. et al (2019). Scribe: Transporting
petabytes per hour via a distributed, buffered queueing
system. Engineering at Meta blog (October 2019).
https://engineering.fb.com/2019/10/07/data-
infrastructure/scribe/.

[12] Karumuri S. et al (2021). Towards Observability Data
Management at Scale. SIGMOD Rec. 49, 4 (December
2020), 18–23.

[13] Malpass I. (2011). (Statsd) Measure Anything, Measure
Everything. Etsy Code as Craft blog (February 2011).
https://www.etsy.com/codeascraft/measure-anything-
measure-everything/.

[14] Najaryan T. (2021). OpenTelemetry Enhancement
Proposal #152: Telemetry Schemas. (October 2021).
https://github.com/open-
telemetry/oteps/blob/main/text/0152-telemetry-
schemas.md.

[15] OpenTelemetry (2022). https://opentelemetry.io/.

[16] OpenTelemetry Semantic Conventions, v1.9. (2022).
https://github.com/open-telemetry/opentelemetry-
specification/tree/v1.9.0/semantic_conventions.

[17] Pelkonen T. et al (2015). Gorilla: a fast, scalable, in-
memory time series database. Proc. VLDB Endow. 8,
12 (August 2015), 1816–1827.

[18] Rao J. (2011). Open-sourcing Kafka, LinkedIn's
distributed message queue. Linkedin Engineering Blog
(January 2011).
https://blog.linkedin.com/2011/01/11/open-source-
linkedin-kafka.

[19] Skillington R. (2018). M3: Uber’s Open Source, Large-
scale Metrics Platform for Prometheus. Uber
Engineering Blog (August 2018).
https://eng.uber.com/m3/.

[20] Shkuro Y. (2017). (Jaeger) Evolving distributed tracing
at Uber Engineering. Uber Engineering Blog (February
2017). https://eng.uber.com/distributed-tracing/.

[21] Shkuro Y. (2019). Mastering Distributed Tracing:
Analyzing performance in microservices and complex
systems. Packt Publishing Ltd (February 2019).

