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ABSTRACT
The use of algorithms for decision-making in higher education is
steadily growing, promising cost-savings to institutions and person-
alized service for students but also raising ethical challenges around
surveillance, fairness, and interpretation of data. To address the lack
of systematic understanding of how these algorithms are currently
designed, we reviewed an extensive corpus of papers proposing al-
gorithms for decision-making in higher education. We categorized
them based on input data, computational method, and target out-
come, and then investigated the interrelations of these factors with
the application of human-centered lenses: theoretical, participatory,
or speculative design. We found that the models are trending to-
wards deep learning, and increased use of student personal data
and protected attributes, with the target scope expanding towards
automated decisions. However, despite the associated decrease in
interpretability and explainability, current development predomi-
nantly fails to incorporate human-centered lenses. We discuss the
challenges with these trends and advocate for a human-centered
approach.
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1 INTRODUCTION
The use of algorithms for decision-making in higher education,
and subsequently the use of student data in algorithms, is growing
across the globe [110]. Prior research has found that algorithmic
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decision-making has the potential to provide considerable cost sav-
ings to higher education institutions, with more personalized and
just-in-time service for students [67]. Indeed, students, faculty, and
the administration of higher education institutions face growing
challenges; increasing tuition fees and debt levels, along with lower
levels of government support, have impacted students and higher
education institutions alike [110]. Neo-liberalism and the rise of
knowledge capitalism within higher education have pushed higher
education institutions towards a greater emphasis on metrics, ac-
countability, and KPIs [76]. This has led to the growing use of
educational data mining, reliance on learning analytics [1] and the
use of algorithms for decision-making, predictions, interventions,
and personalization [13].

With this growing trend, both the improper use of student data
and the potential for harmful decision-making (predicted and/or
automated) within higher education institutions have also risen
[67, 107]. In particular, the use of algorithms in education is associ-
ated with several ethical challenges, such as student surveillance
and privacy, fairness and equity, and interpretation of data [98]. The
harmful outcomes of ignoring these and similar ethical issues in al-
gorithm design have recently brought forward significant concerns.
The SIGCHI community has considered that algorithm design has
failed to identify the true target of intervention [16]. Abebe et al.
[2] raise the example of admissions in higher education in that
"a computational intervention that aims to equalize offers of col-
lege admission across demographic groups might function as a less
ambitious substitute for the deeper and more challenging work of
improving high school instruction in low-income neighborhoods."
Chancellor et al. [25] posit that traditional computational research
minimizes individuals to simple data points, and there is cause for
concern: machine learning can amplify stigma, reproduce stereo-
types, increase discriminatory practices, and harm individuals and
communities.

Correspondingly, research is actively exploring different tech-
niques for addressing these ethical issues, including developing
frameworks [79], and governance strategies [94], attempting to
build more fair models [60, 62, 63, 112], assessing the need for pro-
tected attributes as input data [111], and incorporating student
perspectives [67, 68].

As the SIGCHI community continues to pursue research on
equity and bias in algorithmic decision-making [12, 25, 33, 40, 56,
85, 91, 97], human-centered algorithm design attempts to enable
and extend these techniques by incorporating human and social
interpretations into the design of algorithmic systems. Specifically,
it was suggested [17] that theoretical, participatory, and speculative
strategies can be employed to center humans in the design process
and to bridge the gap between the algorithm developers and the
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stakeholders who interact with the system or are affected by their
decisions. With the significance of the social impact of algorithmic
decision-making on various high-stakes human domains [25, 33, 40,
56, 85, 91], there is concern within the HCI research community that
the design process of algorithms fails to consider the potential for
harm as a result of the inherent uncertainties of the predictions and
limitations of the technology [85, 104]. Human-centered algorithm
design addresses this concern by leveraging human knowledge
from the social sciences and incorporating stakeholder perspectives,
allowing researchers to better consider the impacts of algorithmic
decision-making in the real world or our context [6].

However, while research in other domains such as child welfare
[91], cyberbullying detection [56], law [33], online sexual risk detec-
tion [85] and public administration [40] has demonstrated both the
lack of and the pressing need for human-centered algorithm design
[56], little is known about the application of a human-centered lens
in the design of decision-making algorithms in higher education
[54, 64].

To address this gap, in this paper, we explore the current trends
in the use of computational methods, data types, and target out-
comes in the design of algorithms in higher education and analyze
the current role and place of human-centered algorithm design
approaches in their development. Through a comprehensive review
of the existing literature on algorithmic design for higher education
(n=62), we collect and qualitatively analyze the models proposed
from 2010 to 2021 and demonstrate the existing patterns.

We show that, first, the model design has trended away from
rules-based systems towards neural networks and natural language
processing. By nature of the model design, the results have become
less explainable and less interpretable and increasingly rely on
individual student data such as GPAs, enrolment pathways, and
Learning Management System (LMS) activity as input features. We
also find that the use of protected classes (age, race, gender, dis-
ability status) as input features has grown significantly over the
past decade, along with the use of the student or applicant’s family
data such as household income or parental academic achievement
(first-in-family). At the same time, while the models are increas-
ingly complex and the decisions become increasingly opaque, the
algorithm design does not demonstrate the systematic use of human-
centered approaches to reflect the necessary student perspective
appropriately.

This work contributes to the community by presenting an in-
depth account of the current state-of-the-art and trends in algo-
rithmic decision-making in higher education and critically review-
ing the algorithms proposed for use in higher education through
the application of the human-centered conceptual framework [17].
Moreover, based on our findings, we identify potential gaps in
the existing literature and suggest future research opportunities
for developing human-centered algorithms for higher education.
Building upon existing reviews [56, 85, 91] on the use of human-
centered design in algorithm development in different domains,
this work provides a foundation for implementing human-centered
approaches in the design and development of algorithms in the
context of higher education.

In the remainder of this paper, we first review the existing lit-
erature on algorithmic decision-making in higher education and
the application of Human-Centered Algorithm Design in other

Figure 1: PRISMA Flow Diagram [69]

domains. We then describe our data collection and data analysis
processes, followed by the results of the analysis of the models
proposed in the collected literature corpus. Finally, we discuss the
critical gaps in the current trends identified through our analysis
and propose key opportunities for future research.

2 BACKGROUND
In this section, we provide an overview of the existing literature
surveys on the use of algorithms in higher education. We also
provide background on the Human-Centered Algorithm Design
framework [17] used throughout our research and on how it has
been used within other domains. Survey research and systematic
literature reviews are important contributions to HCI research,
providing insight into what is currently known about the topic at
hand, exposing trends and gaps, and identifying opportunities for
further research [109]. Previous literature reviews of algorithms in
higher education have predominantly focused on model accuracy
and performance, rather than fairness through human-centeredness.
Nine of the ten reviews that we identified all focused on the same
outcome: predicting student success [5, 9, 24, 48, 58, 70, 74, 90,
95]. The remaining study [115] explored various ’AITech’ target
outcomes. These reviews looked at input data [5, 9, 24, 48, 58, 74,
90, 95], computational methods [5, 9, 48, 58, 74, 90, 95, 115] and
model performance [58, 74, 95, 115]. Only one paper [48] included
any analysis of ethical issues within its reviewed papers; Hellas et
al. [48] briefly raise ethical considerations in their discussion.

Overwhelmingly, the research on algorithms in higher education
has been focused on optimizing the algorithms themselves: the
inputs, target outcomes, architecture, and performance. The target
outcomes aim to make predictions that often impact those humans’
lives: what courses they take, what interventions are offered to them,
and what programs they are admitted to. Algorithmic performance,
though, is a measurement of the functioning of the algorithm and
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Table 1: Coding Categories

Computational Method Target Outcome Input Data
Statistical Methods Grade Prediction Demographic
Rules-Based Retention LMS/Engagement
Machine Learning Institutional Planning Institutional
Deep Learning Pathway Advising Grade/GPA
Natural Language Processing Student Services Enrollment/Pathways

Admissions Student Survey
Assessment Protected Attribute
Engagement

may not align with human and social interpretations of a model’s
success (does it do andmeanwhat it claims). So while algorithms are
developed using staggering amounts of information about humans
to then make decisions for humans, it is alarming that humans are
so inauspiciously missing from both the design and measurement
of their value.

To address these issues, Baumer [17] recommends three strate-
gies for human-centered algorithm design: theoretical, participa-
tory, and speculative.

Theoretical Design, according to Baumer, incorporates behavioral
and social science theories into the design of the algorithm. These
theories can be used prescriptively to guide algorithm design, in-
forming feature selection, for example, and used descriptively to
help us to interpret and evaluate the results of the algorithm.

A Participatory Design approach to algorithm design incorporates
stakeholders in the design process, the people whom the system
will likely impact. In the case of algorithm design and machine
learning, this involves connecting the people for whom the algo-
rithm will automate decisions and the end users with the designers,
and actively considering the user experience of the system.

Speculative Design, according to Baumer, requires an imaginative
approach. Researchers must not only consider the existing circum-
stances but must extrapolate from it what could be. For algorithm
design, this requires authors to think through the potential impacts
and ramifications of the assumptions and values embedded in the
ground truth of the model.

Other domains have demonstrated the feasibility of employing
Baumer’s human-centered algorithm design framework [17]. In a
review of algorithms used in the US Child Welfare system, Sax-
ena et al. [91] found that the literature focused mainly on risk
assessment models but does not consider theoretical approaches or
stakeholder perspectives. Kim et al. [56] found that incorporating
human-centeredness in algorithm design can help develop more
practical bullying detection systems that are better designed for the
diverse needs and contexts of the stakeholders. The literature [33]
also demonstrates how participatory approaches enabled computer
scientists and lawyers to co-design Legal AI, and help align com-
putational research and real-world, high-stakes litigation practice.
Finally, Razi et al. [85] determined that a human-centered approach
was necessary for identifying best practices and potential gaps,
as well as setting strategic goals in the area of online sexual risk
detection.

3 METHOD
In this section, we describe our scoping criteria and processes for
conducting the systematic literature search, coding, and data anal-
ysis.

3.1 Literature Corpus
The following keywords were used as search terms to identify rele-
vant papers: ’"higher education" + algorithm’, ’"learning analytics"’,
’"higher education" + AI’, ’"higher education" + "predictive analyt-
ics"’, and ’"higher education" + "machine learning"’. All searches
were conducted in the ACM Digital Library between July 1-26, 2022.
Our initial search returned 4,418 unique papers. Next, each paper
was reviewed for inclusion/exclusion using the following criteria:

• The paper is peer-reviewed published work.
• The paper contains an algorithmic approach and a technical
discussion of the computational methods, predictors and
outcomes employed.

• The paper uses student data (excluding papers that only
used student social media posts) limited to higher education,
including university and colleges at any level, and MOOCs
(massive open online courses) produced by universities or
colleges and aimed at higher ed students at any level.

• The paper was published between 2010 and 2022.

We then cross-referenced the citations of each paper to identify
any additional literature that also met our inclusion criteria. We
identified sixty-two relevant articles that met our inclusion criteria.

3.1.1 Descriptive Characteristics of the Data Set. All of the papers
reviewed (n=62) were published in the ACM full-text collection
between January 2012 and July 2022 (Figure 2). The majority (n=59)
were published after 2013, with a significant upward trend from
2018 to 2021. We found only one paper meeting the search criteria
published before 2012, a scheduling algorithm proposed by Win-
ters in 1971 [108]. It was not included in our review. This is not
to say that algorithms were not used in higher education prior to
2012. It is possible that institutions and software providers were
developing and using algorithms before this time, or that research
was simply published in other venues. The vast majority (n=59) of
papers in our corpus were published as conference papers; the re-
mainder were published in journals: Journal of Computing Sciences
in Colleges [22, 83], and Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies [105]. The papers
came from thirty-five conferences, including the ACM Conference
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on Learning @ Scale (n=10) and the International Conference on
Learning Analytics & Knowledge (n=17).

3.2 Coding and Data Analysis
3.2.1 Corpus Coding. After identifying the corpus of sixty-two pa-
pers, the first author reviewed each paper for its input data sources,
target outcome, and computational methods. Our analysis included
close reads of the abstract, methodology, and discussion sections
for each paper. Papers were reviewed for their specific data input
types, target outcome variables, and statistical approaches or ma-
chine learning models; coding categories were developed from the
results (Table 1). Many papers included multiple models and were
therefore included in more than one category of computational
method. Similarly, papers also used multiple input data sources and
were categorized accordingly. Only one target outcome, however,
was identified for each paper. We then conducted a quantitative
analysis, determining the number of papers in each category.

Data input type varied greatly between papers. The features in-
clude grades, gender, race, first-generation status, prior academic
achievement, and enrollment information. This list is non-exhaustive
as there was no established standard or pattern for describing input
data. In the case of LMS data, for example, it was described by
papers as generally as "student interaction data generated in the
course" [51] or as specifically as "Time elapsed since last click, Time
spent in the course during 7 days, Clicks in time frames, Clicks
to date, Clicks in the course during 7 days, Clicks in the forums,
etc." [19]. Institutional data includes data specific to the institu-
tion (including program or faculty-level data) as opposed to the
student: e.g., enrollment and retention rates, geographic data, and
financial information such as endowments and tuition rates. Target
outcomes were coded as one of the following categories: Student
Services, Engagement, Admissions, Grade Prediction, Retention,
Pathway Advising, Assessment, or Institutional Planning. Statisti-
cal approaches include logistic regression, causal inference, index
method, linear multiple regression, Cox Proportional Hazard Re-
gression, Chi-Square test of association, MANOVA, and ANOVA, as
well as general references to non-specific statistical techniques.Ma-
chine learning models include Arima, Linear Regression, Decision
Trees, Logistic Regression, Naïve Bayes, Forward Stepwise Regres-
sion, LASSO, Random Forest, XGBoost, Latent Dirichlet Allocation,
K-Nearest Neighbors, and various neural nets, amongst others.

In order to analyze the papers in the context of Human-Centered
Algorithm Design, we also deductively coded each paper as demon-
strating the dimensions of theoretical design, participatory design,
and/or speculative design. We adopted Baumer’s human-centered
algorithmic design framework [17] using the following assessments:
Theoretical Design: (i) How has the design of algorithms proposed
by the papers in our corpus aligned with, or were led by, educational
theory? Participatory Design: (i) How was meaningful inclusion of
stakeholders (students, graduates, applicants, faculty, counselors,
and/or administration) realized in the data selection, algorithm de-
sign, model evaluation, or implementation processes? (ii) How was
themodel evaluated using stakeholder feedback? Speculative Design:
(i) How have researchers envisioned their proposed algorithms be-
ing used in real-world higher-education institutions and scenarios,
including the consideration of potential harms and consequences?

Figure 2: Number of Papers by Year

3.2.2 Data Analysis. To determine trends, we examined the change
in the size of each category over time, from 2012 to 2022. To better
understand the relationships between the categories, we also cross-
tabulated the papers (computational method ↔ target outcome,
target outcome ↔ input data, and computational method ↔ input
data). Finally, we cross-tabulated our categories with each of the
HCAD dimensions: theoretical design, participatory design, and
speculative design (Table 7).

4 RESULTS
In this section, we present the results of the quantitative analysis of
the paper’s dataset, structured around the goals of the papers, the
predictive features employed, and the computational methods used.
We then review the papers for dimensions of theoretical design,
participatory design, and speculative design. Finally, we explore
the relationships between these elements.

4.1 Input Data
Here we examine the predictors used to develop algorithms in
higher education across six dimensions: demographic, learning
management system activity (LMS), institutional, grade/GPA, en-
rollment/pathways, and student surveys. Three papers used for
assessment were not categorized as they used assignment-specific
input data [35, 64, 89].

Twenty-eight of the sixty-two papers reviewed include student
demographic data of some kind in the feature set. The specific
input data are shown in Table 2. The most commonly used demo-
graphic features were gender, age, prior education, and ethnicity.
Two papers [18, 77] use students’ personal social media activity
(self-reported use of social networking sites and engagement data
collected from students’ personal pages) for the prediction of grades
and retention, respectively. Use of household financial data is in-
creasing, papers included as input features: family assets [30], need
for financial assistance [111], and parental income [11, 15, 53, 59].

Five papers have models built only with unique features that
could not be categorized. Three are for the purpose of assignment
evaluation and use variables specific to the assignment. This in-
cludes slide specifications and audio for measuring presentation
skills [35, 64], and velocity, acceleration, jerk, and rotation speed
in a dental simulator [89]. The remaining two use student behavior
(absenteeism, tardiness, uniform violation, and misconduct) [23]
and student emails [49] as input data for student services algorithms
that provide students with guidance.

In our review, we found almost half (n=27) of the papers include
one or more protected attributes (defined as race, sex, age, disability
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Table 2: Demographic Features by Year

Year Total
Papers Gender Age Prior

Education Ethnicity Income Location Marital
Status First Gen Disability

Status
Personal

Social Media

2012 6 1 1 1 1 1 - 1 - - -
2014 6 2 1 1 1 - - - 1 - -
2015 3 1 1 - - - - 1 - - -
2016 6 1 1 - 1 1 - 1 1 - -
2017 15 4 3 3 - 1 2 1 - 1 -
2018 5 2 2 - - - - - - - 1
2019 12 3 2 3 1 - 1 1 1 -
2020 20 5 4 3 3 1 2 1 1 - -
2021 15 4 3 2 2 2 1 - - - 1
2022 2 - - - 1 - - - 1 - -

status, or citizenship). Protected attributes, attributes for which
discrimination is illegal or protected by some policy or authority,
are commonly used as algorithmic inputs in higher education [111].
Some of these attributes, minority status, and family income, for
example, are substantially correlated with higher education dropout
rates [32]. However, Yu et al. [111] found that the inclusion of
protected attributes did not improve their model’s performance for
dropout prediction, and the use of these attributes as input data may
amplify inequities already existing in higher education institutions
[112].

Thirty-two papers include student grades as a predictor. This
data encompasses course grades, assignment grades, GPA, tran-
scripts, and standardized test results. Student enrollment is also
used frequently (n=18) in the form of input data related to course
load, course descriptions, educational pathways, and currently en-
rolled courses.

Authors frequently use interactions with the institution’s learn-
ing management system as measures of student learning behaviors
and student engagement in their respective courses. Eighteen of the
papers reviewed used LMS data as input data for their algorithms.
Examples of LMS data include timestamps and counts of clicks, time
spent watching videos or reading course content, use of discussion
boards, and login frequency.

Only six of the papers reviewed include student survey data. The
surveys include perceptions of the LMS [66], self-reported mental
health data [105], skills, interests, and preferences [73], student
services needs [49], self-reported learning styles [68] and prior
knowledge assessment [36]. Finally, few of the reviewed papers
(n=3) had input data related to the institution or course more gener-
ally, and all three were published in 2021. These features included
enrollment and retention [10, 83, 118], and digital competency of
the institution and faculty [10].

The feature selection process is an important element of model
design. Guyon et al. [44] identify three main objectives of variable
selection: improved model performance, improved model efficiency
(both speed and cost in acquiring and cleaning data, and in running
the model), and model explainability. The papers in our review
overwhelmingly prioritized model performance and data availabil-
ity. Explainability was not detailed as part of the feature selection
process nor was the process grounded in educational theory. A

human-centered approach to algorithm design should begin with a
contextual understanding of the data [27] as the curation of input
data creates opportunities for bias, algorithmic harm, and privacy
concerns. The features selected become the ’ground truth’ of the
model but the feature selection process is inherently subject to
interpretation [27]. In the majority of the papers in our review,
the roles of gender, age, and ethnicity became the ’ground truth’
in predicting grades or student success. The apparent correlation
between these personal attributes and a student’s academic achieve-
ments is unquestioned, and few papers adopted a human-centered
lens to the selection process. Missing from the papers is evidence of
an evaluation of the features through educational or social science
theory, to speculate on the possible impact of using these features in
decision-making, or to include stakeholders in the feature selection
process.

4.2 Computational Methods
In this section, we discuss the computational methods used to de-
velop algorithms. For the purpose of analysis, methods and model
types were categorized as Inferential Statistics, Rules Based, Ma-
chine Learning (ML), Deep Learning (DL), and Natural Language
Processing (NLP).

The use of machine learning algorithms within higher education
grew rapidly beginning in 2014, as shown in Table 3. As expected,
inferential statistics were primarily used prior to this trend. As
machine learning methods advanced, researchers moved away from
statistical methods.

The overwhelming majority of papers in our corpus, 48 (77%),
used some form of machine learning. Almost half of the papers
(n=29) used more than one type of machine learning algorithm (46%
of all papers, and 60% of machine learning papers). These papers
have a stated goal of comparing models for the task at hand.

From 2018 to present, NLP and deep learning both saw rapidly
increasing use, indicating a shift towards less explainable and less
interpretable models and results. Only four of these papers included
any discussion of interpretability and explainability, including fea-
ture importance. To increase the interpretability of recurrent neural
networks and determine feature importance, authors used the per-
mutation feature importance algorithm [105], random forests [8]
and SHAP global feature importance [14]. While these methods
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Table 3: Computational Method by Year

Year Total
Papers

Inferential
Statistics

Rules
Based

Machine
Learning

Deep
Learning

Natural
Language
Processing

2012 2 1 - 1 - -
2013 1 1 - - - -
2014 7 3 - 5 - -
2015 1 - - 1 - -
2016 3 2 1 - - -
2017 5 2 - 3 - -
2018 8 - 1 6 2 1
2019 9 2 - 5 4 1
2020 11 1 - 9 3 1
2021 11 1 - 8 3 1
2022 4 - - 3 2 1

offer insight into how the algorithm’s decision was weighted, only
one [14] discussed potential interpretations of the results.

Computational methods can have a meaningful impact on the
potential for algorithmic harm. In the case of machine learning,
model selection affects more than just the algorithmic performance;
explainability and interpretability are key factors ensuring algo-
rithmic decision-making is as fair as possible and human-centered
[59]. As Rudin [88] noted, there remains a pervasive myth in the
research community that the model selection process inevitably
includes a trade-off between model accuracy and interpretability,
"a widespread belief that more complex models are more accurate,
meaning that a complicated black box is necessary for top predic-
tive performance." We saw this belief shape research in many of the
papers we reviewed; with model performance as the primary metric
and goal, explainability and interpretability are dismissed in favor
of deep learning methods. In order to develop human-centered algo-
rithms for higher education, students must be centered in the model
selection process by prioritizing results that can be understood and
explained.

4.3 Target Outcomes
In this section, we examine the target outcomes of algorithms pro-
posed in the papers. The papers were sorted into nine categories
based on the goal of the model and the target variable: grade predic-
tion, retention, institutional planning, pathway advising, student
services, admissions, assessment, and engagement. Table 4 depicts
the distribution of papers across target outcome categories, by year.

Thirty-nine (63%) of the papers in our review propose algorithms
that seek to predict student success, defined as retention or dropout
prediction (n=19), grade prediction (n=18), and admissions decision-
making (n=2). While still a significant focus of the research com-
munity, student success papers have accounted for a smaller share
of the research in recent years.

Student services (n=4) and pathway advising (n=7) make up 18%
of the papers. The increase in available data from learning manage-
ment systems and self-serve course registration may account for
the recent increase in research in these two areas.

The shift in focus from student success prediction for retention
towards pathways advising and admissions is significant. Retention
and drop-out prediction models are proposed to provide insight to
academic staff by identifying students in need who may not have
been otherwise supported. Pathway advising and, to an even greater

degree, admissions models have the power to make decisions for
students, acting as gatekeepers to courses and programs.

Seven papers focused on course-level predictions, including pre-
dicting student engagement (n=4) and student assessment (such as
automated assignment evaluation) (n=3). This is another growing
area of research that is also dependent on the influx of LMS data.
The remaining five papers related to institutional planning. There
is growing variability in the goals of the models proposed by the
research community. Ten years ago, models were largely limited
to grade prediction and retention. In the last few years, there has
been a trend towards student service models: models that students
interact with directly for information and advice, such as pathway
advising, administration services, and learning support.

4.4 Human-Centered Algorithm Design
Strategies

The vast majority of the literature in our review does not include
educational, social, or behavioral science theories in the design of
their algorithms. Only two of the papers ground their algorithmic
design in established learning theory: Borella et al. [19] consider
individualistic and constructivist framings while designing inter-
ventions for their drop-out prevention tool, and interest exploration,
which the authors consider a fundamental component of construc-
tivist learning, is critical to the design of the educational pathways
tool developed by Chen et al. [26]. All sixty-two papers in our cor-
pus focus on students and learning, but despite the subject matter,
only these two papers make substantial reference to educational or
learning theory.

Despite the participatory nature of higher education, only three
papers in our review [26, 39, 81] include a participatory approach to
their model development. All three have pathway advising as their
targeted outcome. The participatory strategies employed include a
formative study on need analysis [26], post-intervention evaluation
studies [26, 81], and a robust participatory action research approach
directly involving academic advisors [39].

While no papers demonstrate a robust speculative design, three
papers [53, 59, 111] do consider the use of the tool in serving real-
world purposes. For all three, that consideration includes warnings
of potential consequences and the "broader implications for using
predictive analytics in higher education" [111]. One paper suggests
real-world mitigation techniques by advocating for human-in-the-
loop implementation [59].

4.5 Relationship between Input Data, Methods,
Outcomes, and HCAD Strategies

In this section, we examine the trends in the interactions between
the input data, computational methods, and target outcomes. We
then discuss the relationship between each of the model parame-
ters and each of the human-centered algorithm design strategies:
theoretical design, participatory design, and speculative design.
Relationship between Input Data and Target Outcomes

Table 5 crosstabs between the input data used and the target
outcomes they seek to predict. GPA/Grades are used as a predic-
tor for all target outcomes at least once, with the sole exception
of algorithms developed to assess individual assignments. Demo-
graphic data, which includes the protected attributes, is the next
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Table 4: Target Outcome by Year

Year Total
Papers

Grade
Prediction Retention Institutional

Planning
Pathway
Advising

Student
Services Admissions Assessment Engagement

2012 2 1 1 - - - - - -
2013 1 1 - - - - - - -
2014 7 3 2 - - - - 2 -
2015 1 - 1 - - - - - -
2016 3 1 1 - - - - - 1
2017 5 2 3 - - - - - -
2018 8 2 1 1 1 2 - - 1
2019 9 2 3 - 3 - - - 1
2020 11 3 4 - 1 1 2 - -
2021 11 3 2 4 1 - - - 1
2022 4 - 1 - 1 1 - 1 -

most commonly employed predictor and weighs heavily for grade
prediction and retention. LMS activity is applied not only in predict-
ing engagement but also for grade prediction, pathway advising,
and retention. Two papers use student surveys for the purpose of
grade prediction, a self-report Learning Style Inventory survey [20]
and a prior knowledge survey [36].
Relationship betweenComputationalMethod andTargetOut-
come

The computational method used and the correlating target out-
come are also shown in Table 5. The review revealed a high vari-
ety of computational methods across target outcomes, except in
the case of admission prediction (machine learning only). Within
those two papers [7, 100] however, a variety of machine learning
algorithms are employed. Papers with the most common target out-
comes, Grade Prediction, and Retention, include statistical, machine
learning, and deep learning methods. Natural Language Processing,
which is only found in papers published in 2018 or later, is used
only for Institutional Planning, Pathway Advising, and Student
Services.
Relationship between InputData andComputationalMethod

Next, we cross-examine input data by computational method
(Table 6). Papers employing statistical methods and machine learn-
ing techniques both used a wide variety of features as predictors.
This is to be expected of machine learning, a modeling technique
that requires heavily engineered feature sets and, within the pa-
pers reviewed here, is used to predict a very wide variety of target
outcomes. Statistical methods, however, are less expected as the
papers using this technique are limited to four target outcomes. For
Grade Prediction, papers employing statistical methods use input
data across five categories. For the same target outcome, papers
employing deep learning methods use only demographic, GPA, and,
for a singular paper, enrollment data. The most recent technique,
Natural Language Processing, is associated with only three feature
categories: GPA (1 paper [28]), student survey (1 paper [49]), and
enrollment/pathway data (4 papers all using course descriptions
[26, 28, 80, 81]).
Relationship between HCAD Strategy and Predictor, Target
Outcome and Computational Method

In addition to the model parameters described previously, our
review also considered the design of the study through the lens
of Baumer’s [17] framework described in section 2. In this section,
we’ll identify which papers employ theoretical, participatory, or
speculative dimensions in their design, as demonstrated in Table 7.
In the next section, 5, we’ll discuss the impacts of this inclusion on
the literature.

Only one paper [26] includedmore than one element of Baumer’s
HCAD framework [17] (theoretical and participatory design). No
papers to our knowledge include all three dimensions. All feature
categories except Institutional and Student Survey were accounted
for in papers using HCAD strategies. Interestingly, while three
papers [26, 39, 81] using participatory design included participant
surveys in their design methodology, they did not include surveys
as feature sets. Only one paper [49] used student survey data in its
feature set, in the design of a student services chatbot. The HCAD
papers generally targeted the more common outcomes of Grade
Prediction and Retention, though two papers [26, 81] were focused
on Pathway Advising. All of the HCAD papers employed machine
learning techniques including machine learning (4 papers), deep
learning (2 papers), and NLP (3 papers).

5 DISCUSSION
5.1 Research Challenges and Opportunities for

Algorithmic Decision-Making in Higher
Education

Threemajor needs emerged from the trends identified by our review:
the need to establish valid and theory-informed ground truths, the
need to consider interventions within the algorithm design process,
and the need for governance as algorithms move from identifying
and informing to decision-making.

5.1.1 Establishing Theoretical Groundedness. We found a growing
trend toward the use of LearningManagement System (LMS) data as
input features in algorithm design (n=18). These models were built
with the goals of predicting grades (n=8), retention (n=6), engage-
ment (n=3), and pathway advising (n=1). In each of these papers,
student interaction with their web-based learning platform was
used as a proxy for their engagement in the course. The underlying
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Table 5: Input Data and Computational Method by Target Outcome

Input Data Computational Method
Target Outcomes DM LMS IN GPA ENR SS SM RB ML DL NLP

Admissions 1 - - 1 - - - - 2 - -
Assessment - - - - - - - - 3 1 -
Engagement 1 3 - 2 1 - - 1 3 - -
Grade Prediction 10 8 - 13 4 2 6 - 11 6 -
Institutional Planning - - 3 2 3 - 1 1 3 1 1
Pathway Advising - 1 - 2 5 1 1 - 3 2 3
Retention 15 6 - 11 5 1 4 - 14 2 -
Student Services 1 - - 1 - 2 - - 2 2 1

DM: Demographics SM: Statistical Methods
LMS: LMS/Engagement RB: Rules-Based
IN: Institutional ML:Machine Learning
GPA: Grade/GPA DL: Deep Learning
ENR: Enrollment/Pathways NLP: Natural Language
SS: Student Survey Processing

assumption is that LMS activity like clicks on videos, frequency of
logins, and views of course content is correlated with their interest
and participation in the material, yet in none of the papers was
this assumption questioned or was educational theory presented
to support it. LMS interaction as a proxy for engagement, and an
indicator of academic success, is then accepted as a ground truth
within the algorithms. LMS activity, though, can take many forms
and there was no discussion within the papers as to the predictive
power of specific types of activities. The viewing of a video may
not have equal engagement value as participation in a forum dis-
cussion, or infrequent but substantial logins may or may not be
as effective as frequent, brief ones. Additionally, activity can be
impacted by many factors, including technological factors such as
interface design and privacy support [114] and the combination
of the LMS itself, the course design, and the course type produce
different student experiences and influence student behaviors [34].
These factors could differ significantly from course to course, even
within the same program or institution. The algorithms in question
don’t account for the course design. The ground truth of these mod-
els is that students with less LMS activity are less likely to succeed,
the output of which will trigger a student-level intervention and
not a review of the LMS, course design, or user experience.

Beyond incorporating educational theory in the design of algo-
rithms, computational scientists should allow for more collabora-
tion with education subject matter experts and social scientists, to
analyze the importance of these LMS interactions critically. More
research is needed to understand the relationship between LMS ac-
tivity and engagement. Additionally, researchers must consider how
the importance of the individual features of their algorithms aligns
not just with target variables, but also with the greater goals and
outcome of the algorithm. We discuss the importance of proposing
appropriate interventions as part of the algorithm design process
further in the next section.

5.1.2 Considering Interventions within Algorithm Design. We found
that before 2018, research focused primarily on designing algo-
rithms to predict students’ grades and retention. The motivation be-
hind this research is to reduce attrition through the early detection
of students who are identified as likely to drop out or fail a course
or program. Once identified, higher education institutions can pro-
vide these students with timely and focused interventions. Papers
frequently cite significant consequences to students, academic staff,
and higher education institutions as a result of attrition, but few
consider what interventions exist, the efficacy of the interventions,
or the institutions’ legal and ethical obligations to provide interven-
tions once ’at-risk’ students have been identified [84]. Intervention
efficacy, as well, is difficult to measure - interventions varied in
form and included automated email notifications, supplementary
readings and assignments, recurring meetings with advisors, and
counseling services [47]. The one paper identified that did consider
the impact of these interventions [31] found no evidence of a sub-
sequent effect on retention outcomes. While dropout prediction
was and remains a popular avenue of research, we did not find any
literature demonstrating that the models are put into use effectively
within higher education institutions. The algorithms seem to be
designed within data-science silos, with little consideration for their
role within the institution or as part of the greater student experi-
ence. A participatory design approach that incorporates learning
strategists, for example, allows for the iterative design of theoreti-
cally grounded interventions in tandem with the development of
the algorithm; any limitations and potentially harmful impact of
the model (such as false positives) can be explained and considered
in the design of the interventions [21].

While more research is certainly needed to determine if algo-
rithms developed to identify ’at-risk’ students and subsequently
trigger early interventions have any impact on retention, the acute
risk to students appears minimal: at worst the resulting outcome
is participation in an ineffective intervention. Student support ser-
vices at higher education institutions can be scarce, however. Sup-
port that goes to a student flagged algorithmically may be support
that would have otherwise been provided to another student. In
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Table 6: Input Data by Computational Method

Input Data
Computational Method DM LMS IN GPA ENR SS
Statistical Methods 5 7 1 6 2 3
Rules-Based - 1 - 1 - -
Machine Learning 21 9 2 21 12 2
Deep Learning 6 2 - 9 5 1
Natural Language Processing - - - 1 4 1

DM: Demographics
LMS: LMS/Engagement
IN: Institutional
GPA: Grade/GPA
ENR: Enrollment/Pathways
SS: Student Survey

other words, within higher education institutions, interventions
may be a finite resource. We were unable to find any literature that
compared the outcomes for students identified by an algorithm to
those identified through traditional methods.

To address these gaps, future research must include considera-
tion of the interventions proposed as an outcome of the model. An
algorithm designed to increase retention cannot only be evaluated
by its performance in predicting which students may not succeed.
In other words, researchers should consider the relationship be-
tween the specific predictors used in making the prediction and the
intervention proposed to then correct the prediction.

5.1.3 Moving from Identification to Decision-Making. Even more
concerning, however, is the move from retention and grade pre-
diction toward pathway advising and admissions. The decisions
made by retention algorithms create access to support services that
may not have otherwise been available to students but they do not
restrict students’ choices. Algorithms designed for course selec-
tion, program admission, and pathway advising have the potential
for a more direct and limiting impact on students. For example, re-
searchers [100] used the same algorithmic target variable, retention,
along with likelihood of job placement, to develop an admissions
algorithm. In this case, retention was not used to flag enrolled stu-
dents in need of assistance, but rather to deny applicants admission
to a Master’s program. In another example, researchers [52] used
grade history to build a course recommendation engine, guiding
students in what courses to pursue based on likelihood of success.
In both these cases, grade prediction is used as a tool to restrict
students’ options. Algorithms in higher education are moving be-
yond the ability to simply provide greater insight to institutions
through the identification of at-risk students, but to actually make
the decisions for them.

As we expect to see this trend continue, and the use of algorithms
for decision-making expand beyond its current scope, our results
suggest the need for more governance within higher education
institutions. Our review indicates that it is certainly technologi-
cally possible to leave these student decisions in the hands of algo-
rithms, but whether it is desirable for algorithms to shape students’
academic careers without the oversight of a human-in-the-loop
remains a legal, ethical, and pedagogical question.

5.2 Towards Human-Centeredness in
Algorithmic Decision-Making in Higher
Education

Without the application of a human-centered lens, much of the
discussion above would have been missed. Embedding Baumer’s
framework [17] enabled us to center students within our review,
and subsequently identify the limitations of the papers themselves
and the increased potential for harm within the changing trends of
algorithm design.

Higher education institutions are socially-complex, diverse, and
high-stakes environments with a potentially vulnerable population
of students and inherent power imbalance. Algorithmic systems de-
signed to provide insights into, or more recently, to make decisions
for, the student population are inherently part of these systems.
Complex and highly contextual student data is used to train algo-
rithms that are then used to make complex decisions for those stu-
dents. The research community has raised concerns about the use
of AI that includes machine autonomy, the consequences of which
are quickly being realized [96]. The AI Incident Database strives to
document these risks and impacts, and includes many examples of
algorithmic harm in higher education including facial-recognition
software for exam proctoring providing "allegedly discriminatory
experiences for BIPOC students" [46] and wrongfully accusing stu-
dents of academic dishonesty, an application screening algorithm
that "allegedly exacerbated existing inequality for marginalized
applicants" [45], and a grading algorithm that "kept students out of
college" [101].

A human-centered approach is required to ensure the algorithm
is designed with an understanding of those contexts and the real-
world functioning of algorithmic decisions must be grounded in
social science theories. By including social science theory in the de-
sign of their algorithms, researchers can create more robust feature
selection processes. Educational theory allows us to more efficiently
narrow down potential features to only those that are pedagogically
sound, avoid bias, and align to outcomes. Educational theories will
also provide a descriptive framework, improving the interpreta-
tion of input data and outcomes. Additionally, they provide new
avenues for measuring model results beyond model performance.
Theoretical design is by nature multi-disciplinary, requiring the
expertise of multiple and varied domains. In practical terms, this
means that researchers must turn to behavioral and educational
theory to understand how their stakeholders work and learn, and
use that understanding to select their feature sets, interpret the
results, and recommend the corresponding algorithms.

Participatory design is frequently proposed within critiques of
machine learning as a strategy for identifying and mitigating risks
[33], within the public service[92] and other workplaces [41]. De-
veloping an algorithm to make decisions for students requires the
formalization of that decision. As such, model developers must take
care to ensure that formalization reflects the true goals of all stake-
holders [2]. Abebe et al. see this as an opportunity for institutional
reflection, offering the opportunity for non-technical stakehold-
ers to explicitly consider how decisions should be made [2]. By
including domain stakeholders, researchers can develop systems
that are more fit for real-world use in socially complex contexts,
such as those in higher education institutions. Moving towards
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Table 7: Human Centered Algorithm Design Strategy by Target Outcome, Input Data, and Computational Method

HCAD Strategy
Theoretical Participatory Speculative

Target
Outcomes

Admissions - - -
Assessment - - -
Engagement - - -
Grade Prediction - - 2 [53, 59]
Institutional Planning - - -
Pathway Advising 1 [26] 2 [26, 81] -
Retention 1 [19] 1 [39] 1 [111]
Student Services - - -

Input Data Demographic - - 3 [53, 59, 111]
LMS/Engagement 1 [19] - 1 [59]
Institutional - - -
Grade/GPA 1 [19] 1 [39] 3 [53, 59, 111]
Enrollment/Pathways 2 [19, 26] 3 [26, 39, 81] 2 [53, 111]
Student Survey - - -

Computational
Method

Statistical Methods - - -
Rules-Based - - -
machine Learning 1 [19] 1 [39] 2 [59, 111]
Deep Learning - 1 [81] 1 [53]
Natural Language Processing 1 [26] 2 [26, 81] -

a participatory design approach will allow for the active involve-
ment of students, faculty, counselors, and administration in the
model design process. Engaging these stakeholders throughout the
design process will enable algorithms to be designed to integrate
properly into existing systems. Including staff of higher education
institutions, such as counselors and retention teams, in the design
of drop-out predictions algorithm will ensure the model results and
features of high importance align with the available interventions.
It will also allow for a better understanding of input data, thus
improving the interpretation of model results.

The majority of papers in our review evaluated the models on
their performance, usually their accuracy, and didn’t consider if
they delivered on their purpose. Beyond design and development,
a participatory approach to model evaluation enables researchers
to go beyond performance metrics, evaluating models not just on
their technical accuracy but on their ability to meet the goals of
the research. The algorithms may accurately identify the students
it has been trained are ’at risk’, but whether that identification led
to meaningful interventions that subsequently increased retention
is unknown. Many questions around model value, as opposed to
model performance, are unanswered: do drop-out predictionmodels
improve retention; does LMS data reliably correlate to the student
experience; are students satisfied with the courses selected for them
through a pathway advising tool? Without the perspectives of a
participatory approach, future research will be limited to defining
success by an algorithm’s ability to predict that which it was trained
to predict. This is, of course, a crucial step in model development.
But to reduce the potential for algorithmic harm, researchers must
all consider the success of their models in the context of their in-
tended complex systems. This evaluation requires the participation
of stakeholders both during the design of the model and after it is
implemented.

Every algorithm in our review was proposed for some real-world
purpose, from triggering interventions for at-risk students and re-
ducing attrition to grading assignments. But the literature largely
fails to consider the algorithms as part of larger systems, and how
they will affect those systems going forward. The research included
in our review considers model performance only, with questions of
how the decisions will be governed and implemented unanswered,
and little speculation about how automated decisions could shape
student experiences and outcomes. Future research into algorithmic
decision-making in higher education must go beyond model per-
formance to consider the potential the algorithms could have once
used for their proposed real-world purpose. To design algorithms
that have the intended impact, researchers must consider both the
possibility of harm caused by the model but also what changes,
if any, are necessary to ensure the algorithm is able to help meet
institutional goals.

5.3 Limitations and Future Work
Our systematic literature review was limited to papers published
in the ACM Digital Library between 2010 and 2022. We may have
missed algorithms published outside this time period, as well as in
other libraries and those that are not publicly available as research,
for example, drop-out prediction algorithms developed for profit by
educational software providers. We plan to work with stakeholders
in education, including students, counselors, faculty, and adminis-
tration, to better understand how the algorithms in our review, and
those developed proprietarily, are being implemented in higher ed-
ucation institutions. To move towards a human-centered approach
to building evidence-based and theoretically-driven algorithms that
do as they intend in real-world scenarios, we plan to seek a bet-
ter understanding of the connections between input features and
proposed interventions, and LMS data and student engagement.
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6 CONCLUSION
We conducted a systematic review of existing literature published
in the ACM Digital Library on algorithmic decision-making in
higher education. After establishing a corpus of 63 papers, we
quantitatively analyzed the papers for their input data, computa-
tional methods, and target outcomes, before applying an established
human-centered algorithm design framework [17]. Going forward,
we recommend that the HCI research community focus on develop-
ing algorithm design processes with theoretical, participatory, and
speculative dimensions. Theoretically-grounded algorithm design
that includes active engagement of stakeholders through the design
and evaluation phases will ensure algorithms that are better aligned
to the socially-complex systems of which they are a part. It will also
increase understanding of highly-contextual input data and allow
for better interpretation of results. Additionally, we recommend
that future research in this area considers the future of higher edu-
cation institutions and how the proposed algorithms may impact
stakeholders.
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A CODE SHEET

Reference Input Data Target Output Computational Methods Study Design
[3] Demographic; Grade/GPA; Protected Class Retention ML
[4] Demographic; Grade/GPA; Protected Class Retention ML
[7] Grade/GPA Admissions ML
[8] LMS/Engagement; Grade/GPA Retention DL
[10] Institutional Institutional Planning Statistical Methods
[11] Demographic; Grade/GPA; Enrollment/Pathways; Protected Class Retention Statistical Methods
[14] Demographic; Grade/GPA; Enrollment/Pathways; Protected Class Retention ML; DL
[15] Demographic; LMS/Engagement; Grade/GPA; Protected Class Retention Statistical Methods
[18] Demographic; Grade/GPA; Protected Class Grade Prediction ML
[19] LMS/Engagement; Grade/GPA; Enrollment/Pathways Retention ML Theoretical Design
[20] LMS/Engagement; Student Survey Grade Prediction Statistical Methods
[22] LMS/Engagement; Grade/GPA Grade Prediction Statistical Methods
[23] Demographic; Protected Class Student Services Statistical Methods
[26] Enrollment/Pathways Pathway Advising NLP Theoretical Design, Participatory Design
[28] Grade/GPA; Enrollment/Pathways Institutional Planning ML; DL; NLP
[29] Demographic; Grade/GPA; Protected Class Grade Prediction ML; DL
[30] Demographic; Protected Class Retention ML
[31] Demographic; Protected Class Retention Statistical Methods
[35] - Assessment ML
[36] LMS/Engagement; Grade/GPA; Student Survey Grade Prediction Statistical Methods
[37] Demographic; Grade/GPA; Protected Class Retention ML
[38] Grade/GPA Engagement ML
[39] Grade/GPA; Enrollment/Pathways Retention ML; Participatory Design
[42] Demographic; LMS/Engagement; Grade/GPA; Enrollment/Pathways; Protected Class Engagement ML
[43] Grade/GPA Institutional Planning Rules-Based
[49] Student Survey Student Services DL; NLP
[50] Demographic; LMS/Engagement; Protected Class Retention ML
[51] Demographic; LMS/Engagement; Grade/GPA; Protected Class Retention ML
[52] LMS/Engagement; Grade/GPA; Enrollment/Pathways Pathway Advising DL
[53] Demographic; Grade/GPA; Enrollment/Pathways; Protected Class Grade Prediction DL Speculative Design
[55] Grade/GPA Pathway Advising Statistical Methods
[57] Demographic; Protected Class Retention ML
[59] Demographic; LMS/Engagement; Grade/GPA; Protected Class Grade Prediction ML Speculative Design
[61] Enrollment/Pathways Pathway Advising ML
[64] - Assessment ML
[65] Demographic; Grade/GPA; Protected Class Grade Prediction ML; DL
[66] Demographic; Student Survey; Protected Class Retention Statistical Methods
[71] LMS/Engagement Engagement Rules-Based
[72] LMS/Engagement Grade Prediction Statistical Methods; ML
[73] Student Survey Pathway Advising ML
[75] Demographic; Grade/GPA; Protected Class Grade Prediction ML
[77] Demographic; Protected Class Retention ML
[78] Demographic; Protected Class Retention ML
[80] Enrollment/Pathways Pathway Advising ML; NLP
[81] Enrollment/Pathways Pathway Advising DL; NLP Participatory Design
[82] LMS/Engagement Retention ML;
[83] Institutional; Enrollment/Pathways Institutional Planning ML
[86] Demographic; Grade/GPA Student Services ML
[87] Demographic; LMS/Engagement; Grade/GPA; Enrollment/Pathways; Protected Class Grade Prediction Statistical Methods
[89] - Assessment ML; DL
[93] Grade/GPA Grade Prediction ML; DL
[99] LMS/Engagement Engagement ML;
[100] Demographic; Protected Class Admissions ML
[102] Grade/GPA; Enrollment/Pathways Grade Prediction ML;
[103] LMS/Engagement Grade Prediction ML
[105] Student Survey Student Services ML; DL
[106] Demographic; Grade/GPA; Enrollment/Pathways; Protected Class Grade Prediction ML
[111] Demographic; Grade/GPA; Enrollment/Pathways; Protected Class Retention ML Speculative Design
[113] LMS/Engagement Grade Prediction Statistical Methods
[116] Demographic; Protected Class Grade Prediction ML; DL
[117] Demographic; Grade/GPA; Protected Class Grade Prediction DL
[118] Institutional; Enrollment/Pathways Institutional Planning ML;
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