
Assistive-Technology Aided Manual Accessibility Testing in 
Mobile Apps, Powered by Record-and-Replay 

Navid Salehnamadi Ziyao He Sam Malek 
nsalehna@uci.edu ziyaoh5@uci.edu malek@uci.edu 

School of Information and Computer School of Information and Computer School of Information and Computer 
Sciences Sciences Sciences 

University of California, Irvine, USA University of California, Irvine, USA University of California, Irvine, USA 

ABSTRACT 
Billions of people use smartphones on a daily basis, including 15% 
of the world’s population with disabilities. Mobile platforms en-
courage developers to manually assess their apps’ accessibility in 
the way disabled users interact with phones, i.e., through Assistive 
Technologies (AT) like screen readers. However, most developers 
only test their apps with touch gestures and do not have enough 
knowledge to use AT properly. Moreover, automated accessibility 
testing tools typically do not consider AT. This paper introduces 
a record-and-replay technique that records the developers’ touch 
interactions, replays the same actions with an AT, and generates a 
visualized report of various ways of interacting with the app using 
ATs. Empirical evaluation of this technique on real-world apps re-
vealed that while user study is the most reliable way of assessing 
accessibility, our technique can aid developers in detecting complex 
accessibility issues at diferent stages of development. 

CCS CONCEPTS 
• Software and its engineering → Software testing and debug-
ging; • Human-centered computing → Accessibility design 
and evaluation methods. 

KEYWORDS 
Android, Accessibility, Software Testing, TalkBack, AssistiveTech-
nology 

ACM Reference Format: 
Navid Salehnamadi, Ziyao He, and Sam Malek. 2023. Assistive-Technology 
Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-
and-Replay. In Proceedings of the 2023 CHI Conference on Human Factors in 
Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, 
New York, NY, USA, 20 pages. https://doi.org/10.1145/3544548.3580679 

1 INTRODUCTION 
Mobile devices are the most popular computing devices [62], and 
mobile applications are an integral part of people’s daily lives. Mod-

ern mobile devices are equipped with touchscreens, providing rich 
experiences for users; however, they also force developers to test 
and validate the functionality of their apps either manually or using 

This work is licensed under a Creative Commons Attribution-NonCommercial 
International 4.0 License. 

CHI ’23, April 23–28, 2023, Hamburg, Germany 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9421-5/23/04. 
https://doi.org/10.1145/3544548.3580679 

automated tools. In the testing process, developers may neglect to 
evaluate their software for approximately 15% of the world’s popu-
lation with disabilities [66], many of whom cannot use conventional 
interaction methods, such as touch gestures. According to law en-
forcement and social expectations, developers should design apps 
accessible to all users, regardless of their abilities. Still, prior studies 
have revealed that many popular apps ship with accessibility issues, 
preventing disabled users from using them efectively [2, 23, 56]. 

App developers are aided by accessibility guidelines published 
by companies such as Apple [16] and Google [8], as well as tech-
nology institutes such as the World Wide Web Consortium [65]. 
In order to understand how people with disabilities use mobile 
apps, developers are encouraged to conduct user studies with users 
(preferably with disabilities) using assistive services, such as screen 
readers. Despite the fact that software practitioners acknowledge 
the importance of human evaluation in accessibility testing, they 
admit that end-user feedback is difcult to obtain [19]. Furthermore, 
for small development teams with limited resources, fnding users 
with various types of disabilities and conducting such evaluations 
can be prohibitively challenging and expensive. 

Using accessibility analysis tools, app compliance with guidelines 
and accessibility issues can be detected automatically [5, 7, 17, 
18]. An app’s User Interface (UI) can be analyzed, for example, to 
determine if the contrast between elements and backgrounds is 
above a certain threshold or if the button area exceeds a specifed 
area defned in the guidelines. Solely analyzing the UI specifcation 
of an app may not reveal many accessibility problems that are only 
present when assistive services are used, such as screen readers. 
Blind users, for instance, can use a screen reader like Android’s 
TalkBack to navigate UI elements and perform actions. If TalkBack 
is unable to focus on an element, the element becomes completely 
inaccessible. 

Generally, automated accessibility testing does not consider as-
sistive services, except for a few recent research tools [1, 58, 60]. 
Latte [58] assumes the availability of GUI test cases for validat-
ing an app’s functionality. The test cases are then repurposed to 
execute with assistive services, e.g., TalkBack, for accessibility anal-
ysis. Since developers rarely write GUI tests for their apps, Latte 
is limited to situations where GUI tests are available. According to 
a recent study, over 92% of Android app developers do not have 
GUI tests [46]. Other works try to mitigate this issue by analyz-
ing a single app screen while ignoring the app’s functionalities. 
ATARI [1] assesses the focusability of screen elements by navigat-
ing sequentially using TalkBack. However, ATARI does not consider 
any actions, e.g., clicking, and depends on the developers/testers to 
provide the screen. Moreover, both Latte and ATARI consider one 

https://doi.org/10.1145/3544548.3580679
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3544548.3580679
mailto:malek@uci.edu
mailto:ziyaoh5@uci.edu
mailto:nsalehna@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3580679&domain=pdf&date_stamp=2023-04-19


CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al. 

type of navigation in TalkBack: linear navigation. Groundhog [60] 
addresses this limitation by using an app crawler to visit multi-

ple screens and assessing whether the elements are clickable by 
TalkBack. Although Groundhog considers performing actions, its 
analysis is limited to one action on one screen and cannot detect 
accessibility issues occurring in a sequence of interactions. More-

over, it is limited to one action, i.e., click, and does not support 
other actions like swipe or type. Finally, Groundhog cannot visit 
and analyze various parts of an app due to the limitation in random 
input generation, e.g., it cannot pass the login screen. 

The key insights that guide our research are (1) mobile de-
velopers and testers still prefer manual testing in-app develop-
ment [38, 41, 47], (2) assistive services need to be incorporated for 
evaluating apps’ accessibility, and (3) there is a lack of expertise 
and knowledge among many mobile developers and testers on how 
to properly evaluate the accessibility of their apps with guidelines, 
automated tools, and assistive services. A survey found that 48% 
of Android developers cite lack of awareness as the main reason 
for accessibility issues in apps [2]. Another survey found that 45% 
of accessibility practitioners are experiencing problems related to 
accessibility development and design, such as inadequate resources 
and experts [19]. 

Informed by the above-mentioned insights, we have developed a 
new form of automated accessibility analysis, called A11yPuppetry, 
that aids developers in gaining insights on accessibility issues of 
their apps. Developers and testers can evaluate their apps manually 
by using touch gestures, while A11yPuppetry records these interac-
tions. After that, A11yPuppetry interacts with the app on another 
device using an assistive service to perform the equivalent actions 
on behalf of the testers, regardless of their knowledge and expertise 
in accessibility and assistive services. A11yPuppetry is inspired by 
Record-and-Replay (RaR) techniques, such as [31, 33, 57], where a 
program records the user actions on an app and replays the same 
actions on the same app in another device. However, to the best of 
our knowledge, all existing RaR techniques replay the recorded ac-
tions exactly as they are performed. For example, if the user touches 
specifc coordinates of the screen, the replayer program also sends 
a touch event for the same coordinates. A11yPuppetry is diferent 
from these techniques since the replaying part is completely done 
by an alternative way of interaction, e.g., a screen reader. More 
importantly, A11yPuppetry generates a fully visualized report for 
developers after replaying the recorded use case with assistive 
services, which are augmented by accessibility issues. 

This paper makes the following contributions: 

• A novel, high-fdelity, and semi-automated form of accessibility 
analysis that can be used by almost any mobile developer or 
tester to evaluate the accessibility of mobile apps with assistive 
services; 

• A publicly available implementation of the above-mentioned 
approach for Android called A11yPuppetry [59]; 

• Conducting user studies with users with disabilities and creating 
a benchmark of real apps with accessibility issues confrmed by 
disabled users; and 

• An extensive empirical evaluation demonstrating the efective-
ness of A11yPuppetry in identifying issues that the existing 
automated techniques cannot detect. 

The rest of this paper is organized as follows: Section 2 moti-

vates this study with an example and explains the challenges that 
we are facing. Section 3 examines the related literature, next the 
Section 4 provides an overview of our approach and the follow-
ing sections explain the details of our approach. The evaluation of 
A11yPuppetry on real-world apps is fnally presented in Section 9. 
The paper concludes with a discussion of the avenues for future 
work. 

2 MOTIVATING EXAMPLE 
This section illustrates how users with visual impairments use 
screen readers to interact with apps. Further, we demonstrate a cou-
ple of accessibility issues that cannot be detected by conventional 
accessibility testing tools. Finally, we elaborate on the challenges 
of automatically recording touch gestures and replaying them with 
a screen reader. 

Figure 1(a) shows the home page of the Dictionary.com app 
with more than ten million users in the Android Play store [25]. 
Assume a tester wants to validate the correctness of a use case which 
consists of 3 parts: Selecting the “word of the day” and listening to 
its pronunciation, marking the word as a favorite, and reviewing 
or removing favorite words. 

A user without a disability who can see all elements on the screen 
and perform any touch gestures can perform this use case fairly 
easily. First, she taps on the word of the day, box 10 in Figure 1(a), 
then the app goes to Figure 1(b). Next, she taps on the speaker button 
to listen to the pronunciation, pink-dashed box in Figure 1(b). Then 
to mark the word as a favorite, she taps the star button, yellow-
solid box in Figure 1(b), and she can get back to the home page, 
Figure 1(a), by pressing the back button. Next, to see the list of 
favorite words, she taps on box 2. The app will go to the state 
depicted in Figure 1(c). To remove a word, the user needs to tap 
on the edit button, yellow-solid box in Figure 1(c), then the navbar 
changes to depict the number of selected words, and the delete 
button, Figure 1(d). Finally, the user selects the checkbox next to 
the word, and taps on the delete button, the yellow-solid box in 
Figure 1(d). 

To perform the same use case, users with visual impairments, 
particularly blind users, have a completely diferent experience. 
They rely on screen readers, e.g., TalkBack for Android [10], to 
interact with the app. Users can perceive the screen’s content by 
navigating through elements and listening to the textual description 
of the focused element by TalkBack. A common accessibility issue 
among mobile apps is the lack of content description for visual 
icons [2, 23]. For example, if the star button in Figure 1(b) does 
not have a content description, a blind user cannot guess the func-
tionality of this button. For the sake of this example, assume this 
app does not have such issues and all elements have proper textual 
description, e.g., box 2 in Figure 1(a) has a content description as 
“Favorites List”. 

There are several ways of navigating the elements of an app 
with TalkBack. Using Linear Navigation, the user can navigate to 
the next and previous element of the currently focused element 
by swiping right and left on the screen. For example, to reach 
the “word of the day” in Figure 1(a), which is diphthongize, the 
user can start from box 1 (top left icon) and navigate to the next 

https://Dictionary.com


Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany 

Figure 1: (a) The main page of Dictionary app; (b) The page after tapping on the word of the day; (c) The page showing all of the 
words favored by a user; (d) The page after user taps on the edit button in Figure 1(c); (e) Upper menu disappears when user 
scrolls down the page; (f) The Search Navigation provided by TalkBack. 

elements until it reaches box 10. Note that TalkBack may group 
elements for a more fuent announcement, like here, where a couple 
of textual elements are grouped into box 10. Secondly, the user can 
utilize Jump Navigation to focus on elements with specifc types, 
e.g., buttons or edit-text boxes. For example, by jumping in button 
elements, the user can focus on boxes 1, 4, 5, 6, and 7, pink-dashed 
boxes in Figure 1(a). The third way is Touch Navigation where the 
user touches diferent parts of the screen, and TalkBack focuses 
on the elements behind the user’s fnger. For example, if the user 
touches the top right of the screen in Figure 1(b), it focuses on 
box 2, and TalkBack announces “Favorites List”. Another way is 
fnding the element through a search. TalkBack user can enter the 
name of the element she is looking for, either by text entry or voice 
command, and TalkBack focuses on the element with the same text. 
For example, by searching “View All” TalkBack focuses on box 9 in 
Figure 1(a). 

Besides these navigating ways for focusing on an element, there 
are alternative ways to perform touch gestures. For example, the 
user can replicate the scroll action by swiping on the screen with 
two fngers. Also, the user can execute some predefned actions by 
performing special gestures. For example, swiping up then left is 
equivalent to going to the device’s home screen, or swiping left 
then right is equivalent to scrolling backward. 

To click on an element, the user should perform a double-tap 
gesture on the screen when the target element is focused. Talk-
Back perceives this gesture and sends a click accessibility event, 
ACTION_CLICK, to the focused button, which is the equivalent of 

tapping on the button by touch. After getting to the word of the 
day page, to listen to the pronunciation, the user needs to locate 
the speaker button, pink-dashed box in Figure 1(b). However, the 
element cannot be focused on by TalkBack as developers only set 
focus to its ancestor, the RelativeLayout, and telling TalkBack to 
skip all the descendants, including the speaker button; therefore, 
this functionality is inaccessible for TalkBack users. While the unlo-
catablity of this element by TalkBack is a critical accessibility issue, 
Google’s Accessibility Scanner, the most widely used accessibility 
analyzer for Android, cannot detect it since the scanner does not 
consider assistive services like TalkBack into account. 

Assuming the mentioned accessibility issue does not exist, the 
blind user continues the rest of the use case by selecting the favorite 
button, the yellow-solid box with the star icon in Figure 1(b), and 
then returns to the home page. After returning to the home page, 
the user needs to fnd Favorites List or box 2 in Figure 1(a). However, 
since the user was previously on this page, box 10 is focused. By 
navigating to the next elements, boxes 11 and 12, TalkBack auto-
matically scrolls forward to fetch the items below; however, the 
app makes the upper menu disappear as shown in Figure 1(e). A 
sighted user can notice this major change in the screen since she 
can observe all parts of the screen; however, a blind user may not 
notice it. Consequently, the blind user cannot locate the favorites 
list button, initially located at the top right of the display. Even if 
the user searches for the word “Favorite”, Figure 1(f), there is no 
result since the favorites list button does not exist on the screen 
anymore. This is another example of accessibility issues that cannot 



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al. 

be detected without considering exactly how blind users interact 
with apps, i.e., through a screen reader such as TalkBack. 

While it is straightforward for most app developers and testers 
without disabilities to perform the aforementioned use case with 
touch gestures, none of the accessibility issues above could be 
detected unless the same use case is performed using a screen 
reader. Our objective is to record touch gestures from an arbitrary 
app tester, execute them using a screen reader automatically, and 
generate a report with detected accessibility issues. Now, we explain 
the possible challenges to realizing this idea. 

• Action Mapping. Although users with visual impairments also 
use touch gestures with screen readers like TalkBack, the way 
actions are performed are completely diferent. For example, as 
we mentioned in the example, clicking an element without a 
screen reader is a simple touch on the element’s coordinates; 
however, a screen reader user needs to frst locate the element 
and then perform a double tap gesture to initiate a click. There 
is no trivial mapping between the touch gestures and the screen 
reader’s actions. 

• Action Approximation/Alternatives. In the case of having a 
mapping between touch gestures and screen readers, the actions 
are not completely equivalent. For example, sighted users can 
scroll diferent parts of the screen with diferent velocities; how-
ever, TalkBack users can only perform four limited scrolling, left, 
right, forward, and backward, where their start/end points and 
velocity are constant, regardless of what TalkBack user wants. 
On the other hand, TalkBack users can scroll through lists by 
navigating through items via swiping left or right. Either way, 
although there are equal actions with and without screen readers, 
their efects are diferent, making it complicated to ensure the 
apps are in the same state. 

• Element Identifcation. Besides the fact that actions are done 
diferently with and without screen readers, the way elements 
are accessed is also diferent. As mentioned earlier, TalkBack may 
group multiple elements into one for a better user experience for 
visually impaired users. Moreover, if action is associated with 
an element of a group, TalkBack assigns the action to the whole 
group. For example, in Figure 1(d), a sighted user may tap on the 
checkbox to select the word; however, TalkBack focuses on the 
group of the checkbox and the word (pink-dashed box), not the 
checkbox itself. Therefore, to select the checkbox, a TalkBack 
user needs to focus on the group of elements and then perform a 
double-tap gesture. 

• Lack of Accessibility Knowledge. In traditional record-and-
replay techniques, a tester can easily identify the bugs and issues 
since the replaying is supposed to be identical to the record-
ing, and all interactions are familiar to the tester. However, it 
is not trivial for a sighted user to understand accessibility is-
sues in a screen reader’s replays if she is not an experienced 
assistive-service user. That is why it is important to not only 
detect accessibility issues, but to also provide an explanation 
for developers as to how the detected issues hinder the visually 
impaired users. 

3 RELATED WORK 

3.1 Accessibility Testing 
Accessibility testing aims to identify the accessibility issues that 
hinder disabled people from interacting with apps or software. 
Based on the previous study, accessibility testing can be categorized 
into two types: static accessibility testing and dynamic accessibility 
testing [61]. 

In general, static accessibility testing tries to fnd accessibility 
issues by investigating the source code. Android Lint [11] is a static 
analyzer embedded into Android Studio and can detect accessibility 
issues such as the lack of content descriptions. Prior researches also 
focus on fnding certain accessibility issues, such as [23, 51] used 
deep learning technique to detect unlabeled icons and generate the 
corresponding labels for them. However, static approaches cannot 
detect problems that only manifest themselves at runtime. 

Dynamic accessibility testing can detect runtime accessibility 
issues by analyzing the rendered UI components’ attributes and 
the corresponding interactions with UI components. Accessibility 
Scanner [5], PUMA [35], MATE[26], Xbot [24], and KIF [40] rely 
on a single app screen to perform the testing, and they can report 
issues such as the inappropriate size of touch elements and the 
low text contrast. Other works [2, 26] utilize a crawler so that 
developers do not need to explore the app manually. However, 
all the aforementioned tools fail to detect accessibility issues that 
manifest themselves in interactions with apps. In addition, few prior 
works consider assistive services for accessibility testing except 
the following ones. Alotaibi, et al. [1] utilize TalkBack to identify 
accessibility issues, such as unfocusable elements. However, their 
tool, called ATARI, is limited to a single app screen and fails to 
detect accessibility issues related to actions such as clicking and 
typing. Latte [58] also employs TalkBack and executes GUI tests 
via assistive services to identify the related accessibility issues. 
As a result, Latte can detect accessibility issues related to actions. 
However, Latte assumes the availability of GUI tests, and prior work 
indicates that over 92% of Android app developers do not have GUI 
tests [46]. Furthermore, Latte and ATARI only implemented one 
type of navigation in TalkBack (linear navigation) while ignoring 
other navigation methods such as search and jump. Groundhog 
[60] is an accessibility app crawler, and therefore not limited to 
a single app screen. In addition, Groundhog assess whether the 
elements are clickable by TalkBack. Nevertheless, Groundhog only 
supports the click action and cannot detect accessibility issues in a 
sequence of interactions. OverSight [50] is an automatic tool that 
can detect overly accessible elements in Android. Overly accessible 
elements refer to the elements that provide additional information 
and functions to the user of AT, compared to what is available 
through the conventional interaction mode. OverSight dumps all 
the nodes belonging to the current window and lists potential overly 
accessible elements using predefned rules. Potential OA elements 
are then verifed through AT on the actual device, and a report is 
generated to provide additional clues for developers. AccessiText [3] 
can automatically detect text accessibility issues that occur when 
using Text Scaling Assistive Service (TSAS) in Android. AccessiText 
executes the same GUI test on an app with both the default size 
text and the scaled text, and captures screenshots and metadata for 



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany 

further analysis. It then analyzes the execution results and reports 
text accessibility issues to users. 

Several accessibility testing tools have been developed for 
Web applications. MAUVE++ [22], AChecker[30], Accessibility 
Designer[63], and ABD[20] are dynamic accessibility testing tools 
for web applications. MAUVE++ and Achecker mainly rely on ac-
cessibility guidelines for analyzing the accessibility of websites. 
More specifcally, MAUVE++ incorporates WCAG 2.1 as its guide-
line together with additional success criteria for mobile websites. 
Achecker enables users to select one of nine international acces-
sibility standards during the check. It categorizes and prioritizes 
the accessibility issues into known problems, likely problems, and 
potential problems. Accessibility Designer enables users to fnd the 
mismatch between the voice generated by a screen reader and the 
original texts. In addition, it investigates the time-oriented aspects 
by calculating how long it takes to navigate from the top of the 
page to the rest of the page using a screen reader. ABD is a plug-in 
to the WebAnywhere screen reader that lets users record the ac-
cessibility issues they encounter as human-understandable macros. 
Then users can share the problems with developers in the form of 
a URL that encapsulates the assistive technology and the recorded 
interactions. Compared to A11yPuppetry, ABD mainly focuses on 
three accessibility issues (reading orders, alt orders, and alt text), 
while A11yPuppetry can detect additional accessibility issues, such 
as unlocatable elements and inefective actions. 

3.2 Record-and-Replay 
There are lots of prior works related to record-and-replay in An-
droid. RERAN [31], appetizer [15], Mosaic [34], and Orangutan[42] 
rely on the Linux Kernel for recording and replaying events. For 
example, RERAN requires a rooted device and employs the ADB 
commands getevent and sendevent to record and replay events. 
For tools that rely on Linux Kernel, the captured events are low-level 
and hard to translate to high-level gestures that are understandable 
by assistive services. 

VALERA [36] has a high accuracy for recording and replying 
and can capture various events, such as network inputs. However, 
VALERA relies on a customized OS as it requires a modifed Android 
system image, which imposes threats to its application. 

Mobiplay [53], Espresso[9], Barista [27], Robotium[55], 
Culebra[52], Ranorex[54], SARA [33], RANDR [57], Sugilite [45] 
rely on the application layer to capture inputs. Mobiplay utilizes 
client-server architecture. The client app and target app run on 
an Android device and a remote server, respectively. Mobiplay 
identifes the targeted node based on the screen coordinates 
during the replay stage. Nevertheless, Mobiplay is not publicly 
available to researchers. Espresso can record motion events via 
an attached debugger but requires the recorded app’s source 
code. Barista is a cross-platform record-and-replay tool. However, 
Barista fails to record and replay on non-open-source apps as 
it highly relies on the Espresso framework. Robotium can only 
capture widgets that are rendered by the app’s main process, 
but normally the apps will run several processes [33]. Culebra 
provides a desktop GUI for user recordings, and the widget that 
interacts with users is identifed via the view hierarchy. The 
drawback of Culebra is it causes a large overhead while identifying 

the view hierarchy of the interacted widget. Ranorex can record 
interactions via instrumentation, but the instrumentation fails 
when it encounters apps that have a large size. SARA can record 
and replay several input sources via dynamic instrumentation and 
the interaction can be recorded in the form of coordinate and the 
widget. Specifcally, SARA records the interaction coordinate at 
frst and identify the corresponding widget information via the 
self-replay technique. Then, SARA employs an adaptive replay 
method to replay captured interactions on diferent devices. The 
drawbacks of SARA are the lack of a graphical user interface and 
the high reliance on the third-party dynamic instrumentation 
tool called Frida. Frida cannot instrument classes that implement 
the Android Interface android.text.Editable, which cause 
SARA to lose essential interactions during the recording. RANDR 
utilizes both static and dynamic instrumentation so that it is able 
to record and replay multiple input sources, including external 
non-deterministic sources such as random numbers. While RANDR 
can record and replay abundant input sources, it does not require 
administrative device privileges or the access to the app source 
code. However, RANDR is not publicly available to researchers. 
In addition, as RANDR and SARA both utilize instrumentation 
to capture the events and interactions, the non-standard widgets 
such as android.webkit.WebView are ignored. Current popular 
android apps implement WebView to display web contents as a 
part of an activity layout, so failing to identify WebView makes the 
recorder lose essential interactions during the recording. Sugilite 
is a publicly available android application for record and replay 
that utilizes an overlay to intercept interactions, such as click and 
typing. Using an overlay enables Sugilite to capture various events 
and widgets, even the non-standard widgets such as WebView. For 
each interaction being recorded, users need to confrm whether 
the identifed interaction is correct. After confrmation, Sugilite 
performs that interaction on behalf of users. However, it fails 
to recognize a node that is not clickable and gets stuck at the 
current window if the clicked node has accessibility issues. Overall, 
Sugilite is the most promising recorder for our project as it is 
publicly available to us and can capture various widgets, even 
WebView. The known drawbacks of Sugilite can be mitigated via 
re-implementations. 

None of the tools mentioned above use assistive service to replay 
the recorded interactions. 

Besides the Android platform, plenty of record and replay tools 
have been implemented for web applications. Actionshot[44], 
Coscripter[43], WebVCR[14], Smart Bookmarks[37], and 
WebRR[48] rely on the application layer for recording and 
replaying events. Actionshot and Coscripter can record users’ 
browsing activity through interactions, such as the button click. 
They then generate the human-readable text scripts for the replay 
stage. However, they both have problems recording interactions 
for pages that employ complex HTML and JavaScript. WebVCR 
requires users to specify the start point and end point of each 
recording and utilize the DOM signature as part of the identifer. 
The recording is refected as browsing steps in a smart bookmark 
that can be replayed later. As WebVCR relies on DOM API, 
interactions related to HTTP authentication cannot be precisely 
recorded. Smart Bookmarks trigger recording when Javascript 
events occur and capture the corresponding text label and XPath of 



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al. 

the interacted components as identifers. During the replay, it runs 
each recorded interaction in sequence and utilizes Chickenfoot’s 
algorithm[21] to match the desired element. WebRR refers to the 
self-replay technique SARA uses, and WebRR generates several 
identifers to improve the robustness of recorded interactions. 
WebRR uses generated identifers to locate the desired elements 
during the replay. Nevertheless, WebRR fails to capture interactions 
that happen through non-standard widgets and has problems 
recording interactions inside a dynamic iframe. WaRR[4] requires 
a customized browser and an interaction driver. Using WebKit, 
the WaRR recorder is able to capture interactions on multiple 
platforms, including desktop and mobile. The recorded interactions 
are saved in the form of WaRR Commands. During the replay, the 
browser interaction driver converts commands into ones that are 
understandable by a browser. 

4 APPROACH OVERVIEW 
A11yPuppetry consists of four main phases, (1) Record, (2) Action 
Translate, (3) Replay, and (4) Report. In this section, we provide an 
overview of the approach and in the next four sections, we explain 
the details of each phase. 

Figure 2 depicts an overview of A11yPuppetry. The process 
starts with the Record phase when the user interacts with a device 
enabled with the Recorder service. The Recorder service listens to 
UI changes events and adds a transparent GUI widget overlay on 
top of the screen to record the user’s touch gestures. After receiving 
a touch gesture on the overlay, the Recorder replicates the gesture 
on the underlying app, and sends the recorded information to the 
server as an Action Execution Report. The server will store the 
recorded information in the database. 

In the second phase, Action Translation, the Action Translator 
component receives the Action Execution Report from the Recorder 
(containing UI hierarchy, screenshot, and the performed gesture) 
and translates it to its equivalent TalkBack Action. For example, 
touching on the coordinates of the favorite button in Figure 1(b) 
will be translated to focusing on the favorite button and performing 
a double-tap gesture. 

In the Replay phase, the TalkBack Action is sent to several re-
player devices that perform the action. Each replayer device has a 
running TB Replayer service that receives TalkBack Action from 
the server, creates and maintains a TalkBack Element Navigation 
Graph (TENG) of the app, and performs the received actions with a 
navigation mode. We will defne and explain TENG and navigation 
modes in Sections 6 and 7 in detail; however, for now, assume TENG 
is a model of the app UI designed for TalkBack, and a navigation 
mode is a way of locating elements, e.g., Linear or Jump Navigation. 
Once an action is performed, a TalkBack Execution Report is stored 
in the database. The TalkBack Execution Report consists of actions 
that are executed with TalkBack, screenshots, and UI hierarchy fles 
of the diferent states of the app before, during, and after execution. 

In the fnal phase (Report), the A11y Analyzer component reads 
the stored information in the database, i.e., Action and TalkBack 
Execution Reports, and produces an Aggregated Report of the record-
ing, replaying, and the detected accessibility issues. The user can 
access this report using a web application. 

5 RECORDER 
In this section, we frst study the various touch gestures and explain 
how we model them. Next, we explain how we record the touch 
gestures of a user when she interacts with a mobile app. 

5.1 Touch Gestures 
To have a complete and sound understanding of the diferent ways 
of interaction, we used the ofcial documentation of user inter-
actions and touch gestures in Android [13, 49]. By analyzing the 
various touch gestures, we came up with two attributes for a touch 
gesture: (1) the number of involved fngers, and (2) motion. For 
example, a single tap is considered a touch gesture with one fnger 
without any motion, or pinching-in is a touch gesture with two 
fngers with movement. We categorized the common touch gestures 
into several categories. However, due to space limits, we explain 
only two of these categories here since they are widely used in 
applications, and they have counterpart actions in screen readers. 

• PointGesture. This is the most common way of interacting with 
a touch-based mobile device. To perform this type of gesture, the 
user uses one fnger at a specifc point on the screen without 
moving her fnger to other parts of the screen. This type of touch 
gesture is identifed as PG(�, �) where � is the type of the gesture, 
e.g., single-tap or long-press, and � is the coordinates of a point 
on the screen. 

• LineGesture. In this type of touch gesture, the user puts her fn-
ger on the screen and draws a line. The movement’s velocity and 
starting point may lead to diferent behaviors. For example, if the 
user draws the line from the edge of the display, it is considered 
an edge swipe that is usually associated with system actions, e.g., 
going to the home screen or navigating back. This type of touch 
gesture is identifed as LG(�, �) where � is a straight line on the 
screen and � is the velocity of the gesture, i.e., fast, regular, and 
slow. 

5.2 Implementation 
In a nutshell, the recorder component uses two diferent ways to 
record the user’s actions, (1) through a transparent overlay placed 
on top of the app and (2) by listening to system events related to 
the changes on the screen. We implement the recorder on top of 
Sugilite [45], a programming by demonstration tool for Android 
apps. We briefy explain some background for understanding the 
concept, then describe how the recorder is implemented. 

With Android’s Accessibility API, developers can create apps that 
interact with the device and receive feedback from it. These APIs 
can be accessed via the implementation of AccessibilityService [6], 
an abstract Android service that acts as a wrapper to interact with 
the device. AccessibilityService can augment the current screen by 
creating new GUI objects. For example, TalkBack is an implemen-

tation of AccessibilityService, which focuses on and highlights an 
element (by annotating a green rectangle GUI widget around the 
element), describes the focused element (by reading the textual 
description of the focused element), and interacts with the app on 
behalf of the user (by clicking on the focused element when the user 
double taps). By receiving AccessibilityEvents, an AccessibilitySer-
vice can be notifed when there is a signifcant change on the screen. 



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany 

Figure 2: An overview of A11yPuppetry. 

These events are generated by AccessibilityManager, which moni-

tors the display and communicates with AccessibilityServices. An 
AccessibilityEvent is usually associated with an AccessibilityNode-
Info object which describes the attributes of the changed element, 
e.g., its text, content description, or class. 

Although Accessibility API is mainly designed to assist users 
with disabilities, it can be used for other purposes. We implemented 
the recorder as an AccessibilityService to understand the user’s 
action. When the recorder is enabled, it creates an overlay of the 
screen’s size, which is an android.view.object and attaches it to the 
foreground window. This overlay acts as an echo component; it 
performs any received touch gestures on the app with Accessibility 
API. A touch gesture event, e.g., PointGesture PG, is captured by 
onTouchListener which is enabled for the overlay. Once the touch 
gesture is received, a copy of the touch gesture, the UI hierarchy 
of the current screen, and a screenshot image are combined and 
packed as Action Execution Report. 

Although the overlay object can record touch gestures, a few 
other actions such as adjusting volume with physical buttons or typ-
ing with a keyboard cannot be captured. To that end, the recorder 
listens to all AccessibilityEvents and records the events that repre-
sent actions performed by the user. For example, when the user 
types on an EditText with a keyboard, the recorder will receive Ac-
cessibilityEvent.TYPE_VIEW_TEXT_CHANGED containing the typed 
text. Similar to touch gestures, these events, along with the UI hi-
erarchy and screenshot of the app, are packed and sent as Action 
Execution Reports. 

Once the Action Execution Report is created, either by the overlay 
screen or AccessibilityEvent, the recorder sends it with WebSocket 
to the Server. Note that the recorder is an app inside an Android 
device or emulator, and all the storing, analysis and broadcasting is 
done on the external remote server. 

6 ACTION TRANSLATOR 
In the second phase of A11yPuppetry, the Action Translator compo-

nent (Figure 2) translates actions recorded from the user using touch 
gestures to their counterparts in TalkBack. As seen in Section 2, the 
main challenge here is that there is no one-on-one mapping from 
touch gestures to actions that can be performed by TalkBack. To 
address this challenge, we frst studied TalkBack and categorized 
its actions, which in turn allowed us to propose a mapping from 
touch gestures, i.e., Point and Line Gestures, to these categories. 

6.1 TalkBack Actions 
We studied and examined the Android documentation to under-
stand TalkBack and its actions. Then, two authors followed ofcial 
tutorials on TalkBack on Android devices and interacted with at 
least 5 popular Android apps. Finally, we interviewed a blind user 
who used TalkBack and asked him to perform a few use cases in 
an app to clearly understand diferent ways of interacting with 
TalkBack. 

TalkBack, when it is enabled, creates a virtual layer between 
the app and the user to enable users to perceive the UI without 
performing unintended actions. TalkBack draws an overlay on the 
screen, receives touch gestures, and translates these gestures into 
diferent actions. We categorized the diferent ways of interaction 
into the following three categories: 

• ElementBased. This type of interaction is mostly used to per-
ceive the content of an element or perform a click or long-press 
on the focused element. TalkBack focuses on an element and 
announces its textual description. Given that the element is � and 
the type of the action is � , an ElementBased action can be defned 
as EB(�, �), meaning that the element � should be focused by 
TalkBack and action � , e.g., click, should be performed on the 



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al. 

focused element. There are various ways to focus on an element 
that previously were mentioned in Section 2. 
– LinearNavigation. User can change the focus to the next 
and previous element of the currently focused element. The 
actions associated with linear navigation are swiping right and 
left. The order of the next and previous elements is determined 
based on their position in the UI hierarchy. Note that, TalkBack 
may also perform scroll action while navigating to the next 
or previous element if they are (partly) out of the screen, e.g., 
Figure 1(e). 

– JumpNavigation. Users can jump through elements of certain 
types for faster navigation by swiping up and down. For exam-

ple, users can go to the next heading, paragraph, control, or 
link instead of navigating element by element. Moreover, users 
can adjust the granularity of announcements to understand 
the content easier. For example, users can move to other lines, 
words, or even characters instead of focusing on elements. 

– SearchNavigation. Users can search for a specifc element on 
the screen with text or voice interface enabled by a three-fnger 
long-press. It is similar to fnding a specifc word on a page in 
a text viewer/editor. 

– TouchNavigation. Users touch a spot on the screen, and 
TalkBack focuses on the element on the same coordinates. 
This navigation method is usually used when the user has an 
estimation of the coordinates of the element she is looking for, 
e.g., top or bottom menu, or when the element could not be 
detected by the other navigation methods and the user has 
to conduct an exhaustive search to fnd all elements on the 
screen. 

• TouchGestureReplication. Besides the click and long-press 
actions that can be done by ElementBased actions, users can 
replicate several other touch gestures, in particular, LineGestures 
by bypassing the TalkBack overlay. A user can replicate scrolling, 
dragging, or edge swiping by swiping with two fngers when 
TalkBack is enabled. A TouchGestureReplication can be defned 
as TGR(��) where �� is a LineGesture. 

• PredefnedActions. Various actions that TalkBack can perform 
are not dependent on the app that the user is interacting with. 
For example, global actions, e.g., Home, Recent Apps, or Back, 
are not dependent on an app and can be performed with special 
gestures in TalkBack, e.g., swiping up then left will go to the 
home screen of the device. A PredefnedAction is PA(�) where � 
determines the action(s) to be performed, e.g., scroll forward or 
volume up. 

6.2 Mapping 
We can map the touch gestures, defned in Section 5, to these cate-
gories. 

6.2.1 PointGesture. PointGestures, like single-tap or long-press, 
can be mapped to ElementBased actions in Talkback since a Point-
Gesture is usually associated with a GUI element. In some cases, 
the PointGesture is not associated with a single element and the 
exact coordinate of the touched surface is important. For example, a 
painting app may have a large canvas where the user can paint and 
draw shapes by touch gestures. Although the underlying element of 
all these gestures is the canvas, the exact coordinate of the gesture 

is important to draw the lines precisely. We exclude these cases in 
this work since they require a fne visual perception of the screen 
to pinpoint the desired coordinates. 

However, to precisely fnd the equivalent of a PointGesture, we 
also need to fnd the element associated with the touch gesture. To 
fnd the associated element, we list all elements in the UI hierarchy 
(recall that the Action Execution Report has the UI hierarchy of the 
app before the execution). Then flter the elements that enclose the 
touched point and sort them based on their z-index. An element 
with a greater z-index is always in front of an element with a lower 
z-index [28]. Then we iterate the list to fnd an element that has a 
matching attribute to the action that is performing. For example, 
if the PointGesture is single-tap or long-press, then the element 
should have a clickable or long-clickable attributes respectively. If 
no such element can be found, we choose the frst element in the 
list. 

6.2.2 LineGesture. LineGestures can be mapped to either 
TouchGestureReplication or PredefnedActions. For example, a 
swipe-up touch gesture can be performed in TalkBack either by 
swiping up with two fngers or performing the predefned action, 
swipe right then left. 

Once the input action is translated into a TalkBack action, it 
will be sent to replayer devices, in particular, to their TB Replayer 
components. 

7 REPLAYER 
The third phase of A11yPuppetry replays the received TalkBack 
Action with TalkBack. Before the user starts interacting with the 
app, the recorder and replayer devices are in the same state, i.e., 
the app under test is installed and opened. In the replayer device, 
TalkBack and TB Replayer services are enabled. TB Replayer is 
an AccessibilityService similar to the Recorder service, which is 
responsible to communicate with TalkBack to perform the received 
action. For each navigation mode, i.e., Linear, Jump, Search, and 
Touch, there is one replayer device receiving the inputs from the 
server. 

Recall that a TalkBack Action can be ElementBased (EB), 
TouchGestureReplication (TGR), or PredefnedAction (PA). To per-
form TGR(��), TB Replayer makes a copy of the LineGesture ��, 
called �� ′ and moves its coordinate 2cm toward the top or right of 
the display, then combine the two LineGestures (�� and �� ′) and 
perform them when TalkBack is enabled. Performing a ��(�) is 
easier since it is predefned and not dependent on the app. TB Re-
player has a database of PredefnedActions and can perform the 
actions accordingly, e.g., perform swipe right then left when � is 
“Scroll Forward”. 

However, performing an ElementBased action is relatively chal-
lenging since it requires fnding and focusing on the element frst. 
Moreover, there are various ways of navigating to locate an ele-
ment, i.e., Linear, Jump, Search, and Touch. To that end, we intro-
duce TENG (TalkBack Element Navigation Graph) to model the 
diferent ways of navigating an app with TalkBack. After that, we 
defne diferent strategies to guide TB Replayer on traversing the 
TENG of the app. 



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany 

Figure 3: (a) TENG representing Linear Navigation of Figure 1(d); (b) TENG representing Search Navigation; (c) TENG representing 
Touch Navigation. 

7.1 TENG 
Simply put, TENG is a graph modeling the diferent states of Talk-
Back when enabled. TENG is defned over the UI hierarchy of an 
app screen, where the nodes include GUI elements that can be fo-
cused by TalkBack and the edges represent actions that can be done 
by the user (or TB Replayer) to change the focus from one node 
to another. For example, Figure 3(a) represents a part of the TENG 
of the app screen in Figure 1(d). For now, please ignore the Start 
and End red boxes, we will defne and explain them shortly. The 
blue ovals represent control elements, e.g., buttons or checkboxes, 
and green-round boxes represent the textual elements. Also, the 
gray boxes are a View element containing a set of elements that are 
grouped by TalkBack to announce. Recall that in Section 2, we dis-
cussed TalkBack grouped elements that are related and associated 
the group with an action for a better user experience. In runtime, 
when Talkback is in any of these nodes (states), i.e., focused on 
their corresponding element, we call it an active node. The solid ar-
rows in Figure 3(a) represent Linear Navigation between elements, 
e.g., red arrows are associated with swiping right or moving to the 
next element. The dotted arrows represent Jump Navigation which 
changes the active node to the next control element. For example, 
if the Delete node is active, by swiping right TalkBack focuses on 
the text element that starts with “Favorite” and by swiping down, 
TalkBack jumps on the previous control element which is “Back”. 

Besides the UI elements, TENG has some other nodes which we 
call Virtual States. These states do not correspond to an element on 
the screen; however, they represent some internal states of TalkBack. 
For example, the virtual states Start and End in Figure 3(a), represent 
the states where TalkBack reaches the frst or last element on the 
screen and notifes the user there is no element left to visit. Note 
that, the user can still change the focus to other elements by Linear 
or Jump Navigation, even if TalkBack is in a virtual state, e.g., 
swiping left from Start changes the focus to the compound element 
in the end. 

Recall that TalkBack supports two other navigation modes, i.e., 
Search and Touch. We model these navigations in TENG using 
virtual states. Figure 3(b) shows the part of TENG related to the 
search navigation. The entry edge is a representative edge that 
comes from all nodes in TENG and is associated with three-fnger 
tap. We did not draw all edges to not make the fgure complicated 
and messy. Once the Search Screen is activated, the user can type 
the text she is looking for, then the result appears in a list (Result 
Screen). Once the user selects a search entry, TalkBack focuses on 
the selected element. Finally, the Touch Navigation is modeled and 
depicted in Figure 3(c). Whenever the user taps somewhere on the 
screen, TalkBack fnds the underlying element and focuses on it. 
Similar to Search Navigation in Figure 3(b), the entry edge of the 
Touch State comes from all nodes of TENG. 

Given a target element, we can use TENG to plan a sequence of 
interaction with the device to focus on the element. For example, 
similar to the last step of our motivating example in Section 1, 
assume we want to click on the checkbox and at the beginning 
TalkBack is focused on the Back button. Therefore, the TENG’s 
active node is the Back button in Figure 3(a), and the goal is focusing 
on the TENG’s node containing the goal element (which is the 
compound element denoted by the grey box), and then performing 
double-tap. There are various ways to reach the target node, for 
instance, by performing two swipe up actions, TalkBack frst jumps 
to the Delete button and then to the target node. 

However, traversing with TalkBack is not as easy as it sounds. 
There are three reasons that TENG may be modifed during the 
interaction with TalkBack. First, the app may dynamically update 
the visible elements on the screen. For example, a slide show con-
stantly changes the visible content after showing it for a specifc 
amount of time. Secondly, TalkBack may change the app state by 
performing extra gestures for navigation. For instance, recall that 
TalkBack scrolled the page once it reaches the last element visible 
on the screen in the motivating example, Figure 1(e). Lastly, the 



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al. 

app may change the focused element at runtime. For example, if 
developers do not want users to access certain elements, regardless 
of the rational behind this decision, they can focus on another el-
ement as soon as that element is focused by TalkBack. Therefore, 
we cannot rely solely on the TENG created UI hierarchy before 
navigation. 

To that end, once TB Replayer performs an action associated with 
an edge, e.g., swiping right to focus to the next element, the service 
listens to any changes in the UI to determine if the UI hierarchy is 
changed. If anything changes, the TB Replayer recreates the TENG 
and continues the navigation. Otherwise, the service verifes if the 
current active node in TENG is focused by TalkBack. If it was not, 
then we mark the performed edge as inefective and replan the 
locating path again. 

7.2 Implementation 
TB Replayer is an implementation of AccessibilityService. It builds 
the UI hierarchy by analyzing all visible AccessibilityNodeInfo on 
the screen. Then using the utility library provided by TalkBack [12], 
TB Replayer creates TENG from the UI hierarchy. Basically, this 
library has some helper methods to determine elements that can be 
focused by TalkBack and the linear order among them. The virtual 
states in TENG are created and maintained by the TB Replayer 
service. 

Each TB Replayer in a device is responsible for one navigation 
mode, e.g., Linear or Jump. To locate an element, the TB Replayer 
only uses the edges in TENG that belong to its navigation mode. 
For example, to navigate to the checkbox element from the back 
element in Figure 3(a), the TB Replayer for Jump Navigation only 
uses the dotted arrows or the Search Navigation only uses the 
edges in Figure 3(b). Once the element is located, the TB Replayer 
performs the desired action, e.g., double tap for click or double tap 
and press for long-press. 

TB Replayer compiles a set of information and sends it to the 
server, including the UI hierarchy, screenshot, TENG, and per-
formed actions in all stages. 

8 REPORT 
In the fnal phase of A11yPuppetry (Report), the A11y Analyzer 
component in Figure 2 analyzes all information stored in the data-
base and generated from the Recorder and TB Replayers, compiles 
and aggregates them, and shows the fnal report to the user via 
a web interface. Since the target users of A11yPuppetry are de-
velopers and testers with limited knowledge on accessibility, we 
implemented the following features to illustrate the accessibility 
barriers in their apps. 

• Annotated Video. Once the record and replay for an app is com-

pleted, A11y Analyzer creates recorder videos using the captured 
screenshots, then animates the touch gesture on the image, as 
indicated by Figure 4(a). It also generates the replayer video and 
annotates the focused elements by TalkBack during the naviga-
tion, as indicated by Figure 4(b). 

• Action Detail. In addition to the annotated video, we provide 
action detail of each step, which displays the essential informa-

tion of each interaction, as indicated by Figure 4(c). The action 
detail includes the class name, the UI Hierarchy of the clicked 

element, and the text that belongs to the clicked element. We 
also highlight the clicked element using the red box. 

• Execution Result. We display the execution result of each action 
to developers. Remember that TalkBack supports four diferent 
ways to focus on an element, i.e., Linear, Jump, Search, and Touch. 
Each navigation method corresponds to a TB Replayer. If the exe-
cution of a TB Replayer fails, we highlight the replayer using the 
red color, as indicated by Figure 4(d)—here indicating Replayer 
Search failed to execute the action. On the right of the execu-
tion result, we summarize the accessibility issue and provide the 
potential cause of the found issue. 

• Blindfold Mode. The replayer video cannot represent the is-
sues that blind users may face, especially the ones related to 
the semantics of the app. For example, when visual icons have 
content descriptions that are irrelevant to their corresponding 
buttons’ functionality, blind users may become confused and not 
understand the app. We provide a blindfold mode in our report 
which lists the textual description of the items that have been 
navigated with TalkBack, as indicated by Figure 4(e). For example, 
the Blindfold Mode report of Linear Navigation for Figure 3(a) 
would be "(1) Back button, double tap to activate, (2) 1 Selected, 
(3) Delete button, double tap to activate, (4) Favorite ..., (5) Select, 
(6) diphtongize, not checked, checkbox, double tap to toggle." 

• State Comparison. A11y Analyzer also compares the state of 
the apps in the recorder and replayer devices to see if there is 
any diference between them. Ideally, if all actions are performed 
correctly in all replayers, there should be no diference between 
the states. The comparison is done by checking the UI hierarchy 
of the apps before performing any action. In case of a diference 
between states, the web interface shows a warning sign near the 
state to show the issue. 

8.1 Automated Issue Detection 
A11y Analyzer detects and reports some of the accessibility issues 
automatically so that developers can pinpoint the accessibility prob-
lems more conveniently. In particular, three categories of issues 
can be detected automatically: Unfocusable Elements, Inefective 
Actions, and Missing Speakable Texts. The last category can be 
detected easily by checking the existence of the content descrip-
tion attribute for the target element. However, the frst and second 
categories are challenging to fnd. 

Unfocusable Elements. As mentioned before, a TB Replayer exe-
cutes an action by frst locating the element (by focusing on it) and 
then performing the corresponding touch gesture, e.g. double-tap. 
If a TB Replayer cannot locate an element, A11y Analyzer reports 
that as an accessibility issue. There are various reasons an element 
cannot be located. For example, if the element does not exist on the 
screen or there is a navigational loop preventing TalkBack from 
focusing on the element. In the report section, we describe the 
reason why the element could not be focused. 

Inefective Action. Sometimes TB Replayer can locate the element 
and perform the action; however, the action is not efective, i.e., the 
intended functionality is not triggered. A11y Analyzer can detect 
such an issue by comparing the app’s state before and after the 
execution by TB Replayer. Also, it considers the recorder’s state for 



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany 

Figure 4: (a) The annotated recorder video; (b) The annotated replayer video; (c) The action detail; (d) The execution result; (e) 
The blindfold mode. 

the same action as the reference. An action is reported as inefective, 
if the before and after UI hierarchy of the app is identical and the 
corresponding action in the recorder state introduced changes. 

In the next section, we provide examples of such automatically 
detected issues. 

9 USER STUDIES 
This section explains our experiments and user studies to evaluate 
the efectiveness and limitations of A11yPuppetry. 

We selected fve Android apps with possible accessibility issues 
reported in the literature [60] or online social media [39]. For each 
app, we designed a task (consisting of 21 to 33 actions) according to 
the functionalities of the app. Also, we included the parts of the app 
that were reported inaccessible in the task. The frst four columns 
of Table 1 show some information about the subject apps and the 
number of actions involved in the designed tasks. 

We use A11yPuppetry on each task of these fve apps. We 
used an Android emulator with Android 11 and TalkBack (ver-
sion 12.1) for both recording and replaying devices. Our proto-
type of A11yPuppetry enables us to perform the experiments syn-
chronously (recorder and replayers are running simultaneously) or 
asynchronously (the recording can be done before the replaying). 
For the experiments, we use the asynchronous mode to not intro-
duce any problem caused by network or other concurrency issues; 
however, in practice, the synchronous mode is more promising 
since the results can be obtained much faster. 

To compare A11yPuppetry with existing work, we used Latte 
and Accessibility Scanner. Since Latte requires GUI test cases for 
the analysis, we transformed recorded use cases to GUI test cases. 
Scanner is not a use-case driven tool and scans the whole screen; 
therefore, we ran Scanner on the screens of the app after each 
interaction. Moreover, since in this experiments we are focused 
on blind users who uses TalkBack, we flter out issues that are 
not related to blind users, like small touch target size or low text 
contrast. 

Besides experiments with these tools, we conducted two user 
studies with users with visual impairment who have experience 
working with TalkBack in Android. To connect to such users, we 
used the third-party service Fable.1 

Fable is a company that con-
nects tech companies to users with disabilities for user research 
and accessibility testing. Fable compensates all user testers and is 
committed to fair pay for the testers.2 

We used two services of Fable: Compatibility Test and User 
Interview. In the compatibility test, we provided the designed tasks 
and apps to Fable, then Fable distributed each task to three users 
with visual impairment. For all the users who participated in the 
compatibility tests, the assistive technology used was TalkBack 
(Screen Reader in Android). The users performed the tasks, and for 
each step of the task, they reported any issues they faced. Once 
we gathered all of the detected issues from A11yPuppetry and 

1
https://www.makeitfable.com 

2
https://makeitfable.com/article/why-fair-pay-for-testers-matters/ 

https://www.makeitfable.com
https://makeitfable.com/article/why-fair-pay-for-testers-matters/


CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al. 

Table 1: The evaluation subject apps with the detected accessibility issues. 

App Category #Installs #Actions 
#User 
Issues 

#Scanner 
Issues 

#Latte 
Issues 

#A11yPuppetry Issues 
Linear Touch Jump Search Total 

ESPN Sports >50M 24 11 18 6 6 2 13 6 17 
DoorDash Food >10M 23 8 22 10 9 1 13 9 15 
Expedia Travel >10M 33 8 89 4 2 3 19 7 22 
Dictionary Books >10M 21 8 113 6 4 2 13 5 15 
iSaveMoney Finance >1M 21 5 35 2 10 9 10 2 11 

Table 2: The percentage of the intersection of user-confrmed 
issues detected by Scanner, Latte, and A11yPuppetry to the 
total number of user-confrmed issues. 

App 
% Intersection with User-Confrmed Issues 

Scanner Latte 
A11yPuppetry 

Detected Evidence Total 
ESPN 10% 18% 18% 45% 63% 
DoorDash 25% 25% 50% 37% 87% 
Expedia 12% 25% 50% 12% 62% 
Dictionary 25% 50% 50% 37% 87% 
iSaveMoney 40% 40% 40% 20% 60% 

compatibility tests in Fable, we conducted a preliminary analysis 
and produced a comprehensive list of accessibility issues for each 
step. Then for each app, we sent requests for user interviews with 
Fable, where Fable scheduled a one-hour online interview with a 
blind user who uses TalkBack. During the interview, the user shared 
his/her Android phone screen. We asked the users to perform the 
designed tasks and explain their thoughts and understanding of the 
app’s pages. When they faced an accessibility issue that prevented 
them from continuing the task, we intervened and guided them to 
skip to the next step. Once the users fnished the tasks, we started 
a conversation and asked them some specifc questions about the 
tasks or general questions about their experience in working with 
screen readers and apps. In summary, each app is assessed four 
times: three users in compatibility tests and one user in an online 
interview. 

The source code of A11yPuppetry, a demo of the web interface, 
designed tasks, apps, and user responses can be found in our com-

panion website [59].The designed tasks can also be found in the 
appendix A. 

We would like to understand how A11yPuppetry can help detect 
accessibility issues confrmed by users with visual impairment. As 
discussed before, all fve tasks from fve subject apps are assessed 
by users with disabilities, Accessibility Scanner, Latte [58], and 
A11yPuppetry. For A11yPuppetry, we used four navigation modes 
(Linear, Touch, Jump, and Search). For user feedback, if at least one 
user expresses an issue with a certain action, we assume the action 
has an accessibility issue. The number of reported issues for each 
app can be found in Table 1. The last column (Total) represents 
the number of actions that at least one of the navigation modes in 
A11yPuppetry reported an issue. As can be seen, the issues detected 
by Latte and A11yPuppetry are proportional to the number of 
actions; however, Scanner reported many issues that can be difcult 
for testers to examine and verify. 

Table 2 summarizes the efectiveness of Scanner, Latte, and 
A11yPuppetry in detecting issues confrmed by actual users. For 
each tool, we calculate the number of user-confrmed problems 
that the tool could automatically detect. The key insight for de-
signing A11yPuppetry was that a human tester interacts with it 
and interprets the results to locate accessibility issues that could 
require human knowledge to detect. Therefore, for A11yPuppetry, 
we also calculate the number of user-confrmed issues for which 
evidence of the same issues exists in the report of A11yPuppetry. 
Table 2 shows the results obtained for each tool in comparison to 
the user-confrmed issues. As can be seen, even the automatically 
detected results of A11yPuppetry outperforms the existing tools. 
On average, A11yPuppetry could detect more than 70% of issues 
confrmed by users. 

Results from Table 2 indicates that A11yPuppetry outperforms 
two existing accessibility checkers Latte and Accessibility Scanner. 
We further summarize what issues existing accessibility checkers 
can and cannot detect. 

Accessibility Scanner is a dynamic accessibility testing tool on 
Google Play Store that provides accessibility suggestions based on 
scanned screens [5]. Developers can either scan a single screen or 
a series of snapshots through recording and Accessibility Scanner 
provides the results of the scan to them. According to its ofcial doc-
umentation, Accessibility Scanner reports four types of accessibility 
issue. 

• Content Labeling. Issues related to the content labels, such as 
missing labels, unclear and uninformative link text, and duplicate 
descriptions. 

• Implementation. Issues inside View hierarchies that might 
hinder people with motor disabilities from interacting with a 
layout, such as duplicate clickable views that share the exact 
screen location, unsupported item types for Android Accessibility 
Service, traversal orders, and text scaling. 

• Touch Target Size. Identifes the small touch elements. The 
threshold of the element size can be adjusted in Accessibility 
Scanner settings. 

• Low Contrast. Identifes elements with a low contrast ratio 
between text and background or between background and fore-
ground. Similar to touch target size, the threshold of the contrast 
ratio can be adjusted in Accessibility Scanner settings. 

As Accessibility Scanner does not incorporate any assistive ser-
vice during the evaluation apps, it cannot detect issues related to 
unfocusable element and inefective actions nor provides evi-
dence for difculties in reading that A11yPuppetry supports. A 
detailed description of these issues is provided later in this section. 



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany 

Latte [58] relies on the availability of the GUI test cases for 
detecting accessibility issues in Android and only supports the 
linear navigation of TalkBack for locating an element. Therefore, 
Latte can only detect unfocusable elements and inefective actions 
related to linear navigation. Latte can neither provide any evidence 
for developers about the uninformative textual description, nor 
difculties in reading. 

To have a better understanding of the detected issues, we man-

ually analyzed all reported issues and categorized them into fve 
categories: (1) Automated Detection the ones that both users 
and A11yPuppetry reported, (2) Evidence Provided the ones that 
users reported and A11yPuppetry provide some evidence of the 
existence of such issue in its report which can guide the tester 
to detect the issue, (3) Unsettled Issues that A11yPuppetry re-
ported, but users did not fnd signifcant, (4) Flaky Issues that 
A11yPuppetry mistakenly reported as issues, and (5) Undetected 
Issues are the one that users reported but A11yPuppetry did not 
provide any evidence of such issue. In the following, we explain the 
subcategories of each of these categories and provide illustrative 
examples. 

9.1 Automated Detection 
Missing Speakable Text. This issue (a visual element without the 

content description) is among the most common types of accessi-
bility issues in mobile apps [23]. Due to the nature of this issue, 
existing accessibility testing techniques, like Accessibility Scanner, 
can detect this issue by only analyzing the layout of the app without 
considering assistive services. A11yPuppetry detects such issues 
using the Search navigation, i.e., if an element is not associated 
with a textual description, it cannot be searched with TalkBack. 

Unfocusable Element. Here, an element associated with a func-
tionality or certain data cannot be focused by TalkBack; as a result, 
TalkBack users cannot access them or even realize such an ele-
ment exists. In Section 2, we gave an example of such an issue (the 
speaker button in Figure 1(b)). Note that this issue cannot be de-
tected by Accessibility Scanner since it requires assessing whether 
the element is focusable by TalkBack in runtime. 

Sometimes the unfocusable element belongs to a minor feature 
that the user may not need. For example, the collapse button in 
the iSaveMoney app that hides the details of expenses (red-dashed 
box in Figure 5(a)). However, sometimes this issue becomes critical. 
For example, on one of the search pages of Expedia, none of the 
elements on the screen, including Navigate Up Button, are focusable, 
making the user confused. A user mentioned: “After typing New 
York and pressing the search button, I am unable to move around 
the screen at all. None of the gestures that I use to navigate or read 
the screen work.” 

Inefective Action. Sometimes elements are focused on by Talk-
Back, but the intended action cannot be performed. For example, 
in the iSaveMoney app, many buttons, including all yellow-solid 
boxes in Figure 5(a), can be focused by TalkBack. However, after 
performing a click action by double tapping, nothing happens. It 
seems the underlying reason behind this issue is the customized 
implementation of the button, which is sensitive to touch gesture 

and not click action. The issue is also found in Doordash when the 
user wants to change the delivery option to pick-up. 

9.2 Evidence Provided 
The following issues are reported by users and not by 
A11yPuppetry. However, the aggregated report of A11yPuppetry, 
including the annotated video and blindfold mode, provides evi-
dence of these issues. The report can help accessibility testers fnd 
these types of issues faster without the need to interact with an 
app multiple times. 

Uninformative Textual Description. The main purpose of content 
description for elements is to help users with visual impairment 
understand the app better; as a result, merely having a content 
description does not improve accessibility. A11yPuppetry is not 
capable of analyzing the semantics of content descriptions; however, 
its blindfold mode lists the texts that are announced while exploring 
the app. A developer/tester can determine whether the textual 
descriptions are informative or not by reading the blindfold mode 
report. The example of blindfold mode can be found in fgure 4(e). 
Here are some examples of this type of issue confrmed by users. 

• The textual element has some random or irrelevant data. For 
example, the notifcation icon in ESPN, highlighted button in
Figure 5(b), has a content description “Í”, which is not informative 

• The elements associated with a functionality, e.g., button, check-
list, or tab, should express their functionality. While TalkBack 
takes care of standard elements like android.widget.button, it 
does not announce the functionality of non-standard elements, 
e.g., a button which is a android.widget.TextView. Doordash 
app has many of these issues, e.g., “Save” without button or 
“Pickup/Delivery” without announcing toggle. 

• The textual description should describe the purpose of the ele-
ment completely. For example, on the renting page of Expedia, 
there is a compound element described as “Pick-Up”; however, it 
is unclear if it is related to location or date. A sighted user can 
easily recognize it by looking at the pinpoint icon inside this 
element which hints this element is related to the location of 
picking up. 

• Sometimes, the textual descriptions provide complete informa-

tion; however, they can be incorrect. For example, the traveler’s 
element, highlighted in Figure 5(c), clearly shows there are 3 trav-
elers selected, but its textual description is “Number of travelers. 
Button. Opens dialog. 1 traveler”, which is incorrect. 

Difculties in Reading. Besides the textual description of ele-
ments, the way the texts are announced by TalkBack is important 
for understanding an app. We found a few accessibility issues re-
ported by the users that make it difcult for them to perceive the 
text. This kind of issue can be detected by testers by manually ana-
lyzing the annotated videos and blindfold mode. The examples 
of annotated replayer video and blindfold mode can be found in 
fgures 4(b) and 4(e), respectively. For example, in Dictionary, para-
graphs of texts cannot be read as a whole; the user has to read a long 
text word by word. Or in the Doordash app, yellow-solid boxes in 
Figure 6(a), each category on the main page is announced two times, 
one time the visible text, e.g., “Grocery” or “Chicken”, another time 
the image which does not have a textual description, announced 



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al. 

Figure 5: (a) The toggle button in iSaveMoney is not focusable and buttons indicated by yellow-solid boxes have inefective 
action; (b) The content description of the notifcation icon in ESPN has unsupported characters; (c) The textual description of 
travelers numbers are diferent in Expedia; (d) (e) diferent fragments showing to diferent users. 

as “unlabeled”. In another example, all textual content of the sum-

mary block in the iSaveMoney app, green-dotted highlighted box 
in Figure 5(a), is announced altogether in an unintuitive order, and 
the user had to change the reading mode to understand each word. 
Although these issues do not make the app incomprehensible, they 
create barriers to blind users. We asked one of the interviewees 
how they felt about this kind of inaccessibility, and he said he could 
deal with them “but we, blind people or deaf people, deserved the 
same amount of dignity as others.” 

9.3 Unsettled Issues 
A11yPuppetry detected some issues that the users in our user study 
did not fnd to be signifcant. Mainly these issues belong to Jump 
and Search navigation modes. In the Jump navigation mode, TB 
Replayer tries to locate the element using jump navigation (going 
to the next control or heading element); however, sometimes, it 
is not possible to reach to element since it does not have proper 
attributes, e.g., it is not a button. TB Replayer with Search naviga-
tion mode tries to locate the elements by searching their textual 
description; however, when there are multiple elements with the 
same description, this mode cannot locate the element correctly. 
Although users mentioned it would be nice if the attributes were 
set properly so they could use diferent navigation modes; they did 
not fnd these issues important since they usually do not use Jump 
and Search navigation modes. We further examined why users do 
not use these modes that often in Section 10. 

9.4 Flaky Issues 
Sometimes A11yPuppetry reports issues that are not correct, which 
is caused by technical problems with the experiments. The main 
characteristic of this category is that by rerunning A11yPuppetry, 
the issue may not be reported again. There are three main tech-
nical problems. First, TalkBack sometimes freezes and does not 
respond properly and on time, making A11yPuppetry think the 
app has accessibility issues that do not let TalkBack continue the 
exploration. Secondly, the recorder may record incorrect an ele-
ment; for example, on the signup page of the ESPN app, instead 
of recording a button, it records a transparent view covering the 
button, which does not interface with the touch interaction. Lastly, 
the apps can be changed and be in diferent states on TB Replayer 
devices. Mainly this issue is caused by A/B testing, where develop-
ers dynamically show diferent pages to diferent users to measure 
some metrics about their product. For example, Figures 5(d) and (e) 
are two diferent fragments of changing the number of travelers in 
the Expedia app. If the recorder records the action in Figure 5(d), 
the same element cannot be found in Figure 5(e) since the structure 
is totally diferent. 

9.5 Undetected Issues 
As expected, A11yPuppetry cannot detect all forms of accessibility 
problems, and the best way to evaluate the accessibility of apps is 
by conducting user studies with disabled users. We categorized the 
limitation of A11yPuppetry in the following categories. 

Improper Change Announcement. As users interact with mobile 
apps, the layout constantly changes. A sighted user can monitor 
all of these changes to understand the latest state of the app, while 



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany 

Figure 6: (a) After pressing the search tab in DoorDash, a new search page appears without any announcement; (b) List of saved 
stores in DoorDash; (c) The interstitial ad in Dictionary app and the close tab is not focusable by TalkBack; (d)The accessible 
calendar in Expedia. 

it is much more difcult for users with visual impairment to real-
ize something is changed in the app. During our interview, users 
reported a couple of these kinds of issues. For example, when the 
user presses the search tab in the Doordash app, the red-dashed box 
in Figure 6(a), a completely new search page appears without any 
announcement for TalkBack users. One participant mentioned “My 
preference is that whenever something like that happens, [Talk-
Back] moves the focus up to where the new content begins because 
someone as a screen reader won’t necessarily [realize the app is 
changed].” 

Excessive Announcement. On the other hand, it can be problem-

atic and annoying when TalkBack announces content more than 
a user’s need. For example, in the Expedia app, when a user types 
a name in the search edit box, TalkBack interrupts the user by 
announcing “Suggestions are being loaded below”. Although it is 
informative for users to know the search results are loaded on the 
fy, it is annoying to interrupt constantly. 

Temporary Visible Elements. Sometimes apps introduce new ele-
ments for a short period to notify the user something has changed 
and let the user undo or do something relevant to this change. For 
example. in the Doordash app, when the user saves a restaurant 
as her favorite, a pop-up box appears, Figure 6(b), notifying the 
user the store is saved and disappears momentarily. A blind user is 
informed of this change, but does not have enough time to focus 
on the appearing dialogue box. 

10 DISCUSSION 
The previous section demonstrates the efectiveness of 
A11yPuppetry in providing insights and detecting accessi-
bility issues. This section discusses other fndings from the user 
studies that might be insightful for future research work. 

TalkBack Interaction Preferences. We further examined how users 
with visual impairments interact with apps using TalkBack. We 
asked the interviewees to explain the diferent ways they use Talk-
Back. If they did not mention any of the navigation ways that we 
found in TalkBack documentation, we asked them if they are aware 
of them. 

Generally, the primary way of navigation mode for all partici-
pants is Linear navigation. A user mentioned “I’m more into the 
fick, element to element, to explore an app and understand its 
layout.” This mode is especially used when the user interacts with 
an app or page that is unfamiliar. 

The next favorite way of navigating is through Touch mode; 
however, it is usually used in certain scenarios. For example, when 
a user knows about the possible location of elements, the user is 
likely to use the Touch navigation mode. One participant mentioned 
“The back buttons are always at the top left, usually so... I’m going 
to put my fnger at the top left to fnd that back button.”. Also, when 
a user cannot fnd the element or is stuck in a loop, the user is more 
likely to use touch to fnd the target element. 

Some interviewees said they might use Jump navigation for 
headings in the apps that they are familiar with. One participant 
said “If I don’t know [the app] well enough ... I’m going to fick 
through the whole thing to fgure out the layout. If I know it well 
enough, then I probably would switch to the heading option and 



CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al. 

then search by heading”. However, almost none of the participants 
are willing to use the Search navigation mode. One user mentioned 
“I know [search] is there. But I prefer to just hunt for [the elements]. 
It gives me a more experience with the app.” 

We also realized users do not want to use other actions like 
scrolling, since scrolling confuses them in understanding the new 
state of the app. A user said “[I use scrolling] if I know an app really 
well. But sometimes I fnd that when I do the scrolling thing, it’ll 
get me into something else... sometimes it’ll get me where I really 
don’t want to be. So I have a tendency not to want to do it.” 

Context. A common accessibility issue in mobile apps is missing 
speakable text [2, 23]. Although missing speakable text degrades 
the user experience and ability to locate elements, sometimes users 
can infer the functionality of an unlabeled button given its context. 
For example, the user can view the list of saved stores in Doordash 
and remove any of them, as depicted in Figure 6(b). The element 
for removing a store is an icon with the shape of a heart without a 
content description. However, our interviewee did not have a prob-
lem with locating this button. He mentioned “That is a good layout, 
an accessible checkbox next to [the restaurant], which is checked 
unchecked. I have seen these checkboxes on the home screen. I 
don’t like them on the home screen because the user doesn’t know 
what that checkbox actually does. The common sense here would 
tell you I’m in the saved stores’ section. So if I uncheck a box, it’s 
going to remove that.” Anyway, this observation should not en-
courage developers not to care about missing content descriptions; 
on the contrary, it emphasizes the importance of context for users 
with visual impairment to understand the app better. 

Advertisement. In our experiments with A11yPuppetry, we did 
not observe any ads. However, if an interstitial ad appears dur-
ing the replay process, A11yPuppetry may fail to continue as the 
appearance of ads is random and irregular. For example, for the 
Dictionary app, the interstitial ad, such as Figure 6(c), might appear 
when the user searches for a word. Disabled users have difculty 
noticing the occurrence of the ads until they get stuck in the ads 
window for a few minutes. Even if they are aware of the ads, clos-
ing them and returning to the previously interrupted use case is 
challenging. One of the interviewees tried to locate the app with 
Linear and Touch navigation modes, but the ad’s close button was 
not focusable by TalkBack. As a result, the user had to restart the 
app (close and open again) to continue the task. 

All the interviewees are cautious about the in-app advertise-
ments. As one stated, “I tend not to open [the in-app advertisements] 
because half of the time, these advertisements cause problems.” In 
addition, most interviewees expressed a willingness to pay for the 
ad-free version if the price is not too high, so they do not have to 
deal with ads while navigating apps. A user mentioned: “If the app 
gives me the option to do without ads with a small price, I pay the 
small price just so I don’t have to deal with the ads. Most of the 
time [the ads] don’t work with the screen readers.” Nevertheless, 
previous research indicates that some apps still contain ads even if 
users pay ad-free fees [32]. 

To the best of our knowledge, only one previous research inves-
tigated the impact of ads on disabled users. The research found that 
most ads are represented in GIFs, and more than half of the sampled 
ads have no ALT tag [64]. Therefore, screen readers cannot read the 

contents of the ads to blind users. Other researchers investigated 
the impact of ads on the whole user group, not just disabled users. 
The negative infuences of ads include privacy threats, signifcant 
battery consumption, slowing down the app, and disabling an app’s 
normal function [29, 32]. We believe that this negative impact is 
further magnifed for disabled users. 

There are some design implications for in-app advertisements. 
Generally, ads that take the entire screen are named interstitial 
ads, while ads that are represented as horizontal strips are named 
banner ads. The ads should be announced correctly via Assistive 
Services so disabled users can know the occurrence of the ads. In 
addition, developers are encouraged to design banner ads, since 
the banner ads usually do not disable an app’s functionality. By 
contrast, interstitial ads signifcantly attract users’ attention and 
even require users to close the ad manually [32]. 

Guided Navigation. The interviewees enjoyed interacting with 
an app when the app guided them through the process. In particular, 
Expedia did a great job in reserving fights: it consists of several 
steps like asking about the origin and destination airports, and 
dates. Once each step is done, the focus is changed to the next 
question and also announces the changes. Users are also able to 
get out of this selection and get back to the search page to change 
or view other information. One of the interviewees was especially 
happy about the calendar, Figure 6(d), and mentioned “That was 
one of the coolest mobile calendars I’ve ever used because it walked 
me through where I was. I selected the start date, and it told me 
that, and then it said, pick your end date, and then it summarized 
with states, like September 19th Start date or September 20th in the 
trip.” 

Alternative Suggestion. As we discussed before, there are several 
complex touch gestures that do not have a corresponding equiva-
lent in TalkBack, e.g., dragging or pinching. Developers are recom-

mended to provide alternative interactions for complex gestures. 
For example, the calendar widget in Expedia, Figure 6(d), is designed 
to allow sighted users to modify their travel dates by dragging the 
start date to end date. For TalkBack users, the app is designed to 
announce “Select dates again to modify” which is an alternative 
way of modifying the dates. 

Common Sense. During the interviews, we noticed participants 
sometimes locate certain elements much faster than other elements. 
In particular, for elements like “Search” or “Back”, instead of using 
Linear navigation, they explored certain parts of the app by Touch 
navigation to locate the element. We asked how they locate these 
elements and they generally responded to do so with the help of 
common sense. For example, the back button or open navigation 
drawer is usually located on the top left of the element, or menus 
are located in the footer. Common sense is not limited to similar 
elements on the screen. In the interview for the Doordash app, the 
interviewee found the button that shows the address of a restaurant 
pretty fast, even though the button was unlabeled. When we asked 
how he found such an element, he responded “A normal company 
would put the address on top, you know. So I’m using it. That’s 
common sense.” Therefore, it is important for developers to not 
change the spatial aspects of UI elements without considering users’ 
habits. 



Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany 

11 CONCLUDING REMARKS 
In this work, we introduced A11yPuppetry, a semi-automated 
record-and-replay technique for detecting accessibility issues in 
Android apps using TalkBack, the ofcial screen reader in Android. 
A11yPuppetry records the user touch gestures in a device, trans-
lates the gestures into their equivalent action in TalkBack, and per-
forms them on four diferent devices with four navigation modes in 
TalkBack. Finally, A11yPuppetry analyzes reports of the recorder 
and replayers and generates aggregated and visualized reports for 
developers. We evaluated A11yPuppetry by conducting user stud-
ies with users with visual impairments. We showed A11yPuppetry 
detects various types of accessibility issues that cannot be detected 
by existing tools. Our experiments also suggest the informative 
reports produced by A11yPuppetry can potentially aid developers 
with understanding and resolving the accessibility barriers in their 
apps. 

In our future work, we would like to conduct a developer study 
to determine to what extent our tool can provide clues to help de-
velopers understand and resolve accessibility issues. We are also 
interested in exploring the application of A11yPuppetry as a peda-
gogical tool, e.g., using A11yPuppetry to help software engineering 
students learn about the impact of their implementation choices on 
users that interact with their software through an assistive service. 
Furthermore, we are interested in extending our implementation 
to support other assistive services and possibly on diferent plat-
forms.

3 
Our ultimate goal is to introduce this record-and-replay 

technique in the industry to evaluate its efectiveness in a large-
scale setting. 

ACKNOWLEDGMENTS 
This work was supported in part by award numbers 2211790, 
1823262, and 2106306 from the National Science Foundation and 
Sigma Xi Grants in Aid of Research. We would like to thank 
Yasaman Razeghi and Forough Mehralian for their valuable dis-
cussions and feedback on this work. We also acknowledge and 
appreciate the anonymous reviewers of this paper for their detailed 
feedback, which helped us improve the work. 

REFERENCES 
[1] Ali S Alotaibi, Paul T Chiou, and William GJ Halfond. 2022. Automated Detection 

of TalkBack Interactive Accessibility Failures in Android Applications. In 2022 
IEEE Conference on Software Testing, Verifcation and Validation (ICST). IEEE, IEEE, 
Virtual, 232–243. 

[2] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility issues 
in Android apps: state of afairs, sentiments, and ways forward. In 2020 IEEE/ACM 
42nd International Conference on Software Engineering. ICSE, Virtual, 1323–1334. 

[3] Abdulaziz Alshayban and Sam Malek. 2022. AccessiText: Automated Detection 
of Text Accessibility Issues in Android Apps. In Proceedings of the 30th ACM Joint 
European Software Engineering Conference and Symposium on the Foundations 
of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for 
Computing Machinery, New York, NY, USA, 984–995. https://doi.org/10.1145/ 
3540250.3549118 

[4] Silviu Andrica and George Candea. 2011. WaRR: A tool for high-fdelity web 
application record and replay. In 2011 IEEE/IFIP 41st International Conference on 
Dependable Systems & Networks (DSN). IEEE, Hong Kong, China, 403–410. 

[5] Android. 2022. Accessibility Scanner - Apps on Google Play. Google. Retrieved May 
6, 2022 from https://play.google.com/store/apps/details?id=com.google.android. 
apps.accessibility.auditor&hl=en_US 

[6] Android. 2022. AccessibilityService in Android. Google. Retrieved May 6, 2022 
from https://developer.android.com/guide/topics/ui/accessibility/service 

3
We chose TalkBack for this study because its source code is publicly available. 

[7] Android. 2022. Android accessibility overview. Google. Retrieved May 6, 2022 
from https://support.google.com/accessibility/android/answer/6006564 

[8] Android. 2022. Build more accessible apps. Google. Retrieved May 6, 2022 from 
https://developer.android.com/guide/topics/ui/accessibility 

[9] Android. 2022. Espresso : Android Developers. Google. Retrieved May 6, 2022 
from https://developer.android.com/training/testing/espresso 

[10] Android. 2022. Get started on android with talkback - android accessibility help. 
Google. Retrieved May 6, 2022 from https://support.google.com/accessibility/ 
android/answer/6283677?hl=en 

[11] Android. 2022. Improve your code with lint checks. Google. Retrieved May 6, 
2020 from https://developer.android.com/studio/write/lint?hl=en 

[12] Android. 2022. TalkBack source code by Google. Google. Retrieved May 6, 2022 
from https://github.com/google/talkback 

[13] Android. 2022. Use Touch Gestures. Google Inc. Retrieved August 29, 2022 from 
https://developer.android.com/develop/ui/views/touch-and-input/gestures 

[14] Vinod Anupam, Juliana Freire, Bharat Kumar, and Daniel Lieuwen. 2000. Au-
tomating Web navigation with the WebVCR. Computer Networks 33, 1-6 (2000), 
503–517. 

[15] appetizerio. 2022. Replaykit. appetizerio. Retrieved September 2, 2022 from 
https://github.com/appetizerio/replaykit 

[16] Apple. 2022. Accessibility on iOS. Apple. Retrieved May 6, 2021 from https: 
//developer.apple.com/accessibility/ios/ 

[17] Apple. 2022. Apple Accessibility. Apple. Retrieved May 6, 2020 from https: 
//www.apple.com/accessibility/iphone/ 

[18] Apple. 2022. Debug Accessibility in iOS Simulator with the Accessibil-
ity Inspector. Apple. Retrieved May 6, 2022 from https://developer. 
apple.com/library/archive/technotes/TestingAccessibilityOfOSApps/ 
TestAccessibilityiniOSSimulatorwithAccessibilityInspector/ 
TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ 
ref/doc/uid/TP40012619-CH4-SW1 

[19] Tingting Bi, Xin Xia, David Lo, John Grundy, Thomas Zimmermann, and Denae 
Ford. 2022. Accessibility in software practice: A practitioner’s perspective. ACM 
Transactions on Software Engineering and Methodology (TOSEM) 31, 4 (2022), 
1–26. 

[20] Jefrey P Bigham, Jeremy T Brudvik, and Bernie Zhang. 2010. Accessibility 
by demonstration: enabling end users to guide developers to web accessibility 
solutions. In Proceedings of the 12th international ACM SIGACCESS conference 
on Computers and accessibility. Association for Computing Machinery, Orlando, 
USA, 35–42. 

[21] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C Miller. 
2005. Automation and customization of rendered web pages. In Proceedings 
of the 18th annual ACM symposium on User interface software and technology. 
Association for Computing Machinery, Seattle, USA, 163–172. 

[22] Giovanna Broccia, Marco Manca, Fabio Paternò, and Francesca Pulina. 2020. 
Flexible automatic support for web accessibility validation. Proceedings of the 
ACM on Human-Computer Interaction 4, EICS (2020), 1–24. 

[23] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, and 
Guoqiang Li. 2020. Unblind Your Apps: Predicting Natural-Language Labels for 
Mobile GUI Components by Deep Learning. In 2020 IEEE/ACM 42nd International 
Conference on Software Engineering. ICSE, Virtual, 322–334. 

[24] Sen Chen, Chunyang Chen, Lingling Fan, Mingming Fan, Xian Zhan, and Yang Liu. 
2021. Accessible or Not An Empirical Investigation of Android App Accessibility. 
IEEE Transactions on Software Engineering 48 (2021), 3954–3968. 

[25] Dictionary.Com. 2022. Dictionary.com English Word Meanings & Defnitions. 
Dictionary.Com. Retrieved August 29, 2022 from https://play.google.com/store/ 
apps/details?id=com.dictionary 

[26] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018. 
Automated accessibility testing of mobile apps. In 2018 IEEE 11th International 
Conference on Software Testing, Verifcation and Validation. ICST, Västerås, Sweden, 
116–126. 

[27] Mattia Fazzini, Eduardo Noronha De A Freitas, Shauvik Roy Choudhary, and 
Alessandro Orso. 2017. Barista: A technique for recording, encoding, and running 
platform independent android tests. In 2017 IEEE International Conference on 
Software Testing, Verifcation and Validation (ICST). IEEE, IEEE, Tokyo, Japan, 
149–160. 

[28] Earlence Fernandes, Qi Alfred Chen, Georg Essl, J Alex Halderman, Z Morley Mao, 
and Atul Prakash. 2014. Tivos: Trusted visual i/o paths for android. University of 
Michigan CSE Technical Report CSE-TR-586-14 (2014), 12 pages. 

[29] Cuiyun Gao, Jichuan Zeng, Federica Sarro, David Lo, Irwin King, and Michael R 
Lyu. 2021. Do users care about ad’s performance costs? Exploring the efects of 
the performance costs of in-app ads on user experience. Information and Software 
Technology 132 (2021), 106471. 

[30] Greg Gay and Cindy Qi Li. 2010. AChecker: open, interactive, customizable, web 
accessibility checking. In Proceedings of the 2010 International Cross Disciplinary 
Conference on Web Accessibility (W4A). Association for Computing Machinery, 
Raleigh, USA, 1–2. 

https://doi.org/10.1145/3540250.3549118
https://doi.org/10.1145/3540250.3549118
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://developer.android.com/guide/topics/ui/accessibility/service
https://support.google.com/accessibility/android/answer/6006564
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/training/testing/espresso
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://developer.android.com/studio/write/lint?hl=en
https://github.com/google/talkback
https://developer.android.com/develop/ui/views/touch-and-input/gestures
https://github.com/appetizerio/replaykit
https://developer.apple.com/accessibility/ios/
https://developer.apple.com/accessibility/ios/
https://www.apple.com/accessibility/iphone/
https://www.apple.com/accessibility/iphone/
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://play.google.com/store/apps/details?id=com.dictionary
https://play.google.com/store/apps/details?id=com.dictionary
https://Dictionary.Com
https://Dictionary.com
https://Dictionary.Com


CHI ’23, April 23–28, 2023, Hamburg, Germany Salehnamadi, et al. 

[31] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. 2013. Reran: 
Timing-and touch-sensitive record and replay for android. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, IEEE, San Francisco, CA, 
USA, 72–81. 

[32] Jiaping Gui, Meiyappan Nagappan, and William GJ Halfond. 2017. What aspects 
of mobile ads do users care about? an empirical study of mobile in-app ad reviews. 
arXiv preprint arXiv:1702.07681 (2017), 10 pages. 

[33] Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2019. Sara: 
self-replay augmented record and replay for Android in industrial cases. In 
Proceedings of the 28th acm sigsoft international symposium on software testing 
and analysis. Association for Computing Machinery, Beijing, China, 90–100. 

[34] Matthew Halpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi. 2015. Mosaic: 
cross-platform user-interaction record and replay for the fragmented android 
ecosystem. In 2015 IEEE International Symposium on Performance Analysis of 
Systems and Software (ISPASS). IEEE, IEEE, Philadelphia, PA, USA, 215–224. 

[35] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan. 
2014. PUMA: programmable UI-automation for large-scale dynamic analysis of 
mobile apps. In Proceedings of the 12th annual international conference on Mobile 
systems, applications, and services. ACM New York, NY, USA, Bretton Woods, 
New Hampshire, USA, 204–217. 

[36] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet lightweight 
record-and-replay for android. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and 
Applications. Association for Computing Machinery, Auckland , New Zealand, 
349–366. 

[37] Darris Hupp and Robert C Miller. 2007. Smart bookmarks: automatic retroactive 
macro recording on the web. In Proceedings of the 20th annual ACM symposium 
on User interface software and technology. Association for Computing Machinery, 
Newport, USA, 81–90. 

[38] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real challenges 
in mobile app development. In 2013 ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement. IEEE, IEEE, Baltimore, MD, USA, 
15–24. 

[39] Kiran Kaja. 2022. DoorDash Issue Tweet. Retrieved September 15, 2022 from 
https://twitter.com/kirankaja12/status/1551710324016836608 

[40] KIF. 2022. Keep It Functional - An iOS Functional Testing Framework. Retrieved 
November 28, 2022 from https://github.com/kif-framework/KIF 

[41] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zim-

mermann, and David Lo. 2015. Understanding the test automation culture of 
app developers. In 2015 IEEE 8th International Conference on Software Testing, 
Verifcation and Validation (ICST). IEEE, IEEE, Graz, Austria, 1–10. 

[42] Will Lachance. 2022. Orangutan. wlach. Retrieved September 2, 2022 from 
https://github.com/wlach/orangutan 

[43] Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter: 
automating & sharing how-to knowledge in the enterprise. In Proceedings of 
the SIGCHI Conference on Human Factors in Computing Systems. Association for 
Computing Machinery, Florence, Italy, 1719–1728. 

[44] Ian Li, Jefrey Nichols, Tessa Lau, Clemens Drews, and Allen Cypher. 2010. Here’s 
what I did: Sharing and reusing web activity with ActionShot. In Proceedings of 
the SIGCHI Conference on Human Factors in Computing Systems. Association for 
Computing Machinery, Atlanta, USA, 723–732. 

[45] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating 
multimodal smartphone automation by demonstration. In Proceedings of the 2017 
CHI conference on human factors in computing systems. Association for Computing 
Machinery, Bremen , Germany, 6038–6049. 

[46] Jun-Wei Lin, Navid Salehnamadi, and Sam Malek. 2020. Test automation in open-
source android apps: A large-scale empirical study. In Proceedings of the 35th 
IEEE/ACM International Conference on Automated Software Engineering. ACM 
New York, NY, USA, Virtual, Australia, 1078–1089. 

[47] Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Kevin Moran, and Denys Poshy-
vanyk. 2017. How do developers test android applications?. In 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). IEEE, IEEE, 
Shanghai, China, 613–622. 

[48] Zhenyue Long, Guoquan Wu, Xiaojiang Chen, Wei Chen, and Jun Wei. 2020. 
WebRR: self-replay enhanced robust record/replay for web application testing. In 
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. Association 
for Computing Machinery, Virtual Event, USA, 1498–1508. 

[49] Google Material Design. 2022. Gestures. Google Inc. Retrieved August 29, 2022 
from https://material.io/design/interaction/gestures.html#principles 

[50] Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek. 2022. 
Too Much Accessibility is Harmful! Automated Detection and Analysis of Overly 
Accessible Elements in Mobile Apps. In 2022 37th IEEE/ACM International Con-
ference on Automated Software Engineering. IEEE, ACM New York, NY, USA, 
Rochester, Michigan, USA, 13 pages. 

[51] Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-driven 
accessibility repair revisited: on the efectiveness of generating labels for icons in 
Android apps. In Proceedings of the 29th ACM Joint Meeting on European Software 

Engineering Conference and Symposium on the Foundations of Software Engineering. 
ACM New York, NY, USA, Virtual, Athens, Greece, 107–118. 

[52] Diego Torres Milano. 2022. Culebra. Diego Torres Milano. Retrieved September 
2, 2022 from https://github.com/dtmilano/AndroidViewClient/wiki/culebra 

[53] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. 2016. Mobiplay: A remote 
execution based record-and-replay tool for mobile applications. In Proceedings 
of the 38th International Conference on Software Engineering. Association for 
Computing Machinery, Texas, Austin, 571–582. 

[54] Ranorex. 2022. ranorex. Idera, Inc. Retrieved September 2, 2022 from https: 
//www.ranorex.com/mobile-automation-testing/android-test-automation/ 

[55] RobotiumTech. 2022. robotiumrecorder. RobotiumTech. Retrieved September 2, 
2022 from https://github.com/RobotiumTech/robotium 

[56] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2017. 
Epidemiology as a framework for large-scale mobile application accessibility 
assessment. In Proceedings of the 19th international ACM SIGACCESS conference 
on computers and accessibility. ASSETS, Baltimore, MD, USA, 2–11. 

[57] Onur Sahin, Assel Aliyeva, Hariharan Mathavan, Ayse Coskun, and Manuel Egele. 
2019. Randr: Record and replay for android applications via targeted runtime 
instrumentation. In 2019 34th IEEE/ACM International Conference on Automated 
Software Engineering (ASE). IEEE, IEEE, San Diego, CA, USA, 128–138. 

[58] Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy 
Branham, and Sam Malek. 2021. Latte: Use-case and assistive-service driven 
automated accessibility testing framework for android. In Proceedings of the 2021 
CHI Conference on Human Factors in Computing Systems. ACM New York, NY, 
USA, Virtual, Okohama, Japan, 1–11. 

[59] Navid Salehnamadi, Ziyao He, and Sam Malek. 2022. A11yPuppetry companion 
website. Retrieved Jan 31, 2023 from https://github.com/seal-hub/A11yPuppetry 

[60] Navid Salehnamadi, Forough Mehralian, and Sam Malek. 2022. GroundHog: 
An Automated Accessibility Crawler for Mobile Apps. In 2022 37th IEEE/ACM 
International Conference on Automated Software Engineering. IEEE, ACM New 
York, NY, USA, Rochester, Michigan, USA, 13 pages. 

[61] Camila Silva, Marcelo Medeiros Eler, and Gordon Fraser. 2018. A survey on the 
tool support for the automatic evaluation of mobile accessibility. In Proceedings 
of the 8th International Conference on Software Development and Technologies for 
Enhancing Accessibility and Fighting Info-exclusion. DSAI, Thessaloniki, Greece, 
286–293. 

[62] StatCounter. 2022. Desktop vs Mobile vs Tablet vs Console Market Share Worldwide. 
StatCounter. Retrieved September 15, 2022 from https://gs.statcounter.com/ 
platform-market-share 

[63] Hironobu Takagi, Chieko Asakawa, Kentarou Fukuda, and Junji Maeda. 2003. 
Accessibility designer: visualizing usability for the blind. ACM SIGACCESS 
accessibility and computing 77-78 (2003), 177–184. 

[64] David Thompson and Birgit Wassmuth. 2001. Accessibility of online advertising: 
a content analysis of alternative text for banner ad images in online newspapers. 
Disability Studies Quarterly 21, 2 (2001), 26 pages. 

[65] W3. 2022. Web Content Accessibility Guidelines (WCAG) Overview. World 
Wide Web Consortium. Retrieved May 6, 2022 from https://www.w3.org/WAI/ 
standards-guidelines/wcag/ 

[66] WHO. 2011. World report on disability. World Health Organization. Retrieved 
May 6, 2022 from https://www.who.int/disabilities/world_report/2011/report/en/ 

A USER STUDY TASKS 

A.1 Dictionary 
(1) Type the word “Cofee” in the search bar, the app should provide 

a list of entries, please select the frst entry (which should be 
“Cofee”). 

(2) Listen to the pronunciation of the word by selecting the speaker 
button. Then read the IPA (International Phonetic Alphabet) of 
the word. You may need to select the “Show IPA” link to reveal 
the IPA of the word. 

(3) On the same page, read the defnition of the word “Cofee”. It 
should start with “a beverage consisting of”. 

(4) Mark the word cofee as a favorite word by selecting the star 
button. 

(5) Select the back or navigate up button in the app (not Android’s 
general back button) to go to the main page. Then open the 
menu by selecting the navigation drawer button. 

(6) In the menu, select “Word of the Day”. Then on the new page, 
select the second word in the list. 

https://twitter.com/kirankaja12/status/1551710324016836608
https://github.com/kif-framework/KIF
https://github.com/wlach/orangutan
https://material.io/design/interaction/gestures.html#principles
https://github.com/dtmilano/AndroidViewClient/wiki/culebra
https://www.ranorex.com/mobile-automation-testing/android-test-automation/
https://www.ranorex.com/mobile-automation-testing/android-test-automation/
https://github.com/RobotiumTech/robotium
https://github.com/seal-hub/A11yPuppetry
https://gs.statcounter.com/platform-market-share
https://gs.statcounter.com/platform-market-share
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.who.int/disabilities/world_report/2011/report/en/


Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay CHI ’23, April 23–28, 2023, Hamburg, Germany 

(7) On this page, listen to the pronunciation of the word by selecting 
the speaker button. Then read the frst example of this word 
which is located under “Examples:” section. 

(8) Select the back or navigate up button in the app (not Android’s 
general back button) to go to the main page. Then open the 
menu by selecting the navigation drawer button. In the menu, 
select “Favorites”. 

(9) On the “Favorites” page you should see the word “Cofee” which 
was marked as a favorite in step 4. Remove this word by select-
ing the edit button, then select the word “Cofee”, and fnally 
select the “Delete” button. 

(10) After deleting “Cofee”, the favorite page should be empty with 
a text in the middle saying “You don’t have any favorites yet. 
Tap here to look up a word”. Please select the “Tap here” link, 
and search for the word “Tea”. 

A.2 DoorDash 
(1) Select the “Continue as guest” button, type “New York” in the 

address bar, and select the frst entry (which should be “New 
York”). 

(2) In the address settings page, do not change anything and select 
“Save”. Sometimes, a pop-up window will appear to inform you, 
“New! Send a gift to your loved ones”. In that case, select “Go 
Back”. 

(3) Select the “Search” button, and type “Chicken” in the search 
bar. Please do not hit enter or search button once you’re done 
typing. 

(4) Select the second entry of the search result. In the restaurant 
page, save the restaurant by selecting the save button (with a 
heart icon). A window appears with the title “You’ve saved your 
frst store”., In this window, select “View Saved Stores”. 

(5) Remove the saved restaurant by selecting the save button (with 
a heart icon). After selecting, the button should be toggled. 

(6) Go back to the search screen by selecting the back or “Navigate 
up” button two times. Then Select the “Home” button. 

(7) Go to the grocery category page by selecting the “Grocery” 
button. Then select the frst store. 

(8) Change the delivery option to pickup by selecting “Pickup” 
button (if you do not see the pickup button, try selecting another 
store). Once you select this button, the address of the store 
should be available below it under the title “This is a Pickup 
order” 

(9) Now select the info button (with an exclamation icon) under 
the name of the store. It should take you to a new screen with 
information of the store such as address and phone number. 

(10) Navigate back two times by selecting the “Navigate up” or back 
button, and fnally select the “Orders” button. In the new screen, 
there should be a text “No recent orders”. 

A.3 ESPN 
(1) Select the “Sign Up” button, and then select the “Change” link. 

It may or may not ask an email, you can provide a random email 
just to proceed. 

(2) On the new window with the title “Where do you live?”, choose 
“United States” from the drop down menu. Then select the “Done” 
button. 

(3) Then press the back button (or reopen the app) to be on the 
frst screen. Now select the “Sign Up Later” button. It may ask 
you to choose a region, select any region and select next. 

(4) On the new screen, select one favorite league, e.g., “NBA” and 
then select the “Next” button. 

(5) On the new screen, select one team, e.g., “Lakers”, and then 
select the “Finish” button. 

(6) A new screen may appear with the title “Stream your favorite 
teams and sports. Get ESPN+ now!”. In that case, perform the 
back button. Now you should be on the main screen of the ESPN 
app. 

(7) Select the “Scores” button on the bottom menu, and in the 
“Scores” screen, select the button next to the “Top Events” but-
ton, e.g., “NFL”. In the showing results, either select the “HIGH-
LIGHTS” button or the notifcation button (with a bell icon) 
for one of the shown matches. Regardless of the button you 
selected, select the “Navigate up” or back button. 

(8) Select “ESPN+” on the bottom menu, select the “Settings” button, 
and then select the “Edition” button. 

(9) On the list of editions, select “Global”, a dialogue appears to ask 
if you want to switch, select “Continue”. 

(10) You should be in the main screen, select the “Search” button, 
and type “NFL” in the search bar. An entry “National Footbal 
League” should be shown under “LEAGUES” section, select that 
button. 

A.4 Expedia 
(1) After opening the app for the frst time, it shows an introduction 

page. Select the “Next” button until you reach the last screen. 
Then select “LET’S GO” button. 

(2) Close the sign-in page by selecting the “Close” button. On the 
main screen, select the “Flights” button. 

(3) On the the “Flights” page, select the “Flying from” button, type 
“New York” and select the frst entry. Then it asks you for the 
destination or “Flying to”. Type “Los Angeles” and select the 
frst entry. 

(4) Once you enter the airports, the app shows a calendar window 
to select the departure date. Select August 23rd and August 26th 
buttons, and then press the “Done” button. 

(5) Now you should be on the Flights page. Change the traveler’s 
number to 3 by selecting the Travelers button, then increase 
the number of adults by selecting the plus button two times. 
Then select the “Done” button. 

(6) Now you should be on the fight’s page. Select the “Search” 
button. Once the search results are provided, Then go to the 
main screen by selecting the “Navigate up” (or back) button and 
then the “Close” button, this should close the fights page. 

(7) Select the “Cars” button. On the “Cars” page, select the “Pick-up” 
button and type “New York”. Then select the frst entry (which 
should be “New York”). 

(8) On the Cars page, select the “Search” button. Then go to the 
main screen by selecting the “Navigate up” (or back) button and 
then the “Close” button. 

(9) Select the “Account” button. Under the “Settings” section, select 
“Choose a theme” button. Then select the “Dark” button and 
press “Done”. 



CHI ’23, April 23–28, 2023, Hamburg, Germany 

(10) Select the “Trips” button and then select “Sign in or create free 
account”. 

A.5 iSaveMoney 
(1) Skip the tutorial by selecting Next. 
(2) Once you get to the actual app page of iSaveMoney, select 

“Create your frst budget” button. 
(3) In the “New Budget” page, do not change the start and end 

dates, and just select “Next” button. 
(4) In the “Select Categories” page, select the “ADD” button for 

“Daily Living” category. 
(5) When the dialouge appears, type 1000 for the “Estimated Budget” 

feld, then select the “Save” button, and fnally, select the “Done” 
button. 

Salehnamadi, et al. 

(6) Now, you should be on the current budget page, where the title 
is the current month, for example, Jul 1 - 31, 2022. Select the 
“Add Expense” at the bottom. If you are a screen reader user, it 
may be the second “Add Expense” to select. 

(7) In the “Add Expense” page, fll the form by picking a cate-
gory (Daily Living), Writing something on the Description, e.g., 
“SomeExpense”, and entering 500 in the “Amounts” textbox. 
Finally, Select the “Save Button”. 

(8) Now, you should be in the budget page. Try to collapse the 
“Total Expendture” section, by selecting the arrow inside this 
section. 


	Abstract
	1 Introduction
	2 Motivating Example
	3 Related Work
	3.1 Accessibility Testing
	3.2 Record-and-Replay

	4 Approach Overview
	5 Recorder
	5.1 Touch Gestures
	5.2 Implementation

	6 Action Translator
	6.1 TalkBack Actions
	6.2 Mapping

	7 Replayer
	7.1 TENG
	7.2 Implementation

	8 Report
	8.1 Automated Issue Detection

	9 User Studies
	9.1 Automated Detection
	9.2 Evidence Provided
	9.3 Unsettled Issues
	9.4 Flaky Issues
	9.5 Undetected Issues

	10 Discussion
	11 Concluding Remarks
	Acknowledgments
	References
	A User Study Tasks
	A.1 Dictionary
	A.2 DoorDash
	A.3 ESPN
	A.4 Expedia
	A.5 iSaveMoney




