2301.13302v1 [cs.HC] 30 Jan 2023

arxXiv

A Study of Editor Features in a Creative Coding Classroom

Andrew McNutt
University of Chicago
Chicago, IL, USA

_ v oz vepz .~ Edit Menu Containing Tidy Code
° m (O S . Auto-refresh Toggle

Sketch Files v | < skewnss®

Sketch Files Number Pickers

D index.htnl e @ B.o0o8

B sketeh.ja function draw() {

Defaen Edi tor. shapeToolbox() open ;

if (keyCode === -70+) {
noStroke();
fil1("black"m);

Shape
Toolbox

Anton Outkine
University of Chicago
Chicago, IL, USA

-] circle(mouseX, mouseY, Editor.slider(30, 200, 80)
I Missing semicolon.
Linting f111("honeydew”

for (let idx = -@ Pk —
¥ Purple.

const pointl = f ygea M
const newAcc = [Y Orange L]]
¥ Yellow
v Green DL L L]
for (let jdx = - ycyan
if (idx === jc vBue frfffesess
continue; Y Brown GEEEsses
¥ White
v Gray ssssee

Hide Color Pickers _Hide Number Pickers
Code Pane o Close Convert to hex and close

16

16
91
16

91
53

Show/Hide Widgets

Controls to toggle Color Fickers
and Number Pickers

Console

Figure 1: This modified p5 editor (dubbed

Number Slider
/ Color Picker

Ravi Chugh
University of Chicago
Chicago, IL, USA

Hello, sampleussy Submission Menu
Allows students to submit
/ sketches through GitHub
classroom

susmiT | &%
\ Settin%s Menu

Controls theme, text size,
and other accessibility
features

Output Canvas

) was used in a creative coding course to study how students use and perceive

various editor features including standard ones, such as linting and auto-formatting (“Tidy Code”), as well as more experimen-
tal features, such as live reloading (“Auto-refresh”) and a toolbox for bidirectionally manipulating shapes.

ABSTRACT

Creative coding is a rapidly expanding domain for both artistic
expression and computational education. Numerous libraries and
IDEs support creative coding, however there has been little con-
sideration of how the environments themselves might be designed
to serve these twin goals. To investigate this gap, we implemented
and used an experimental editor to teach a sequence of college
and high-school creative coding courses. In the first year, we con-
ducted a log analysis of student work (n=39) and surveys regarding
prospective features (n=25). These guided our implementation of
common enhancements (e.g. color pickers) as well as uncommon
ones (e.g. bidirectional shape editing). In the second year, we stud-
ied the effects of these features through logging (n=39+) and survey
(n=23) studies. Reflecting on the results, we identify opportunities
to improve creativity- and novice-focused IDEs and highlight ten-
sions in their design—as in tools that augment artistry or efficiency
but may be perceived as hindering learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI ’23, April 23-28, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04...$15.00
https://doi.org/10.1145/3544548.3580683

CCS CONCEPTS

+ Human-centered computing — Human computer interaction
(HCI); » Software and its engineering — Integrated and visual
development environments.

KEYWORDS
Creative coding, Code editors, p5, Introductory programming

ACM Reference Format:

Andrew McNutt, Anton Outkine, and Ravi Chugh. 2023. A Study of Editor
Features in a Creative Coding Classroom. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (CHI ’23), April 23—
28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 42 pages. https:
//doi.org/10.1145/3544548.3580683

1 INTRODUCTION

Creative coding is a rapidly expanding computational domain. It
generally refers to programming work that “blur(s) the distinc-
tion between art and design and science and engineering” [66],
encompassing pursuits such as generative art, embedded comput-
ing, audio editing, performative live programming, and countless
others. Many libraries and languages have arisen to support this
programming genre. Some are tuned to domain-specific purposes—
such as Orca [55] or Tracery [25] which support creating procedural
music and Twitter bots, respectively. Others simplify the process
of many common artistic tasks (such as drawing and interactivity)
without specializing in a specific area—as in openFrameworks [68]
or Processing [87]. Among these general-purpose tools, those in

https://orcid.org/0000-0001-8255-4258
https://doi.org/10.1145/3544548.3580683
https://doi.org/10.1145/3544548.3580683
https://doi.org/10.1145/3544548.3580683

CHI 23, April 23-28, 2023, Hamburg, Germany

+ GitHub Classroom Integration
+ Open-Code URLs

+ Auto-refresh Improvements
+ Autocomplete

- Unused Features Year | + Number Scrubbers Year 2
+ Color Pickers
n + Shape Toolbox
sp2l su2l wi22 su22
31 26 Students 27 12
26 13 LlogStudy 27+ 12
Students refers to those who completed 16 9 Survey Study 19 4
h 3 di
Lrev;fhudr:;s some students dropped 14 7 Study Overlap 19 4

Figure 2: We modified the p5 editor before each year of a
creative coding course. We conducted studies to observe stu-
dent usage and perception of existing and modified features.

the Processing family—such as Processing itself and p5.js [1]—are
particularly well known, having attracted large and active commu-
nities, exemplified by the prevalence of artist- and novice-focused
educational media, like the Coding Train [92].

Beyond the potential for creative or artistic expression, this genre
of work has long been embraced as means by which to teach intro-
ductory programming [42, 66, 83, 105]—an approach often referred
to as media computation [40] within CS departments—as it may be
easier for students to engage with material that interests them [8],
and creative or artistic tasks may be more engaging to students [70]
not invested in the more common CS Ed topics. Greenberg et al.
[37] argue that creative coding-based introductions to computer
science are more appealing to women, and create a more inclusive
environment than traditional introductory CS curricula.

Despite the potential utility for both artistic expression and
learning to code, there has been relatively little consideration of how
to enhance creative coding environments to facilitate these goals.
Following a trend exemplified by the development environment
bundled with the Processing library, a number of creative coding
toolchains come with their own environments, which are often
tailored specifically for artists in their domain, as in Orca [55] or
Tweakable [5]. For example, the p5 editor—a browser-based editor
maintained by the p5 community that acts as a gateway to coding for
often non-technical users—is intentionally simple, and has limited
“features and frills” to make it easier to jump right into coding [3]. By
definition, however, this guiding principle forgoes potential benefits
of many standard IDE features (such as autocomplete), standard
GUI features (such as color pickers), and more experimental features
explored in research communities (such as bidirectional editing).

To shed light on the gap between creative coding tools and their
goals for users, this work considers the following questions: How
might we refine and enhance standard tools to extend the creative
reach of novices? What sorts of features do novices perceive to be
beneficial in a creative coding environment? We consider these ques-
tions in the setting of the p5 editor because of its ubiquity [66]
in creative coding contexts, as well as for its simple and mostly
standard form, which may inform the design of enhancements to
more general-purpose programming tools.

Paper Summary. We conducted a series of studies that considered
how students use a modified version of the p5 code editor in an
introductory programming and creative coding course at a private
research university in the US. Fig. 2 displays an overview of our

McNutt et al.

work, involving four course offerings spanning two academic years
taught to college students (sp21, wi22) and to high-school students
(su21, su22). While our studies are situated in a classroom, our work
is not about pedagogy per se—rather, we focus on understanding
the needs and perceptions of creative coding novices as exhibited
across the length of a full programming course.

We used a modified version of the p5 editor (referred to as)
in the first-year courses (sp21 and su21I) and ran two studies. The
first was a log analysis based on capturing code executions during
the course (n=39). The second was a long-form survey that sought
to understand student opinions and expectations about existing
and hypothetical editor features (n=25).

The results of the first-year studies revealed opportunities to
improve existing editor features as well as interest in several hypo-
thetical features—including direct manipulation widgets for modi-
fying colors and a bidirectional shape drawing system. Thus, we
further augmented the p5 editor () in the second-year offer-
ings (wi22 and su22). Analogous to the studies in the first year, we
monitored student behavior (n=39+) through an anonymized track-
ing scheme,! and solicited their opinions through an abbreviated
version of our previous survey (n=23).

We identify several key themes based on the results of the studies.

@ Simple static analysis seen as supportive. Tools supporting
basic automated formatting and analysis—such as code “tidying” or
linting—are well received by our novices. However, impolite [104]
designs (which are those that do not respect user agency or act in
an otherwise irritating manner) can lead to frustration.

@ Overeager evaluation can overwhelm. Live programming
can give immediate feedback on code changes—potentially ben-
eficial for tightening art-making cycles—but it often does so too
quickly or in an irritating manner.

@ Students appreciate avoiding clutter. Like all programmers,
novice creative coders are sensitive to inherent tradeoffs between
minimal and feature-rich coding environments.

@ Useful features may be “too useful” Students were recep-
tive to integrating art-specific and other sophisticated tools into
their programming environment. Yet such features can inspire
skepticism—even by novices—about their effect on learning.

Next, we situate our study within related work (Sec. 2), and then
we describe our creative coding course (Sec. 3). After describing
our methodology (Sec. 4), we analyze the results and consider our
primary themes (Sec. 5). Through these studies we identify design
implications for subsequent creativity- and novice-focused IDEs.

2 RELATED WORK

This paper investigates how to integrate advanced editor techniques
into tools focused on novices and creative purposes based on ob-
servation and analysis of novice programmers. Given the broad
range of related works, we frame the discussion around our primary
design decisions: to start with the p5 editor and its existing feature
set (Sec. 2.1), to add a suite of more advanced features (Sec. 2.2),
and to evaluate these adaptations in a classroom setting (Sec. 2.3).

!'We did not collect user identifiers in the Year 2 log study. Thus, “39+” indicates that
the log data includes students who did not complete the course.

A Study of Editor Features in a Creative Coding Classroom

2.1 Creative Coding Environments

Creative coding is a multifarious category of work encompassing
diverse approaches and topics. One common element is the use
of editing environments that have been customized to address the
particular domain of consideration.

One prominent example is p5.js [1] which (like its predecessor
Processing [87]) can be used as a standalone library, but is made
substantially more approachable by novices though the availability
of a simple development environment specific to doing work with
that library. The p5 editor [3] simulates a simple web server in the
browser by combining each of the files in a “sketch” (synonymous
with program in this context) and executing them as a standalone
web page in an isolated component. The existing feature set in this
editor is a particularly intriguing object for study for several reasons.
First, it is lightweight, web-based, and supports cloud-based saves
and shares—a good fit for an introductory programming class, as it
does not have potentially intimidating baggage of a heavyweight
IDE. Second, the text editor (based on CodeMirror [45]) supports
a number of contemporary IDE features—such as linting [57] and
auto-formatting [15]—that make our findings potentially general-
izable. Furthermore, it contains a live-reloading (“auto-refresh”)
feature being actively researched in programming-language user-
interface communities [88, 90]. By considering (versions of) the
existing, relatively standard p5 editor, our formative study aimed to
understand which features were important before pursuing more
drastic changes within the scope of this work and beyond.

In addition to these more general editors, there are a variety
of tools that focus on more limited domains. For instance, Shader-
toy [84] provides a browser-based editor for creating and sharing
shaders and prominently features procedural and generative visual
art. Like creative coding in general, these editing environments are
not limited to the graphical domain. Tweakable [5] and Orca [55]
provide environments for creating programmatically generated
music, based on node-and-wire composition and 2D livecoding, re-
spectively. HappyBrackets [34] more closely reflects our approach
to enhancing creativity by augmenting a standard IDE, although
it is centered on using IoT devices for musical composition. Make-
Code [11] has an editing environment that contains synchronized
block and text representations of code with a focus on creating
games for microcontroller-based devices. Most similar to our work,
p5.fab [95] modifies the p5 editor to support digital fabrication.

Mitchell and Bown [77] studied the needs of creative coders
through a lab-based study, highlighting the value of visualizing
program state, supporting best practices and short iteration cycles,
and assisting exploration. Our findings are closely related to theirs,
but located within a classroom and conducted on a longer time-
scale—following Frich et al’s [35] call for more studies to evaluate
extant tools in their in-vivo usage context. This scale and scope
informs our different, but complementary, set of themes.

Creative coding IDEs, and other such tools, target users at an
intriguing intersection: many are relatively inexperienced but are
strongly motivated to use these systems effectively. Lessons learned
from studying users of these systems (e.g. students in a creative
coding classroom) may translate to other venues with non-technical
high-engagement users. Such populations occur widely and include
spreadsheet users [14], tinkerers [17, 21], and artists more generally.

CHI 23, April 23-28, 2023, Hamburg, Germany

2.2 Advanced Editor Features

Many works have experimented with new ways to augment con-
ventional text-based code editors with more interactive capabil-
ities. Among the plethora of such features, we chose several to
consider in this work. In the first year of our study, students had
access to a live-reloading feature in the existing p5 editor. In the
second year, we implemented domain-specific graphical widgets
(namely, color picker and number sliders), and bidirectional shape
drawing—among many other advanced features being actively
researched—because they are closely aligned with the concerns of
creative coding, were well-received in the first-year survey, and
were feasible to implement given finite resources. We discuss these
features below.

Tanimoto [96, 97] describes programming affordances on a live-
ness spectrum, relating to the degree of agency that users express
in the execution of code. These range from the familiar edit-run
cycle to predictive execution, with the always-executing style of
live-reloading in the p5 editor falling in the middle. Immediate feed-
back evidently has rich educational utility, as in Python Tutor [39],
and the sprawling number of systems its design informs [38]. Omni-
code [58] takes a “Display all the values” approach to help novices
understand and debug code. They find that the always-on strategy
is useful for these purposes, which agrees with Kramer et al’s [63]
findings that live programming helps users fix bugs more quickly
than a traditional edit-run cycle. Huang et al. [52] also found that
live programming helps students perform some tasks more quickly,
but in their study learning outcomes remained unchanged.

Augmenting text with graphical representations can provide a
more natural way to specify code than textual input. The complexi-
ties of these vary from simple inline widgets, such as sliders and
color pickers, to more complex designs. Graphite [81] explores a
notion of palettes which allow for domain-specific editors, such as
for color and regular expressions, surfaced through autocomplete-
style menus. Barista [61] integrates interactive structured visual
representations inline with code. Andersen et al. [9] build on this
premise by formalizing how GUIs might be integrated directly into
Racket code. Several features we added to the p5 editor follow the
hybrid textual-plus-visual approach found in these works, targeting
our specific domain and audience, novice creative coding.

Some systems bidirectionally synchronize code and GUI manip-
ulations: changes made to either the source text or corresponding
graphical output are reflected in the other [4, 47, 48]. While this has
been most prominently used to create parametric drawings [44, 49],
both ours and previous works suggest potential value for novices
as well. For instance, Hundhausen et al. [53] find that this type
of bidirectional development has educational utility and promotes
skill transfer to text-based languages and environments. Contrast-
ingly, Do et al. [29] utilize a mixed text-and-direct manipulation
approach to teach an Hour of Code course to 5th and 6th graders
using a JavaScript-like language. Yet, they did not find as rich an
educational benefit, but argue that further development is neces-
sary to situate this Ul paradigm in creative-educational contexts.
Our results tentatively suggest that this approach can be useful—in
terms of student usage and perception. However, further study is
needed to understand the effect it has on learning.

CHI 23, April 23-28, 2023, Hamburg, Germany

2.3 Classroom Studies

Computer science education researchers have studied the poten-
tial benefits—regarding gender diversity, retention, and learning
outcomes—of emphasizing computing with media in introductory
programming courses [41, 42, 94]. Our work provides a step to-
ward understanding the role that programming tools—as opposed
to curricular design—might play in creative-educational settings.

Despite this work taking place in a classroom, however, our aims
in this paper are not focused on measuring the pedagogical impact
of individual editor features. Instead, we pursue an understand-
ing of the needs and perceptions of novice creative coders, and
our classroom setting allows us to engage with such users on the
time scale of an introductory programming course. As Weintrop
and Wilensky [103] argue, “it is critical that we conduct studies
... analyzing tools not from the perspective of those who have al-
ready mastered the content, but instead from the perspective of
the learners who the tools is designed for” Our work embraces this
approach, deriving guidelines for IDE design based on perceived
utility of different features “to better inform educators on how to
best utilize them in their classrooms ... [and] provide a roadmap for
the improvement of these tools moving forward” [103].

While we have specifically opted for a text-based environment,
block-based environments are notable for their frequent use with
younger learners. In a study with high school students in a formal
classroom setting, Weintrop and Wilensky [103] found that students
(i) considered it easier to read programs as blocks rather than as text,
(ii) liked the visual cues offered by blocks (though this preference
diminished over time), (iii) found blocks easier to compose (via
drag-and-drop), and (iv) liked how the interface organized blocks
into related functionality and helped serve as memory aid. Their
study also identified several perceived limitations of blocks: that
they are potentially less powerful, slower and more verbose, and
inauthentic—in the sense of not “doing the same kinds of things they
will do in ‘real life’ outside of the environment in which learning
takes place” [91]. Notably, even though novice high school students
appreciate the pedagogic value of blocks, they still perceive them
as inauthentic. This comports with our findings about skepticism
about unfamiliar or advanced features among novices.

A variety of works have employed similar logging studies to ours
(often referred to as learning analytics [56]). Some such works use
in-course logging studies as a means by which to analyze student
progression through assignments, which are described in multiple
surveys [54, 56]. Helminen et al. [46] used a similar environment
as our own to understand the types of errors students encountered
in an introductory Python course. Vihavainen et al. [101] conduct
a key-level logging study of novice coding behavior, although they
seek to understand student behavior rather than IDE design for
novices. Our work is related to these, but we are less interested in
understanding issues like student progress through assignments
than the hindrances they encounter in the UI generally.

3 COURSE DESCRIPTION

Our course aimed to teach basic computing skills (e.g. variables,
iteration, and function decomposition) to students with little-to-no-
programming experience in the context of creative coding. Learn-
ing to program typically also requires learning many surrounding

McNutt et al.

skills, such as facility with command-line interfaces. To eliminate
such possibly intimidating setup difficulties—and allow tighter in-
tegration between our web-based instructional texts and the venue
where work was to be done—we decided to centralize all student
work within the online p5 editor.

Following common practices in creative coding courses [66] and
tutorials (such as from Khan Academy [6] and Happy Coding [106]),
we used JavaScript and the p5.js library as the primary learning
mediums, although the basics of web programming with HTML
and CSS were also introduced. p5 exposes a variety of drawing
and interaction methods as primitive functions (such as rect and
circle) which the programmer combines either to make static or
dynamic compositions. While p5 can be used to fully manipulate
the native DOM, the majority of coding occurs inside a simplified
environment focused on HTML-canvas manipulation.

We taught four editions of the course, referred to chronologically
as sp21, su2l, wi22, and su22 (summarized in Fig. 3). The sp21 and
wi22 editions were “full” 10-week college courses, offered from
within a computer science department but cross-listed with media
arts. Students had broad academic interests: more than 20 different
degree programs were represented by the 58 students (see the ap-
pendix for a breakdown). The su21 and su22 editions were intensive
3-week versions taught over the summer to high school students.
A fifth version of the course was taught during the summer of 2021,
but was dropped from our analysis because participation was too
small to meaningfully analyze. Required coursework consisted of
graded individual homeworks, collected but ungraded exercises,
and, in the full editions, an individual self-designed project. Taking
into account differences in assignments and course material, su21
and su22 were roughly two-thirds of sp21 or wi22. Lectures in sp21
and su21 were delivered remotely over Zoom. The first three weeks
of wi22 were also taught remotely, with the remaining weeks con-
ducted in a hybrid format (during which students more often joined
via Zoom than in person). The su22 edition was taught entirely
in person and—with more in-class time (Fig. 3)—included more
required group work on practice exercises than other editions.

While the course was designed for those with limited experience,
we observed high levels of self-reported prior experience in each
edition. These varying levels color some of our observations. Based
on our experience teaching them, the high school students in su21
may have been over-confident in their description of their prior
experience. However, those in su22 did seem to have non-trivial

Edition Course Details Student Details
Sessions Session Session Students Self-reported
fie §oding Length Period “he fnished Experience

23 50 ™" 10 31akde: 64.5%

13 150 e 3 26 84.6%

23 50 10 27 48.1%

13 270 D5 3 12 100%

total 96 69.8%

Figure 3: Course details by edition. Experience was found by
a pre-course survey that asked “How much programming ex-
perience do you have?” We coded answers into no experience,
some (having taken less than a college-level course), or high
otherwise. We merge the latter two levels here.

A Study of Editor Features in a Creative Coding Classroom

Submissions from wi22 students who opted-in for public release.

Figure 4: One assignment in each course involved designing
a tree, which exhibits horizontal axial symmetry.

prior experience, perhaps due to a selection bias caused by the
course being offered in-person at our university. Despite higher
self-reported prior experience than we expected, in our experience
teaching we found that this experience did not necessarily lead to
overwhelming mastery of the basic introductory material covered
in the course. Therefore, we believe it is fair to view our students,
as a group, to be novices.

The progression of assignments was designed to employ funda-
mental programming concepts (e.g. variables, function abstraction
and decomposition, loops, arrays, and objects) for various media
computation tasks (e.g. vector graphics drawing, animation, image
manipulation, and basic web development). Aiming to serve the
twin goals of teaching programming and fostering its use for cre-
ative expression, most assignments were open-ended (as opposed
to being prescribed with easily-testable specifications). For exam-
ple, one early assignment asked students to make judicious use
of variables and arithmetic expressions to implement a symmetric
tree drawing of their own design. Fig. 4 shows a sample of student
submissions from wi22 for this tree assignment. Additional assign-
ments are described in the appendix, and the full course materials
are available online at cs111.org.

4 METHODS

We now describe the studies that ran alongside each offering of our
creative coding course and provide summary statistics. See appen-
dix for survey instruments, ethics statement, and other materials.

4.1 Year 1: Editions sp21 and su21 with

In the first year of our two-year formative study, we deployed the
p5 editor mostly as is. We added a couple features to support course
logistics, but we did not add any new programming affordances.

4.1.1 Custom Features in . Our initial fork added two fea-
tures in support of teaching the class online. The first enabled
students to submit assignments from within the editor to GitHub
repositories as pull requests. Course staff then provided feedback

CHI 23, April 23-28, 2023, Hamburg, Germany

and grading on these pull requests, merging them once complete.
The second mechanism allowed students to click any code exam-
ple in the online course materials to open the code directly in the
editor (without intervening copy-pastes or file-saves). We removed
features which were either not relevant to the class or would have
negatively affected the course design (such as project sharing).

4.1.2 (Per-User) Log Study. We ran a study in the first two course
offerings (sp21 and su21) to collect information about the coding
behavior of students who opted-in to participate. For these students,
we captured the state of each sketch on every execution, save,
submission, and structure edit (e.g. find and replace) throughout
the course. Logs were sent to a cloud-based server which only
recorded events generated by study participants. This ensured that
all students experienced the same level of network traffic regardless
of study involvement and thus did not penalize participants.
Student consent (and parental consent for students under 18)
was sought prior to the course as part of a pre-course on-boarding
process, which was also used to gather GitHub identification for
submitting assignments and gauge prior experience levels (Fig. 3).
Students were not compensated for their involvement in the log
study as participation did not modify the course experience. Stu-
dents were able to retract consent at any time during the course.
Logs were not analyzed during the course. Although relatively
coarse-grained, the logged events capture overall trends and pat-
terns in the use of basic editor features. In contrast, a key-level log
study (as in Vihavainen et al’s [101] study of novices’ first weeks
with an IDE) might have enabled more detailed observations at in-
creased cost, both in terms of data collection and analysis, without
clearly supporting our research questions about feature usage.
During this study we collected ~0.5 million logged actions spread
across ~5500 sessions, which we define as periods of interactivity
with <15 minutes between any two actions. On average sessions
lasted p=23.3 minutes with a standard deviation of ¢=38.9 minutes
(listed as p+o hereafter). Our analysis of error frequency did not
shed light on our research questions, but we provide summary
statistics about observed run-time errors in the appendix.

4.1.3 (Long-Format) Feature Survey. After both sp21 and su21, stu-
dents were invited to take part in an online survey soliciting their
experiences using and opinions about various features. They
were asked about a series of features (Fig. 6), each presented as
a static image with a paragraph of descriptive text. The feature
progression was bookended by free-text questions on more general
topics, such as debugging and code organization.

A total of 25 sp21 and su21 students participated in the survey.
Participation in the log study was not a prerequisite. Our survey tool
did not report the working time, but based on piloting, we believe
that the survey took 20-40 minutes to complete. Participants were
paid $30 for completing the survey. Demographic data was not
collected beyond a self-reported experience level.

For each feature, the survey asked both free-text questions and
Likert-item style rating questions (how “Useful” is the feature, and
how “Often” would they use it). The number of surveyed features
(17) was rather high, and we did not randomize their order. So, to
help calibrate ratings, at the end of the progression a table summa-
rizing the features asked for additional Likert-item style numerical
ratings (how “Interested” they were in each feature). We found

http://cs111.org/

CHI 23, April 23-28, 2023, Hamburg, Germany

function draw() {
° bafkgm“"d(pink”); OCompose changes & o
Edit| o through direct
jY Editor.shapeToolbox — manipulation V24 &
Editor.slider I] \ i
Type the shapeToolbox command - e Tezc,“?%_‘;‘;
[=
background("pink” =); 4 y D cire 8
H 1 15.2% Q
b ’: Triangle
° ° 20.4%
\ Bezier
N A 35.1%
O
function draw() { o ‘) ;'l::[:%s of
background("pink" =); = g‘::l snapes
Editor.shapeToolbox() open ; - created
s

} Click thsv? geeflt - oSave and propagate g

updates to code

Figure 5: The Shape Toolbox is used to create simple compo-
sitions of shape-drawing code through simple GUI actions.
(1)-(4): Interaction workflow. (5): Frequency of shape usage.

slightly negative correlations (Spearman’s r) with presentation or-
der and rating: Useful: r=-0.117, Interested: r=-0.118, and Often:
r=-0.133 with p<0.015. These metrics exhibited good agreement:
r=0.817 (Useful/Often), r=0.635 (Useful/Interested), r=0.655 (Of-
ten/Interested) with p<0.001. Thus calibrated, we focus only on
perceived Usefulness. This selection is further informed by the
technology acceptance model [27], which suggests that users’ per-
ceived usefulness is indicative of subsequent usage, and is thus a
more helpful quality than estimated Interest or frequency of use. We
found that only in-context docs was statistically significantly (r=-
0.308, p<0.01) correlated with self-reported experience. This slightly
negative correlation is also reflected in the qualitative comments
about that feature (see Fig. 9 and Sec. 5.3).

We included a mixture of features for general computation (such
as “Interactive Value Inspector” and “Linked Copy-and-Paste”) as
well as creative coding (such as “Coding by Drawing Tools” and
“Canvas Ruler”) that would be understandable based on their ex-
perience in the course. The complete list of surveyed features is
shown in Fig. 6 and described in the appendix. Other features, such
as notebook-style programming or multi-canvas editors (such as
Stamper [20]) were considered, but not included—we believed that
textual descriptions or static renderings would be unlikely to give
effective motivation for their utility, and students may incorrectly
forecast their experience of such unfamiliar features. A key limi-
tation of our survey is the simple static presentation of features.
Participant perceptions might have differed if they had watched
video demonstrations or been able to experiment with the features.

4.2 Year 2: Editions wi22 and su22 with

After gleaning student predilections in our formative Year 1 studies,
we modified our editor to investigate these stated preferences. We
used in wi22 and su22, during which we ran two more studies.
Whereas we customized to improve course logistics, our
changes in were motivated by the first year results.

4.2.1 Custom Features in . We implemented the top-3 unim-
plemented features from the survey (see Fig. 6 or Fig. 13 in the

appendix): Color Pickers, Autocomplete, and Shape Toolbox (which

McNutt et al.

was a synthesis of Coding by Drawing Tools and Directly Manip-
ulate Shapes). Given limited resources, we forwent the Canvas
Ruler (the next most-preferred feature) because there is a sim-
ple workaround for identifying positions (e.g. console logging the
mouseX and mouseY on mouse movement), although we intend to
address it in future editions. Several highly-rated features (e.g. Time
Travel Slider, p5 State Displays, and Interactive Value Inspector)
were more speculative and thus deemed beyond the scope of this
work. We made two further modifications based on observations,
namely, adjusting Auto-refresh and adding Number Sliders (which
are common in interactive documents [99]).

Two of these new features are accessed by calling special func-
tions. Editor.slider(min, max, value) renders a Number Slider
() for value in the range from min to max (see Fig. 1), with an
optional fourth step argument to override the default continuous-
dragging behavior. One alternative design is to store the metadata
(range and step) in special comments, for example, as in Juxta-
pose [43]. Such an approach warrants comparison to our chosen
design in future work. However, we elected to use the function call
API to mimic a common p5 function for creating dynamic sliders,
which students already learned (createSlider [2]).

The most novel feature introduced in , the Shape Tool-
box, is also accessed through a function call-based workflow. The
user calls Editor. shapeToolbox () and clicks a button to open the
shape-drawing GUL The text area is then disabled and a simple
drawing toolbox is overlaid atop the output window. Using the
Toolbox, users create compositions in the output pane by adding,
translating, rotating, and scaling shapes (including primitive shapes
and Bezier segments) with direct manipulation. Once satisfied, users
click “save” to update the code—shape commands are called in the
body of a function passed to Editor.shapeToolbox. Fig. 5 depicts
this workflow. Translation back to the code is achieved through a
simple template matching method allowed by a one-to-one map-
ping between drawn elements and lines of code. We decided against
always displaying the shape-drawing GUI for two reasons. First,
not all calls to shape drawing functions can have GUIs—this is
the subject of research on bidirectional editing. At one of the end
the spectrum is a very simple approach that maintains a top-level
“scratchpad” function (where all new shape-drawing calls would
be added), and at the other end are heavyweight and expressive
techniques in prior work [44, 47, 49]—the former would be more
restrictive than our chosen approach, and the latter beyond the
scope of this work. Second, shape-drawing is only one aspect of our
creative coding tasks; our approach displays the GUI only when
the user explicitly opts to use it.

4.2.2 (Aggregate-Use) Log Study. We collected anonymized us-
age of features during wi22 and su22. Logs were collected
through a customized version of Umami [22], a self-hosted privacy-
minded tracker. We elected not to capture full-sketch snapshots in
this study because our planned analyses for the second year did not
require them. We believed lighter weight instrumentation would
allow us to capture more fine-grained usage patterns, such as the
length of sessions. Finally, this reconfiguration to full anonymity
gave us leeway to collect data on all course participants, rather
than just those who opted-in.

A Study of Editor Features in a Creative Coding Classroom

Implemented Features

CHI 23, April 23-28, 2023, Hamburg, Germany

Hypothetical Features

Linters Survey
Color Picker Responses Canvas Ruler
Tidy Code Year | Time Travel Slider
Autocomplete Year 2 In-context Docs
Shape Toolbox standard p5 State Displays

mean Direct!
™ serrer Vanpuae Coding by
Shamey N (melng ools
These Y| features
were merged inY2 as
Shape Toolbox

Auto-refresh
Code Folding®
Number Sliders
Number Picker*

t was present in

\but Neither useful 4 Useful 5 Ver(y
not asked about in the Y2 survey nor unuseful useful

* not asked about in the Y| surveys

Interactive Value Inspector
Linked Copy-and-Paste
Code Snippet Templates

Drag-and-Drop Refactoring

Neither useful Useful Ver
3nor unusetul 4 5 st

Figure 6: The features surveyed across both years and how “Useful” they were deemed to be on a 5-point Likert scale.

Through this process we collected ~1.2 million events across
~6730 sessions (defined as before). Due to a configuration error
(present only in wi22), events were not collected with unique ses-
sion identifiers, although we were able to reconstruct 75.4% of the
sessions—the remainder are excluded from analyses requiring spe-
cific session information. While the incomplete data is unfortunate,
it still provides a more detailed picture of activity than in Year 1,
which saw 68% log study participation across sp21 and su21. Within
this reduced sample, sessions lasted p=24.1+38.0 minutes.

4.2.3 (Short-Format) Feature Survey. Near the end of wi22, students
were invited to take an abbreviated version of the Year 1 survey
(Sec. 4.1.3), containing only features that were added or improved
upon in . Following the structure of the previous survey, we
asked about frequency of use and Usefulness for features one at
a time, followed by a summary table asking about Interest and a
suite of reflection questions. Participants were compensated with
extra credit roughly equivalent to 1% of the final course grade.

A total of 23 students participated in the survey. Our survey
provider did not measure time taken to respond, but based on pi-
loting we believe that the survey took 10-15 minutes to complete.
Presentation order was not correlated with any of our metrics
(p=0.779-0.939). Again, the ratings exhibited reasonable agreement:
r=0.727 (Useful/Often), r=0.607 (Useful/Interested), r=0.693 (Of-
ten/Interested) with p<0.001. As with Year 1, we focus only on
Usefulness in the body of the text (see the appendix for the others).
We found prior experience to be statistically significantly (p<0.01)
correlated with only a single feature, auto-refresh, for which there
was a somewhat negative correlation (r=-0.487).

5 ANALYSIS

We now reflect on the features, connecting them to the themes
summarized in Sec. 1, denoted @ through @. We consider features
implemented in both and (Sec. 5.1), followed by those
added in (Sec. 5.2), and then introduce concerns that cut
across multiple features (Sec. 5.3 and Sec. 5.4). Our analysis draws
on data from the survey studies (summarized in Fig. 6) and the
log studies as appropriate. Participants from the sp21, su21, wi22,
and su22 surveys are referred to as , X ,and ,
respectively, and are colored by year.

5.1 Features in Both and

We begin by considering features present in both editor versions.

5.1.1 Linting. This static analysis tool eagerly executes after small
code edits, checking simple syntactic assertions akin to spell check
for code. It was well received in both years and was mostly seen as
helpful, although sometimes impolite.

Students found linting to be “very helpful” (, ,

) and “very useful” (, , D4), because it “saves
time and energy” (A4) and shows “where I needed to go to fix simple
bugs” (A16). believed that debugging “would be way more
annoying without it” because “it’s not always obvious what you did
wrong” (D4). Whereas 86.0% of executions in Year 1 passed lint, in
Year 2 (where we had visibility into all lint runs) code passed 13.5%
of lint runs (which happened after most small text edits). This may
indicate that students address lint errors before running code as a
simple integrity check, or that the analyses are executed too early;
however, student comments seem to indicate the former. Unlike
other features, students were incentivized to attend to it, as the
absence of lint errors was a small part of homework grades (98.7%
and 97.2% of submissions in Years 1 and 2, respectively, passed lint).

Beyond code style, linting can provide opportunities to expose
novices to other best practices. For example, CSSLint [26] (used
in) explained that the * selector is considered bad practice
because it is inefficient. Indeed, felt that linting “trained me to
think and type in a certain way”, and A5 observed that it could be
“a nice way to point out when I am making stylistic errors (instead of
[Tidy Code] just magically fixing all of them for me).” Utilizing this
well-received channel for introducing programming features and
practices is an opportunity for future IDE design. @

Participants also offered ideas to improve the feature. Because the
editor eagerly ran the linter, “the yellow line warning[s] often exist
all the time. It annoys me” (B4). Instead, some students would have
preferred not to see lint errors “until I finish typing” (A 13) or “before
finishing a line of code” (B5)—the mechanics of exactly when and
how to display errors for incomplete code will require careful design
(as considered, e.g. in Hazel [79, 80]). Others expressed a desire for
more nuance— “acknowledging the difference between ‘This Must Be
Changed To Have Nice Code™’ and ‘hey, maybe consider changing
this thing!”” (A5)—and control—being able to “ignore/exit out of
a warning” (A3). Poorly-received default choices and persistent
errors can repel users. As an extreme example, one wi22 student
decided to use Replit [89], rather than , for their final project
because too many (CSSLint) errors seemed irrelevant or unclear
how to fix. Linters integrated with editors in this way do not offer
mechanisms to override general advice or to indicate that the user
knows what they are doing. This is impolite computing [104]: it

CHI 23, April 23-28, 2023, Hamburg, Germany

forgoes user agency and generally is perceived as a pest. Avoiding
these pitfalls is important to leverage the instructive opportunities
offered by the well-received, static analysis-informed tools. @

5.1.2 Tidy Code. Auto-formatters provide on-demand code restyling
without semantic modification, and are common in professional cod-
ing workflows [86]. We often encouraged the use of this tool—called
Tidy Code in the p5 editor—in lectures, but we did not incentivize
its usage in grading. It was invoked manually (from the top menu
bar or keyboard shortcut) rather than being executed on every save.

Like linting, this feature was generally well received. Students
found auto-formatting to be “super useful” (A15) and “very satis-
fying” (A2). The formatting choices were not always appreciated,
however. Whereas “only rarely preferred my own organization”,

felt the results “appeared less organized, such as having irregu-
lar line breaks” and “worried it would mess up my organization.”
We observed that students in Year 1 often (needlessly) invoked
auto-formatting twice in a row. In particular there was a probability
of 16.15% and 8.65% (in sp21 and su21) of auto-formatted code being
auto-formatted again right away—with similar behavior observed
for saves (see appendix for details). This suggests that providing
clear code-state signals (analogous to linting’s visual indicators)
may reduce needless anxiety-motivated saves and tidyings. The
presence of this behavior in Year 1 suggests it was likely repeated in
Year 2; however, the aforementioned configuration error prevented
us from collecting auto-formatting usage. While simple indicators
may seem to be trivial Ul modifications, we suggest that it will
impact the perception and understanding of such features.

Several students would have liked the feature to be customizable,
rather than enforcing a fixed set of “preferences that should not be
forced by tidy code” (C16). Indeed, some students would have liked
auto-formatting better “if it was a little configurable” (A16); for
example, “if there [were] multiple common/standard rulesets there
could be a way to choose which you want to follow” (A5). Further-
more, it “would be helpful to be able to specif[y] which block of code
to tidy” (A13). Thus, extending well-chosen defaults with ways to
selectively customize style preferences—a notion which has been
referred to as “code style sheets” [69]—could further increase the
politeness of this feature and thus its utility. @

Like the teachable moments offered by linting, felt they
“Learnt a lot about code organization using this feature!” As imple-
mented, however, the results of auto-formatting are updated in the
code box without explanation. Better would be for the editor to
“show you what you are doing ‘incorrectly” (C19), for example, using
visual highlights and annotations to explain the differences—which
could also serve as scaffolding to introduce version control tools.

5.1.3 Auto-refresh. This feature re-executes code upon text edits—
a workflow demonstrating “level-3 liveness” [96, 97]. Auto-refresh
was present in both (inherited from the original editor) and
in (where it was modified). In principle, live feedback would
seem particularly helpful in a creative coding context as programs
are often updated with small graphical adjustments, and thus well
matched with a short edit-run cycle. It was also well matched with
our setting: the Normalized Programming State model [23] sug-
gests that spending longer periods of time in syntactically unknown
states (such as when the code has not been executed in a while) is

McNutt et al.
28
20 =<
2 students used auto-refresh g
10 (in 40-50% of their sessions -
3 2 | 2 | 2
0

0% 2 10% 20% 30% 40% 50% 60% 70% 80% 90%
20

S
T Aedp

4 4 4 S
2 |

Fraction of sessions using auto-refresh by students

Figure 7: Histograms of the fraction of sessions where a stu-
dent used auto-refresh any amount. 58.7% and 5.1% of stu-
dents never used auto-refresh in Years 1 and 2 respectively.

negatively correlated with program success. This needs to be bal-
anced with the cognitive load [54] caused by repeated executions.

Auto-refresh in did not achieve a fruitful balance. As
indicated in Fig. 7, only a handful of participants regularly used
it and most students used it rarely, if at all. The survey responses
color this imbalance. Whereas “used this all the time and loved
it”, finding it “way easier than clicking the ‘play’ button all the time”,
others felt that the keyboard hotkey was sufficient (A 16, ,D1).

More important than convenience were differing views on the
fundamental interaction model itself. B7 appreciated the ability “to
see what I was creating as I coded”, finding it useful even though
“error messages that kept popping up got in the way a little”, while
others found the errors “very distracting” (). Participants felt
the feature was “running incomplete code unintentionally” (56) and
“when you don’t want it to” (B1). Instead, some students felt robbed
of their agency over their code, desiring “to be the boss of when my
code reran” (A5) and in “control my own pace” (B2), only running
the code when ‘T know I have something that I want to see” (A13).
This suggests that, while spending too much time in syntactically
invalid states may be detrimental [23], spending too little time is also
problematic. Developing a careful understanding of the tradeoffs is
an important avenue for future live programming work. @

For the purposes of this work, we made only simple changes
to auto-refresh in based on our observations from the first
year. We increased the refresh delay from 400ms to 1s, and, more
importantly, in the event that executed code had lint errors—a proxy
for run-time errors—the editor did not refresh the canvas, instead
indicating that it was “stale.” Thus, in the (many) cases when edits
are incomplete or erroneous, the canvas remains visually stable.

The modified auto-refresh was modestly better received, with its
Usefulness increasing from p=3.1 to p=3.7. In addition, per Fig. 7,
it was used more often—although we note that auto-refresh was
demonstrated more at the beginning of wi22 and su22 than in prior
editions. A one-sided t-test indicates that students in Year 2 used
auto-refresh significantly (p<0.001) more often. Yet, the overall bal-
ance remained far from perfect. Some participants were “stressed”
at “all the errors that pop up as I implement new things” (C15) and
“before I got to fix them” (C4). These negative views seemed more
likely to come from those with prior experience (r=-0.487, p<0.001),
which may suggest that expectations are set by experience with

A Study of Editor Features in a Creative Coding Classroom

tools exhibiting a different execution cadence. Others, however,
found it “very useful for certain exercises that needed lots of small ad-
Justments” (C3) and “very helpful when using trial and error” (C16).
Overall, we observed no significant changes in user behavior after
modifying auto-refresh, despite the improved perception of the
feature. This again underscores that designing Uls to be polite (or
at least not irritating) is critical to their usage.

5.2 Features Only in

Next, we consider the features that were added in . While
Year 2 survey responses are based on hands-on experience with
the features in , Year 1 responses are based on descriptions
in the survey and experience with other tools. Feature use in wi22
is shown in Fig. 8.

5.2.1 Shape Toolbox. The most significant addition to was
the Shape Toolbox feature that allowed GUI-based specification
of primitive shapes using direct manipulation which generated
matching code (Fig. 5). The constituent parts of this feature were
highly perceived in Year 1: y=4.8+0.44 for Coding by Drawing
Tools, and p=4.2+1.0 for Directly Manipulate Shapes. Some students
believed it would be “very beginner friendly” (A3) and would make
work “a lot easier and faster” (B7). Others believed it would also
reduce errors (A9) and help with debugging (B6).

Help programming curved shapes—such as the trees in Fig. 4—
was particularly enticing: “for bezier curves, changing the input
values rarely produced an expected result” (A12), highlighting a
gulf of execution [78]. The process usually involved “lots of trial
and error” (A3), sometimes resulting in student disengagement:
“Coding the bezier curves manually turned me off of them, and I did
not attempt them in my work” (A14). However, that same student
noted “If I had had a tool like this, I certainly would have used them.”

Several students in Year 2 embraced the feature. For example,

found it “EXTREMELY helpful, especially when it came to draw-
ing Bezier curves. Every time I had to draw a curve, I used the shape
toolbox. I probably would have cried without it.” mentioned that
it “Was very nice to use it to get approximate coordinates then fine
tune them after.”

Although the feature was “very useful for beginner projects” (C2),
several students, including
Shape Toolbox was used often for the tree homework (see HW3
in Fig. 8), and use per execution by week was minimal after that
assignment, being used in only 2.12% of all (available) sessions.
Perhaps because the feature did not have a stable visual presence
(as with the auto-refresh button), some students “completely forgot
this existed, but I think it would have been really really useful if I had
remembered” (C4). In addition, although we expected the feature to
be used extensively for HW 2, in wi22 Editor.shapeToolbox was
announced but not demonstrated in class until after the assignment
was released. Bezier curves accounted for the majority of invoca-
tions (see Fig. 5.5). Toolbox sessions (from open to save) lasted
£1=22+30 seconds, indicating that it may have been used relatively
often to make small graphical adjustments, as opposed to building
larger compositions.

Students may have continued to use them later in the course “if it
allowed for some of the shapes that are more complicated” (C16). Fur-
ther limiting the utility of the feature, within an invocation shape

, “used them less as time progressed.”

CHI 23, April 23-28, 2023, Hamburg, Germany

Manu: Auto

HW T: Color Wheel
FW 2 Freeze Frame
HW 3: Trees
HW 4: Book of Patterns
HW 5: Deck of Cards
HW 6: Snake
Project: Proposal
HW 7: Wordie
HW 8: Blackout Poetry
Project: Progress Report
Project: Final

Executions Per Day

Il |
Jan 09, 202 Jan 17 Jan 25 Feb 01 Feb 09 Feb 17 b 25 Mar 05 Mar 13

Feature Use Per Day

HW 1: Color Wheel
HW 2: Freeze Frame
HW 4 Book of Patterns
HW 5: Deck of Cards
Project: Proposal

HW 8: Blackout Poetry
Project: Progress Report

HW 3: Trees
HW 6: Snake
Project: Final

Autocomplete Color Picker Number Widgets Shape Toolbox lider

&

Figure 8: Feature use in wi22 was guided by course content.
For instance, autocomplete was demonstrated prior to HW3
and sliders were included in the starter code for HW5.

drawing functions allowed only literals—once a student wanted
to use variables and arithmetic expressions, the Toolbox would no
longer open. “[CJreating an object without this feature would be bet-
ter because of the precision” (I35) afforded by variables, expressions,
and so on. Thus, the feature ultimately fell short of what students
imagined: p=3.8+1.2.

Bidirectional updates are being explored in a growing number of
systems (as in Sketch-n-Sketch [49]), but there remain significant
technical and UI design challenges to explore, before even consider-
ing their value to novices. As predicted by a couple students, more
feature-rich bidirectional synchronization would need to reconcile
ambiguous graphical interactions (“There are many parameters and
it would be hard to make it so it manipulates them one at a time” (B5))
and their effect on other parts of the program (“My only but major
concern would be that it doesn’t confuse the other lines of code, and
that it may not run the way the programmer wants to use it” (B6)).

Nevertheless, the experience suggests that even a simple imple-
mentation of this very desirable feature was promising. However,
as we discuss in Sec. 5.3, many students were skeptical about the
effect of this feature on learning. @

5.2.2 Autocomplete. We enabled a simple autocomplete menu [45]
and populated it with p5-specific identifiers (variables and function
names), syntax templates (common patterns, like for-loops with
holes), and commands for invoking the Shape Toolbox and Number
Sliders. Passively supporting learning in this way would seem to
be a natural fit for our setting, but some students were leery of it.

Year 1 survey respondents anticipated autocomplete positively
(u=4.6£0.5), believing it would help in several ways. For example,
to “increase speed and productivity when coding” (59) and “make it
faster to get debugging done” (36). In addition, believed auto-
complete would encourage better code style: “not having dynamic
autocomplete incentivizes me to write non-descriptive function names
and variables for the sake of efficiency.” Participants also believed
autocomplete would help “discover new features” (55), “expose us
to new things we didn’t know existed” (57), and provide “an idea
of what to write or what could be written” (34). These beliefs are
in line with how professional programmers use autocomplete to
debug and explore APIs [71].

CHI 23, April 23-28, 2023, Hamburg, Germany

However, the experienced reality of fell short (y=3.7+1.0)
of anticipation. Autocomplete was used in only 12% of sessions (with
33.6% selections being templates), although it was used progres-
sively less as wi22 and su22 went on. While this relative infrequency
of use may be related to the simple implementation (which did not
include embedded documentation or other common guidance fea-
tures) or the emphasis later in the course on web programming (the
DOM was not thoroughly reflected in the autocomplete sugges-
tions), this trend appears to agree with how Vihavainen et al. [101]
observed novice usage of autocomplete. They note that 27.3% of
novices initially used autocomplete to create a particular command
(Java’s system print), which decreased to 1.64% after a week of use.

This appears to suggest that autocomplete can serve as a vehicle
for teaching: it is “a useful guide until I was able to type certain
things in by memory” (C13). Some perceived the ability to “stop
memorizing certain code” (A9) as a benefit, while others thought
“it’s a give and take” (C7) and might hinder “programmers’ knowledge
about commands and their forms in the long run” (B8). We return to
this concern about the effect on learning in Sec. 5.3. @ Beyond these
hesitancies, it is unclear why more students did not engage with
the feature, although some noted that it can be “annoying when
you already know what you want” (C15)—which suggests that the
clutter @ or cognitive noise @ may be a factor. Given this diversity
of opinion, we suggest that configurability is important to designing
such features politely, as some students (such as D4) wanted to be
able to turn off autocomplete (to limit its disturbances).

5.2.3 Color Pickers. Integrating a color picker into an editor for
creative coding was perceived as very useful in the Year 1 surveys
(u=4.7+0.56). Whereas A4, probably like many students, did not
pick colors as much in the second half of the course, A6 said ‘T had
a color picker tab open for every single assignment.” Based on this
enthusiasm, we implemented a modal color picker dialog box in

(Fig. 1), following a sentiment from that such a design
“would probably be more helpful than in the code to prevent clutter” @
Note that a similar color picker was recently added to the p5 editor,
highlighting the value of this feature. However, ours supports more
color formats, namely, web color names—driven by a participant
suggestion (B9)—and RGB values as numeric lists.

After experiencing color pickers, students viewed them posi-
tively (u=4.4+0.65), with the wi22 students using them frequently
in the first half of the course, as depicted in Fig. 8. They helped
make the process “more efficient” (A9), “[taking] out the hassle” (C6)
of ‘open[ing] up another program” (A2). Color pickers may foster
creativity, as they could “let me pick some irregular colors” (32).

Several participants also voiced support for the idea, suggested
in the survey prompt, for an eyedropper tool. Others suggested
additional features inspired by drawing programs like Illustrator,
such as grid (D 1), zoom (C15), “better proportions” (A3), or a way
to “group lines and shapes and move them all at once” (57). Such
lightweight and familiar tools from creativity domains are natural
enhancements—as long as they are not impolitely imposed @—that
we intend to investigate in the future.

5.2.4 Number Pickers and Sliders. “Scrubbers” [100], which allow
direct manipulation of numeric values by dragging, are often touted
in live programming systems and interactive documents [99] as
being representative of the value of those environments. Despite

McNutt et al.

the overlap between live programming’s close connection to the
visual domain and the interests of creative coding, the clutter @ and
lack of control @ brought on by these features impeded adoption.

Some Year 1 students were positive about hover-based Number
Sliders, believing they would allow them to “experiment with the
code more quickly” (B6) and “more efficiently” (39). However, some

worried that “it could make the editor look more crowded” (A3), while
noted ‘T would rather just do it myself”
Nevertheless, we added Number Sliders to , which appear

(per Sec. 4.2.1) inline via Editor.slider(min, max, value),as
well as Number Pickers (Fig. 1), which are buttons surrounding each
number literal that allow it to be incremented and decremented
(-690+). (Such small modifications explain the large absolute number
of Number Picker events in Fig. 8.) Students found these additions
could be a “quick, helpful way to make sure my assignments didn’t
break at a larger scale” (C6), as was the case for HWS5 (cf. Fig. 8). Al-
though scrubbers were perhaps most useful toward the latter stages
of a task, “when I'm playing around with my final result” (C17),
felt they “allowed me to tap into my creativity.”

Yet, per Fig. 6, the feature was not so highly rated. A recurring
theme is that scrubbers—in various configurations—felt “messy” (B4,

), “disrupted the look of the code” (C4) @ or were just generally
unnecessary (B10). felt that the transitory changes would be
confusing, and hard to maintain a model of different parameter
configurations. @ Others wanted more refinement in the numeric
type, such as limiting it to numbers “divisible by five” (A5). While
these features are typically well-used in graphical applications like
Figma, it seems that this type of feature is “trying to solve or better a
process that needs no help” (510). While there is evident overlap be-
tween our domain with other artistic settings, not every translated
feature will match the interests of learners.

5.3 On Skepticism

Next, we grapple with the perception that some tools take away
learning opportunities that may be needed to “become a good pro-
grammer.” @ Several features were perceived as making things too
easy for novices. Fig. 9 summarizes how “skeptics” worried about
different features. These perceptions are valuable: as the technol-
ogy acceptance model [27] and related theories highlight, perceived
usefulness is a central part of whether a system is ultimately used.
Several students worried how syntax templates (see appendix)
and autocomplete balanced the tradeoff between augmenting their
abilities and enfeebling their development of skills. Whereas
was “not sure if it actually matters” to practice memorizing names
and function signatures, weighed the tradeoff according to
the goals of the student: T wouldn’t consider it a horrible thing for
those who don’t want to go into coding professionally/too much”—
implying that a more serious programmer might indeed miss out
on practicing an important skill. thought such features “might
reduce some of the learning by doing that you get when coding, so I'm
not sure if it’s great for a class. I learn through my coding mistakes
and this would reduce the number of mistakes, so a mixed bag.”
There were similar concerns about in-editor documentation (also
discussed in the appendix). For example, said that “new coders
need to learn the process of going into the manual.” A4 reconciled
the aforementioned tradeoff as follows: “However, depending on

A Study of Editor Features in a Creative Coding Classroom

Skepticism by Feature

5 State Number Canvas In-Context Tid Code Auto- Shage
0X

Linting

isplays Sliders Ruler Docs Code Snippets complete Tooll
]
2 No
7] Participant i
£ Wiz warried that
inting woul revent

2 them rom arming N\
X
w
£
5 Some
T
(Y

Yes

Survey Responses: Year | Year 2

i22 22
Total skeptics in all surveys: 14/48 P21 suzl 14 g

Figure 9: Some skeptical survey respondents worried that
some features would deleteriously affect learning.

the specific goal of this course, if it is to focus more on the creative
coding aspect and not necessarily ‘become a good programmer’ then
in-context docs would be awesssommeee.”

Some of these concerns might be ameliorated by introducing a
notion of documentation or autocomplete levels (in a similar style
as DrRacket’s language levels [73]), which gradually adjust what
information is available as new concepts are introduced. However,
without sufficient signaling, students might construct mental mod-
els of the information present in the feature and then dismiss all
subsequent configurations.

Conflicting views over the Shape Toolbox in Year 1 were most
striking. “This feature would be so useful and allow for more creative
opportunities especially for beginner coders” (A10). It would also
be a “useful learning tool” (A3) by allowing students to “see how
the code changes in order to learn how certain parts of the code are
working” (B9). But many students were skeptical. This “feels like
cheating!” (A6) and “saves way too much work for the new learn-
ers”)- “It’s way too useful but can hinder with the learning
process of basics of coding. As a student, I won’t want this but as a
programmer who knows the basics, it’s a nice feature” (B3). “I think
some of these features while helpful would have discouraged learning.
Some of the most rewarding parts was sweating through inconve-
nient parts” (A2). As shown in Fig. 9, some of this hesitation was
self-censorship by students with little or no prior experience.

However, among Year 2 participants (all of whom had access to
the feature), there were no skeptics of the feature. Perhaps the idea
of others having improved tools is jarring, while students who are
given improved tools simply worry about the plenty of challenging
learning left to do. We view this situation as akin to giving students
calculators in a math class: they help with specific classes of tasks
that, once simplified, enable learning about richer topics.

Students seem to construct a naive model of what makes a good
programmer, suggested above as being someone who has memo-
rized the entire language and does not depend on digital assistants
or developer-experience tools, thereby dismissing behaviors besides
this as being inauthentic. We suggest that reorganizing and reform-
ing this model is part of the value that classroom-based computing
education offers, as it can help to offer a thicker model of what is
authentic [91]. Enhancements to novice-oriented IDEs such may
also help to dispel these notions if they are perceived as realistic
tools rather than as something akin to training wheels.

CHI 23, April 23-28, 2023, Hamburg, Germany

5.4 On Creativity

Finally, we consider the role of creativity in our editor. While
there exists little agreement on what creativity means in HCI re-
search [35], we found that students espoused two clear views on
how tools might help them creatively: automating tasks that impede
of creativity and helping explore unknown functionality.

For students, creativity often appeared to be something which
typical coding tasks stood in the way of; obstacles that some techni-
cal interventions could ameliorate. Shape Toolbox was emblematic
of this style of reduction. For instance, believed that such a tool
would “allow for more creative opportunities especially for beginner
coders,” and B9 believed that it “could help with planning ideas for
art projects and increase creativity.” As noted in Sec. 5.2.1 students
in embraced this feature and appeared to use it to reduce the
tedium required to precisely locate shapes, thereby making greater
room for artistic expression. Others highlighted the value that tools
that reduced tedious tasks, such as picking individual coordinates
through a ruler (e.g. A3 and A9) or identifying which lines corre-
sponded to which components of the image (B9). Summarizing this
view, observed that “T think what this editor did well as an art
tool was streamlining certain common processes.”

Beyond reducing tedium were opportunities for exploration,
which were manifested both as moments of play (A8) or fun (A4,

), as well as discovering new functionality. For instance
believed that ‘comprehensive documentation would have allowed me
to be both more creative,” a view which was confirmed by , who
believed that such features help do “thingsIdon’t yet know how to do
by myself” and thereby “help me be more creative.” A9 believed that
surfacing program state might encourage reflection and discovery,
such as by seeing that ‘circle has a round stroke cap, so it might
make me wonder what other shapes the stroke cap could have.”
believed that an assistant that made artistic suggestions might be
well received, “[f]or instance, if I'm editing text, and I was given
suggestions for font, color, etc.” Similarly, A4 noted that it would be
useful receive suggestions to help inspire their designs, for example,
through “videos on youtube, images, articles.” Some features, such as
number sliders, were highlighted as being only valuable “when I'm
playing around with my final result” (C17), but that they “encourage
a lot of experimentation and creativity” (A4). These observations
align with prior work, which highlighted the value of providing
assistance in exploring the space of possible designs in creative
coding contexts [77] and in creativity support tools generally [93].

Whether a student’s primary purpose was closer to coding or
to making art was an additional source of skepticism to those in
Sec. 5.3. Again, regarding Shape Toolbox: “This would be great, but
would reduce the amount of time figuring out the code. This would
make it more an explicit art tool, and less a ‘make art with code’
tool” (A16). similarly noted that “feels a little too much like
draw-ing for my taste” and took the class “with the primary goal
of getting better at programming so I'd want to do things the code-y
way”. Similarly, felt that it “hinder[ed] the process of creative
discovery— including trial and error”, however this was mostly not an
issue as they sought to be “to be more accurate than creative” in this
course. While it is natural to want tools to be familiar, we believe
that new authoring paradigms (e.g. bidirectional programming)
should be viewed as complementary rather than antagonistic.

CHI 23, April 23-28, 2023, Hamburg, Germany

6 DISCUSSION

This paper explored the observed behaviors and surveyed percep-
tions of novice programmers in a creative coding course. To wrap
up, we recap the main themes, reflect on the connection between
our work and other domains, describe limitations of our studies,
and offer avenues for future work.

6.1 Recap: Themes

In our analysis, we chose four recurring themes to highlight.

@ Static Analyses. We observed that simple static analyses were
seen as supportive of a variety of types of work—notable given
that error messages sometimes are obstacles in introductory set-
tings [16]. Polite lightweight assistants that respect user agency, like
those expressed through linting or auto-formatting, can be a helpful
platform on which to learn and test new skills with confidence. On
the other hand, A5 noted that they “would also probably prefer to
do things by hand” rather than use advanced features because there
lacked visual indicators of a particular action’s effect—highlighting
the importance of clear effect-forecasting for feature trust.

@ Liveness. We saw that overeager evaluation can overwhelm
and stress users through distracting updates that are unsynchro-
nized with their expected edit-run cadence. Live programming of-
fers enticing benefits for novice and creative contexts (e.g. feedback
immediacy or a closeness of mapping between code and graphics).
Yet, these interaction challenges for non-expert settings are not
yet thoroughly understood, leaving open questions about how to
blend user control with system eagerness in a profitable way that
maintains an experience level-attuned sense of agency.

@ Clutter. We noted that amateurs are mindful of how the edit-
ing space can become overwhelming if too much visual noise or
unfamiliar forms of interaction are introduced. For instance, stu-
dents are aware that individual features (e.g. Number Scrubbers, lint
errors, and autocomplete menus) can break their flow. We highlight
the difficulty and importance of developing design guidelines that
can aid the development of novel features within these constraints.

@ Skepticism. Finally, we discussed how user perceptions of a
feature can inspire skepticism about its propriety in learning envi-
ronments. Year 1 students believed that the Shape Toolbox would
impede learning; however, those who used it in Year 2 did not
share that concern, instead viewing it as a convenience. Year 2
students also saw knowledge assistants such as autocomplete as
detrimental to their development as programmers. We believe it is
valuable future work to better understand what types of features
and knowledge assistants are likely to be viewed as detrimental.

6.2 Connections to Other Domains

Next we reflect on how our findings may apply more broadly.

6.2.1 Programming Pedagogy. Our work is merely situated within
a classroom; we do not seek to make claims about the learning
effects of the features we studied—this is an important, separable
direction for future work. Yet, some of our themes may carry over
to pedagogically-minded editors in more general learning contexts.

McNutt et al.

We suggest that skepticism @ about features perceived as being
too useful, such as autocomplete, may continue to be prevalent
in learning contexts. Such concerns might be circumvented by
emphasizing tools that help correct, rather than help complete,
such as how linting @ can identify an error while also providing
justification and explanation for that error. We also note the value
of having a programming environment that is perceived as being
approachable (, B1). Furthermore, tools having not “got in
the way” (C16) or otherwise cluttering @ the display in unhelpful
ways seem intuitively valuable, particularly in learning contexts.
Similarly, live execution @ may be beneficial in non-visual contexts
as it promotes immediate feedback, such as by rerunning a test
suite dynamically, as in Jest’s watch mode [32] or Huang et al’s use
of projection boxes [52] in a classroom to expose live values.

Finally, like others before us [36, 70, 105], we found that a cur-
riculum centered around media-art topics—as opposed to more
abstract content often found in intro CS courses—invited a broad
range of students who might not otherwise study CS in a formal
setting (the appendix lists majors represented in the courses).

6.2.2 Other Domains. Editors specialized to a given domain can
make adaptations that aid that context. In this work we focused on
creative coding and designed affordances specific to this domain,
however our findings might be applied in related contexts. We
highlight the value of bidirectional editing, linting, and designing
editors with their effects on creativity in mind.

Bidirectional synchronization of code and effect (such as in our
Shape Toolbox) seems to be an especially valuable approach in
domains that have a prominent visual component. This has been
explored by Asai et al. [10] as a mechanism to clean and synthesize
data for statistical modeling, as well by DeLine [28] and Wu et al.
[107] for data science tasks such as modeling and analysis. We
suggest such synchronization might be usefully applied to other
visualization contexts (like preparing charts for presentation), as
well as other creative coding contexts. Such interfaces may poten-
tially reduce tedium in certain tasks and, more fundamentally, may
provide opportunities for learning about the domain, for example,
demonstrating how to achieve a particular effect using code.

Next, we highlight that linters (or other static analysis tools @)
can provide a straightforward channel for introducing newcom-
ers to basic principles and best practices of a particular domain.
While they have already been explored in some contexts—such as
for spreadsheets [13] and visualizations [51, 74]—additional fields
such as data science [75] and music editors might integrate these
concepts as well in order to surface best practices, such as high-
lighting statistical fallacies, helping guide usage with unusual tools
(e.g. Orca [55]), or surfacing accidental discordance or inaudible
components in music editors. As discussed, such ambient assis-
tants should be designed in a polite manner (e.g., through granular
dismissal of advice) to avoid being irritating and then dismissed.

While most technical tasks require some amount of creativity,
we argue that features in editors in creativity centered-domains
should be constructed in order to align specifically with goals of
either reducing tedium or aiding in exploration. Barke et al. [12]
observe a similar pattern of exploration vs. acceleration in use of the
Al-powered code assistant Copilot for traditional, non-creative soft-
ware development tasks, suggesting overlap in editor features that

A Study of Editor Features in a Creative Coding Classroom

support creative coding and coding more generally. Compton [24]
argues for IDEs with features that are valuable unto themselves—
for example, for being playful or thought-provoking—rather than
their use as a means to end. Non-productivity focused techniques
may be useful in creative coding contexts more generally, perhaps
as a design advisor as suggested. These additions may drive
unexpected patterns of usage, leading to new types of discovery
through play—which might even valuable in technical domains like
data science or visualization [102]. At the same time, such inter-
ventions may inspire skepticism @ about their authenticity if they
are perceived as too whimsical or unrealistic.

6.3 Limitations and Future Work

As described throughout, our study had a number of limitations.
These included data collection errors (such as the configuration
error in wi22) and the relative simplicity of the survey. For in-
stance, our use of static images—as opposed to videos or interactive
prototypes—limited our ability to accurately explore reactions to
proposed features. However, the use of non-interactive stimuli (fol-
lowing Kery et al. [60]) allowed respondents to project their own
beliefs about the features and ignore potentially distracting low-
level bugs or stylistic issues. Further, we only implemented a subset
all designs we identified, so we cannot make inferences about what
features would be most valuable in general. Instead, we focus only
on the observed themes and interactions with implemented fea-
tures. This approach was a coarse and inexpensive way to identify
and explore some potentially fruitful features, however not all such
features were necessarily identified nor considered. Future work
could implement more of the identified features—and also augment
our observations with lab studies—to better understand the effects
of particular features. Furthermore, whereas our work investigated
how novices perceive the utility of various editor features, subse-
quent work should also investigate their pedagogical effects on
learning outcomes—one notable point for comparison is that Oviatt
et al. [82] found novel interfaces can hinder learning.

The biases of our particular student populations may not be re-
flective of a more general student population, however the views of
the college-aged (sp21, wi22) students seem aligned with those of the
high-school students (su22). In addition, they are in agreement with
those of su21 students who, because of pandemic era-distancing, at-
tended from around the world and thus drawn from a substantially
different population. Our own biases were likely projected onto the
students in teaching this material, and different instructors may
have inspired different responses in students. To this end, student
perceptions are likely reflective of the context and content of the
work they were asked to do. For instance, the open-ended nature of
many assignments likely shaped student opinions of the features we
asked about, which may have been different under more structured
programming tasks. In future work we would like to reexamine
our findings by teaching the course to and soliciting feedback from
students from other institutions, age groups, and backgrounds.

Students were generally positive about the editor being online
and the way in which our feedback and submission systems were in-
tegrated (), with B1 noting that they were especially beginner-
friendly. Nevertheless, the choice to use a web tool had limitations.
Students with inconsistent internet connections struggled with the

CHI 23, April 23-28, 2023, Hamburg, Germany

online environment (prompting B6 to suggest an offline mode),
while others had computers that were unable to handle the com-
putational weight of a larger web application (which made some
students hesitant to explore some editor features). For instance,
noted that they hesitated to use auto-refresh because “my computer
was already very slow and I didn’t want my code to crash while it
was running.” These concerns were particularly prominent during
the fully online sp21 and su21 editions. While in-person teaching
has resumed (as in wi22 and su22), that consideration of how to
build novice-oriented tools that support those with limited internet
connectivity or less powerful computers should not cease.

While our target population in this work was students, in future
work we wish to understand what features instructors see as valu-
able or concerning in such a setting. Similarly, it would be useful
to consider whether these user interface patterns are applicable to
professional artists working in creative coding spaces—questions
which are closely connected to Li et al’s [67] study of the tools
that artists make for themselves. Of particular relevance are artist-
designed custom coding environments used for teaching and artistic
practice (such as Field [30]).

In sum, creative coding has been, and continues to be, fertile soil
for HCI research. We believe that studying the problems users in
these creative domains face is valuable unto itself, and is ever more
relevant as creative coding becomes an increasingly common way
to introduce computing and to make art.

ACKNOWLEDGMENTS

We are grateful to those who made our courses possible, includ-
ing the course staff (Brian Hempel, Angela Liu, and Bhakti Shah),
Kevin Workman for allowing us to incorporate his Happy Coding
tutorials, and the p5 community and developers for building such
useful tools. We thank Lilian Huang, Shriram Krishnamurthi, Elsie
Lee-Robbins, Justin Lubin, and the anonymous reviewers for their
helpful commentary. Finally, we thank our students, without whom
this work could not have taken place. This work was supported in
part by the University of Chicago College Innovation Fund.

REFERENCES

2021. p5.js. https://p5js.org/. Accessed 9/21/21.

[2] 2021. p5.js: createSlider. https://p5js.org/reference/#/p5/createSlider. Accessed
9/17/21.

[3] 2021. p5.js editor. https://github.com/processing/p5.js-web-editor. Accessed
9/17/21.

[4] 2021. Utopia. https://github.com/concrete-utopia/utopia.

[5] 2022. Tweakable: an online programming environment for audio and video.
https://tweakable.org/. Accessed 8/25/22.

[6] Khan Academy. 2021. Computer Programming. https://www.khanacademy.org/
computing/computer-programming. Accessed 4/3/2022.

[7] Abdulaziz Alaboudi and Thomas D LaToza. 2021. Edit-Run Behavior in Program-
ming and Debugging. In Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 1-10. https://doi.org/10.1109/VL/HCC51201.2021.
9576170

[8] Susan A Ambrose, Michael W Bridges, Michele DiPietro, Marsha C Lovett, and
Marie K Norman. 2010. How Learning Works: Seven Research-based Principles for
Smart Teaching. John Wiley & Sons, New York.

[9] Leif Andersen, Michael Ballantyne, and Matthias Felleisen. 2020. Adding inter-

active visual syntax to textual code. Proceedings of the ACM on Programming

Languages (OOPSLA) 4 (2020), 1-28.

Kentaro Asai, Tsukasa Fukusato, and Takeo Igarashi. 2020. Integrated Devel-

opment Environment with Interactive Scatter Plot for Examining Statistical

Modeling. In SIGCHI Conference on Human Factors in Computing Systems. 1-7.

Thomas Ball, Abhijith Chatra, Peli de Halleux, Steve Hodges, Michal Moskal,

and Jacqueline Russell. 2019. Microsoft MakeCode: Embedded Programming for

—

[10

[11

https://p5js.org/
https://p5js.org/reference/#/p5/createSlider
https://github.com/processing/p5.js-web-editor
https://github.com/concrete-utopia/utopia
https://tweakable.org/
https://www.khanacademy.org/computing/computer-programming
https://www.khanacademy.org/computing/computer-programming
https://doi.org/10.1109/VL/HCC51201.2021.9576170
https://doi.org/10.1109/VL/HCC51201.2021.9576170

CHI 23, April 23-28, 2023, Hamburg, Germany

[12

[13

(14

(16

(17

[19

[20

[35

]

Education, in Blocks and TypeScript. In ACM SIGPLAN Workshop on SPLASH-E.
ACM, 7-12. https://doi.org/10.1145/3358711.3361630

Shraddha Barke, Michael B James, and Nadia Polikarpova. 2022. Grounded
Copilot: How Programmers Interact with Code-Generating Models. arXiv
preprint arXiv:2206.15000 (2022).

Daniel W Barowy, Emery D Berger, and Benjamin Zorn. 2018. ExceLint: au-
tomatically finding spreadsheet formula errors. Proceedings of the ACM on
Programming Languages (OOPSLA) 2 (2018), 1-26.

Lyn Bartram, Michael Correll, and Melanie Tory. 2022. Untidy Data: The Unrea-
sonable Effectiveness of Tables. IEEE Transactions on Visualization and Computer
Graphics 28, 1 (2022), 686-696. https://doi.org/10.1109/TVCG.2021.3114830
beautify web. 2021. JSBeautify. https://github.com/beautify-web/js-beautify.
Accessed 4/3/2022.

Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-
vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error
Messages Considered Unhelpful: The Landscape of Text-Based Programming
Error Message Research. In Working Group Reports on Innovation and Tech-
nology in Computer Science Education, ITiICSE-WGR. ACM, 177-210. https:
//doi.org/10.1145/3344429.3372508

Laura Beckwith, Cory Kissinger, Margaret M. Burnett, Susan Wiedenbeck,
Joseph Lawrance, Alan F. Blackwell, and Curtis R. Cook. 2006. Tinkering and
gender in end-user programmers’ debugging. In SIGCHI Conference on Human
Factors in Computing Systems. ACM, 231-240. https://doi.org/10.1145/1124772.
1124808

Andrew Bragdon, Steven P. Reiss, Robert C. Zeleznik, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph
J. LaViola Jr. 2010. Code bubbles: rethinking the user interface paradigm of
integrated development environments. In International Conference on Software
Engineering (ICSE). ACM, 455-464. https://doi.org/10.1145/1806799.1806866
Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. 2010.
Example-centric programming: integrating web search into the development
environment. In SIGCHI Conference on Human Factors in Computing Systems.
513-522.

Cameron Burgess, Dan Lockton, Maayan Albert, and Daniel Cardoso Llach. 2020.
Stamper: An Artboard-Oriented Creative Coding Environment. In Extended
Abstracts of the CHI Conference on Human Factors in Computing Systems. ACM,
1-9. https://doi.org/10.1145/3334480.3382994

Margaret M. Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016. Finding
Gender-Inclusiveness Software Issues with GenderMag: A Field Investigation.
In SIGCHI Conference on Human Factors in Computing Systems. ACM, 2586-2598.
https://doi.org/10.1145/2858036.2858274

Mike Cao. 2021. Umami. https://umami.is/. Accessed 4/3/2022.

Adam S Carter, Christopher D Hundhausen, and Olusola Adesope. 2015. The
Normalized Programming State Model: Predicting Student Performance in Com-
puting Courses Based on Programming Behavior. In Proceedings of the eleventh
annual International Conference on International Computing Education Research.
ACM, 141-150. https://doi.org/10.1145/2787622.2787710

Kate Compton. 2021. Conversation Starter: Imagining Autotelic IDEs. In CEUR
Workshop Proceedings, Vol. 3217. CEUR-WS.

Kate Compton, Ben Kybartas, and Michael Mateas. 2015. Tracery: An Author-
Focused Generative Text Tool. In International Conference on Interactive Digital
Storytelling. Springer, 154-161. https://doi.org/10.1007/978-3-319-27036-4_14
CSSLint. 2021. CSSLint. https://github.com/CSSLint/csslint. Accessed 4/3/2022.
Fred D Davis. 1989. Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly (1989), 319-340.

Robert A DeLine. 2021. Glinda: Supporting data science with live programming,
GUIs and a Domain-specific Language. In SIGCHI Conference on Human Factors
in Computing Systems. 1-11.

Quan Do, Kiersten Campbell, Emmie Hine, Dzung Pham, Alex Taylor, Iris
Howley, and Daniel W Barowy. 2019. Evaluating ProDirect Manipulation in
Hour of Code. In ACM SIGPLAN Symposium on SPLASH-E. 25-35. https://doi.
org/10.1145/3358711.3361623

Marc Downie and Paul Kaiser. 2021. Field. http://openendedgroup.com/field/.
Jonathan Edwards. 2005. Subtext: Uncovering the Simplicity of Programming. In
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA. 505-518. https://doi.org/10.1145/1094811.1094851
Facebook. 2022. Jest CLI Options. https://jestjs.io/docs/cli. Accessed 11/15/20.
Jaroslav Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allama-
nis, Mirella Lapata, and Charles Sutton. 2017. Autofolding for Source Code
Summarization. IEEE Transactions on Software Engineering 43, 12 (2017), 1095
1109. https://doi.org/10.1109/TSE.2017.2664836

Angelo Fraietta, Oliver Bown, Sam Ferguson, Sam Gillespie, and Liam Bray.
2019. Rapid composition for networked devices: HappyBrackets. Computer
Music Journal 43, 2-3 (2019), 89-108.

Jonas Frich, Michael Mose Biskjaer, and Peter Dalsgaard. 2018. Twenty years of
creativity research in human-computer interaction: Current state and future
directions. In Proceedings of the 2018 Designing Interactive Systems Conference.

[36
[37

[38

[39

[40

[41

[42]

[43

[44
[45

[46]

[47

[48

[49

[50

[51

[52

[53

[54

[55

[56

[57
[58

[59

McNutt et al.

1235-1257.

Ira Greenberg. 2007. Processing: creative coding and computational art. Apress.
Ira Greenberg, Deepak Kumar, and Dianna Xu. 2012. Creative Coding and Visual
Portfolios for CS1. In ACM Technical Symposium on Computer Science Education
(SIGCSE). 247-252. https://doi.org/10.1145/2157136.2157214

Philip Guo. 2021. Ten Million Users and Ten Years Later: Python Tutor’s Design
Guidelines for Building Scalable and Sustainable Research Software in Academia.
In ACM Symposium on User Interface Software and Technology (UIST). https:
//doi.org/10.1145/3472749.3474819

Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program
Visualization for CS Education. In ACM Technical Symposium on Computer
Science Education (SIGCSE). ACM, 579-584. https://doi.org/10.1145/2445196.
2445368

Mark Guzdial. 2004-. Media Computation Teachers Website. http://coweb.cc.
gatech.edu/mediaComp-teach.

Mark Guzdial. 2013. Exploring Hypotheses about Media Computation. In ACM
Conference on International Computing Education Research (ICER).

Mark Guzdial and Andrea Forte. 2005. Design Process for a Non-Majors
Computing Course. ACM SIGCSE Bulletin 37, 1 (2005), 361-365. https:
//doi.org/10.1145/1047344.1047468

Bjorn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klemmer.
2008. Design as Exploration: Creating Interface Alternatives Through Parallel
Authoring and Runtime Tuning. In ACM Symposium on User Interface Software
and Technology (UIST). 91-100. https://doi.org/10.1145/1449715.1449732

Baku Hasimoto. 2021. Glisp. https://github.com/baku89/glisp.

Marijn Haverbeke et al. 2021. Code Mirror 6. https://codemirror.net/6/. Accessed
4/3/22.

Juha Helminen, Petri Ihantola, and Ville Karavirta. 2013. Recording and Ana-
lyzing In-Browser Programming Sessions. In Koli Calling International Confer-
ence on Computing Education Research. 13-22. https://doi.org/10.1145/2526968.
2526970

Brian Hempel and Ravi Chugh. 2016. Semi-Automated SVG Programming
via Direct Manipulation. In ACM Symposium on User Interface Software and
Technology (UIST). 379-390. https://doi.org/10.1145/2984511.2984575

Brian Hempel and Ravi Chugh. 2022. Maniposynth: Bimodal Tangible Functional
Programming. In European Conference on Object-Oriented Programming, ECOOP
(LIPIcs, Vol. 222). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 16:1-16:29.
https://doi.org/10.4230/LIPIcs. ECOOP.2022.16

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In ACM Symposium on User Interface Software
and Technology (UIST). 281-292. https://doi.org/10.1145/3332165.3347925

T Dean Hendrix, James H Cross, Larry A Barowski, and Karl S Mathias. 1998.
Visual Support for Incremental Abstraction and Refinement in Ada 95. SIGAda
Annual International Conference on Ada Technology 18, 6 (1998), 142-147. https:
//doi.org/10.1145/289524.289568

Aspen K Hopkins, Michael Correll, and Arvind Satyanarayan. 2020. VisuaLint:
Sketchy in situ annotations of chart construction errors. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 219-228.

Ruangiangian (Lisa) Huang, Kasra Ferdowsi, Ana Selvaraj, Adalbert Gerald
Soosai Raj, and Sorin Lerner. 2022. Investigating the Impact of Using a Live
Programming Environment in a CS1 Course. In ACM Technical Symposium on
Computer Science Education (SIGCSE) (SIGCSE 2022). Association for Computing
Machinery, 495-501. https://doi.org/10.1145/3478431.3499305

Christopher D Hundhausen, Sean F Farley, and Jonathan L Brown. 2009. Can
Direct Manipulation Lower the Barriers to Computer Programming and Promote
Transfer of Training? An Experimental Study. ACM Transactions on Computer-
Human Interaction (TOCHI) 16, 3 (2009), 1-40. https://doi.org/10.1145/1592440.
1592442

Christopher David Hundhausen, Daniel M Olivares, and Adam S Carter. 2017.
IDE-Based Learning Analytics for Computing Education: A Process Model, Crit-
ical Review, and Research Agenda. ACM Transactions on Computing Education
(TOCE) 17, 3 (2017), 1-26. https://doi.org/10.1145/3105759

hundredrabbits. 2021. Orca. https://github.com/hundredrabbits/Orca. Accessed
9/21/21.

Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jirgen Bérstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational Data Mining and Learning Analytics in Programming:
Literature Review and Case Studies. Proceedings of the 2015 ITiCSE on Working
Group Reports (2015), 41-63. https://doi.org/10.1145/2858796.2858798

jshint. 2021. JSHint. https://github.com/jshint/jshint. Accessed 4/3/2022.
Hyeonsu Kang and Philip] Guo. 2017. Omnicode: A Novice-Oriented Live
Programming Environment with Always-On Run-Time Value Visualizations.
In ACM Symposium on User Interface Software and Technology (UIST). 737-745.
https://doi.org/10.1145/3126594.3126632

Mary Beth Kery, Amber Horvath, and Brad A Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In CHI, Vol. 10. https://doi.org/
10.1145/3025453.3025626

https://doi.org/10.1145/3358711.3361630
https://doi.org/10.1109/TVCG.2021.3114830
https://github.com/beautify-web/js-beautify
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/1124772.1124808
https://doi.org/10.1145/1124772.1124808
https://doi.org/10.1145/1806799.1806866
https://doi.org/10.1145/3334480.3382994
https://doi.org/10.1145/2858036.2858274
https://umami.is/
https://doi.org/10.1145/2787622.2787710
https://doi.org/10.1007/978-3-319-27036-4_14
https://github.com/CSSLint/csslint
https://doi.org/10.1145/3358711.3361623
https://doi.org/10.1145/3358711.3361623
http://openendedgroup.com/field/
https://doi.org/10.1145/1094811.1094851
https://jestjs.io/docs/cli
https://doi.org/10.1109/TSE.2017.2664836
https://doi.org/10.1145/2157136.2157214
https://doi.org/10.1145/3472749.3474819
https://doi.org/10.1145/3472749.3474819
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
http://coweb.cc.gatech.edu/mediaComp-teach
http://coweb.cc.gatech.edu/mediaComp-teach
https://doi.org/10.1145/1047344.1047468
https://doi.org/10.1145/1047344.1047468
https://doi.org/10.1145/1449715.1449732
https://github.com/baku89/glisp
https://codemirror.net/6/
https://doi.org/10.1145/2526968.2526970
https://doi.org/10.1145/2526968.2526970
https://doi.org/10.1145/2984511.2984575
https://doi.org/10.4230/LIPIcs.ECOOP.2022.16
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/289524.289568
https://doi.org/10.1145/289524.289568
https://doi.org/10.1145/3478431.3499305
https://doi.org/10.1145/1592440.1592442
https://doi.org/10.1145/1592440.1592442
https://doi.org/10.1145/3105759
https://github.com/hundredrabbits/Orca
https://doi.org/10.1145/2858796.2858798
https://github.com/jshint/jshint
https://doi.org/10.1145/3126594.3126632
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3025453.3025626

A Study of Editor Features in a Creative Coding Classroom

[60] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-

suphasawat, and Kayur Patel. 2020. mage: Fluid moves between code and
graphical work in computational notebooks. In ACM Symposium on User Inter-
face Software and Technology (UIST). 140-151.

Amy J Ko and Brad A Myers. 2006. Barista: An implementation framework for
enabling new tools, interaction techniques and views in code editors. In SIGCHI
Conference on Human Factors in Computing Systems. 387-396.

Masatomo Kobayashi and Takeo Igarashi. 2007. Boomerang: Suspendable
Drag-and-Drop Interactions Based on a Throw-and-Catch Metaphor. In ACM
Symposium on User Interface Software and Technology (UIST). 187-190. https:
//doi.org/10.1145/1294211.1294243

Jan-Peter Kramer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. 2014. How
Live Coding Affects Developers’ Coding Behavior. In Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 5-8. https://doi.org/
10.1109/VLHCC.2014.6883013

Yun Young Lee, Nicholas Chen, and Ralph E Johnson. 2013. Drag-and-drop
Refactoring: Intuitive and Efficient Program Transformation. In International
Conference on Software Engineering (ICSE). IEEE, 23-32. https://doi.org/10.1109/
ICSE.2013.6606548

CHI 23, April 23-28, 2023, Hamburg, Germany

Kylie Peppler and Yasmin Kafai. 2009. Creative Coding: Programming for Per-
sonal Expression. International Conference on Computer Supported Collaborative
Learning (CSCL) 30 (2009), 7.

Inigo Quilez and Pol Jeremias. 2013. ShaderToy. https://www.shadertoy.com/.
Accessed 9/7/2022.

David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-style Programming - Design and Implementation of an In-
tegration of Live Examples Into General-purpose Source Code. The Art, Sci-
ence, and Engineering of Programming 3, 3 (2019), 9. https://doi.org/10.22152/
programming-journal.org/2019/3/9

Olli Rautiainen. 2020. How to write better code with linting, formatting, and
analysis tools. https://www.eficode.com/blog/how-to-write-better-code-with-
tools. Accessed 4/4/2022.

Casey Reas and Ben Fry. 2007. Processing: a programming handbook for visual
designers and artists. Mit Press.

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2019. Exploratory and Live, Programming and Coding: A Literature Study
Comparing Perspectives on Liveness. The Art, Science, and Engineering of
Programming 3, 1(2019). Issue 1. https://doi.org/10.22152/programming-journal.

[65] Sorin Lerner. 2020. Projection Boxes: On-the-fly Reconfigurable Visualization org/2019/3/1
for Live Programming. In SIGCHI Conference on Human Factors in Computing [89] Replit. 2021. Replit. https://replit.com/. Accessed 4/3/2022.
Systems. ACM, 1-7. https://doi.org/10.1145/3313831.3376494 [90] Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021.

[66] Golan Levin and Tega Brain. 2021. Code as Creative Medium: A Handbook for
Computational Art and Design. MIT.

Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn From

Visual Artists About Software Development. In SIGCHI Conference on Human [91
Factors in Computing Systems. 1-14. https://doi.org/10.1145/3411764.3445682

Zach Lieberman. 2020. openFrameworks. https://openframeworks.cc/ofBook/

Live Coding: A Review of the Literature. In ACM Conference on Innovation and
Technology in Computer Science Education, Vol. 1. 164-170. https://doi.org/10.
1145/3430665.3456382

David Williamson Shaffer and Mitchel Resnick. 1999. “Thick” Authenticity:
New Media and Authentic Learning. Journal of Interactive Learning Research 10,
2 (December 1999), 195-215.

=
=

(68

chapters/foreword.html. Accessed 9/21/21. [92] Daniel Shiffman. 2021. Coding Train. https://thecodingtrain.com/.

[69] Justin Lubin and Ravi Chugh. 2020. Type-Directed Program Transformations for [93] Ben Shneiderman. 2007. Creativity support tools: accelerating discovery and
the Working Functional Programmer. In Workshop on Evaluation and Usability innovation. Commun. ACM 50, 12 (2007), 20-32.
of Programming Languages and Tools (PLATEAU 2019). Schloss Dagstuhl-Leibniz- [94] Beth Simon, Paivi Kinnunen, Leo Porter, and Dov Zazkis. 2010. Experience

Zentrum fiir Informatik.

Mihaela Malita and Ethel Schuster. 2020. From Drawing to Coding: Teaching
Programming with Processing. Journal of Computing Sciences in Colleges 35, 8 [95
(April 2020), 245-246. https://doi.org/10.5555/3417639.3417663

Mariana Méarasoiu, Luke Church, and Alan Blackwell. 2015. An empirical
investigation of code completion usage by professional software developers. In [96
Psychology of Programming Interest Group (PPIG 2015). 59-68.

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Measuring

the Effectiveness of Error Messages Designed for Novice Programmers. In [97

Report: CS1 for Majors with Media Computation. In Conference on Innovation
and Technology in Computer Science Education (ITiCSE).

Blair Subbaraman and Nadya Peek. 2022. p5. fab: Direct Control of Digital Fabri-
cation Machines from a Creative Coding Environment. In Designing Interactive
Systems Conference. 1148-1161.

Steven L. Tanimoto. 1990. VIVA: A Visual Language for Image Processing.
Journal of Visual Languages and Computing 1, 2 (June 1990), 127-139. https:
//doi.org/10.1016/S1045-926X(05)80012-6

Steven L. Tanimoto. 2013. A perspective on the evolution of live programming.

[70

[71

3
&,

ACM Technical Symposium on Computer Science Education (SIGCSE). 499-504.
https://doi.org/10.1145/1953163.1953308

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind Your
Language: on Novices’ Interactions with Error Messages. In ACM Symposium
on New Ideas in Programming and Reflections on Software, Onward! 2011, part of
SPLASH ’11. 3-18. https://doi.org/10.1145/2048237.2048241

Andrew McNutt, Gordon Kindlmann, and Michael Correll. 2020. Surfacing
Visualization Mirages. In SIGCHI Conference on Human Factors in Computing
Systems. 1-16.

Andrew M. McNutt, Chenglong Wang, Rob DeLine, and Steven M. Drucker.
2023. On the Design of Al-powered Code Assistants for Notebooks. In SIGCHI
Conference on Human Factors in Computing Systems. To Appear.

Hiroaki Mikami, Daisuke Sakamoto, and Takeo Igarashi. 2017. Micro-Versioning
Tool to Support Experimentation in Exploratory Programming. In SIGCHI Con-
ference on Human Factors in Computing Systems. 6208-6219. https://doi.org/10.
1145/3025453.3025597

Mark C Mitchell and Oliver Bown. 2013. Towards a creativity support tool in
processing: understanding the needs of creative coders. In Australian Computer-
Human Interaction Conference: Augmentation, Application, Innovation, Collabo-
ration. 143-146.

Don Norman. 2013. The design of everyday things: Revised and expanded edition.
Basic books.

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live Func-
tional Programming with Typed Holes. Proceedings of the ACM on Programming
Languages (POPL) 3, Article 14 (2019), 32 pages. https://doi.org/10.1145/3290327
Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A.
Hammer. 2017. Hazelnut: A Bidirectionally Typed Structure Editor Calculus.
In ACM SIGPLAN Symposium on Principles of Programming Languages (POPL).
Association for Computing Machinery, 86-99. https://doi.org/10.1145/3009837.
3009900

Cyrus Omar, Young Seok Yoon, Thomas D LaToza, and Brad A Myers. 2012.
Active Code Completion. In International Conference on Software Engineering
(ICSE). IEEE, 859-869. https://doi.org/10.1109/ICSE.2012.6227133

Sharon Oviatt, Alex Arthur, and Julia Cohen. 2006. Quiet interfaces that help
students think. In ACM Symposium on User Interface Software and Technology
(UIST). 191-200.

In Workshop on Live Programming, LIVE. IEEE, 31-34. https://doi.org/10.1109/
LIVE.2013.6617346

Michael Toomim, Andrew Begel, and Susan L Graham. 2004. Managing Du-
plicated Code with Linked Editing. In Symposium on Visual Languages-Human
Centric Computing (VL/HCC). IEEE, 173-180. https://doi.org/10.1109/VLHCC.
2004.35

Bret Victor. 2011. Explorable Explanations. http://worrydream.com/
ExplorableExplanations/.

Bret Victor. 2011. Scrubbing Calculator. http://worrydream.com/
ScrubbingCalculator/.

Arto Vihavainen, Juha Helminen, and Petri Thantola. 2014. How Novices Tackle
their First Lines of Code in an IDE: Analysis of Programming Session Traces. In
Koli Calling International Conference on Computing Education Research. 109-116.
https://doi.org/10.1145/2674683.2674692

Nathalie Vladis, Aspen Hopkins, and Arvind Satyanarayan. 2020. Data Crafting:
Exploring Data through Craft and Play. IEEE VIS Workshop on Data Vis
Activities to Facilitate Learning, Reflecting, Discussing, and Designing.

David Weintrop and Uri Wilensky. 2015. To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-Based Programming. In International
Conference on Interaction Design and Children (IDC).

Brian Whitworth. 2005. Polite Computing. Behaviour & Information Technology
24,5 (2005), 353-363. https://doi.org/10.1080/01449290512331333700

Zoe] Wood, Paul Muhl, and Katelyn Hicks. 2016. Computational Art: Introduc-
ing High School Students to Computing via Art. In ACM Technical Symposium on
Computing Science Education. 261-266. https://doi.org/10.1145/2839509.2844614
Kevin Workman. 2021. Happy Coding Tutorials. https://happycoding.io/. Ac-
cessed 4/3/2022.

Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridg-
ing Code and Interactive Visualization in Computational Notebooks. In ACM
Symposium on User Interface Software and Technology (UIST). ACM, 152-165.
https://doi.org/10.1145/3379337.3415851

YoungSeok Yoon and Brad A Myers. 2015. Supporting Selective Undo in a Code
Editor. In International Conference on Software Engineering (ICSE), Vol. 1. IEEE,
223-233. https://doi.org/10.1109/ICSE.2015.43

https://doi.org/10.1145/1294211.1294243
https://doi.org/10.1145/1294211.1294243
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1109/ICSE.2013.6606548
https://doi.org/10.1109/ICSE.2013.6606548
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3411764.3445682
https://openframeworks.cc/ofBook/chapters/foreword.html
https://openframeworks.cc/ofBook/chapters/foreword.html
https://doi.org/10.5555/3417639.3417663
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/3025453.3025597
https://doi.org/10.1145/3025453.3025597
https://doi.org/10.1145/3290327
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1109/ICSE.2012.6227133
https://www.shadertoy.com/
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://www.eficode.com/blog/how-to-write-better-code-with-tools
https://www.eficode.com/blog/how-to-write-better-code-with-tools
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://replit.com/
https://doi.org/10.1145/3430665.3456382
https://doi.org/10.1145/3430665.3456382
https://thecodingtrain.com/
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/VLHCC.2004.35
https://doi.org/10.1109/VLHCC.2004.35
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/ScrubbingCalculator/
http://worrydream.com/ScrubbingCalculator/
https://doi.org/10.1145/2674683.2674692
https://doi.org/10.1080/01449290512331333700
https://doi.org/10.1145/2839509.2844614
https://happycoding.io/
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1109/ICSE.2015.43

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

APPENDIX

In this appendix we provide supplementary material that fell outside the scope of the main content of the paper.

o In Sec. A we make several notes about the course design and other ancillary details.
e In Sec. B we provide additional details about several of our studies.

A THE CREATIVE CODING COURSE

Here we provide additional context for our course. In Fig. 11, we show the schedule for the 3-week su21 edition (link to course site). This
edition featured only a sequence of homeworks and exercises, and did not include the self-guided project found in the “full” editions of
course (sp21, wi22). A similar version of the course was also taught as su22. There were six individual homework assignments in su21, the
first five of which appeared in all course editions:

1. Color Wheel. Recreate a given red-yellow-blue color wheel. (function calls, color and shape-drawing APIs, trigonometric expressions)

2. Freeze Frame. Pick a static frame from the “StoryBots: Shapes” video and recreate it. (function calls, color and shape-drawing APIs)

3. Trees. Use variables and arithmetic expressions to implement a symmetric tree drawing. (variables, arithmetic, curves)

4. Book of Patterns. Implement several 2-dimensional grid patterns—stripes, polka dots, checks, plaid, chevron, harlequin, argyle,
and honeycomb—inspired by the designs in My First Book of Patterns. (nested loops)

5. Snake. Make a simple version of the classic snake game. Starter code was provided with function stubs for different aspects of a
simple model-view-controller architecture (mutable variables, arrays, objects, animation, mouse and keyboard events)

6. Subway Font. Rewrite a webpage using a “font” that resembles the signage of the New York City subway. As shown on the cover
of Subway, some letters are rendered white-on-black and others are set atop colored circles. (HTML, CSS, DOM API, dictionaries)

As highlighted in the main text, we designed our course primarily for college students with little-to-no programming experience who
were not planning to major in computer science. In sp21, 4 out of the 31 students were undeclared, and among the remaining 27 students 14
different programs of study were represented. In wi22, 10 out of the 27 students were undeclared, and among the remaining 17 students 12
different programs of study were represented. All told, students from 23 different departments participated in the course (Fig. 12).

Based on both our study and pre-course on-boarding surveys, students self-reported high levels of prior experience (as highlighted in
Fig. 3) in each edition of the course. In sp21, students who had previously completed computer science courses at the university—in a couple
cases many such courses—were mistakenly allowed to enroll. This enrollment issue was fixed for wi22, but still nearly half of the students
(who completed the course) self-reported prior experience through self-study, courses in high school, and from other university departments
or institutions. In su21 and su22, enrollment was unrestricted (the high-school students were not already associated with the university), and
a large majority of these students reported prior experience. In any case, the different levels among our student populations helps color some
of the observations in the main text.

B ADDITIONAL STUDY DETAILS

In this section we present aspects of our studies that did not fit in the main text: the ethics statement for our studies, additional results,
followed by descriptions of the hypothetical features from our Year 1 survey that were not implemented in Year 2.

B.1 Ethics Statement

All studies were reviewed and determined to be exempt by our university’s institutional review board. We did not collect demographic data,
because it was not a core aspect of our investigation. Although we designed and taught these courses with an eye towards the associated
studies, we believe the course materials we developed and delivered (through lectures, office hours, and online discussions) were minimally
affected by the presence of these studies and our use of custom versions of the p5 editor.

B.2 Additional Results

Here we list a series of one-off results that were observed. Then in Sec. B.2.1 include an analysis of the code folding feature (original part of
the analysis in Sec. 5.1). Finally we provide an additional analysis of the the auto-refresh feature in Sec. B.2.2.

o In Fig. 13, we show an alternative depiction of the results from both years of our survey which includes metrics other than the one
used in the main text (namely Usefulness).

o In Fig. 14 we provide a simple summary of the volume of code executions across all three editions along with assignment due dates,
which highlights that execution volume tended to be higher for earlier graphic-only assignments (compared to later assignments
which involved interactivity or HTML/CSS).

o In Fig. 15 we provide a related graphic showing execution history for sp21 and su21, along with the relative error rates by day.

In Year 1, our logging scheme did not include a mechanism for explicitly collecting run-time errors, so they were reconstructed
post-course by running each logged sketch for 10 seconds and collecting all errors generated during that period. This approach may
exclude errors students saw, such as those generated through interaction with the sketch or through randomness. On average each
session had p=7.27+32.8 errors, with outliers excluded. Within our reduced sample from Year 2, sessions exhibited p=30.7+95.8
errors, again with outliers excluded. A one-sided t-test indicated that there were significantly more mean errors per session in Year

https://www.classes.cs.uchicago.edu/archive/2021/summer/creative-coding/immersion/
https://www.classes.cs.uchicago.edu/archive/2021/spring/11111-1/
https://www.classes.cs.uchicago.edu/archive/2022/winter/11111-1/
https://www.classes.cs.uchicago.edu/archive/2022/summer/19911-1/

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

2 (p<0.001). This increase is likely due to the new collection method, which captured errors witnessed by the user rather than just
reconstructed errors.

e In Fig. 16 we provide a figure showing the bi-gram action sequence probability of actions in Year 1.

e We then provide tables in Fig. 6 for Fig. 17 and Fig. 18.

B.2.1 Code Folding. This simple feature, common to most modern editors [33], allows functions and other blocks of code to be collapsed
and later expanded. This feature was generally well liked as it made code “feel more organized” (A9), while helping users avoid “being
overwhelmed” (A2) and making things “look neater and less intimidating” (A1). This has the organizational benefit that it is “easier to find
specific chunks of code” (A1), which, as noted by and , reduces the amount of scrolling—these are well-understood benefits of this
feature [50]. Being able to organize and navigate code are important concerns for novice creative coders. @

However, the feature was not universally appreciated. Whereas found that code folding “Helped a lot while debugging and re-
organization!”, A9 asked “when debugging, what if the problem is in one of the lines of code that are hidden?” A number of participants noted
that they simply did not use it or did not find it helpful. Some students only invoked it accidentally (A 10), while others found it confusing
() because it did not clearly communicate what code was to be folded. Code folding, or other interface-based code organization tools,
seem especially valuable in this context as most sketches typically involved only a single file (e.g. sp21 and wi22 final projects had a median
of 1 JavaScript file). As the file structure abstraction for code organization is underused, there is opportunity for interface-based abstraction.

Episode Length (Minutes) Cycle Frequency (Count) Cycle Length (Minutes)
Period of time that a programmer is either in a Average number of executions that it takes to switch Average length of time between code executions.
debugging or programming state. from one episode type to another
Alaboudi & LaToza g
~) 5
1 3
Auto-refresh Year | Q mean /. Q 8‘5“‘
oa
Year 2
Manual Year | 6-’0
o
Year 2 5
0 2 4 6 8 10 12 0 5 10 15 00 05 1.0 1.5 2.0 25 30 2
oa

Year |/2 Outliers were dropped. Year 2 has missing data due to a data collection error.

Figure 10: Comparing how students shifted between debugging and programming states (using different execution styles)
against a baseline of professional programmers [7].

B.2.2 Live Coding. In addition to the analysis of the auto-refresh feature considered in the main text (Sec. 5.1.3), we also sought to understand
how student edit-run behavior compared to that of professional programmers. Fig. 10 shows how auto-refresh usage affected the length,
size, and frequency of edit-run cycles with regard to debugging versus programming states adopting the metrics used by Alaboudi and
LaToza [7], who studied how professional programmers shift between debugging and programming states during edit-run cycles in their
own work. A salient difference from the baseline was that the number of executions to transition from a programming to a debugging
state (and vice versa) was shorter for our students. This is likely informed by the domain: the professionals were working on projects such
as Firefox and Curl, which likely have a different execution cadence than the graphic-oriented work conducted in creative coding. The
programming episode length was similar for the professionals and those using manual execution—although debugging episodes for the latter
group were much shorter, suggesting that the errors were much less complex for our students. However, given the differences in expertise
and domain between these groups, it is difficult to identify a primary cause of the changes.

The key observation is that the usage patterns exhibited by our students were not the same as those of professionals, but were not
fundamentally dissimilar. This suggests the potential transferability of our observations about novices to more experienced users.

Using auto-refresh does not appear to have an effect on cycle frequency, although it seems to be associated with shorter episodes and cycle
lengths. This coheres with our expectation of auto-refresh, as it triggers executions more quickly than one might with manual execution, but
suggests a certain consistency related to task.

CHI 23, April 23-28, 2023, Hamburg, Germany

WEEK 1

Tu 13

Wl 14
Class
Hello! Class
Variables
Functions
Abstract Art
Exercise 1

Coding Mondrian Exercise 2

= E

Project

Description Reading

Creating Functions

Reading
Welcome to Coding

Calling Functions

Homework 1

Using

ables

Color Wheel

Class
SPRAY
PAINT

Bouncy Ball

Reading Circle Conjecture

£ Statements

P
()
——

Tnput Freeze Frame

HappyCoding tutorials [106].

McNutt et al.
WEEK 2 VEEK 3
wan 1 Tu 3w 28 e ™ a2 Fon s W 26 o 27 w28 ™t 2
Class Class
Loops. Class Class Images Class
i Flood FilL Ctanees
(Unidentified Flying) Dictionaries L systens
Exercise 5 Objects Recursion
Mot Classifion) Class Exercise 11
Objects objects ercise s Closs (nothing)
lans oy xercise ass
Counting Tags sl
Arrays Exercise 7 cowntltag) Depth /' Breadth Reading
(nothing) © Exercise 12 1
Pon Class
Exercise 6 s Reading
Reading Living Line Feadin ing L-systens
Reading Interactive HTHL otk wve Project Denos
= Using Objects Reading - Goodbye
D{" Fron ps.js to Web Dev Walk NYC =
1S Reading
Bonus Reading onus_Readin
Reading Locat storage
Arrays

P -

Cloud Storage

| 4

Figure 11: Schedule for su21 edition of the course. Readings and their corresponding images were adapted from Workman’s

-v}\& ¢ & 25‘??
& & & & &
\s & ISEFSEIN
& FFSFFEESE
<+ Q';\ Q9 Q™ F ¢ Fadlie < Economics
sp21 2 2 BTN I 10
wiz o [T 2 5
T P S ¢ 4 4 & 8 & Economics
Yo W h % Ry w o T Vo % %%
? <, (AN e Uy Ty, Y 5
&, o, "7,? S % /, %,
Yo S * %, 4
&, & v
Y

Comparative
Comp Human

Science Dev. Undeclared Chemistry Anthropology
2 | 4 2 | Total: 31
10 Total 27
Undeclared

Figure 12: Home departments of students who completed the sp21 (top) and wi22 (bottom) courses.

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

Interested Often Useful

Coding by Drawing Tools

Color Picker

Year |

Linters | Implemented

Autocomplete | Standard
Canvas Ruler
Tidy Code | Implemented
Directly Manipulate Shapes
Time Travel Slider
Code Folding | Implemented

In-context Docs | Standard
p5 State Displays
Interactive Value Inspector
Linked Copy-and-Paste
Code Snippet Templates
Number Sliders
Auto-refresh |Implemented

Drag-and-Drop Refactoring

Linters | All features implemented

Color Picker
Tidy Code
Number Sliders

Year 2

Coding by Drawing Tools
Auto-refresh
Autocomplete

Number Picker

| 2 3 4 5

Figure 13: Participants in both the long (Year 1) and short (Year 2) survey were asked about a variety of features and rated each
of them on how |Interested they were in it, how [Often they would use it, and how Useful they thought it was. Most features
considered are non-standard, however several were implemented in our editor or standard (but not implemented). It is notable
that although some of the most commonly instrumented features are not necessarily predictive of perceived utility.

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

Average Executions per Student
[Auto-Refresh [Manual Execution
13

] n @]) P o
o[22 & 14 B B < z 15 E ~
< = f§ 3 [QU
< & 1] ! g o © P
5 N e . 3 a |3
s00 [g S ; 2 b 2
2 = 3 ! 7
< 5 2 B
400 3 E
=
0 II III i I-III III. -JIIIIII.- m
Mar 29, 2021 Apr 05,2021 Apr 13,2021 Apr 21,2021 Apr 29,2021 May 15,2021 May 23, 2021 May 31,2021
9) = —
600 = 5 ~
B > 3
Qo 3
500 5 2
\o
R
400 3
=y
300
; il
0
Jul 12,2021 Jul 14,2021 Jul 16,2021 Jul 18,2021 Jul 24, 2021 Jul 26, 2021 Jul 28, 2021
3 2 o £ Q
600 2 1 <] N
s 5 2 o 3
< ? 8 &
o 3 0 17
500 o] I
v Y %
; 3
400 B
300
200
) I I II
JiNnan _aiIMEilNs
Jan 09,2022 Jan 17, 2022 1 Feb 25, 2022 Mar 05, 2022 Mar 13, 2022
0 = 3
£
600] 3 3
2 > 3
1 &
500 3 S
E >
IS
400 H
300
200
100
0 [|
Jun 12,2022 Jun 14,2022 Jun 16,2022 Jun 18,2022 Jun 20, 2022 Jun 22,2022 Jun 24,2022 Jun 26, 2022 Jun 28, 2022

Figure 14: A summary of executions for each of the course editions show auto-refresh versus manual execution.

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

sp2l su2l
U 2 3 g 2 1 3 S it <= = 3 @ 2 2 T 2
w 0% Z g B2 5 < g8 =3 s ERE ¢ 5 ER A
c = T - & - 2 TS 52 T 3 ik = s RS
E " = 9 ¥ ia O = £ a S >0 g il 9 & & @ g
5 e b =] 5 2 0 5 8 3 & 2 2 3 2 is ER
EQ s 50 1 I ™ T < 8 3 3.8 £ g 2 I T i3
IR S 3 in [£ o i g 9 1 . [o
-3 N] Q 3 I = Tk S = Q R
o BT N 3 S @ 3 T2 Fe g g @ 2
50¢ T T - g = T s T iz 3 -
Jaw 0 L = s 0 =
6k A I 4k
3k
"] 4k
c
=2 2%
S5 x
€9 Ik
]
X
ZWw o 0
IOO%III..II I EEERREEN HEEEEREEEEEE _I [EEE] I 1009 [M —1— T — T ||
To
N &
% Ir 50% 50%
£5
5
I
Zw 0% 0%
Week | Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week | Week 2 Week 3
No Error SyntaxError ReferenceError TypeError. . RangeError DOMException FirebaseError Ml Error

Figure 15: Errors over time in the first year of courses. Outliers have not been dropped. Our research questions are generally
not motivated by analysis of error types, as they were typically driven by course material, rather than by interface design.

To Action
Auto Manual Find and Find and Tidy Auto Manual Find and Find and Tidy
refresh Execution Replace Replace All Code refresh Execution Save Replace Replace All Code

100%

1.1% 4.2% 0.2%

Auto-refresh [IRER 1.2% 2.7% 0.0% 0.2%

Manual Execution ~ 0.6% 78.7% 19.6% 0.0% 0.2% 0.9% 26.5% 0.1% 0.0% 0.9%
Save 2.9% 0.0% 0.2% 1.9% 30.7% 0.3% 0.1% 2.4%

Find and Replace 3.1% 12.5% 81.3% 3.1% 7.6% 7.3% 85.1%

Find and Replace All 3.9% - 5.4% 0.4% - 1.4% 19.2% 34.6%

Tidy Code ~ 2.9% -- 06% 16.1% 32% 248% 04% 02% 86% o

sp2i su2l

From Action

Figure 16: The bi-gram action sequence probability in Year 1 shows the rate at which a given action is followed by another
particular action. We do not show wi22 because we mistakenly did not collect Tidy Code executions.

Feature Name rating o Q1 Q3
mean
Auto-refresh 3.08 1.26 3 4.00
Autocomplete 4.56 051 4 5.00
Canvas Ruler 4.48 071 4 5.00 Feature Name rating o Q1 Q3
Code Folding 4.04 0.84 3 5.00 mean
Codg Snippet Te@plates 3.64 129 3 5.00 Auto-refresh 371 123 3 500
Coding by Drawing Tools 4.76 044 5 5.00
. Autocomplete 3.71 095 3 4.00
Color Picker 4.68 0.56 4 5.00 . .
. . Coding by Drawing Tools 3.79 1.14 3 5.00
Directly Manipulate Shapes ~ 4.20 1.00 4 5.00 .
; Color Picker 4.38 0.65 4 5.00
Drag-and-Drop Refactoring 3.04 134 2 4.00 Linters 450 102 4 5.00
In-context Docs 4.04 124 4 5.00 . ’ ' ’
. Number Picker 2.79 098 2 3.25
Interactive Value Inspector ~ 3.92 1.08 4 4.00 .
Linked Copy-and-Paste 3.68 125 3 5.00 Number Sliders 383 070 3 400
. Py ’ ’ ‘ Tidy Code 4.29 1.08 4 5.00
Linters 4.60 058 4 5.00
Number Sliders 3.56 1.26 3 5.00
Tidy Code 4.48 071 4 5.00 Figure 18: The computed values for Fig. 13, the survey results
Time Travel Slider 4.12 073 4 5.00 relating to Usefulness from Year 2.
p5 State Displays 4.00 112 3 5.00

Figure 17: The computed values for Fig. 13, the survey results
relating to Usefulness from Year 1.

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

B.3 Hypothetical Features

Here we return to the hypothetical features asked about in Year 1 surveys but not implemented in . Because responses were based only
on a brief description and static image, we limit our discussion of each feature.

) skmch,'s' Sawved: 2 minutes ago Preview

1 const size = 58;

2 const gap = 10;

3¥ function setup() {

4 createCanvas(400, 400);

5 |}

6

7¥ function draw() {

8 background(220);

9

10¥Y for (let i = @; i < 18; i++) {

1nv for (let j = @; j < 10; j++) {

12 FI11C(i + §) % 2 ? 'black' : 'white');
13 square(i * (size + gap), j * (size + gap), size);

I N

Left ruler edge (0,170) Right ruler edge (400, 170)

Canvas Ruler. As mentioned earlier, the Canvas Ruler was widely viewed as a useful tool to add for creative coding—however, felt
“it would take away the fun of mouseX and mouseY!” Several additional suggestions were made, such as being able to “measure angles, so
a ruler and compass.”(A16) In future editions of the course we intend to return to this feature, as it seems like a natural next step. The
primary concern in implementing such an addition would be that it does not clutter the interface @, and perhaps, per commentary on Syntax
Templates, be controllable with a keyboard.

g e
background(colorstring, [a])
background(gray, [a])
background(vl, vz, v3, [a])
background(values)
background(image, [a])

R The background() function sets the color used for the
1» function sef background of the pSjs canvas. The default background is
4 transparent. This function is typically used within draw() to

. . clearthe display window at the beginning of each frame
5¥ function dri pues conpeyecdingde conioh tozet the background on

6 background(256);

7 rotfteY(frameCount * 8.081);
8
gv foﬁetjze;j<5; j+) {

10 push();

1 for (let i = 0; i < 80; i++) {

12 translate(

13 sin{frameCount * ©.081 + j) * 100,
14 sin(frameCount * 8.8@1 + j) * 100,
15 i*xe.1

16 b L

In-context Docs. Many full-featured editors (e.g. VS Code) include relevant documentation about language features and user-defined
variables as a tooltip. As with autocomplete, 54 believed In-context Docs would be helpful because “gives me an idea of what to [write].”
Several participants echoed this sentiment, believing that it “would have drastically widened my skill set” (A 14). On the other hand, A4 was
“actually a little torn by [it] because I think googling and traveling to the reference is really important. It may start off as inconvenient but just
becomes more natural with practice”—which is in line with our observations about student skepticism. @ Among the quantitative ratings
from the surveys in the first year, this feature was the only one that had a statistically significant relationship (p<0.01) with self reported
experience was in-context docs, in particular exhibiting a negative correlation (r=-0.308). It is possible that an alternative presentation of this
feature (perhaps in the search-based style of Blueprint [19]) might elicit more positive responses, however, based on these results we believe
that users might be similarly skeptical, although exploration of such responses could be usefully explored in future work.

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

Sketch name
> o) Auto-refresh wood cushion # susmiT | X

Sketch Files v £ sketch js Preview

B index.html

B sketch. js v 1Y function setup() {

B style.css 2 createCanvas(400, 400);
3 |}
4

5¥ function draw() {
6 background(220);

7 | (x1,) h
8 1}
9
Code Snippets v 10
=} 11
Add color ~
Add colored rectangle >
Add bezier curve 3
Inserted line of code
Add mouseDragy pent >
Add mouseClicked event >
Load image >
Access web cam >
Arrace arcalarnmatar >
Add custom snippet 4 Console -

Syntax Templates. The syntax templates we implement in our autocomplete were similar to our proposed Code Snippet Templates,
however the latter feature was docked (in the manner of Google Colab’s Code Snippet library), and thus required mouse clicks, which
may have dampened enthusiasm for the feature: ‘T think if there were keyboard shortcuts for these then I would use them extensively” (A13).
Some thought these features would be an “easy way to get students started with no experience” (A24), but as discussed in Sec. 6 others were
skeptical. We still believe this feature would be valuable to implement in the future, possibly integrated into the autocomplete, in order to
keep the interface tidy and unencumbered. @

) skc'h:h.'s' Saved: 2 minutes ago Preview

1 const size = 50;

2 const gap = 10;

3¥ function setup() {

4 createCanvas(400, 400);

5

6

7¥ function draw() {

8 background(220);

9

10Y for (let i =8; i <1@; i++) {
1w for (let j =0; j < 10; j++) {
12 FILLC(G +) % 2 7 'black’ : 'white');

13 square(i * (size + gap), j * (size + gap), size);
14 }
15 }
16 |}
17
Ersme F8T
p ==

Time Travel Slider. This proposed feature would allow the state of the code execution to be paused and rewound in order to support
debugging tasks—which a majority of respondents either understood as a GUI-based shortcut for p5’s frameRate setting (which specifies
how many times per second the draw loop is called) or as a mechanism for version control, both of which, while interesting, are not the
feature we intended. While several students expressed enthusiasm for this latter idea (indicating the potential utility of a Variolite-style [59]
or other selective undos, such as that of Yoon and Myers [108] or Mikami et al’s [76] Micro-Versioning), this did not yield coherent feedback,
beyond confusion about unfamiliar features.

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

Sketch name
| | O Auto-refresh Wood cushion # SUBMIT Q

Sketch Files - £ sketch js® Preview

B index.html

B sketch. js v 1¥ function setup() {

B style.css 2 createCanvas(360, 28@);
3 noStroke();
4 noLoop();
5 1
6

77 function draw() {
8 drawCircle(width / 2, 28@ / 2, 6);

9 |}
1@
P5 State Values 11¥ function drawCircle(x, radius, level) {
12 const tt = (126 * level) / 4.0:
Stroke None | 3 Fill(tt);
Strake Weight T E=3| 14 ellipse eight / 2, radius * 2, radius * 2);
Stroke Cap 15¥ if (leve 1) {
Fill 16 level = level - 1;
Translate 17 drawCircle(x - radius / 2, radius / 2, level);
Rotation 18) drawCircle(x + radius / 2, radius / 2, level);
19
20 %
21
22
Watch additional values 4 o
Console ~

L ———P5 State Display Panel

p5 State Displays. A display of current values for common library variables, such as strokeWidth and fill color, at particular lines of
code—similar in spirit to object value displays in creativity tools like Illustrator. Some students were enthusiastic about this feature, noting
that it “would be extremely useful to be able to see all this information in one place” (37), while others felt it might enrich creativity by showing
what options are available (A9). Others were less enthusiastic, noting that it would be “a little redundant” (A1) with running the code, or
that it would be tedious (A7) compared to simply writing code.

> sketch,js® Saved: 9 days ago Preview

175 // A counter to help safeguard against infinite loops
176 // during development. You may try adjusting this
177 // value if there is too little flooding.

178 let fuel = 100000;

179

180¥ while (worklist.length > @ && fuel > @) {

181 // Get the position at the front of the worklist

182 const pos = worklist.shift();

183 const x = pos[@];

184 const y = pos[1];

185

186 const withinBounds = !(x < @ || x > img.width || y < @ || y > img.height);

187 const notAlreadyFilled = !alreadyFilled[${x}-${y} J;

188

189Y if (withinBounds && notAlreadyFilled) {

190 const ¢ = img.get(x, y);

191 const [r, g, b, al = c; c: [255, @, @, 0]
192 const isWhitish = r > 240 &% g > 240 && b > 240; r: 255
193 const isTransparent = a < 5; e g: 0
194V if (iswhiti | isTransparent) { b: @
195 alreadyFi ["${x}-${y}] = true; :

196 img.set(x, "y, color(fillColor)); . g O ¢
197 isWhitish: true
198 // Add neighboring pixels to end of worklist isTransparent: false
199 worklist.push([x + 1, y1);

Interactive Value Inspector. A growing thread of research allows users to inspect the current value of variables at various lines of code
on demand, such as in Lerner’s Project Boxes [65] or Kang and Guo’s [58] “DISPLAY ALL THE VALUES!” approach to novice coding in
Omnicode, as well through live probes [85]. In this feature we proposed a Projection Box style feature that included a customizable inspector.

Students were generally enthusiastic about this feature, noting that it would be helpful for beginners (53,8) as it would make “loop
definitions” (A16) and debugging (A 1,10). Yet some worried that the implementation might be overwhelming (A5) or distracting (A6), or
would not substantially improve over console. log-based debugging (A 14). @ In addition one skeptical student believed that it might “make
the coder (especially early learner) to be lazy” (A15), and prevent them from learning good debugging skills @.

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

> sketch,js® Saved: 13 minutes age Preview

1V function setup() {

2 createCanvas(360, 280);
3 noStroke();

4 noLoop();

5}

6

7V function draw() {

8 drawCircle(width / 2, 280 / 2, 6);

9 3

10

11V function drawCircle(x, radius, level) {

12 const tt = (126 * level) / 4.0;

13 fill(tt);

14 ellipse(x, height / 2, radius * 2, radius * 2);
15V if (level > 1) {

16 level = level - 1;
17 drawCircle(x - fpadius / 2, radius / 2, level);
18 drawCircle(x + padius / 2, radius / 2, level);

22 The purple values were copy + pasted from
23 the green value, linking those values. A change
Console A to any linked value will change all linked values.

Linked Copy-and-Paste. Vihavainenet al. [101] note that novices tend to make heavy use of copy-paste, so a natural point of enhancement
then would be to embed variable-style abstraction into copy-paste itself. This idea has been discussed in research works previously [31, 98],
however is not typically seen in this style of editor. Some students thought this would be helpful, by “facilitat[ing] better organizational
practices” (A12) or in niche situations (). However, most others were apprehensive about the feature’s value. Some noted that it seemed
to be a more oblique version of creating a variable (). Some thought that what was already in the editor sufficiently addressed any
tasks linked copy-and-paste might accomplish, through regular copy-paste (A9) and Find & Replace (33). argued that a Sublime-style
multi-cursor selection would be more flexible and preferable. We note that multi-cursor support was enabled in our editor (as part of
CodeMirror), although students were not explicitly made aware of this functionality. Others still simply thought it would not be useful, and
would ‘creat[e] mess for me” (B4) or otherwise be confusing (,B5). @

> sketch js*® Saved: 24 minutes ago Preview

1¥ function setup() {
2 createCanvas(36@, 280);
3 noStroke();

4 noLoop();
5
6

}
7¥ function draw() {
8 drawCircle(width / 2, 280 / 2, 6);

10

11V function drawCircle(x, radius, level) {

12 const tt = (126 * level) / 4.0;

13 fill(tt);

14 ellipse(x, height / 2, radius * 2, radius * 2);
15¥ if (level > 1) {

16 level = level - 1;

17 drawCircle(x + radius / 2, radius / 2, level); . .
18 drawCircle(x - radius / 2, radius / 2, level); Drag a line of code to move it

Console ~

Drag-and-Drop Refactoring. Clicking and dragging values to create arguments, variables, and other functions in a technique that has
been previously explored to useful effect [64]. In this feature we proposed a simple version of this feature, however our presentation lacked
the nuance of the presentations used by Lee et al. [64], which may have led feature being rated lowest. Although a few respondents were
intrigued, some said they would prefer copy and paste (A 12,), most were disinterested. For example: ‘T personally don’t like dragging
and dropping things because there is room for dragging and dropping into the wrong section especially if your computer is slow. I don’t think copy
paste was too time consuming and encourages greater accuracy” (A2); several others shared these views about efficiency and accuracy. In
addition, there were concerns about the usability of the feature: “Clicking and dragging is not an ergonomic motion on a laptop touchpad” (A6).
We highlight this as an especially valuable concern, as dragging may not be an accessible motion for some users, although something like
Kobayashi and Igarashi’s suspendable drag-and-drop interactions [62] may usefully address these concerns.

Other Suggested Features. Beyond the hypothetical features we presented, some respondents suggested ideas like scratchpads or selective
execution contexts similar to some of the ideas expressed in Code Bubbles [18] or Jupyter notebooks. Others suggested course-specific
affordances, such as hints relevant to the assignment or integration of the assignment directly into the editor. This has a similar flavor as
DrRacket’s language levels, and Marceau et al. [72] briefly sketched out learner-attuned error messaging levels. This is similar to Interactive
Tutor Systems [53] which integrate curriculum and course work into a single environment. While this level of integration can be helpful, it
may undermine the utility of an in-class instruction model because such interfaces are naturally self- rather than group-paced, although that
should be investigated in future work.

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

C SURVEY INSTRUMENT FOR INITIAL SURVEY — YEAR 1 (sp21, su21)

C.1 Page 1: Consent to Participate in a Research Study

Research Project Title: Post-Course Survey of Students in Creative Coding (2021)
Principal Investigator: Ravi Chugh

Graduate Student: Andrew McNutt

IRB Protocol: IRB21-1062

This form is designed for students younger than 18 years of age who took the Creative Coding Pre-College Immersion class in Summer
2021 and their parents, respectively referred to as “you” and “your child” below. You (or your child) is being asked to take part in a research
study. This form has important information about the reason for doing this study, what we will ask you (or your child) to do, and the way we
would like to use information about you (or your child) if you choose to allow yourself (or your child) to be in the study.

Purpose of Research Study: You are (or your child is) being asked to participate in a research study regarding the usability of editors
for creative coding. In our recently completed course we used an in-browser editor that was slightly modified from the publicly available p5
editor. We are interested in understanding what editor features might be useful to someone learning to code (particularly in the context
of a creative coding course) or otherwise making digital art works. Ultimately, this research may be published and presented at scientific
conferences to improve the community’s knowledge about editors for creative coding, and may be used to improve the editor used in future
iterations of our course.

Participation Procedures and Activities: The full extent of the procedure will involve completing this survey. We anticipate that
completion of this survey will take up to 60 minutes. Due to the difficulty of determining credit for partial completion, no compensation will
be provided for partial completion. At the end of the form you (or your child) will provide a student id and preferred email address, and you
(or your child) will receive a $30 Amazon gift card for participating.

Consent and Assent Process: If you are (or your child is) 18 years or older, you (or your child) can provide the consent required to
opt-in to the study. If you are (or your child is) under 18 years of age, you can give your assent (or you can give your parental consent) to
join the study. For students under 18 years of age, participation in this study requires both consent from a parent as well as assent from the
student.

Risks/Discomforts of Being in this Study: The risks to your participation in the survey are those associated with basic computer
tasks, including boredom, fatigue, or mild stress. Benefits of Being in this Study The only benefit to you (or your child) is the learning
experience from participating in a research study. The benefit to society is the contribution to scientific knowledge.

Confidentiality of Data and Limits to Confidentiality: Any reports and presentations about the findings from this study will not
include your (or your child’s) name or any other identifying information.

Use of Your Research Data: We will never share the data beyond the University of Chicago research team. However, an analysis of the
data may be analyzed and published in scientific conference proceedings or journal articles. The free-text responses provided to any portion
of this survey may be quoted in part or in whole in this publication. We will remove any information from the analysis that could identify
you (or your child) before providing the analysis for publication.

Voluntary Participation and Right to Refuse or Withdraw: Participation in this study is voluntary. The decision to participate in
this study is entirely up to you and your child. You (or your child) may refuse to take part in the study at any time without prejudice or
penalties and will not result in any loss of benefits to which you (or your child) are otherwise entitled.

Mandatory Reporting of Child Abuse or Neglect: The research study staff are mandated reporters and are required to report suspected
child abuse or neglect to the Illinois Department of Child and Family Services. For more information, please see the University policy:
https://tinyurl.com/mr26uazn

Contact Information for Research Questions and Participation: If you have questions or concerns about the study, you can contact
the researchers at:

Principal Investigator
Ravi Chugh,
Associate Professor
John Crerar Library
University of Chicago
5730 S Ellis Ave
Chicago, IL 60637
Email: rchugh@uchicago.edu

Graduate Student
Andrew McNutt,

PhD student
John Crerar Library

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

University of Chicago

5730 S Ellis Ave

Chicago, IL 60637

Email: menutt@uchicago.edu

If you have any questions about your rights as a participant in this research, feel you have been harmed, or wish to discuss other
study-related concerns with someone who is not part of the research team, you can contact the University of Chicago Social and Behavioral
Sciences Institutional Review Board (IRB) Office by phone at (773) 702-2915, or by email at sbs-irb@uchicago.edu.

Parental Consent

(1) Parent full name (Last, First)
(2) Parent Email address
(3) I have read and understood this consent form. Yes O no O
(4) I am a parent and give consent for my child, under 18 years of age, to participate in this study. Yes O no O
Student Assent
1) Student full name (Last, First)
2) Student Email address
3) Student GitHub username (same as used for homework submission in this class)
4) Student CNetID (the username before your @uchicago.edu email address)
5) I have read and understood this consent form. Yes O no O
6) Iam a student, under 18 years of age, and give assent to participate in this study. Yes O no O

~ o~~~ o~ o~

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

C.2 Page 2: Introduction and Reflection

In this section, we’ll ask you some questions about your programming background, and to reflect on your experience during the course.

(1) Pre-Course Experience. How much programming experience did you have prior to taking the course?
(2) Post-Course Confidence. How confident do you feel in your programming skills after taking this course? Have they improved?

(3) Challenges. What aspect of coding or learning to program gave you the most trouble? As a way to help organize your thinking,
consider the assignment that you had the most difficulty with. Could the editor have done anything to help you with that?

(4) Debugging. Think about the experience of debugging. How did you go about doing it? If you used console.log to help debug, did
you find it helpful? Did you use any other strategies? Is there anything about it or the debugging process that you wish could have
been different?

(5) Error Messages. Think about the error messages you encountered (inline in the code box, in the console area under the code
box, in the browser console, or elsewhere). Were they useful? How did you deal with them? Do you wish they were presented
differently?

(6) Code Organization. How did you go about organizing your code? For instance, how did you decide where to place variables,
create functions? Was there ever a point when your organizational scheme ran into problems, if so how did you handle it? Is there
anything the editor could have done to help you during these organizational tasks?

(7) Freeze Frame Homework. Think about the freeze frame assignment (or any other time during the course when you needed to
repeatedly edit and re-run the code in order to get particular positions or other values to achieve a desired effect). Is there anything
the editor could have done to help you get your image to be just right?

(8) External Tools. It’s natural to use other tools as part of the programming process, such as color eye droppers or p5’s online
documentation. Do you think it would be useful to integrate these tools as part of the editor? What other tools can you imagine
wanting to be part of your in-editor coding workflow?

(9) Desired Features. What sorts of editor features might have allowed you to be more effective in your coding? What sorts of editor
features might have allowed you to be more creative?

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

C.3 Pages 3-18: Editor Features

In this section, we’ll ask for your thoughts and opinions about some features that appeared in the editor as well as some hypothetical features
that we may implement for future iterations of the course.

(1) Autocomplete Imagine an editor feature which provides autocomplete suggestions as you type. This would be akin to the predictive
text feature found in many messaging applications, but would be sensitive to variables you’ve created and functions available from
imported libraries. While this feature appears in some other editors it did not appear in our editor.

1 function hellol) {

2 alert('Hello world!")

3 let counter = 8;

4 for(let idx = @8; idx < 18; idx++) {

5 counter += idx;

6 }

7 console. 1

8 L (method) Console.log(...data: any[]):..

P timeLog

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

(2) Linters Our editor featured a tool called a “linter” that surfaced stylistic or coding errors through on-screen alerts, as in the image
below. This tool is analogous to spell- and grammar-checkers in standard word processors. The particular linter used in our editor,
called JSHint, tends not to give many warnings for stylistic errors. Other available linters give many more warnings for stylistic
errors.

1¥ function setup() {
2 createCanvas(710, 400, WEBGL);
3}

4

5% function draw() {

6 background(250);
BB rotateY(frameCount * 0.01)s)

© Missing semicolon.
I Expected an assignment or function call and instead saw an expression.

8

9¥ for (let j = @; j < 5; j++) {

10 push();

1w for (let i = B; i < 80; i++) {

12 translate(

12 cinlFramalaint + A AR 4+ 5Y + 140

Lint error @ and a Lint warning ¢

(a) Do you think this is useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you used this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

(3) Tidy Code Our editor featured a button called “Tidy Code” which automatically reorganized your code. This feature is sometimes
seen in other editors and is more commonly known as an “auto-formatter”. These can typically be configured to enforce a particular
coding style.

Help w

P5 * csll1 RalERg

" o duct #
Fird H+F

(a) Do you think this is useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you used this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

(4) Auto-refresh There is a feature in our editor called “Auto-refresh” When selected, it re-runs your code every time you finish
typing (or sometimes before). This enables small update cycles as you code.
File w Edit w Help w

* csll

> o [auto-refresh

(a) Do you think this is useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you used this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

PS5

Sketch name
Small mapusaurus #

(5) Code Folding There is a feature in our editor, and many other editors, called “code folding” as in the screenshot below. This allows
you to collapse certain sections of code, such as functions and loops. The “folded” code is still there and can be referenced from

« 3

other places, but it’s temporarily hidden and replaced with “.

#‘IP function setup() {9}

45" function draw() {
6 background(258);
7 rotateY(frameCount * 0.01);
8
- 0V for (let j = 0; j < 5; j++) {
10 push();
> | ¥ for (let i = @; i < 80; i++) {
12 translate(
13 sin(frameCount * 0.001 + j) * 1600,
14 sin(frameCount * 0.001 + j) * 100,
15 i*0a.1
16 bE
= Code folding controls

(a) Do you think this is useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you used this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

(6) Canvas Ruler Imagine a feature which allows you to place a draggable ruler into the drawing side of the editor. You can use it as a
way to visually identify screen coordinates. This feature might involve a way to display the current direction and placement of the

coordinate origin, especially with regard to translation and rotation functions.

> skerchjs®

1 const size = 50;
2 const gap = 10;
3¥ function setup()
creatECanvas(lmB 400);

4
5 }

6

7V function draw() {
8 background(220);
9

10V for (let i = 0; i < 10; i+) €
1v for (let j = @; j < ‘IB ++) {
FI1CG + §) % 2 2 Bk’ ¢ white ");

square(i * (size + gap), j * (size + gap), size);
}
3
H

A

Left ruler ecige (0,170) Right ruler edge (400,170)

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

(7) Number Sliders Imagine a feature which allows you to modify the numeric values in the code without typing or re-running the
program (such as in the image below). With this feature, you click a value of interest and then drag a slider that appears above it to
change it. The canvas is continuously re-rendered as you drag the slider. This would be similar to using p5’s slider function, but,

rather than just changing the value in the running code, it would also modify the text of the code.

> sketchjs® Saved: 2 minutes ago Preview

] e— [55| omOm
—— EOED

1 const size = 50;
2 const gap = 10;
3¥ function setup() {

4 createCanvas(4ee, 400);
5|}

6

7% function draw() {

8 background(22@);

9

18y for (let i = @; i < 18; i++) {

nv for (let j = @; j < 10; j++) {

12 fill((i + j) % 2 ? 'black' : 'white');

13 square(i * (size + gap), j * (size + gap), size);
14

15 }

16 '}

17

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O

(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

(8) Color Picker Imagine having a color picker integrated into the editor. When selecting color values in the code, the color picker
could appear on hover (as in the image below) to modify the value, or the tool could be docked into the bottom of the editor
(allowing it to be always on). This could include pre-configured or document-based palettes, as in Illustrator or Photoshop.

> sketchjs® bsago Preview

1 const size = 50;
2 const gap = 10;

3¥ function setup() {
4 createCanvas(400, 400);
5 |}

6
7% function draw() { Vi ;F:
8 background(22e); —

9 [#o00000 |0 o o 100

1Y for (let i =@; i <1@; HEX H S B Aphs

1nv for (let j =0; j < 1@

12 fill{(i + j) % 2 ? 'black' : 'white');

13 square(i * (size + gap), j * (size + gap), size); .
14 }

15 X

16 }

17

(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

1 |

' I

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O

CHI 23, April 23-28, 2023, Hamburg, Germany

McNutt et al.

(9) p5 State Displays In p5 it is common to set values for variables such as strokeWidth (which describes the width of subsequently

drawn lines), or fill (which describes the interior color of subsequently drawn shape). These are examples of

" "

state variables

There are a variety of such variables in p5, however (in contrast with digital drawing tools like Photoshop), these variables are not
displayed anywhere in the editor.

 Imagine a feature where all of the relevant state values are shown, such that when
you move the text cursor to a line in your code, the display shows the state values at that point in time. This would allow you to

evaluate if your drawing tools are configured as you want them to be.

Sketch Files v £ sketchjs® Preview
D index.html
B sketch. js - 1V function setup() {

D style.css 2 createCanvas(36@, 280);
3 noStroke();
4 noLoop();

9
10

117 function drawCircle(x, radius, level) {
12 const tt = (126 * level) / 4.8;

PS5 State Values

Stroke None 13 Fil1(EE);
Stroke Weight < =] 14 ellipse eight / 2, radius * 2, radius * 2);
Stroke Cap Round [@mm | 15V if (leveg1) {
Fi 16 level = level - 1;
Translate 17 drawCircle(x - radius / 2, radius / 2, level);
Rotation (| :Ilg drawCircle(x + radius / 2, radius / 2, level);
20 }
21
22
Watch additional values =+ o
Console ~

L —— P& state Display Panel

5}

6

7Y function draw() {

8 drawCircle(width / 2, 280 / 2, 6);
}

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

(10) Interactive Value Inspector Imagine a feature which allows you to see the value of the current program execution by hovering

over chunks of the code. It would provide similar information as when inserting console.log statements into your code, but instead
you would extract that same information through hovering. In contrast with ""p5 State Displays"" (which only shows p5 state
variables like fill and strokeWidth) this feature would allow you to see both state variables as well as the value of all variables,
including ones you’ve defined. This information could be presented through a tooltip (as in the below image) or through a docked
panel.

"

> sketchjs®

175

Saved: 9 days ago Preview

// A counter to help safeguard against infinite loops
176 // during development. You may try adjusting this
177 // value if there is too little flooding.
178 let fuel = 100000;
179

180¥ while (worklist.length > @ & fuel > @) {
181 // Get the position at the front of the worklist

182 const pos = worklist.shift();

183 const x = pos[0];

184 const y = pos[1];

185

186 const withinBounds = !(x < @ || x > img.width || y < 8 || y > img.height);

187 const notAlreadyFilled = !alreadyFilled[${x}-${y}'];

188

189V if (withinBounds && notAlreadyFilled) {

190 const ¢ = img.get(x, y);

191 const [r, g, b, al = c; c: [255, @, 0, 0]
192 const isWhitish = r > 240 && g > 240 && b > 240; r: 255
193 const isTransparent = a < 5; g: o
194¥ if (isWhiLi@l isTranSparem‘_______ b: ®

195 alreadyFi [${x}-3{y}'1 = true; .

196 img.set(x, ™, color(fillColor)); . L ® 9

197 isWhitish: true
198 // Add neighboring pixels to end of worklist isTransparent: false
199 worklist.push([x + 1, y1);

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

(11) In-context Docs Imagine an editor feature which gives you access to the documentation while you are writing code. This might
involve a tooltip that appears on hover (as in the image below) which describes the usage of a particular function. It could also
involve showing the description in a dedicated pane on the side. While such features appear in some other editors it did not appear
in our editor.

e e)
background(colorstring, [al)
background(gray, [a])
background(vl, vZ, v3, [al)
background(values)
backgroundCimage, [al)

. The backaround () function sets the color used for the
1> function sef' background of the psjs canvas The default background is
4 transparent. This function is typicslly used within draw(] to

- | clear the display windaw at the beginning of each frame
5¥ function dri ..oy —npeyodindde cotuoniozertne bockaround oo

6 background(250);

7 roitEY(FrameCount * 0.01);
8
gy fo et j=8; j <5; j++) {

10 push();

1Y for (let i = @; i < 80; i++) {

12 translate(

13 sin(frameCount * 9.081 + j) * 100,
14 sin(frameCount * 0.001 + j) * 100,
15 i* e

16 3-

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

(12) Code Snippet Templates Imagine a feature which allows you to paste in common code snippets from a list. After clicking one of
the desired options (such as in the image below) a piece of code achieving that functionality will be added to your code. These
snippets could include small structures, such as for-loops, or larger structures, such as particular API uses or classes. This feature
sometimes appears in other coding systems, but was not implemented in our system.

Inserted line of code

Console ~

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

(13) Coding by Drawing Tools Imagine an editor feature which allows you to fill out the arguments to particular functions graphically.
For instance, you might indicate to the editor that you are interested in drawing a bezier curve, and then draw each of the vertices
in the curve directly on the editor, just as you would in a GUI-based tool like Illustrator, which in turn inserts a corresponding line
of bezier command in your code. Unlike in the previous feature, which just inserted code templates, this feature allows you to
specify the values of the inserted code with your mouse on the output canvas.

e Drawing took

w0
2s(400, 400);

Inserted line of code

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

(14) Linked Copy-and-Paste A common abstraction mechanism that we used in class is to create variables or functions rather than
copy-pasting chunks of code. While variables and functions are a useful form of computational thinking, there are other ways to
approach this task.

Imagine a feature which keeps track of your copy-and-pastes: whenever you edit a value you’ve
copied and pasted, all pieces of code which were copied are also changed. This special linked copy-paste can be selectively turned
on and off so that you can make edits without changing all copies.

> swetcnis® Soved: s minutesago Preview

17 function setup() {
crea(ecanvas(xﬁa 280);

3 nostroke

4 noloop();

5 [3

The pUrplEVallies were copy + pasted from
the|green value, linking those values. A change
~ to any linked value will change afl linked values.

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

(15) Drag-and-Drop Refactoring Refactoring is the process of changing the way a piece of code is organized such that the functionality
remains the same, but the code is easier to work with. You probably did this during the course by making a variable to capture
repeated code or by creating a function to represent some repeated functionality.

Imagine a feature which allows you to
click and drag values to create arguments, variables, and functions. This might allow you to reorder lines of code by clicking and
dragging them, or to highlight a series of repeated values and drag them to automatically create a new variable.

> sketchjs®

1V function setup() {
createCanvas(360, 280);

3 nostroke();

4 noloop();

5 [}

6

7V function draw() {

8 drawCircle(width / 2, 280 / 2, 6);

9 [}
10
117 function drawCircle(x, Eadiue level) {
const tt = (126 * level) /
13 fill(tt);
14 ellipse(x, height / 2, radius * 2, radius * 2);
15V if (level > 1) {

16 evel = level 1
17 drawCircle(x + radius / 2, radius / 2, level); .
18 drawCircle(x - radius / 2, radius / 2, level); Drag a line of code to move it

~

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

(16) Time Travel Slider Imagine an editor feature which allows you to go back to earlier points in time of your code’s execution. With
such a feature you’d press Play, as normal, and watch your code execute. If there was an intermediate state you were curious about
you can pause the execution and go back (by dragging a slider) to an earlier state of the canvas. Once you are finished inspecting
you can resume execution without rerunning the code. This would allow you to inspect how your code was adding shapes to the
canvas over time.

> sketchjs® Saved: 2 minutes ago

1 const size = 50;
2 const gap = 10;
3V function setup()

4 crcamcanvas(wa 400);
5[}
6
7V function draw() {
a background(220);
0¥ for (let i = 0; i < 10; i++
v for (letJ’D,J<10 J”)(
12 FiI1((+ 3)'% 2 2 'black’ : 'white');
13 squareh * (nn- + gap), j * (size + gap), size);
14
15)
16}
17
Frame "
= ‘

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

(17) Directly Manipulate Shape Attributes on Canvas Imagine being able to edit the output canvas and have that change the
corresponding JavaScript code. This would involve making changes to specific values graphically, such as changing the size of
circle or end points of lines by dragging them to a desired position. This differs from the functionality of the previously described
""Code by Drawing Tools"" feature; that one allowed clicking and dragging to add new shapes to the code, whereas this one allows
clicking and dragging to dynamically update and modify existing shapes in the code.

> sketchjs Saved: 15 seconds ago Preview

5Y function draw() {
background(102);

8 push();
9 translate(width * 0.2, height * @.5);

],? ;22?2:53?;5 We think you mean for this

12 pop(); shape to be rotated, but
13 perhaps you mean for it to be
14 push(); translated? |f so, click here

15 translate(wi y
16 star(e, @, 80, 100, 40);
17 pop();

19 push();

20 translate(width * 0.8, height * ©.5);
21 star(e, 0, 30, 70, 5);

22 3 popQ);

25Y function star(x, y, radiusl, radius2, npoints) {
26 let angle = TWO_PI / npoints;

27 let halfAngle = angle / 2.9;

28 beginShape();

29Y for (let a = 8; a < TWO_PI; a += angle) {

30 let sx = x + cos(a) * radius2;
31 let sy =y + sin(a) * radius2;
32 vertex(sx, sy);
Console ~

(a) Do you think this would be useful? (1) Not Very Useful O, (2) O, (3) Neither useful nor unuseful O, (4) O, Very Useful O
(b) How often do you think you would use this feature? (1) Never O, (2) O, (3)Occasionally O, (4) O, All the time O
(c) Why or why not? Is there any way you would like to modify this feature to make it more useful?

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

C.4 Page 19: Wrap up

We just worked through a variety of potential editor features individually. To wrap up, we will recap those features and consider them

collectively.

(1) Feature Review. Reflect on the features we’ve just been considering. Which of these hypothetical features we considered are you
most excited about? (hover over (?) for details)

Autocomplete Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

Linters Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

Tidy Code Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

Auto-refresh Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

Code Folding Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

Canvas Ruler Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

Number Sliders Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

Color Picker Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

p5 State Displays Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Interactive Value Inspector Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
In-context Docs Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

Code Snippet Templates Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Coding by Drawing Tools Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Linked Copy-and-Paste Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Drag-and-Drop Refactoring Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Time Travel Slider Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

Directly Manipulate Shape Attributes on Canvas Very Disinterested O, Disinterested O, Neutral O, Interested O,
Very Interested O

(2) Course Experience. Would any of these features have made the course easier for you? Which would you have ignored? Would
any of them have helped you learn to program more easily?

(3) Challenges. In the first part of the survey we asked you to think about the assignment that gave you the most difficulty. Thinking
about that assignment again, please describe in detail how some of these features may have changed your experience with that
particular assignment.

(4) Course Project. Thinking about your course project, do you think any of these editor enhancements would have helped you reach
your goals either more quickly or more expressively? Why or why not? Are there any particular editor features that would have
made the process easier?

(5) Creativity Tools. If you have experience with creativity tools, such as Illustrator or Photoshop, are there any features you’d like to
have as part of a coding editor? If so, what are they and how would they help you accomplish your goals?

(6) Suggestions. Do you have any ideas for editor features (beyond those you might have suggested in other places in this survey)?
(7) Miscellaneous. Is there anything else you would like us to know? Any additional feedback you’d like to share about the editor, or

any other technical aspect of the course?

C.5 Page 20: Parting Questions
We’ve now reached the end of the survey! Thanks for participating! Just two final questions.

(1) What is your CNetID? (It’s the thing at the beginning of your @uchicago.edu email address.)
(2) What email address would you like your Amazon gift card delivered to?

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

D SURVEY INSTRUMENT FOR FOLLOW-UP SURVEY — YEAR 2 (wi22, su22)

D.1 Page 1: Consent to Participate in a Research Study

Study Number: IRB22-0158

Study Title: Post-Course Survey of Students CS11111 (Winter 2022)
Researcher: Ravi Chugh

Graduate Student: Andrew McNutt

Description: We are researchers at the University of Chicago doing a research study about the usability of editors for creative coding. In
CS11111 WI22 we used an in-browser editor that featured a number of enhancements and augmentations to the publicly available p5 editor.
We are interested in understanding what editor features are useful for someone learning to code (particularly in the context of a creative
coding course) or otherwise making digital art works. To facilitate this inquiry we are asking you to complete a survey. This survey does not
include questions about personal or sensitive information. Participation should take about 10-20 minutes. Your participation is voluntary.
You are eligible to participate in this survey because you are enrolled in CS11111 WI22, which is the sole criteria for eligibility.

Incentives: In return for your participation, you will receive a small amount of extra credit, roughly equivalent to 1 exercise (1

Risks and Benefits: The risks to your participation in the survey are those associated with basic computer tasks, including boredom,
fatigue, or mild stress. The only benefit to you is the learning experience from participating in a research study. The benefit to society is the
contribution to scientific knowledge.

Confidentiality: Ultimately, this research may be published and presented at scientific conferences to improve the community’s
knowledge about editors for creative coding, and may be used to improve the editor used in future iterations of our course. Any reports and
presentations about the findings from this study will not include your name or any other information that could identify you. If you decide
to withdraw from this study, any data already collected will be destroyed.

Use of Your Research Data: We will never share the data beyond the University of Chicago research team. However, an analysis of the
data may be analyzed and published in scientific conference proceedings or journal articles. The free-text responses you provide to any
portion of this survey may be quoted in part or in whole in this publication. We will remove any information from the analysis that could
identify you before providing the analysis for publication.

Voluntary Participation and Right to Refuse or Withdraw: Participation in this study is voluntary. The decision to participate in
this study is entirely up to you. You may refuse to take part in the study at any time without prejudice or penalties to you and will not result
in any loss of benefits to which you are otherwise entitled.

Contact Information for Research Questions and Participation: If you have questions or concerns about the study, you can contact
the researchers at

Principal Investigator
Ravi Chugh,
Associate Professor
John Crerar Library
University of Chicago
5730 S Ellis Ave
Chicago, IL 60637
Email: rchugh@uchicago.edu
Graduate Student
Andrew McNutt,
PhD student
John Crerar Library
University of Chicago
5730 S Ellis Ave
Chicago, IL 60637
Email: menutt@uchicago.edu
If you have any questions about your rights as a participant in this research, feel you have been harmed, or wish to discuss other
study-related concerns with someone who is not part of the research team, you can contact the University of Chicago Institutional Review
Board (IRB) Office by phone at (773) 702-2915, or by email at sbs-irb@uchicago.edu.
Consent: Participation is voluntary. Refusal to participate or withdrawing from the research will involve no penalty or loss of benefits to
which you might otherwise be entitled. By clicking “Agree” below, you confirm that you have read the consent form, are at least 18 years old,
and agree to participate in the research. Please print or save a copy of this page for your records.

(1) Full name
(2) GitHub username (same as used for homework submission in this class)

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

(3) Student Id (the username before your @uchicago.edu email address)
(4) Tam a student, 18 years of age or older, I have read and understood this consent form, and give consent to participate in this study.

Yes O no O

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

D.2 Page 2: Feature Questions

The editor we used in the course included several notable features. We are interested in understanding your use and perception of these
features.

(1) Feature: Color Pickers

function draw() {
background("pink"|=

v Pink Oremmn
3 ¥ Purple SESESEEEEEEEEEE
¥ Red (111]]
v Orange EEn
¥ Yellow
v Green SEEEEEEEEE
v Cyan
v Blue fEEEEEEEEE
v Brown SEEEEEEE
¥ White
v Gray (11111}

Close Convert to hex and close

(a) How often did you use Color Pickers? O Never, O Once in a while, O Occasionally, O Frequently, O All the time

(b) Do you think Color Pickers are useful? O Not very useful, O Not useful, O Neither useful nor unuseful, O Useful, O
Very Useful

(c) Do you have any comments about Color Pickers? For instance: How did you feel they affected your learning? Is there any
way you would modify them to make them more useful?

(2) Feature: Number Pickers

function setup() {
createCanvas(-403 +, -600+);
}

(a) How often did you use Number Pickers? O Never, O Once in a while, O Occasionally, O Frequently, O All the time
(b) Do you think Number Pickers are useful? O Not very useful, O Not useful, O Neither useful nor unuseful, O Useful, O
Very Useful

(c) Do you have any comments about Number Pickers? For instance: How did you feel they affected your learning? Is there
any way you would modify them to make them more useful?

(3) Feature: Number Sliders

> sketch js®

" function setup() {
const canvasSize =[Editor.slider(0, 800, 500)] ,]
createCanvas(canvasSize, canvasSize);

v function draw() {
background("pink" =);
|

00 N o U1 & W N =

(a) How often did you use Number Sliders? O Never, O Once in a while, O Occasionally, O Frequently, O All the time

(b) Do you think Number Sliders are useful? O Not very useful, O Not useful, O Neither useful nor unuseful, O Useful, O
Very Useful

(c) Do you have any comments about Number Sliders? For instance: How did you feel they affected your learning? Is there
any way you would modify them to make them more useful?

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

(4) Feature: Linting

> sketch.js®

1 @ [const canvasSize;

2

3v function setup() {

4 createCanvas(400, 600);
5 }

6

7 function draw() {

8 background("pink" =);

9,@ if (true == false) {
10 @ console.log("WAT?!1?2"),
11 I Missing semicolon.

12 3

(a) How often did you use Linting? O Never, O Once in a while, O Occasionally, O Frequently, O All the time

(b) Do you think Linting is useful? O Not very useful, O Not useful, O Neither useful nor unuseful, O Useful, O Very Useful

(c) Do you have any comments about Linting? For instance: How did you feel it affected your learning? Is there any way you
would modify it to make it more useful?

(5) Feature: Tidy Code

Tidy Code

Find

> sketch.js®

Find Next #+G
1 Find Previous ~ 1+%#4G
2
3 // bad style
4 function setup() { createCanvas(400, 600); }
5 function draw() { background("pink"); }

(a) How often did you use Tidy Code? O Never, O Once in a while, O Occasionally, O Frequently, O All the time

(b) Do you think Tidy Code is useful? O Not very useful, O Not useful, O Neither useful nor unuseful, O Useful, O Very
Useful

(c) Do you have any comments about Tidy Code? For instance: How did you feel it affected your learning? Is there any way
you would modify it to make it more useful?

A Study of Editor Features in a Creative Coding Classroom CHI 23, April 23-28, 2023, Hamburg, Germany

(6) Feature: Auto-Refresh

> RN

On

(a) How often did you use Auto-Refresh? O Never, O Once in a while, O Occasionally, O Frequently, O All the time

(b) Do you think Auto-Refresh is useful? O Not very useful, O Not useful, O Neither useful nor unuseful, O Useful, O Very
Useful

(c) Do you have any comments about Auto-Refresh? For instance: How did you feel it affected your learning? Is there any
way you would modify it to make it more useful?

(7) Feature: Shape Toolbox

Sketch name
° L @ Shape toolbox ¢ sumiT | £X

Canvas

AN

reset

save

Console A

(a) How often did you use Shape Toolbox? O Never, O Once in a while, O Occasionally, O Frequently, O All the time

(b) Do you think Shape Toolbox is useful? O Not very useful, O Not useful, O Neither useful nor unuseful, O Useful, O Very
Useful

(c) Do you have any comments about Shape Toolbox? For instance: How did you feel it affected your learning? Is there any
way you would modify it to make it more useful?

(8) Feature: Autocomplete

function draw() {
background("pink" =);
if]

} Aif statement

else statement

if else-if else statement

SHIFT

(a) How often did you use Autocomplete? O Never, O Once in a while, O Occasionally, O Frequently, O All the time

(b) Do you think Autocomplete is useful? O Not very useful, O Not useful, O Neither useful nor unuseful, O Useful, O Very
Useful

(c) Do you have any comments about Autocomplete? For instance: How did you feel it affected your learning? Is there any
way you would modify it to make it more useful?

CHI 23, April 23-28, 2023, Hamburg, Germany McNutt et al.

D.3 Page: Reflection Questions

Next, we’d like you to reflect on a few additional aspects of the course, how they might be improved, and ways in which the editor might be

modified to meet those challenges.

(1) Feature Review Reflect on the features we’ve just been considering. Which of the features we considered are you most excited
about?

Color Pickers Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Number Pickers Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Number Sliders Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Linting Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

Tidy Code Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Auto-Refresh Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Shape Toolbox Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O
Autocomplete Very Disinterested O, Disinterested O, Neutral O, Interested O, Very Interested O

(2) Effect on Learning While it is hard to compare with something you didn’t do, how do you think your experience in the course
would have been different had these features not been part of the editor? Do you feel you would have learned more or less than you
did?

(3) Art Tools Now that you’ve learned some programming for creative coding, how does that affect your perspective of art making?
How might a code editor help or hinder the art making process?

(4) Challenges What aspect of coding or learning to program gave you the most trouble? As a way to help organize your thinking,
consider the assignment that you had the most difficulty with. Could the editor have done anything to help you with that?

(5) External Tools It’s natural to use other tools as part of the programming process, such as color eye droppers or p5’s online
documentation. Do you think it would be useful to integrate these tools as part of the editor? What other tools can you imagine
wanting to be part of your in-editor coding workflow?

(6) Desired Features What sorts of editor features might have allowed you to be more effective in your coding? What sorts of editor
features might have allowed you to be more creative?

(7) Miscellaneous Is there anything else you would like us to know? Any additional feedback you’d like to share about the editor, or
any other technical aspect of the course?

	Abstract
	1 Introduction
	2 Related Work
	2.1 Creative Coding Environments
	2.2 Advanced Editor Features
	2.3 Classroom Studies

	3 Course Description
	4 Methods
	4.1 Year 1: Editions sp21 and su21 with y1Colorp5/y1
	4.2 Year 2: Editions wi22 and su22 with y2Colorp5/y2

	5 Analysis
	5.1 Features in Both y1Colorp5/y1 and y2Colorp5/y2
	5.2 Features Only in y2Colorp5/y2
	5.3 On Skepticism
	5.4 On Creativity

	6 Discussion
	6.1 Recap: Themes
	6.2 Connections to Other Domains
	6.3 Limitations and Future Work

	Acknowledgments
	References
	A The Creative Coding Course
	B Additional Study Details
	B.1 Ethics Statement
	B.2 Additional Results
	B.3 Hypothetical Features

	C Survey Instrument for Initial Survey — Year 1 (sp21, su21)
	C.1 Page 1: Consent to Participate in a Research Study
	C.2 Page 2: Introduction and Reflection
	C.3 Pages 3-18: Editor Features
	C.4 Page 19: Wrap up
	C.5 Page 20: Parting Questions

	D Survey Instrument for Follow-up Survey — Year 2 (wi22, su22)
	D.1 Page 1: Consent to Participate in a Research Study
	D.2 Page 2: Feature Questions
	D.3 Page: Reflection Questions

