
On the Design of AI-powered Code Assistants for Notebooks
Andrew McNutt

mcnutt@uchicago.edu
University of Chicago

Chicago, IL, USA

Chenglong Wang
chenwang@microsoft.com

Microsoft research
Redmond, WA, USA

Rob DeLine
rob.DeLine@microsoft.com

Microsoft research
Redmond, WA, USA

Steven M. Drucker
sdrucker@microsoft.com

Microsoft research
Redmond, WA, USA

ABSTRACT

AI-powered code assistants, such as Copilot, are quickly becoming
a ubiquitous component of contemporary coding contexts. Among
these environments, computational notebooks, such as Jupyter, are
of particular interest as they provide rich interface affordances that
interleave code and output in a manner that allows for both ex-
ploratory and presentational work. Despite their popularity, little is
known about the appropriate design of code assistants in notebooks.
We investigate the potential of code assistants in computational
notebooks by creating a design space (reified from a survey of
extant tools) and through an interview-design study (with 15 prac-
ticing data scientists). Through this work, we identify challenges
and opportunities for future systems in this space, such as the value
of disambiguation for tasks like data visualization, the potential of
tightly scoped domain-specific tools (like linters), and the impor-
tance of polite assistants.

CCS CONCEPTS

• Human-centered computing → Human computer interac-

tion (HCI); •Computingmethodologies→Natural language

processing; • Software and its engineering→ Integrated and

visual development environments.

KEYWORDS

Computational Notebooks, Artificial Intelligence, Code Assistant,
Copilot, Design Probe

ACM Reference Format:

Andrew McNutt, Chenglong Wang, Rob DeLine, and Steven M. Drucker.
2023. On the Design of AI-powered Code Assistants for Notebooks. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3544548.3580940

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3580940

1 INTRODUCTION

AI-powered code assistants like GitHub Copilot [25] are designed
to improve programmers’ productivity. Powered by large language
models (LLMs), these tools can automatically generate high-quality
code suggestions from a programming context—consisting of both
code and natural language, such as comments or docstrings. In-
teraction with code assistants typically occurs as part of normal
program authoring: the programmer indicates a context in which
they would like assistance, which the assistant uses to provide a list
of suggestions. The programmer selects a desired code recommen-
dation, adapts it to fit their context, and continues programming.
Through this cycle, users can reduce the burden of boilerplate [81],
increase perceived programming productivity [84, 98], and receive
guidance on how to address unfamiliar tasks [4].

Given this facility to improve developer experience, these AI-
powered code assistants have the potential for enormous impact in
computational notebooks, such as Jupyter [71]. However, the simple
text-based interactions suited tomore traditional code editors do not
naturally fit into notebook workflows. For instance, in notebooks,
programming is not limited to textual inputs but can involve a wide
variety of multi-modal data—such as code, markdown, data tables,
and plots. Notebook users often write small, loosely structured code
snippets, which they execute interactively to understand the code
and data [41]. To support this often exploratory style, these code
snippets are often written and executed in a nonlinear order, with
parallel solutions being examined in an iterated and interleaved
manner [87].

Without accounting for these differences, a purely code-based
interface to code assistants would make it challenging for notebook
users to specify the desired context, understand assistant sugges-
tions, and adapt them into their work. In this work, we seek to
enable future system designers by considering

(1) What choices are available in the design of AI-powered code
assistants in notebooks?

(2) What do users expect from such assistants in this context?

To answer these questions, we conducted two studies, a design
space analysis, and a semi-structured design study.

In the first of these, we sought to characterize the design space
by surveying interaction designs in notebooks whose goal is to
improve the end-user programming experience through code gener-
ation. Despite their often ad hoc or domain- and algorithm-specific
design, these systems—which range from integrating graphically

ar
X

iv
:2

30
1.

11
17

8v
1

 [
cs

.H
C

]
 2

6
Ja

n
20

23

https://orcid.org/0000-0001-8255-4258
https://doi.org/10.1145/3544548.3580940
https://doi.org/10.1145/3544548.3580940

CHI ’23, April 23–28, 2023, Hamburg, Germany McNutt et al.

specified elements [42] to live spreadsheet manipulations [19]—
provide valuable insights for the design of AI-powered assistants
more generally. We extrapolate these design choices into a collec-
tion of design concerns (Sec. 3), which we display in Fig. 2 and
Fig. 3. We classify the design space based on interface components
(user gestures, model artifacts, disambiguation, and refinement in-
terfaces) as well as the relationship between these components
(code context, provenance management, model specialization, and
customizability). We phrase our concerns in a generalizable manner
that can be used to generatively explore the space.

Building on the structure of this space, we conducted a second
study that sought to understand data scientists’ expectations of
AI-powered code assistants in notebooks. In this study, we inter-
viewed 15 professional data scientists about their preferences for
tools in this space. We presented participants with various designs
that probed their perceptions of context specification, suggestion
disambiguation, result adaptation, and code provenance situated
within several data analysis and visualization tasks (Sec. 4).

While different participants preferred different options in the
design space, they were unanimously enthusiastic about the po-
tential that our probes suggested. Our study revealed a rich set of
predilections about this style of system (Sec. 5), which we sum-
marize in Table 1. Most notable among these: the importance of
polite interfaces that respect users’ agency and flow, but are suffi-
ciently prominent to promote usage; the potential that linter-like
assistants that highlight inappropriate usage in an approachable
manner might have when scoped to a specific medium or task (such
as data science or notebooks); that assistants might usefully take
on a variety of interface forms throughout the notebook to aid in a
corresponding array of tasks.

Integration of code assistants backed by AIs offers rich potential
to radically improve notebook users’ programming experience and
efficacy. Through our characterization of the design space and
elicitation of realistic-user expectations and opinions, we hope to
empower future designers to build more helpful code assistants.

2 RELATEDWORK

Our work is informed by prior work on code generation models,
interfaces for interacting with those models, design interventions
in notebooks, and code suggestions more generally.

Code Generation. Program synthesizers (which we refer to more
generally as code generation) seek to reduce programming ef-
fort by automating challenging or repetitive programming tasks.
These techniques automatically generate code based on high-level
specifications—such as through demonstrations, input-output ex-
amples, natural language, and partial implementations [29].

Program synthesizers come in a variety of styles, but of partic-
ular interest to our work are code generation models, especially
those powered by LLMs. These models automatically learn program
concepts from large-scale code corpora and are typically not limited
to a specific language or a task domain. For example, Codex [12]
(the model used in Copilot), InCoder [24], and CodeGen [64] are
GPT-style code generation models [68] trained on GitHub reposito-
ries (among other sources) that support code generation from texts
and partial implementations in most mainstream programming

languages. A number of code assistants have been developed based
on these models [2, 20, 25, 83].

Despite their support for general languages and tasks, these mod-
els are no panacea: in addition to requiring significant natural re-
sources to train [9], they often handle specific application scenarios
poorly. These issues can sometimes be addressed through prompt
engineering [36, 76] (rephrasing the specification in languages that
the model understands) or fine-tuning [12, 14] (additional training
on datasets that represent the application domain).

Our work focuses on Copilot, not because we seek to develop
a better understanding of it in particular, but instead using it as a
representative of a wider class of LLM-driven code assistants.

Interacting with Code Assistants. Amajor open question is how to
employ code generation models in a way that is understandable and
maintains users’ sense of control. This has long been a concern of
mixed-initiative systems [33], but only recently have code assistants
become powerful enough to enable study of their interfaces.

A variety of interface strategies have been developed to adapt
code assistants to particular domains. Jiang et al. [38, 39] describe
GenLine: an IDE-based LLM-powered code assistant for HTML/JS
applications. Users guide synthesis through natural language prompts
and control context through “code fences”, which explicitly indicate
what is and is not relevant to code generation. Ferdowsifard et al.
[23] provide a live programming interface that involves an always-
on display of values in small python programs that use local test
cases to guide synthesis. To aid users in providing better specifica-
tions (or prompts) to the code generation models, AI Chains [92]
and PromptIDE [82] help users experiment and refine their prompts.
Our work draws on these design patterns to understand the space
of possible interface elements that might be used in our domain.
In addition to these tools, some systems focus specifically on code
generation in notebooks (Sec. 3).

GitHub Copilot [25] is the first LLM-based code assistant pow-
ered to reach widespread usage. It provides a text-based interface
where users provide tacit descriptions of context, either through
description or partial programs. Recent studies of user experiences
have sought to characterize the user experience and perceptions
of interacting with AI-powered assistants. Barke et al. [4] find
that users tend to use Copilot either in an acceleration mode (in
which it is used to enhance their efficiency) or an exploration mode
(in which users are aided in understanding the available program
space). Sarkar et al. [81] find that Copilot usage has similarities to
search, compilation, and pair programming. Jayagopal et al. [37]
analyze how novices learn to use code generation tools and high-
light the tensions between triggered and triggerless initiation and
communication of code generation. Other studies suggest that code
generation quality depends on user experience level [98], that less
experienced users had difficulty understanding, editing, and debug-
ging generated code [84], and that users may not trust generated
code compared to code produced by a human pair programmer [35].
Our work extends these efforts by considering AI-powered code
assistants in a particular medium.

Intervening in Computational Notebooks. Computational note-
books, like Jupyter [71], have become a popular environment for
data scientists to conduct some aspects of their work [46, 80]. While

On the Design of AI-powered Code Assistants for Notebooks CHI ’23, April 23–28, 2023, Hamburg, Germany

User
Gestures

Model
Response

which triggers a

which
returns

which is
presented for

Code(s)

Metadata
Clarifications, metrics, or other non-code

Figure 1: The specification-refinement loop interaction un-

derlying our design space.

AI-powered code assistants like Copilot enhance software develop-
ment environments, researchers meanwhile have explored other
types of code assistance in computational notebooks [58, 87]. For
instance, Kery et al. [40] explore design interventions for adapting
the notion of history to the specifics of notebooks, while Head
et al. [30] apply program slicing as means to automatically orga-
nize notebooks. To help with end-user programming in notebooks,
tools such as Mage [42] let users specify code using graphical ele-
ments (e.g. through a visualization widget). Mito [19] and B2 [93]
allow users to manipulate data directly through spreadsheet in-
terfaces and dashboards, respectively, where the interactions are
recorded as code. Additional notebooks have been developed to
address notebook usability issues [45]. For instance, Glinda [18] is a
notebook with live programming and declarative language support,
while Lodestar [73] enables automation of data science workflows
through analysis templates provided via automated recommenda-
tion. Our efforts are closely related to these, as we seek to enhance
the end-user experience of notebooks by better understanding the
design of code assistants in notebooks.

Code Suggestions. A common strategy for making code easier to
produce is through in-editor code suggestions, of which generative
assistants (such as Copilot) are only the latest incarnation. This ap-
proach is ubiquitous (arising as early as 1985 [1]), appearing in IDEs,
purpose-specific editors like Jupyter [58] or Excel [60], as well as
specific-domains such as exploratory data analysis [50], data visual-
ization [78], and computational notebooks [49]. This strategy might
take the visual form of an autocomplete (as in IntelliSense [59] or
Calcite [61]) or through UIs with search-like signifiers like a query
bar (as in Blueprint [11] or Bing Developer Assistant[97]). The
interface for asking for a suggestion (and therein specifying in-
tent and context) can involve caret position [11, 59, 61, 66], code
comments [95], partial implementations [74], integrated exam-
ples [67], or explicit querying. Liu et al. [52] find that code search
can use a variety of input modalities, including free text, source
code, API descriptions, input-output examples, test cases, and UI
sketches—typically without direct control from the user [27]. Some
works [11, 78] highlight the value of integrating documentation,
provenance, or justification as part of the generated results. In mod-
eling interactions with generative code assistants (Sec. 3), we did
not analyze purely search-based interfaces, although generation
and search are typically seen as closely-related interactions [81]
(Sec. 5.2.2). For instance, Xu et al. [94] compare search and genera-
tion through an assistant that mixes both approaches, finding that
each modality is beneficial for different tasks. Our studies draw
on the patterns found in these interaction forms, however, our
exclusion of search systems is a limitation of our approach.

3 DESIGN SPACE

To explore design options for AI-powered code assistants, we first
analyzed the broader design space of how code assistants are de-
ployed in computational notebooks. We consider systems that emit
textual code based on some user gesture1 to assist user program-
ming, with or without AI backends. Through this work, we develop
a characterization of this design space that describes both interfaces
and interactions available in such systems. Our approach draws on
observational and reflective approaches [62].

From the observational side, we sought to assemble a maxi-
mum variation sample [69] of this interface form to understand
as many different approaches as available. We did so by searching
Google Scholar for systems involving notebooks and code genera-
tion from which we iteratively snowball sampled. Through this pro-
cess, we identified 14 systems: B2 [93], bamboolib [44], Copilot [25],
Gauss [7], Glinda [18], Hex [54], Jigsaw [36], Lux [47], Mage [42],
Mito [19],Observable data table [65], Tabnine [83], VizSmith [6], and
Wrex [21]. These systems range from domain-specific code assis-
tants (e.g. assistants for spreadsheet data manipulation or statistical
analysis) to live programming environments and frameworks for
building GUI-embedded widgets. While there are other systems of
interest, we believe this selection is sufficient for our analysis. We
provide example images of each system in the appendix.

Despite the diversity of these systems, some corners of this rela-
tively new space remain under-explored, and some dimensions may
simply reflect the design choices that Jupyter or its Extension API
impose. To address these biases, we augmented our observations
with a series of identified properties. For instance, in our analysis of
where code assistants are located within the notebook, we observed
systems using only Ambient, Inline, and Application style as-
sistants but missing cell-level designs, so we extended the design
space to include this option. Finally, while closely connected, we
exclude search-based systems to limit scope and because generative
assistants seem [81] to be used differently than search systems.

3.1 The Design Space

We describe the interaction between the user and the code assistant
as a specification-refinement loop (Fig. 1). In this loop, the user spec-
ifies the programming goal using a sequence of gestures, then the
system returns code or metadata to the user, which forms the basis
for the next cycle of interaction. We capture how different systems
embody this loop along two principal categories, namely interac-
tions with the assistant (Sec. 3.1.1) and relationships between the
code assistants and other notebook components (Sec. 3.1.2), which
is based on Beaudouin-Lafon’s dichotomization of interactions ver-
sus interfaces [8]. Within these categories, the reviewed systems
vary along several dimensions. These categories and their dimen-
sions constitute our design space (Fig. 2, Fig. 3) wherein systems can
be described by choosing a value (or values) from each dimension.
The remainder of this section explains each dimension.

3.1.1 Interactions. We begin by looking at the dimensions that
describe the user interactions with the system.

1We use the term gesture to cover a variety of input modalities, such as direct manipu-
lation, form usage, coding, and natural language.

CHI ’23, April 23–28, 2023, Hamburg, Germany McNutt et al.

Disambiguation: How can the user
disambiguate candidate programs?

Gesture Target: What topics can a user
gesture address?

Run-time data: Indicate which runtime data will be used
(e.g. dataframes, variables). Ex: Lux, bamboolib

Model Output: Interact with candidate programs or
effects returned by the model. Ex: Mito, B2

Code Text: Indicate what code will be interacted with
(user-specified or generated). Ex: Copilot, Jigsaw

Model Metadata: Interact with intermediate data
produced by the system. Ex: B2

Summary*: Show summary of candidates generated by
the model (e.g. metrics, confidence ratings, diffs).

No Disambiguation: No alternative options or variations
supported or needed. Ex: Mage

Code: Show candidate programs generated by the model.
Ex Copilot, Mito

Effects: Graphical or literal depictions of the effect of
generated code. Ex: Mito, VizSmith

One Shot: Only a single gesture can be used to guide
the model. Ex: Jigsaw, Tabnine

Gesture Composition: How are
gestures combined?

Iterated: Gesture sequence is refined across linear
stages (as in a conversation). Ex: Wrex, Gauss

Nonlinear: Gesture sequence refined via a set of
predefined (as in a form or other template) inputs. Ex:
Mage, Hex

Restart: Completely redo gestures to modify the
output. Ex: Observable data table

Refinement What can the user do
to refine generated code?

Bidirectional: Output and the gesture can be altered or
synchronized bidirectionally. Ex: B2, Glinda

Commit: Specify updates and commit the updates to
receive updated suggestions. Ex: Wrex, bamboolib

Live (one way): Update a gesture that synchronously
alters the generated code. Ex: Mito

Figure 2: The components of our design space considering interactions with the code assistant. Among these topics, our inter-

view study investigates Disambiguation interaction most directly.

Gesture Target. Each user gesture targets an entity. In our con-
text, these include components from the notebook environment
and artifacts produced by interaction with the assistant. Notebook
targets include Runtime Data, such as variables and data frames
from the execution context (as in bamboolib [44]), and Code Text,
such as text-represented program snippets in code cells (as in Jig-
saw [36]). The model-generated targets include Model Metadata,
such as confidence in textual predictions, model parameters or
partial programs (as in B2 [93]), and Model Output such as the
code generated by the model or visualizations of its effects (as in
Mito [19]). This rich space of gesture targets defines the basic means
through which the user can communicate with the code assistant.

Gesture Composition. It is often necessary to sequence or com-
pose different user gestures to express more nuanced intent. The
simplest way is One Shot interaction, wherein each user gesture
triggers an independent interaction with the assistant, as is the
case with Tabnine [83]. For multi-step interactions between user
and system, systems can employ either Iterated, in which ges-
tures are used to iteratively or conversationally refine intent (as
in Wrex [21]), or Nonlinear, in which gestures are inputted in
an unprescribed order like in a template—as in the Hex [54] query
builder. The means of composition informs how state is handled
and how the UI should present interactions with that state.

Disambiguation. Due to incompleteness of the user specification
and uncertainty of the underlying model, many systems produce a
set of candidate suggestions rather than a single result. We highlight
the presentation of these possible results as a potentially distinct

step from the usage of the final results—although they may be
colocated (as in Copilot). We observed several approaches to this
task. Many systems haveNo Disambiguationmechanism and only
present a single suggestion to the user (as in Mage [42]). Others
show multiple candidate Code options, as in Copilot’s alternate
selection tab. Some preview the Effects of running the code, as
in VizSmith’s [6] multiple chart options. Our model also allows
Summary information, which includes designs like surfacing token
confidence [88] and textual [4] or semantic [85] diffs.

Refinement. The user may need to refine or adjust their specifi-
cation after the initial gesture. For instance, a particular recommen-
dation may necessitate that the user adjust their mental model of
what can be expected from the assistant (as in the user-synthesizer
gap [23]) and then update their prompt accordingly. Support for
refinement defines to what degree the user can modify their initial
specification. The most basic support is Restart, wherein the user
needs to redo gestures to update their specification (as in Observ-
able Data Table [65]). Some systems support a Commit action, in
which the user can specify updates to the specification while the
system holds previous gestures in state, and then the suggestion is
updated after commit, perhaps via an “update” button—such as up-
dating form fields inWrex [21]. Other systems employ synchronous
or Live (One Way) updates, in which the suggestion is updated
immediately after the gesture, such as how Mito [19] updates the
generated code immediately after interactions with its spreadsheet.
Some systems, such as Glinda [18] and B2 [93], extend this idea
through Bidirectional updates [31, 32, 90], in which modifications
to the output update the gesture input as well. While bidirectional

On the Design of AI-powered Code Assistants for Notebooks CHI ’23, April 23–28, 2023, Hamburg, Germany

Ambient/Textual: Always on, accessed via a hotkey,
button, or other special gesture. Ex: Copilot, Tabnine

Code Context: What is the relationship
between the code assistant and notebook?

Application: State and gestures are woven throughout
the notebook. Ex: B2

Targeted Cell*: Enabled when a cell is selected as the
synthesis subject. Similar to a wizard interface.
Inline Cell: Code appears inline as part of the cell flow.
Ex: Mage, Wrex, Hex

No History: Transient interaction with no indication of
code origin. Ex: Copilot, Tabnine

Interaction Log: Individual actions are recorded as part of
the notebook. Ex: B2

Provenance: How is provenance or history
of interface usage represented?

Textual Artifacts: Calls to invoke the system or other
execution artifacts. Ex: Wrex, Gauss, Jigsaw

Summarization*: The interface automatically provides a
summary of the interactions taken.

Template: Code is generated through static textual
templates. Ex: Mage

Specialization: How does the interface
relate to the code generation mechanism?

Model-Specific: The interface is specialized to a
particular model. Ex: Gauss, Copilot

Model-Agnostic*: Interface is not tied to a specific
model, possibly supporting a variety of models.

Abstractions: The interface can be instantiated
differently based on user configurations (such as
through functions). Ex: Glinda

No customization: The user can only use the system
and can not modify it. Ex: Most

API-based Extensions: The system can be extended
through an intentional API. Ex: Mage

Customization: How can the interface be
adjusted to meet the user’s needs?

Figure 3: The parts of our design space considering the relationship between code assistant and other system components

mediated by the interface. Our interview study considers the Code Context and Provenance interface relationships.

updates are ideal—as they maintain consistency between specifica-
tion and model state—this approach is rare in practice due to the
high complexity of synchronizing model, text, and output updates.

3.1.2 Interface Relationships. We next consider the parts of our
space that describe the relationship between the code assistant
interface and other system components.

Code Context. A key design choice for the code assistant is its
relative location within the notebook UI. This location, in turn,
suggests the scope of information available to the code assistant.
We list these from the most localized context to the most global. In
Ambient/Textual interfaces, the code assistant follows the text
cursor, and the assistant is invoked via a special action such as a
hotkey, as in Tabnine [83]. In Targeted Cell interfaces, the code
assistant apparently resides within notebook cells to support editing
or code generation directly within a given cell, as in Fig. 4. Code
assistants presented as Inline Cells appear as a contiguous part of
the notebook flow, sometimes as a distinct cell type of its own, as in
Mage [42] or Fig. 5. Application-style interfaces appear integrated
into the notebook at a level above the cells, such as through a side
panel or other higher-level control, as in B2 [93] or Fig. 6. The
location of the assistant interface informs what information the
user can provide to the system for code generation.

Specialization. Behind any code assistant is a mechanism for
transforming inputs into code—such as an ML model, a search
engine, an algorithm, or other heuristics—however, there are trade-
offs between mechanism exploitation and the interface flexibility

to accommodate different input modalities. For instance, inModel-
Specific interfaces, the assistant is customized to assist the model,
such as in the drag-and-drop interaction used to construct com-
putation traces in Gauss [7]. While Template-based interfaces are
constructed from simple static or textual templates (as inMage [42]),
which can enable amuchwider array of input styles. Finally,Model-
Agnostic assistants support a variety of different model types (per-
haps even exposing that functionality to the end-user), however,
this can come at the cost of more restricted input modalities, such
as the text or tabular data input common to many models.

Provenance. The history of code generated by the assistant—
such as what interactions led to the final generated code—can serve
as the documentation for auditing, analysis, and sharing. Many
systems provide No History of interactions with the assistant, as
Copilot [25]. Some systems leave Textual Artifacts of their usage,
such as the library calls used to initiate Jigsaw. Others included
an explicit Interaction Log, such as B2’s [93] replayable history.
Automatic Summarization of interactions can be used to describe
the usage from a high level. The interface for displaying provenance
may be contained in cells or may be baked into other parts of the
interface—such that interactions are privately held in local state.

Customization. Enabling end-users to alter the code assistant
interface allows the system to adapt to different users and tasks. Yet,
most code assistants we examined had No Customization support.
Customization can be achieved through Abstractions where the
system provides modifiable abstractions (akin to functions) for
end-users to customize the system, as in Glinda [18]. Similarly, API-
based Extensions allow the user to configure properties of the

CHI ’23, April 23–28, 2023, Hamburg, Germany McNutt et al.

interface through provided APIs, as in Mage [42]. Creating tools
with extensibility in mind may help the end-user avoid limitations
but may complicate interface design.

Besides the above design considerations, there are other elements
that vary among existing systems but do not necessarily alter the
user experience. These include elements such as whether there is
a secondary notation [10] integrated into a code assistant or the
sorts of input modalities available to the user. Because notebooks
and assistants are an active area of research and design [45], we
forgo classification of such features rather than engaging in the
quixotic task of enumerating all possible designs of such elements,
instead seeking to provide a high-level description of the types of
patterns that can occur in their intersection.

While the social roles that code plays (such as being proxies for
trusted colleagues) do affect the types of features users perceive
as being useful, we forgo modeling the social context surrounding
these assistants. Such social interaction with and through code is its
own rich topic of study—even just within data science [16, 22, 43]—
and extends beyond the scope of this work. However, understand-
ing the role that code assistants can play in those relationships is
valuable future work.

3.2 Model validation

We validated our design space, by reflecting on its relationship to
other systems and consulting experts on Copilot-style interfaces.

Code assistants are a relatively new form of interface, and in-
novation will continue. We have intentionally tried to construct
our space in such a way that future designs may be located within
it, but may not be predicted by it. That is, following Beaudouin-
Lafon’s [8] typification of design spaces, ours seeks to be descriptive
(characterizing what has been done) and generative (prompting
subsequent designs). We do not seek to be evaluative in our con-
struction both because the space is evolving and so best practices
may change with time, as well as because significant prior work
has explored the role of evaluation in coordination with AI models
(cf. Amershi et al. [3]). Other design spaces might be reasonably
formed to describe this space given a different set of priorities. The
analysis available through this space is one relating to the identifi-
cation of similarities between systems and, potentially, the missing
elements within a given system. For instance, FlashFill [28] can
be described as an Ambient, Model-Specific interface focused
on Code Text in a Nonlinear manner. As in most [90] spread-
sheets, it has Live (one way) refinement. It provides No History
and allows No Customization. Further, this system has No Dis-
ambiguation, an absence addressed in follow-up works [53, 63].
Despite this comparison, we only claim that this analysis covers the
case of notebooks. Our design space is meant to dovetail with re-
lated analyses, such as Jayagopal et al.’s [37] notions of triggered vs
triggerless initiation and result communication in code generators.

We presented our design space to several researchers with exper-
tise with Copilot, who had run user studies themselves on the topic.
These experts received the design space favorably and spoke posi-
tively about its value for the design of future systems in this genre.
While expert opinion is inherently subjective, their review provides
a coarse means of validation. We continue to explore aspects of our
design space through our interview study (Sec. 4).

4 INTERVIEW STUDY

To investigate real-world perceptions of elements of our design
space we conducted a semi-structured interview study. As the com-
parison of all design combinations is prohibitively expensive, we
focus our study on four under-explored elements that complement
prior studies [4, 38, 81, 88]. In particular, we focus on code context,
disambiguation techniques, adaptation methods, and designs for
provenance exploration. While we did not specifically construct de-
signs relating to other aspects of our design space (e.g. expectations
of customization), these topics arose organically in interviews.

4.1 Methodology

We recruited 15 participants (denoted P1 - P15) from a large data-
driven software company. Participants were contacted based on job
title (including roles such as data scientist) through the company
address book. We invited those who self-identified on an intake
survey as having experience with notebooks and Copilot (or another
AI-based code assistant) to participate in our interviews. Despite
their response to the intake form, P3, P9, and P15 did not have
experience using an AI-powered code assistant. We include them in
the study because their opinions, inclinations, and skepticism about
such tools are also informative. Participants were compensated with
a $50 USD Amazon gift certificate.

Participants reported a median of 1–3 months of experience with
an AI-based assistant, 1–2 years in their current roles, 3–5 years of
experience using notebooks, and more than 5 years of doing data
science work. All participants were 25–34 years old and had at least
master’s degrees in a CS-related field. Further demographic data
was not collected.

The semi-structured interviews, conducted via video conferenc-
ing, alternated between questions regarding participant experiences
and presentation of design probes (Figs. 4-8). We used slide-based
prototypes instead of developing interactive prototypes to avoid
low-level feedback (e.g. implementation bugs or minor elements of
visual design), following the methodology used by Kery et al. [42].
We did not collect quantitative scores on the presented designs
because the semi-structured format of the interview caused some
topics to be considered more deeply than others. Interviews lasted
an average of 73 ± 10 minutes.

We recorded and transcribed the interviews. The first author
open-coded the transcriptions and built a set of tentative themes,
which the research team periodically met to discuss, critique, and
iterate on until saturation was reached.

4.2 Study design

We next present the issues considered in our study and the various
designs used to explore them. Discussion of these topics was guided
by simple data analysis and visualization scenarios, such as merging
two datasets. The details of these settings did not substantially affect
discussion, so we forgo description here. The full study instrument
is in the supplement.

Code Context. Each code generation model has its own notion
of context that informs what information the model requires to
generate code. For instance, in Copilot, context consists of a fixed
length of text around the text caret. Complicating this specification

On the Design of AI-powered Code Assistants for Notebooks CHI ’23, April 23–28, 2023, Hamburg, Germany

is that a user’s understanding of code context may differ from the
assistants, potentially yielding a mismatch between the provided
and expected suggestions. Through consideration of this topic, we
sought to understand: what are users’ perceived needs for context
specification? In our interviews, we considered three design options
a Targeted cell-style option (Fig. 4’s Wizard), a between-cell or
Inline-style option (as in Fig. 5), and a notebook or Application-
level option (Fig. 6’s Side-panel). These designs form a spectrum of
implicit (does not inform the user of the model’s context) to explicit
(allows the user to specify the code context) context designs.

Disambiguation. As described above, the ambiguities latent to
specification incompleteness and model uncertainty can prompt
some interfaces to produce multiple candidate solutions where the
end-user needs to select a correct solution. Prior studies have in-
dicated that disambiguation can be valuable [4, 48, 53], but there
has been little consideration of the types of UI affordances that
might support such work. To this end, we considered:What types of
disambiguation representation do users perceive as valuable? We pre-
sented a sequence of design options guided by prior explorations,
shown in Fig. 7. These included (A) an Output Only display in-
spired by VizSmith [6] (Effects), (B) a Code Only display inspired
by Copilot’s multiple suggestions in a new tab feature [26] (Code),
(C) a Code with Diff display per Barke et al. [4] (Code and (Sum-
mary), (D) a Code and Output display (Code and Effects), (E) a
higher-level Summary View (Summary), and a paginated view (No
Disambiguation) as in Fig. 5.

Adaptation. While contemporary AIs are powerful, their results
are often imperfect [88] due to model limitations or ambiguous
user specifications. Users often accept these imperfect solutions
and then engage in an accept-validate-repair sequence [4] as a
way to read, internalize, and adapt the generated code to the local
interface. Here we examined: How do users expect the interface
to assist in the adaptation of generated code? We highlight that
adaptation is a different process than refinement, involving the use of
generated code as opposed to getting the assistant to produce better
code. We show design options that sought to elicit the adaptation
strategies, as in Fig. 8, which variously surface Model Metadata
and Disambiguation Summaries. These include (A) a linter-style
UI that highlights potential semantic-level mistakes in generated
code, (B) an option where the assistant generates a Snippet skeleton
(instead of executable code) where the user is prompted to fill in
missing items (per Barke et al. [4]), (C) a Token-confidence design
that shows model confidence on different parts of the code, and (D)
a Token-alternatives option that lets the user explore alternatives
for a given part of the code. (C) and (D) are from Weisz et al. [88].

Provenance. A touted value of computational notebooks is their
facility to interleave documentation and code in a literate man-
ner [41, 80], which allows for description of code and design varia-
tions and explorations [91]. Barke et al. [4] suggest that interactions
with Copilot-style interfaces are expected to be transitory, which
is aligned with nearly every interface examined in Sec. 3—B2 ex-
cepted. Disentangling these seemingly conflicting positions is an
important step toward understanding how to develop tools in this
environment. Here, we consideredWhat, if any, documentation of
code Provenance of generated code do users believe is valuable?

Our designs examining this tension included an “autosummary”
button that saves the interactions with a code assistant as either
a markdown cell or as an inline comment, a cell-level marker to
designate which cells contain generated code, and an explorable
log that documents the interactions with assistants (per Kery et al.
[40]). Figures showing these designs are in the appendix.

5 INTERVIEW STUDY ANALYSIS

We now reflect on the themes, topics, and suggestions that we
identified in the interviews. We begin with a summary and then
present cross-cutting themes (and return to the particulars of our UI
results), ordered from most specific to most general. These include
the role the UI design has on the perception and usage of features
in this context (Sec. 5.1), the relationship that a code assistant in a
notebook has with its surroundings (Sec. 5.2), and finally, the role
that code suggestions have on trust (Sec. 5.3).

All participants believed it is valuable to adapt code assistants to
notebooks. For instance, P11 noted “the use case for [code assistants]
in notebooks is, I would say, pretty strong”. P4 saw “a lot of potential
where you can go with [code assistants] for the data scientists.”

Yet, for most topics we considered, there was no consensus about
a single best feature over other design choices for code assistants.
No one of the interfaces we described for code context was uni-
versally preferred, with each being liked or disliked according to
participants’ preferences for clutter, politeness, and locality. Partic-
ipants nearly unanimously viewed Code and Output (Fig. 7D) as
the best way to explore collections of suggestions, although some
participants (e.g. P4 and P11) liked the Summary View—likely for
its novelty. Each of the presented refinement strategies—excluding
Token-confidence—was seen as valuable for different reasons rang-
ing from familiarity (P13) to transparency (P4). Artifacts of inter-
actions with code assistants were seen as unnecessary, as code
generation was not viewed as a part of their deliverable. In concert,
this suggests a wealth of opportunities in this design space to serve
differing desires and interests, as well as the wickedness [77] of the
problem—given the multi-faceted and contradicting ways in which
data scientists expect to use code assistants and notebooks.

As notebooks are a subset of interfaces more generally, many of
our findings align with similar expectations users might have of
other contexts. However, our results are specific only to the context
of code assistants in notebooks as understood by data scientists, as
we only sought opinions from this type of user in this context. We
reference these topics as code assistants and users, respectively, as
a notational convenience, but they should be understood as these
specific cases rather than general ones.

5.1 Role of UI Design

The way that users can interact with code assistants shapes what
they attempt to do with those assistants. Here we consider how the
design of the interface itself might influence different behaviors.

5.1.1 Context and Interfaces. In presenting several different modal-
ities for interacting with code assistants, we sought to elicit per-
ceptions about what and how much context participants believed
would be useful for code generation tasks.

Most participants did not care about manual specification of
context, typically expressing “I want [the code assistant] to look at

CHI ’23, April 23–28, 2023, Hamburg, Germany McNutt et al.

Figure 4: The Wizard interface (Targeted cell) included in our interviews surfaces control of a code assistant via a popover

specific to each cell. The context used to inform the code generation is specified implicitly and is local to the targeted cell.

Figure 5: The Inline interface (Inline) places an assistant between cells, akin to any other notebook cell. Code generation

context is formed by selecting variables that should be used to form the scope, however other strategies might also be used.

everything,” (P8) rather than requiring manual inclusion or exclu-
sion of parts of the code. Some participants valued having control
over what goes into code generation (e.g. P1, P6, and P7), but
those participants also had non-trivial knowledge of the under-
lying code-generating model. For instance, P1 “liked the idea of
selecting variables for the code generation.” This group suggested
explicit opt-in inclusion of particular cells (P1 and P6) and giving
priorities to certain gestures—such as library usage (P7)—might
be valuable. P6 and P13 said context-free suggestions (akin to a
search functionality) would be useful—echoing Barke et al. [4].

Some participants liked the Inline Cell design, as in Fig. 5, be-
cause it was familiar (P1, P4, P7, and P15) and immediate (P2) and
believed it would allow them to keep a consistent mental model of
the execution flow. However, P10 and P13 disliked Inline because
they believed that it cluttered the notebook and would make it hard
to keep track of interactions with the assistant. Others preferred
the Side-panel (Application), as in Fig. 6, because of the ability
to keep things separated. P5 noted that “I don’t like to mess with
my code...unless I’m sure” about the changes to it. P4, P5, and P13

noted that they tended to have large screens and so having a sep-
arate section of the notebook dedicated to interactions with code
assistants was a good use of that space. P4 analogized it to using
an integrated Google-like search functionality. However, some (e.g.
P2, P8, and P15) disliked the perceived ergonomics of needing
to split their attention between areas of the notebook. P14 and
P15 pointed to the Wizard design (Targeted Cell), as in Fig. 4,
as being valuable because of its locality. Others were averse to the
Wizard because of a dislike of popups: P3, P4, P7, and P12 felt

that it would “break my train of thoughts every time” (P4) or bring
them out of “the zone” (P7). Only P10, P11, and P14 brought up the
autocomplete style found in Copilot as being a desirable alternative
to the designs we presented—although P11 specifically noted that
he would prefer them to be used in conjunction, as they served
different purposes. For instance, P11 and P15 seemed to think of
creating visualizations as a different process than other forms of
coding, P15 noting that “it doesn’t add value to your final product,
like data wrangling [does].” This suggests that there are numerous
design opportunities to address tasks that users do not view as
central to their contribution to the work.

Many participants (P2,P4,P6,P8,P11,P13, andP15) noted that
their usage of a code assistant was not motivated by a desire to learn
or explore (although P11 and P14 espoused this view), but simply
increase their efficiency. This focus on efficiency is in tension with
some tasks at the heart of notebooks’ literate programming style.
One such example is data analysis, which may require alternating
modalities to investigate correctness, such as interacting with a
chart or spreadsheet to determine if a data manipulation has been
executed correctly. Features intended to support exploration may
be able to take greater liberties in their designs (which P3, P7, and
P11 noted about Fig. 7E’s summary view), while those focused on
acceleration require a shorter and less-noticeable interaction loop.

Evidently, not all designs will work for all users. It may be ben-
eficial to surface multiple places in the interface where the user
can interact with code assistants—akin to how spelling/grammar
checkers are often surfaced through both a triggerless [37] ambient
mode as well as a mode triggered from a menu.

On the Design of AI-powered Code Assistants for Notebooks CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 6: The Side-panel interface (Application) paradigm sits outside of the notebook flow. It provides a sandbox to explore

suggestions before dragging them in. Context is described explicitly by pinning cells or through code or natural language.

5.1.2 Feature Prominence. A paradox of interface design is how
to make something discoverable—and easy to remember—without
making it annoying. Demo or novelty-driven design can be helpful
for buy-in but can make interactions with those systems frustrating
in practice—as was the infamous case of Microsoft Clippy [15].

A recurring issue in the interviews related to how prominent
the controls for a coding assistant were. A feature that is too promi-
nent might be “irritating” (P15), while one that is too subtle will
be “undiscoverable” (P9) or unlearnable. A feature being prominent
means that it is more likely to be discovered but also potentially that
it will be disabled (P15). P3 valued prominence, noting it prompted
him “to pay attention to this new feature,” whereas features that do
not announce themselves may not get found. For instance, only
P1, P7, and P10 were aware of Copilot’s alternatives menu [26].
P9 noted that he preferred the Inline design because it was easier
to discover compared to the Wizard or Side-panel (an advantage
shared by triggerless initiations [37]), whereas P4 noted that he
preferred the Side-panel because it could more easily be ignored
when it was not relevant. Yet, triggerless systems are not appro-
priate solutions for all cases: P11 commented about Copilot that it
was “frustrating for me to kind of say, like, No, I don’t want this right,
because it kept on trying to auto guess”—a position also shared by
P13. UIs that abuse triggerless or eager presentation may poison
the well for users. For instance, P15 noted that every time “I see an
attempt from an interface to help me, I just disable it,” having had
negative previous experiences. P7 and P15 suggested that inter-
faces that may sometimes be annoying (referring to Fig. 7C’s diff
view and Fig. 8C’s token-confidence view) might be more usefully
shown on demand rather than all of the time, that is, as lenses—
echoing Kery et al.’s [41] recommendations for debugging or history

tasks in notebooks. This style of lightweight opt-in feature may be
useful, however, this may make that feature all but invisible. We
suggest then that navigating the tension between being polite [89]
(by respecting user agency) and promoting usage (such as finding
opportunities for usage that could be missed otherwise) is central
to the design of effective code assistants.

Familiarity with and novelty of particular features were power-
ful factors in participants’ expected usage patterns. P9 discovered
the snippet search functionality in his editor by using a search
engine to investigate if “there is anything like [snippet search] by
PyCharm?” Jayagopal et al. [37] note that this is a factor for novices,
but the presence of such concerns among our participants suggests
it may be more universal among notebook users. For instance, P6
noted that his use of Token-confidence displays (Fig. 8C) in a past
project biased him toward them. P5 liked the output-only (Fig. 7A)
displays because they reminded her of related features in Excel.
Such expectations are closely informed by the vocabulary of fea-
tures found in other notebooks (cf. Sec. 5.2.3). The summary view
feature (Fig. 7E) was sometimes viewed as intriguing (e.g. P2 and
P3), however, that may be due to novelty. Novelty and breaking
expectations in surprising ways can be beneficial and lead to magi-
cal feeling experiences—although, as prior studies on Copilot have
shown, the magnitude of this improvement may be overestimated
by end-users [35, 84]. Participants observed that novelty can have
value (in that it can provide an incentive to explore or interact with
a feature), but the “value of [the feature] has to outweigh the novelty”
(P11). We suggest that, as with humor [86], expectation can be sub-
verted to useful and surprising effect, however, such manipulations
can be seen as annoying and lead to feature disuse.

CHI ’23, April 23–28, 2023, Hamburg, Germany McNutt et al.

Figure 7: We presented a variety of options for disambigua-

tion covering combinations of Code, Effect, and Summary

strategies. These options could be applied to other styles be-

sides Inline (as here), such as Fig. 4 or Fig. 6.

5.2 Relationship with surroundings

Notebooks do not exist as solitary objects. They serve a broad range
of purposes, including exploration and experimentation (P4, P7,
and P9), an environment for development before formalization
into a script or pipeline (P4), presentation or report (P3 and P13),
as well as both shared (P5 and P7) and solitary objects (P2, P6,
and P8). We found that being situated in such usages informs the
desired UI affordances, such as for contextualization in general and
domain-specific enhancements particularly.

5.2.1 Provenance. Participants did not view documentation of in-
teraction with code assistants (Provenance) as important. For
instance, P1, P2, P4, P5, P8, P9, P10, P11, P12, and P15 noted
that they only cared about the quality of the output and not how it
was achieved, with some participants (P3, P5, P6, P8, P9, P11, and
P13) adding that data science is an output-driven discipline. P13
noted that data scientists “spend more time thinking about insights,
thinking about strategies, rather than thinking about how to code,”
highlighting that tasks like documenting code provenance are not
seen as essential to their role.

Figure 8: The four designs presented to participants in our

study for adapting code generated by an assistant to the task

or domain.

Some participants viewed our documentation designs as only
useful in untrusted situations (P2, P5, P8, and P13), which were
uncommon in their work. For instance, P2, P5, P7, P11, and P13

noted that they trusted any notebooks presented to them by a
colleague and thus would not need to audit the code’s origin.

P1, P4, P5, and P13 compared documentation of code gener-
ation as being similar to including attribution to Stack Overflow
posts from which they may have copy-pasted code. P1 observed
that “Stack Overflow is like a really slow coding assistant”. Most
participants did not attribute code gathered from other sources
because they did not view it as something worth documenting—
unless it was particularly unusual code or they might not have been
expected to know it (P14). P8 and P15 expressed skepticism for
the utility of any attribution at all, with P8 questioning “What is
human’s memory and creativity? How did you know whatever you
write is even your original thing or if it exists somewhere else?” These
reservations agree with prior observations [22] that data scientists
tend not to see code as a deliverable.

While hesitancy about documentation may be surprising—in
light of the well-known [41, 80, 91] and well-discussed (P1, P2, P4,
P7, and P8) literate programming paradigm in which notebooks
operate— this disinterest seems to suggest that there are different
categories of work in notebooks: that which is meaningful to the
deliverable and that which is only necessary for its construction.
For instance, P9 suggested that documentation of interactions with
code assistants would be something akin to recording or publishing
the undo/redo stacks associated with typing. Prior work [4, 81]
suggests that documentation of interactions with code assistants is
not seen as valuable, and we extend this to suggest that it may be
beneficial to specifically align the design of code assistants so that
they fall into the category of work that is not viewed as significant
to document because, by being ignorable, they can more easily
become commonplace—as is the case with spell checkers. That is,
they should be treated like a ghostwriter.

On the Design of AI-powered Code Assistants for Notebooks CHI ’23, April 23–28, 2023, Hamburg, Germany

5.2.2 Search. It has been argued that integration of search with
code suggestions improves the facilities of code assistants. For
instance, Xu et al. [94] found that code search enabled different
categories of tasks, such that users employed search for larger
or more complex pieces of code and synthesis for small simple
modifications. Similarly, prior work has explored integrating search
into IDEs [11], as well as more specifically in notebooks [49, 50].

Our participants (e.g. P4, P6, P8, P13, and P14) espoused a
similar set of desires, describing that code search may be a valuable
addition to code assistants. This is in line with how some users
already expect to use code assistants [81], for instance, P4 noted
that he already tended to think of Copilot as a search system. P9
spoke at length about the value of being able to search against
a fixed library of snippets—although this library also might be
usefully made malleable. For instance, P13 wanted to be able to
save snippets (such as her preferred manner of cleaning categorical
data) and have them be suggested later. P8 and P14 wanted to be
able to access elements that were outside of the model’s training
data, such as code written by their teammates or others within their
organization, but have it still be adapted to context rather than
shown in a decontextualized way. As P3 noted that “if I know my
code is going to be shared across the team, I usually tend to write a lot of
comments” (echoing prior work [22]), code search with automated
integration may reduce the need for manual documentation.

Yet search alone was not sufficient: it seems that it is necessary to
also provide context or reasoning for code suggestions. For instance,
P5 desired that context should be integrated into each suggestion,
such as through library documentation. P9 suggested a similar
desire for “documentation for each [of the suggestions], then you
can look into it like, what are the pros and cons of it.” P2 and P5

desired a way to see what parts of the training data influenced
each code suggestion to get a better understanding of how that
code was used—a feature commercialized in CodeWhisperer [2].
Prior work [78, 84] also has recommended library documentation
be included as part of code recommendation, which is an instance
of the Human-AI guideline that systems should “make clear why
the system did what it did” [3].

We suggest that integration of both search and documentation
into code assistants is valuable as it can help users find code and
validate it. We note that these contextualizations (or similarModel
Metadata) may increase automation biases [84] and move users
to be even less questioning [56] of suggestions.

5.2.3 Relationship to domain. Critical to any usage is the context
or domain in which that work is done. We identify several ways in
which knowledge of the domain might aid tool design.

We found that participants’ expectations were guided by the
makeup of the data science ecosystem. For instance, analysts of-
ten [22] conduct analyses in environments in which they do not
have full control, like Databricks, in order to use protected resources,
like Spark clusters. Such systems often provide their own variant
of notebooks with their own collection of UI affordances drawn
from a relatively limited vocabulary of allowed interface forms in
notebooks [45]. While P14 noted it can be easy enough to port
from one system to another, P13 commented that she uninstalled
Copilot after months of usage noting that “I don’t want to be too
reliant on it,” as it was not available in all of the environments

in which she needed to do work. A motivated user might adopt
new interaction forms specific to a particular environment, but,
as P15 argued, users whose key concern is efficiency may quickly
dismiss things they perceive as hampering their process. Thus code
assistants may be more likely to be adopted if they follow or are
in dialogue with familiar patterns. We suggest that it may be use-
ful to build code assistants that operate on a browser level rather
than a notebook level to take advantage of the necessity of moving
between browser-based notebook environments.

As code assistants generate code, it is natural to consider how
they relate to best practices and code styles. Some participants (P6,
P10, P13, and P15) thought that it would be better if assistants
adapted to their style and learned their preferred way of doing
things over time. In contrast, P14 noted that he would not want
a system to adapt to his style because “I don’t want to stay in the
bubble.” Similarly, P12 noted a preference to exert control over
“naming convention and those kinds of stuff.” Others (P5, P7, P8, P9,
and P11) thought that generated code should strive to follow best
practices and match the conventions of their team. P4 believed that
code assistants helped enforce and teach best practices more effec-
tively than traditional assistants such as linters or auto-formatters,
observing “for me, Copilot is just an evolution of these tools.” This is
related to Sarkar et al.’s [81] observation that some users believe
that Copilot helps with best practices. It may be useful to capitalize
on this expectation of offering best practices as a way to integrate
opinionated advice, although this should be done cautiously as
automation bias [84] may reinforce negative behaviors.

A feature of frequent interest (P1, P3, P5, P7, P9, and P10) was
a linter for notebooks. Such a system could assist with common
data science errors such as out-of-order execution (P1), side effects
(P10), and identify opportunities to convert frequently rerun cells
to functions (P5) in a manner analogous to how spell checkers offer
suggestions on grammar or usage errors. Notably, this typically
came up prior to discussion of Fig. 8A’s linter-style design for adap-
tation. A common observation was that code in notebooks tends
to be lower quality—“I guess I’m lazier when I’m using a notebook”
(P5)—suggesting that an ambient design intervention, like a linter,
agrees with typical usage patterns in notebooks. However, this UI
style can be seen as annoying if it does not provide consistent util-
ity: “sometimes linter just complains, it just says, too many lines or too
many variables within that function” (P7). In addition to providing
basic notebook usage hints (such as those highlighted by Rule et al.
[79]), it may be useful to support domain-specific practices such
as schema awareness (P1, P5, P12, and P14)—like highlighting
when a column does not exist on a dataframe or when a particu-
lar method is slow compared to a vectorized alternative—or best
practices local to data science—like ensuring that data fitting uses
a train-test split pattern. Domain-specific linters have been cre-
ated in other domains—including visualization [13, 57, 92], spread-
sheets [5], and ML data [34]—suggesting the value of lightweight
domain or medium-specific ambient assistants for data science in
notebooks. While not addressing every domain concern, such a
lightweight assistant may reduce the need to specifically adapt
more-powerful coding assistants to notebooks.

CHI ’23, April 23–28, 2023, Hamburg, Germany McNutt et al.

5.3 Role of trust and control

We found that the relationships that participants have or expect
to have with code assistants are closely mediated by their sense
of control—how they understand what it does and their ability
to accept or reject suggestions. These aspects are mediated by
perceived quality of output (including correctness and readability)
and knowledge (or perception) of the underlying model.

5.3.1 Points of control. The primary point where users can exert
agency in our specification-refinement loop is through gesture and
interpretation of output. P1 noted that “being in control of the code”
felt essential to trust in the tool.

We found that a critical point of control is the way that partici-
pants expected the assistant to integrate into their workflow. Barke
et al. [4] observed acceleration and exploration modes in Copilot
usage in which users either used it as a way to simply type more
quickly or to try to more generally understand how to do something.
Participants (e.g. P1, P2, P7, P8, P10, P14) believed they only used
assistants like Copilot to increase their efficiency (akin to advanced
autocomplete). Participants did not directly self-describe that they
used Copilot to explore alternatives, for instance, P8 noted that he
did not “because I don’t really trust it” to know uncommon functions
or libraries. P5 observed that type or syntax-based autocomplete
engines found in many editors are sufficient for exploration of li-
braries and function parameter values. Yet some participants did
seem to value the results of using code assistants for exploration.
For instance, P2, P4, and P9 described it as a way to help them
learn to do new things, while P6 and P14 observed that it helped
them learn new coding patterns. Our findings thus comport with
Barke et al. [4] regarding bimodal usage, however, our view of this
behavior is more limited as we only have participant self-reports
rather than direct observations.

Some participants wished to be able to control certain param-
eters (Model Metadata) about the assistant, such as “suggestion
length” (P8) or “adventurousness” (P1) (i.e. more exploratory or less
straightforward suggestions, akin to increasing the model temper-
ature). P12 expressed an interest in being able to swap between
models (Model-Agnostic) if he could see an automated report
of his use of each model, while P11 desired a toggle to indicate
whether or not the system should try to help learn rather than
merely complete the task. While this sort of configuration can be
valuable, many participants noted that it (and other presentations
of choices) can be overwhelming (P2, P7, P8, and P13). Hiding
these choices in an expert menu may reduce this burden, but it also
may cause those elements to remain undiscovered (Sec. 5.1.2), even
by those who might wish to use them.

Despite the seemingly static nature of code, its role as a compo-
nent of an editor is inherently dynamic and, in this context, involves
both reading and adaptation as points of control. For instance, P1
noted that he felt out of his control when he could not understand
generated code (e.g. when Copilot suggests hard-to-understand
one-liners). P3 expressed some hesitancy about generated code
more generally: “I’m not like somebody who can only read code. I
do write code and I do want to have the control.” Drosos et al. [21]
and Kery et al. [42] highlight the importance of synthesizing read-
able code in contexts like data wrangling, while Sarkar et al. [81]
make similar observations specifically related to Copilot. Following

Weisz et al. [88] some participants thought that code annotations
would help them better read and understand suggestions. For in-
stance, P5 noted that “reading someone else’s code is always harder”
and that design interventions such as those presented in the study
would “definitely be helpful to read [generated] code.” However, P3
and P9 thought annotations, such as diffs or Weisz et al.’s [88]
designs, would be distracting. Participants described a variety of
adaptation strategies, including rewriting the prompt (or just con-
tinuing to type in the case of triggerless systems like Copilot), fixing
the output (following Barke et al.’s [4] accept-validate-repair se-
quence), or simply completing the task manually—although the
use of these strategies was mediated by experience with the lan-
guage (P5) and estimated time to fix the errors (P4 and P12). Our
interviews explored design interventions that might augment these
strategies, although participants were divided on which particular
flavor would be valuable. For instance, P1, P4, and P10 liked the
Snippet skeleton approach because it felt like they were able to
exert agency over boilerplate, with P4 noting that “For me, the code
skeleton is the best one because you are being transparent and honest.”
P5 and P13 liked the linter-style approach because it was familiar
from other programming contexts. P9 found numeric representa-
tions of confidence to be confusing (as in Fig. 8C’s token-confidence
view), noting that “that’s not useful to me. For me, it’s either 100%
or zero.” This potentially disagrees with prior work, which found
that numeric heuristics as being associated with algorithmic intelli-
gence [51]—although this may be due to our participant population,
data scientists, who may have higher computational literacy than
other groups. We suggest that effective code annotation in this con-
text should either be ambient (ignorable unless needed) or provide
value for active interaction (as a dedicated input mechanism).

5.3.2 The effects of knowledge. We observed that the process of
understanding the capabilities of a code assistant is one of forming a
relationship. Participants with prior relationships with such models
bring with them expectations that in turn inform their usage.

Participants with experience with LLMs claimed that they would
be tolerant of bad answers. P8 and P14 noted Copilot was only use-
ful for problems that were well represented in the training data. P8
highlighted them as being limited to popular APIs (such as NumPy
or pandas) and that more esoteric topics or APIs that change rapidly
tend to induce incorrect results when using Copilot—a point also
noted by Sarkar et al. [81]. Similarly, P12 believed that “I can toler-
ate its wrong answer. But I may generalize the type of mistake that it
makes, like, for example, if it’s bad at generating graphs.” Participants
with a less clear understanding of the systems underlying Copilot
believed their reactions to poor performance would be more severe,
noting that after two or three bad suggestions that would probably
turn it off (P3, P9, P11, and P15) or “if it’s not too overbearing, I
might just ignore it” (P5)—highlighting the potential advantages of
polite triggerless designs. It seems that these first impressions are
an important part of developing the working relationship with the
assistant: if value or trust is not clearly established either through
preexisting assumptions or early behavior, then users may be un-
likely to continue to try to use it.

Yildirim et al. [96] note that if designers have at least a limited
understanding of what AI can do, they are better able to use it as
a design material. Lau [46] highlights a similar guideline in the

On the Design of AI-powered Code Assistants for Notebooks CHI ’23, April 23–28, 2023, Hamburg, Germany

design of effective synthesis tools. Ferdowsifard et al. [23] observe
the “user-synth gap” in which it is not clear what the synthesizer
can produce, which can cause an impedance mismatch between
user behavior and expectation, which is a case of the Human-AI
guideline [3] to clearly communicate system abilities. We suggest
that similar principles may apply to users of notebook-based code
assistants, as giving users a model of what is going on under the
hood will likely shape their approaches to understanding and using
generated code and affordances therein.

5.3.3 Verification. Even if a provided solution looks right, it may
need to be examined to ensure its correctness. Participants described
how the need for verification is tempered by how high stakes the
code is, how long it will take to run, and the perception of its quality.

In addition to code reading, participants also described employ-
ing strategies like consulting documentation as a way to verify
suggestion correctness. For instance, P6 noted that “I still Google
to verify its correctness” in cases when it would take multiple min-
utes to establish whether or not a system worked correctly. P8
noted “I mean, I always double-check” when using an uncommon
API, such as for creating ML pipelines. P2 and P14 desired validity
checks akin to popularity markers in other settings. Some noted
that having a low friction way to explore suggestions (as in Fig. 6’s
sandbox) before accepting them would enhance their trust in the
model: “I think it will make me feel more comfortable with...trying
out longer suggestions and accepting it” (P8). P1 added that such
features “make me feel safer.” Others (P7, P9, and P10) felt that this
was unnecessary and could be achieved through normal cell usage.

A common means of verification explored in our interviews was
through the exploration of alternative suggestions (i.e. Code or
Effects disambiguation). This allowed them to explore variations
on different approaches to different tasks, such as visualization or
particular activities like identifying “different ways to connect to the
blob,” (P9) and in doing so verify the output of the assistant. Valuing
browsing agrees with prior observations of Copilot users [4] and
notebook users more generally [50], in that foraging can lead to
the discovery of new functionality or ways of doing things. Among
the designs we presented to facilitate this type of task, participants
mostly preferred the Code and Output (Fig. 7D) for both visualiza-
tion tasks as well as other situations, noting that it allowed them
to “be your own audit” (P1) by checking code and output as task
required. P5 noted that it was valuable because it reminded her
of Excel’s chart chooser feature. P10 and P14 worried about the
computational resources required to generate alternatives and sug-
gested a hybrid “à la carte” execution mode in which only selected
options were run. While trust in a system was noted (P2 and P6) as
being mediated by how fast it could supply an answer, P6 and P10
noted that if the system would produce high-quality charts, they
would wait multiple minutes. The Token-alternatives design from
Weisz et al. [88] was seen as a valuable mechanism for disambigua-
tion. P12 noted that it allowed them to apply “minimum mental
effort at learning to make adjustments” to the generated code, and
P5 added that they are “super useful if I wanted to explore things.”
P11 suggested that it would be helpful to have documentation inte-
grated with the alternatives. This suggests that multiple modalities
of disambiguation may be valuable for both acceleration tasks (as

in the relatively lightweight Token-alternatives) as well as explo-
ration tasks (as in the heavier weight Code and Output). Providing
means of verification integrated into the process of code generation
(such as Effect previews) may shorten the accept-validate-repair
sequence [4], particularly when tuned to different usage modes.

6 DISCUSSION

In this paper, we explored the design space of interfaces for AI-
powered code assistants in notebooks. To do so we investigated the
design space of this style of tool through an analysis of preexisting
systems that support code generation in notebooks. We sought
to understand perceptions of several key elements in this space
(context, disambiguation, adaptation, and documentation) for a
realistic user population of notebooks. This led us to conduct a
semi-structured interview study with 15 professional data scientists.

Through this work, we delineated guidance for designers of
future systems in this space, which we summarize in Table 1. Partic-
ipants were unanimously enthusiastic about adapting Copilot-style
code assistants to the notebook domain. While not every design
was to every participant’s taste, it seems that there is ample space
to introduce new valuable designs in addition to the Ambient style
of Copilot. We suggest, to this end, that the most fruitful ground in
this regard lies in creating systems that are specific to a domain task
or those tasks things that users do not view as core to their work.
For instance, writing code that is well formatted or follows best
practices, or making visualizations. Within such tasks, disambigua-
tion seems to be an especially powerful means by which to exert
control over notebook-based assistants. This may be because the
execution loop in which notebooks operate closely mirrors that of
the specification-refinement loop. We suggest that navigating these
elements in a polite [89] and non-irritating manner is essential for
assistant adoption. Ambient interfaces offer a low-friction way to
provide recommendations; however, their generality can lead to
opaque usage and a lack of domain specificity. If such issues are
key, then a more explicit design is preferable.

6.1 Limitations and Generalizability

As with any study, our studies have limitations that affect their
generalizability.

Our design space and interview studies are limited by their pred-
ication on design paradigms used in Jupyter and similar ecosystems.
While these patterns are quite common [45] (and have been stable
for at least a decade), we do not utilize their ubiquity and common-
alities with other systems to generalize beyond code assistants in
notebooks. While some of our observations may be aligned with
other domains (such as assistants in IDEs), we emphasize that our
findings are local to notebooks, as investigation of another interface
may have led to different findings.

Our design space was limited by our exclusion of search-based
systems. Despite their relevance and long history [52], they fell
outside of our focus on systems that generate code. While Sarkar
et al. [81] found generative models are sometimes viewed as be-
ing similar to search, they also found that diverge in key ways,
such as how search yields mixed-media, while generation gives
fixed-media. Future work should investigate the similarities and
differences between expected interface affordances between search

CHI ’23, April 23–28, 2023, Hamburg, Germany McNutt et al.

Table 1: Takeaways from our interviews. While some elements are always valuable (e.g. polite interfaces [89]), these findings

are only grounded in code assistants for computational notebook-based for data science tasks.

Politeness

1. Code assistants should be designed so that they are treated as ghostwriters (Sec. 5.2.1)
2. Assumption of best practices enforcement can be used to provide opinionated guidance (Sec. 5.2.3)
3. Code annotation should be ambient or provide value for active interaction (Sec. 5.3.1)

Notebook

Patterns

4. Surfacing multiple ways to control context is useful—Ambient alone is likely insufficient (Sec. 5.1.1)
5. Expectation can be subverted to useful and surprising effects (Sec. 5.1.2)
6. Following familiar notebook UI patterns is important for adoption (Sec. 5.2.3)

Code

Assistant

Patterns

7. Integration of search and docs is valuable, but code provenance is not—No History (Sec. 5.2.2)
8. Task (or medium)-specific assistants for data science in notebooks are valuable (Sec. 5.2.3)
9. Knowledge of the underlying model changes expectations and required affordances (Sec. 5.3.2)
10. Tools like disambiguation (e.g. via Code and Effects) can aid the specification-refinement loop (Sec. 5.3.3)

and generation, so as to better understand how those interaction
forms might be more effectively blended [94].

The slide-based prototypes advantageously allowed for explo-
ration of many different designs but lacked the concreteness of inter-
active prototypes, which may have elicited different responses had
we used them instead. For instance, some participants (Sec. 5.1.2)
discussed how annoying a given feature might be and speculated
on how that would affect their usage. While user perception of
utility can be elucidative of their actual behavior (per the Tech-
nology Acceptance Model [17]), it is not necessarily reflective of
their real-world usage. We sought to address this issue by requiring
that our study population have previously used a code assistant
so that they could draw on their real-world experiences to shape
their expectations of code assistants. However this measure can
only approximate real-world usage, and future work should study
the experience of interacting with similar designs in live implemen-
tations. Similarly, the simplicity of the tasks presented may have
limited the types of responses and a more complex task type may
have elicited other responses. While a number of respondents (e.g.
P1, P4, P6, P8, P9, P11, and P14) reflected on their experiences
using AI assistance for complex tasks and how the presented design
might interact with those tasks (covering topics such as modeling,
data pipeline creation, and other NLP tasks), future work might
usefully explore the perceptions of our design space in the context
of more nuanced tasks. Our slides may have caused participants
to be overly optimistic about our designs, such as the common
out-of-order execution issues found in computational notebooks—
although this was not always the case, for instance P14 worried
about the bugs that might be introduced by the sandbox in Fig. 6.
Further, the consistent order in which we presented designs may
have biased participant responses, however, we believe this effect
is limited, given the minimal agreement on preferred features.

While work in notebooks is sometimes seen as synonymous
with data science (P13), this is not always the case. Our interviews
focused only on a single type of user which may impede the trans-
ferability of our findings to other tasks or categories of work. Users
who mostly complete engineering (a divergence noted by P8) or
creative tasks likely have different usage patterns. Future work
should investigate the beliefs and expectations of other user types.

6.2 Future work

Notebooks are but a single medium among a vast array of other
areas of application. For instance, how code generation should be
adapted to end-user tools, like spreadsheets, is an important open
question. Ragavan et al. [72] explored weaving natural language
prompts into spreadsheets, finding that they can be successfully
used by spreadsheet users, suggesting the value of studying such
intersections. Other important application areas that balance graph-
ical and textual specifications (to different proportions) include
creative coding systems [70], low-code analytics environments that
interweave graphical components with analytics queries (such as
visual analytics systems like PowerBI or Ivy [55]), as well as sys-
tems that preference graphical representations, such as block-based
systems (e.g. Scratch [75]).

Our interview study considered design probes that investigated
a limited cross-section of the large number of possibilities described
by our design space. Future work might consider the design permu-
tations implied therein. This might usefully involve explorations
about the role of Nonlinear input systems, such as the code-
generating spreadsheets of Mito [19], or bidirectionally synchro-
nized projectional-editors to handle thorny interface tasks, such
as visualization annotation. Further, it may be advantageous to
consider code assistants who only output metadata, such as code
explanations.

The space of possible functionality available to assistants in note-
books is vast. The mixture of code, data, and graphics presented
interactively offers a rich space of opportunities in which an as-
sistant might be usefully interwoven. As code assistants continue
to become more powerful, we highlight that careful adaptation to
computing environments is critical, as is paying attention to the
space of available design alternatives—particularly concerning con-
text control and disambiguation. Models powering these assistants
might usefully be designed with the end-user interface in mind,
and facilitate features like search, context-free suggestions, recom-
mendation explanations, and lightweight configuration so that they
might be tuned to task on the fly.

ACKNOWLEDGMENTS

We thank our anonymous reviewers and our study participants.
In addition we thank Christian Bird, Thomas Zimmermann, Elsie
Lee-Robbins, as well as the Microsoft Research VIDA and EPIC
teams as a whole for their useful advice and support.

On the Design of AI-powered Code Assistants for Notebooks CHI ’23, April 23–28, 2023, Hamburg, Germany

REFERENCES

[1] 2001. History of code completion. https://web.archive.org/web/20220302082225/
https://groups.google.com/g/comp.compilers/c/fJHahKDCNGg?pli=1. Accessed
11/11/22.

[2] Amazon. 2022. Amazon CodeWhisperer Features.
https://aws.amazon.com/codewhisperer/features/. Accessed 8/16/22.

[3] Saleema Amershi, Daniel S. Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi T. Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-AI
Interaction. In Conference on Human Factors in Computing Systems (CHI). ACM,
3.

[4] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2022. Grounded
Copilot: How Programmers Interact with Code-GeneratingModels. arXiv preprint
arXiv:2206.15000 (2022).

[5] Daniel W Barowy, Emery D Berger, and Benjamin Zorn. 2018. ExceLint: automati-
cally finding spreadsheet formula errors. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1–26.

[6] Rohan Bavishi, Shadaj Laddad, Hiroaki Yoshida, Mukul R Prasad, and Koushik
Sen. 2021. VizSmith: Automated Visualization Synthesis by Mining Data-Science
Notebooks. In IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). IEEE, 129–141.

[7] Rohan Bavishi, Caroline Lemieux, Koushik Sen, and Ion Stoica. 2021. Gauss: pro-
gram synthesis by reasoning over graphs. Proceedings of the ACM on Programming
Languages 5, OOPSLA (2021), 1–29.

[8] Michel Beaudouin-Lafon. 2004. Designing interaction, not interfaces. In Proceed-
ings of the Working Conference on Advanced Visual Interfaces (AVI). 15–22.

[9] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models
Be Too Big?. In Proceedings of the ACM Conference on Fairness, Accountability,
and Transparency. 610–623.

[10] Alan Blackwell and Thomas Green. 2003. Notational Systems–the Cognitive
Dimensions of Notations Framework. HCI Models, Theories, And Frameworks:
Toward An Interdisciplinary Science. Morgan Kaufmann (2003).

[11] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. 2010.
Example-centric programming: integrating web search into the development
environment. In Conference on Human Factors in Computing Systems (CHI). 513–
522.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Bal-
aji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan
Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
2021. Evaluating Large Language Models Trained on Code. (2021). https:
//arxiv.org/abs/2107.03374

[13] Qing Chen, Fuling Sun, Xinyue Xu, Zui Chen, Jiazhe Wang, and Nan Cao. 2021.
Vizlinter: A linter and fixer framework for data visualization. IEEE Transactions
on Visualization and Computer Graphics 28, 1 (2021), 206–216.

[14] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman. 2021. Training Verifiers to
Solve Math Word Problems. (2021). https://arxiv.org/abs/2110.14168

[15] Michael Correll. 2021. The Clippy-ization of Human-Computer De-
sign. https://mcorrell.medium.com/the-clippy-ization-of-human-computer-
design-c66e8042de88

[16] Anamaria Crisan, Brittany Fiore-Gartland, and Melanie Tory. 2020. Passing the
data baton: A retrospective analysis on data science work and workers. IEEE
Transactions on Visualization and Computer Graphics 27, 2 (2020), 1860–1870.

[17] Fred D Davis. 1989. Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly (1989), 319–340.

[18] Robert A DeLine. 2021. Glinda: Supporting data science with live program-
ming, GUIs and a Domain-specific Language. In Conference on Human Factors in
Computing Systems (CHI). 1–11.

[19] Jacob Diamond-Reivich. 2020. Mito: Edit a Spreadsheet. Generate Production
Ready Python.. In LIVE: Workshop on Live Programming.

[20] Brendan Dolan-Gavitt. 2022. FauxPilot - an open-source GitHub Copilot server.
https://github.com/moyix/fauxpilot. Accessed 9/7/22.

[21] Ian Drosos, Titus Barik, Philip J Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A unified programming-by-example interaction for synthesizing readable
code for data scientists. In Conference on Human Factors in Computing Systems
(CHI). 1–12.

[22] Will Epperson, April Yi Wang, Robert DeLine, and Steven M Drucker. 2022.
Strategies for Reuse and Sharing among Data Scientists in Software Teams.
International Conference on Software Engineering (ICSE) (2022).

[23] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia
Polikarpova. 2020. Small-step live programming by example. In ACM Symposium
on User Interface Software and Technology (UIST). 614–626.

[24] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv:2204.05999 (2022).

[25] GitHub. 2022. GitHub Copilot. https://github.com/features/copilot. Accessed
6/30/22.

[26] GitHub. 2022. Seeing multiple suggestions in a new tab.
https://docs.github.com/en/copilot/getting-started-with-github-copilot/getting-
started-with-github-copilot-in-visual-studio-code#seeing-multiple-suggestions-
in-a-new-tab. Accessed 9/7/22.

[27] Luca Di Grazia and Michael Pradel. 2022. Code search: A survey of techniques
for finding code. ACM Computing Surveys (CSUR) (2022).

[28] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. ACM SIGPLAN Notices 46, 1 (2011), 317–330.

[29] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1–119.

[30] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Conference on Human
Factors in Computing Systems (CHI). 1–12.

[31] Brian Hempel and Ravi Chugh. 2022. Maniposynth: Bimodal Tangible Functional
Programming. In European Conference on Object-Oriented Programming (ECOOP
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[32] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-sketch: Output-
directed programming for SVG. In ACM Symposium on User Interface Software
and Technology (UIST). 281–292.

[33] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Conference
on Human Factors in Computing Systems (CHI). 159–166.

[34] Nick Hynes, D Sculley, and Michael Terry. 2017. The data linter: Lightweight,
automated sanity checking for ml data sets. In NIPS MLSys Workshop, Vol. 1.

[35] Saki Imai. 2022. Is GitHub Copilot a Substitute for Human Pair-programming?
An Empirical Study. In International Conference on Software Engineering (ICSE).
IEEE, 319–321.

[36] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jigsaw: large lan-
guage models meet program synthesis. In International Conference on Software
Engineering (ICSE). IEEE, 1219–1231.

[37] Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins. 2022. Exploring the Learn-
ability of Program Synthesizers by Novice Programmers. In ACM Symposium on
User Interface Software and Technology (UIST).

[38] Ellen Jiang, Edwin Toh, Alejandra Molina, Aaron Donsbach, Carrie J Cai, and
Michael Terry. 2021. Genline and genform: Two tools for interacting with gen-
erative language models in a code editor. In ACM Symposium on User Interface
Software and Technology (UIST). 145–147.

[39] Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J Cai, and Michael Terry. 2022. Discovering the Syntax and
Strategies of Natural Language Programming with Generative Language Models.
In Conference on Human Factors in Computing Systems (CHI). 1–19.

[40] Mary Beth Kery, Amber Horvath, and Brad A. Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In CHI Conference on Human Factors
in Computing Systems. ACM, 1265–1276.

[41] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A
Myers. 2018. The story in the notebook: Exploratory data science using a literate
programming tool. In Conference on Human Factors in Computing Systems (CHI).
1–11.

[42] Mary Beth Kery, Donghao Ren, FredHohman, DominikMoritz, KanitWongsupha-
sawat, and Kayur Patel. 2020. mage: Fluid moves between code and graphical
work in computational notebooks. In ACM Symposium on User Interface Software
and Technology (UIST). 140–151.

[43] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2017.
Data scientists in software teams: State of the art and challenges. IEEE Transac-
tions on Software Engineering 44, 11 (2017), 1024–1038.

[44] 8080 Labs. 2022. bamboolib. https://bamboolib.8080labs.com/. Accessed 7/20/22.
[45] Sam Lau, Ian Drosos, Julia M Markel, and Philip J Guo. 2020. The design space of

computational notebooks: An analysis of 60 systems in academia and industry. In
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 1–11.

[46] Tessa Lau. 2008. Why PBD systems fail: Lessons learned for usable AI. In CHI
2008 Workshop on Usable AI. 65–67.

[47] Doris Jung Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,
Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, and
Aditya G. Parameswaran. 2021. Lux: Always-on Visualization Recommendations
for Exploratory Dataframe Workflows. Proc. VLDB Endow. 15, 3 (2021), 727–738.

[48] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M Mitchell, and Brad A Myers.
2020. Multi-modal repairs of conversational breakdowns in task-oriented dialogs.

https://web.archive.org/web/20220302082225/https://groups.google.com/g/comp.compilers/c/fJHahKDCNGg?pli=1
https://web.archive.org/web/20220302082225/https://groups.google.com/g/comp.compilers/c/fJHahKDCNGg?pli=1
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://mcorrell.medium.com/the-clippy-ization-of-human-computer-design-c66e8042de88
https://mcorrell.medium.com/the-clippy-ization-of-human-computer-design-c66e8042de88

CHI ’23, April 23–28, 2023, Hamburg, Germany McNutt et al.

In ACM Symposium on User Interface Software and Technology (UIST). 1094–1107.
[49] Xingjun Li, Yuanxin Wang, Hong Wang, Yang Wang, and Jian Zhao. 2021. NB-

Search: Semantic Search and Visual Exploration of Computational Notebooks. In
Conference on Human Factors in Computing Systems (CHI). 1–14.

[50] Xingjun Li, Yizhi Zhang, Justin Leung, Chengnian Sun, and Jian Zhao. 2021.
EDAssistant: Supporting Exploratory Data Analysis in Computational Notebooks
with In-Situ Code Search and Recommendation. arXiv:2112.07858 (2021).

[51] Q. Vera Liao and S. Shyam Sundar. 2022. Designing for Responsible Trust in AI
Systems: A Communication Perspective. In Conference on Fairness, Accountability,
and Transparency (FAccT). ACM, 1257–1268.

[52] Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John Grundy. 2021.
Opportunities and challenges in code search tools. ACM Computing Surveys
(CSUR) 54, 9 (2021), 1–40.

[53] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. 2015. User interac-
tion models for disambiguation in programming by example. In Proceedings of
the ACM Symposium on User Interface Software & Technology. 291–301.

[54] Barry McCardel. 2022. Hex Blog: Introducing: “No-Code” Cells.
https://hex.tech/blog/introducing-no-code-cells. Accessed 8/16/22.

[55] Andrew McNutt and Ravi Chugh. 2021. Integrated Visualization Editing Via Pa-
rameterized Declarative Templates. In Conference on Human Factors in Computing
Systems (CHI). 1–14.

[56] Andrew McNutt, Anamaria Crisan, and Michael Correll. 2020. Divining Insights:
Visual Analytics Through Cartomancy. In Extended Abstracts of the Conference
on Human Factors in Computing Systems (CHI). 1–16.

[57] Andrew McNutt, Gordon Kindlmann, and Michael Correll. 2020. Surfacing
Visualization Mirages. Conference on Human Factors in Computing Systems
(2020).

[58] Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. 2020. Bacatá:
Notebooks for DSLs, Almost for Free. In International Conference on Art, Science,
And Engineering. ACM.

[59] Microsoft. 2022. IntelliSense. https://code.visualstudio.com/docs/editor/intellisense.
Accessed 11/9/22.

[60] Microsoft. 2022. Use AutoComplete when entering formulas.
https://web.archive.org/web/20221005003956/https://support.microsoft.com/en-
us/office/use-autocomplete-when-entering-formulas-d51ef125-60ff-438f-ba26-
d9bd6b363bbe. Accessed 11/11/22.

[61] MathewMooty, Andrew Faulring, Jeffrey Stylos, and Brad A. Myers. 2010. Calcite:
Completing Code Completion for Constructors Using Crowds. In IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC. IEEE Computer
Society, 15–22. https:///10.1109/VLHCC.2010.12

[62] Tamara Munzner. 2022. Developing Design Spaces for Visualization. (2022).
https://hci.stanford.edu/courses/cs547/speaker.php?date=2022-03-04 Stanford
Human-Computer Interaction Seminar.

[63] Minori Narita, Nolwenn Maudet, Yi Lu, and Takeo Igarashi. 2021. Data-centric
disambiguation for data transformation with programming-by-example. In Inter-
national Conference on Intelligent User Interfaces (IUI). 454–463.

[64] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. A conversational paradigm for program
synthesis. arXiv preprint arXiv:2203.13474 (2022).

[65] Observable. 2022. Data table cell. https://observablehq.com/@observablehq/data-
table-cell. Accessed 7/20/22.

[66] Cyrus Omar, Young Seok Yoon, Thomas D LaToza, and Brad A Myers. 2012.
Active Code Completion. In International Conference on Software Engineering
(ICSE). IEEE, 859–869.

[67] Stephen Oney and Joel Brandt. 2012. Codelets: linking interactive documentation
and example code in the editor. In Conference on Human Factors in Computing
Systems (CHI). 2697–2706.

[68] OpenAI. 2022. GPT-3. https://openai.com/api/. Accessed 6/30/22.
[69] Michael Quinn Patton. 1990. Qualitative evaluation and research methods. SAGE

Publications, inc.
[70] Kylie Peppler and Yasmin Kafai. 2005. Creative coding: Programming for personal

expression. Retrieved August 30, 2008 (2005), 314.
[71] Fernando Pérez and Brian E Granger. 2007. IPython: a system for interactive

scientific computing. Computing in science & engineering 9, 3 (2007), 21–29.
[72] Sruti Srinivasa Ragavan, Zhitao Hou, Yun Wang, Andrew D. Gordon, Haidong

Zhang, and Dongmei Zhang. 2022. GridBook: Natural Language Formulas for
the Spreadsheet Grid. In International Conference on Intelligent User Interfaces
(IUI). ACM, 345–368.

[73] Deepthi Raghunandan, Zhe Cui, Kartik Krishnan, Segen Tirfe, Shenzhi Shi, Te-
jaswi Darshan Shrestha, Leilani Battle, and Niklas Elmqvist. 2021. Lodestar:
Supporting Independent Learning and Rapid Experimentation Through Data-
Driven Analysis Recommendations. Visualization in Data Science Workshop
(2021).

[74] Steven P Reiss. 2014. Seeking the User Interface. In ACM/IEEE International
Conference on Automated Software Engineering. 103–114.

[75] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian

Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67.

[76] Laria Reynolds and KyleMcDonell. 2021. Prompt programming for large language
models: Beyond the few-shot paradigm. In Extended Abstracts of the Conference
on Human Factors in Computing Systems (CHI). 1–7.

[77] Horst W Rittel and Melvin MWebber. 1974. Wicked problems. Man-made Futures
26, 1 (1974), 272–280.

[78] Xin Rong, Shiyan Yan, Stephen Oney, Mira Dontcheva, and Eytan Adar. 2016.
Codemend: Assisting interactive programming with bimodal embedding. In ACM
Symposium on User Interface Software and Technology (UIST). 247–258.

[79] Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-Cheng
Huang, Rob Knight, Niema Moshiri, Mai H. Nguyen, Sara Brin Rosenthal, Fer-
nando Pérez, and Peter W. Rose. 2019. Ten simple rules for writing and sharing
computational analyses in Jupyter Notebooks. PLoS Computational Biology 15, 7
(2019).

[80] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and explana-
tion in computational notebooks. In Conference on Human Factors in Computing
Systems (CHI). 1–12.

[81] Advait Sarkar, Andrew D. Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-
vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial
intelligence?. In Psychology of Programming Interest Group (PPIG 2022).

[82] Hendrik Strobelt, Albert Webson, Victor Sanh, Benjamin Hoover, Johanna Beyer,
Hanspeter Pfister, and Alexander M. Rush. 2023. Interactive and Visual Prompt
Engineering for Ad-hoc Task Adaptation with Large Language Models. IEEE
Transactions on Visualization and Computer Graphics 29, 1 (2023), 1146–1156.

[83] Tabnine. 2022. Tabnine. https://www.tabnine.com/. Accessed 6/30/22.
[84] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation vs.

Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In ACM SIGCHI Conference on Human Factors in Computing
Systems Extended Abstracts. 1–7.

[85] April Yi Wang, Will Epperson, Robert A DeLine, and Steven M Drucker. 2022.
Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis. In
Conference on Human Factors in Computing Systems (CHI). 1–10.

[86] Caleb Warren, Adam Barsky, and A Peter McGraw. 2021. What makes things
funny? An integrative review of the antecedents of laughter and amusement.
Personality and Social Psychology Review 25, 1 (2021), 41–65.

[87] Nathaniel Weinman, Steven M Drucker, Titus Barik, and Robert DeLine. 2021.
Fork It: Supporting stateful alternatives in computational notebooks. In Confer-
ence on Human Factors in Computing Systems (CHI). 1–12.

[88] Justin D Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I Ross,
Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. 2021. Perfec-
tion not required? Human-AI partnerships in code translation. In International
Conference on Intelligent User Interfaces (IUI). 402–412.

[89] Brian Whitworth. 2005. Polite computing. Behaviour & Information Technology
24, 5 (2005), 353–363.

[90] Jack Williams and Andrew D Gordon. 2021. Where-Provenance for Bidirectional
Editing in Spreadsheets. In Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 1–10.

[91] Jo Wood, Alexander Kachkaev, and Jason Dykes. 2018. Design exposition with
literate visualization. IEEE Transactions on Visualization and Computer Graphics
25, 1 (2018), 759–768.

[92] Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. Ai chains: Transparent
and controllable human-ai interaction by chaining large language model prompts.
In Conference on Human Factors in Computing Systems (CHI). 1–22.

[93] Yifan Wu, Joseph M Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
code and interactive visualization in computational notebooks. In ACM Sympo-
sium on User Interface Software and Technology (UIST). 152–165.

[94] Frank F Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-ide code generation
from natural language: Promise and challenges. ACM Transactions on Software
Engineering and Methodology (TOSEM) 31, 2 (2022), 1–47.

[95] Yunwen Ye and Gerhard Fischer. 2005. Reuse-conducive development environ-
ments. Automated Software Engineering 12, 2 (2005), 199–235.

[96] Nur Yildirim, Alex Kass, Teresa Tung, Connor Upton, Donnacha Costello, Robert
Giusti, Sinem Lacin, Sara Lovic, James M. O’Neill, Rudi O’Reilly Meehan, Eoin Ó
Loideáin, Azzurra Pini, Medb Corcoran, Jeremiah Hayes, Diarmuid J. Cahalane,
Gaurav Shivhare, Luigi Castoro, Giovanni Caruso, Changhoon Oh, James Mc-
Cann, Jodi Forlizzi, and John Zimmerman. 2022. How Experienced Designers of
Enterprise Applications Engage AI as a Design Material. In Conference on Human
Factors in Computing Systems (CHI). ACM, 483:1–483:13.

[97] Hongyu Zhang, Anuj Jain, Gaurav Khandelwal, Chandrashekhar Kaushik, Scott
Ge, and Wenxiang Hu. 2016. Bing developer assistant: improving developer
productivity by recommending sample code. In ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 956–961.

[98] Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. In Proceedings of the SIGPLAN International
Symposium on Machine Programming. 21–29.

https:///10.1109/VLHCC.2010.12
https://hci.stanford.edu/courses/cs547/speaker.php?date=2022-03-04

On the Design of AI-powered Code Assistants for Notebooks CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 9: A gallery of the systems involved in our design space (section 3). Images are drawn from their relevant papers, with the

following exceptions. bamboolib: https://www.youtube.com/watch?v=Qni8kX4hSOM, hex: https://hex.tech/blog/introducing-

no-code-cells/, Copilot: https://docs.trymito.io/getting-started/overview-of-the-mitosheet, Lux: https://github.com/lux-org/

lux, Mito: https://docs.trymito.io/getting-started/overview-of-the-mitosheet, Observable Data Table: https://observablehq.

com/@observablehq/data-table-cell, and Tabnine: https://www.youtube.com/watch?v=twPtvZuBrAg The images in this figure

are intended to be zoomed into for closer exploration. Links accessed 11/11/22.

A APPENDIX

In this appendix, we provide additional figures that we were unable to fit in the main body of the text. In Fig. 9 we present a gallery of each
of the systems used in the design space analysis. In Fig. 10, Fig. 11, and Fig. 12 we show annotated versions of the stimuli that were presented
to study participants during our interview-design study covering code provenance enhancements.

https://www.youtube.com/watch?v=Qni8kX4hSOM
https://hex.tech/blog/introducing-no-code-cells/
https://hex.tech/blog/introducing-no-code-cells/
https://docs.trymito.io/getting-started/overview-of-the-mitosheet
https://github.com/lux-org/lux
https://github.com/lux-org/lux
https://docs.trymito.io/getting-started/overview-of-the-mitosheet
https://observablehq.com/@observablehq/data-table-cell
https://observablehq.com/@observablehq/data-table-cell
https://www.youtube.com/watch?v=twPtvZuBrAg

CHI ’23, April 23–28, 2023, Hamburg, Germany McNutt et al.

Figure 10: Our “save summary” button introduces a mechanism to save an automatically generated summary of the interac-

tions with a code assistant that led to a given piece of code.

Figure 11: Inline attribution identifies cells that contain code generated by a code assistant and provides information about

the interactions that created that code on demand.

Figure 12: Our explorable log design allowed users to browse a history of their interactions with code assistants in the current

notebook.

	Abstract
	1 Introduction
	2 Related Work
	3 Design Space
	3.1 The Design Space
	3.2 Model validation

	4 Interview study
	4.1 Methodology
	4.2 Study design

	5 Interview Study Analysis
	5.1 Role of UI Design
	5.2 Relationship with surroundings
	5.3 Role of trust and control

	6 Discussion
	6.1 Limitations and Generalizability
	6.2 Future work

	Acknowledgments
	References
	A Appendix

