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Figure 1: Given a map (of Chicago) with different zones and the narrative of a story as input, our approach automatically
distributes the story events to compatible locations and synthesizes a navigation graph to guide the players to go through
different story branches in augmented reality.

ABSTRACT
The recent popularity of augmented reality (AR) devices has en-
abled players to participate in interactive narratives through virtual
events and characters populated in a real-world environment, where
different actions may lead to different story branches. In this paper,
we propose a novel approach to adapt narratives to real spaces for
AR experiences. Our optimization-based approach automatically
assigns contextually compatible locations to story events, synthe-
sizing a navigation graph to guide players through different story
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branches while considering their walking experiences. We vali-
dated the effectiveness of our approach for adapting AR narratives
to different scenes through experiments and user studies.
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1 INTRODUCTION
Advances in augmented reality (AR) promise to change the way
people experience stories in the future. Instead of watching TV or

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544548.3580978
https://doi.org/10.1145/3544548.3580978
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3580978&domain=pdf&date_stamp=2023-04-19


CHI ’23, April 23–28, 2023, Hamburg, Germany Wanwan Li★, Changyang Li★, Minyoung Kim, Haikun Huang and Lap-Fai Yu

movies, people may participate in narratives to experience stories
delivered via AR in a real space. Such AR-based stories involves a
series of events where a player interacts with virtual characters and
objects at real-world locations. Depending on the player’s choices,
the player may go through different story branches, encountering
different events at different places.

Prior arts have investigated how to integrate virtual contents
in real environments considering low-level scene details, includ-
ing geometries [18, 41] and semantics [8, 10, 25, 33, 34, 36, 51]. As
for the problem of adapting narratives to real-world maps, which
needs to be addressed from a high-level perspective, a key chal-
lenge is that story events, which describe the characters involved
and the interaction with the characters, are often related to certain
contexts provided by the surroundings, and thus should happen
at contextually compatible real-world locations to deliver a mean-
ingful story. In recent years, there are rising research interests in
location-aware applications [3, 4], for which outdoor scenes are
especially important because they can accommodate larger-scale
narratives with varied environmental features in comparison to
indoor scenes. From a storytelling perspective, suppose a story
contains an event where the player comes across a virtual character
eating a sandwich. It would be natural for this event to happen in a
dining area rather than a parking lot. Conventional location-aware
AR creation requires developers to manually distribute story events
to real-world maps with the help of development tools (e.g., ARKit 1,
ARCore 2), and thus needs intensive labor work. Furthermore, addi-
tional rounds of manual creations are needed to retarget the same
story to different real environments. As players may be situated all
over the world and may have different storytelling preferences, it
is difficult for designers to adapt the same story to accommodate
the different real environments and preferences of diverse players
in a scalable manner.

To resolve this challenge, we propose an automatic approach
to adapt interactive narratives to real-world maps by considering
location compatibility (i.e. how compatible it is to assign specific
story events to the location considering scene context), enabling
the deployment of story plots for AR experiences at scale. Fig-
ure 1 illustrates our approach, which takes a map as an input and
automatically distributes story events in the narrative to compati-
ble locations considering zone types. Given self-defined location
compatibilities of events that only need to be specified once, this
automatic approach can retarget the same narrative efficiently to
different real maps. Additionally, it synthesizes a navigation graph
that guides players to go through different story branches in the real
world while considering the walking experiences such as ensuring
short walking distances.

By adapting narratives to real-world locations via an optimiza-
tion, our approach help virtual content creators disseminate their
stories in a fast, automatic, and scalable manner for AR experiences.
The major contributions of our work include:

• Investigating a novel problem of automatically adapting in-
teractive narratives to real-world places for AR experiences.

• Devising an optimization-based approach to automatically
assign compatible locations to story events and synthesizing

1Apple ARKit. https://developer.apple.com/augmented-reality/arkit/
2Google ARCore. https://developers.google.com/ar

a navigation graph to guide players through story branches
in the real world.

• Validating the efficacy of our approach by adapting several
narratives to different real-world maps, examining the effec-
tiveness of our optimization considerations via user studies,
and testing the extensibility by additional design constraints.

2 RELATEDWORK
2.1 Computer-Assisted Narrative Creation
Graphics and game researchers have created handy tools and user
interfaces for authoring narratives. Zhang et al. [57] proposed an
accelerated partial order planner for generating open world narra-
tives. Braunschweiler et al. [5] created an event-based interactive
storytelling system that offered free-form player experiences in
virtual environments while following the designer’s intent. McCoy
et al. [40] created a system called Comme il Faut that provided a
playable model of reusable and reconfigurable social interactions
for authoring stories. Mason et al. [39] introduced the Lume sys-
tem for procedural narrative generation. Regarding user interfaces,
Kapadia et al. [27] introduced CANVAS, an accessible interface for
synthesizing and visualizing narrative animations. Ha et al. [24]
proposed physics storyboards comprising space-time snapshots
that highlighted critical events and outcomes to facilitate parame-
ter tuning of physics simulation games. Refer to Poulakos et al. [43]
for a comprehensive review of narrative authoring tools. Although
we study the adaptation of narratives rather than narrative creation,
the prior arts inspire our representation of stories. Specifically, our
work uses a story tree to incorporate story events and branches.

2.2 Interactive Narratives
Interactive narratives refer to a form of digital interactive expe-
riences in which the story branches are given based on players’
interactions with the story world [46]. Such narratives have been
employed in various application scenarios. For example, Stock et
al. [50] developed a system involving animated agents and adaptive
video documentaries to guide museum visitors. Lim et al. [35] used
improvisational storytelling to create a mobile tour guide. Gustafs-
son et al. [22] devised a game prototype that enabled players to
experience narratives while traveling in a car.

As for interactive narrative generation, HEFTI [42] is an early
system that uses genetic algorithms to recombine story components.
El-Nasr et al. [14] presented an interactive narrative architecture
designed using dramatic techniques based on training in film and
theatre. Riedl et al. [45] developed a multiplayer storytelling engine
to manage a story world at individual and group levels. Scherazade-
IF [23] is an interactive narrative system that learns a domain
model from crowdsourced example stories. Dominguez et al. [13]
investigated the relationship between the sense of narrative roles
and the options to choose during gameplay. More recently, Wang
et al. [52, 53] used deep learinng methods for interactive narrative
planning and personalization. Chung et al. [12] proposed TaleBrush,
which used a line sketching interaction for intuitive control and
sensemaking of narrative generation. Those methods could possibly
be combined with collaborative creation methods like skWiki [58]
for collaborative narrative generation.

https://developer.apple.com/augmented-reality/arkit/
https://developers.google.com/ar
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A related problem is behavior planning for narratives. For exam-
ple, Cavazza et al. [7] proposed a method for planning the behaviors
of artificial actors. Magerko and Laird [38] investigated finding a bal-
ance between the players’ degree of interaction and a story-based
experience. Shoulson et al. [49] proposed an event-centric planning
framework for directing interactive narratives in 3D environments
with virtual humans. Ramirez and Bulitko [44] proposed an expe-
rience management system that combined generative experience
management and player modelling.

As we focus on interactive narratives for AR experiences, plac-
ing virtual content in real environments coherently with both the
physical space and story plots is critical. Therefore we address the
problem of adapting narratives onto real maps. A similar problem
was studied by Macvean et al. [37] who proposed WeQuest, an
interactive tool for authoring alternate reality games. After a user
distributes the events of a story on a map, WeQuest can retarget
them to a different map considering the similarities of locations
using people’s reviews on websites such as Yelp. In contrast, our ap-
proach reduces labor efforts by automatically assigning the events
of a story plot to different compatible locations on a map, where
compatibility can be defined by zones or inferred using street view
images. As we demonstrate, our approach can sample different
narrative adaptations on a single map and also retarget the same
story to different maps. It can also incorporate additional design
constraints such as event centers and landmark visibility, which
are useful for AR experiences.

2.3 Storytelling in Augmented Reality
Prior works have studied AR storytelling for education and enter-
tainment [21, 59]. Recently, with the increasing popularity of AR
functionalities integrated into mobile devices, researchers devised
mobile authoring tools for creating and telling AR stories. For exam-
ple, Rumiński et al. [48] created a mobile AR authoring tool named
MARAT. Kapadia et al. [26] created a computer-assisted authoring
tool for interactive narratives. A system called StoryMakAR [20]
combined electro-mechanical devices with virtual characters to
create stories. Chen et al. proposed SceneAR [9], which was a mo-
bile application for creating sequential scene-based AR narratives.
Some other techniques used mobile devices to direct the behaviors
of AR characters, like manipulating virtual puppets using smart-
phones [1], and controlling virtual characters’ animations in AR
scenes using motion gestures of mobile phone [55].

With the increasing need of location-based or scene-aware AR
applications, some recent works focus on creating adaptive AR
experiences for specific environments or scenarios considering
scene geometries and semantics. Gal et al. [18] created a rule-based
framework named FLARE that used planar geometries to generate
object layouts for AR applications. Nuernberger et al. [41] proposed
SnapToReality, an alignment technique that helped users to pose
virtual content to real environments. Chen et al. [8] presented a
semantic-based framework for generating high-level context-aware
interactions. A series of recent methods demonstrate how to auto-
matically adapt virtual interfaces [10, 25] or layouts [36, 54] to real
scenes with respect to the scene context. Another important topic
is adapting virtual characters to real environments, like posing vir-
tual humans in real scenes [31, 51] and synthesizing and animating

Figure 2: An overview of our approach, which distributes
events to real-world locations and synthesizes a navigation
graph to guide players to experience story branches at real-
world places via augmented reality.

behaviors of virtual humans or animals [33, 34]. Our work uses
AR devices to deliver interactive narratives that are automatically
adapted onto real-world maps via optimization.

3 OVERVIEW
Figure 2 shows an overview of our approach. The input of our
approach consists of a narrative represented as a story tree, and
a map of the real-world environment where the AR experience
will take place. The story tree comprises different story branches,
each of which is composed of a series of story events. Each story
event consists of a character interacting with the player in a certain
way (e.g., saying a dialogue, performing an action) according to the
story. A story event also carries an event location description which
indicates its expected compatibility with different zone types (e.g.,
a “coming across a classmate” event may happen in the parking or
teaching zone) of the real-world environment.

The map of the real environment consists of locations and roads
that players can walk through to experience the story. The loca-
tions carry zone type information (e.g., working, dining, parking,
teaching, living), which can be set by publicly-available zoning
information of the city, by the designer’s manual specification, or
by a data-driven zoning inference method.

Given the input, our approach automatically synthesizes a nav-
igation graph that guides players to experience different story
branches in augmented reality. A navigation graph is synthesized
by solving an optimization problem comprising three major cost
terms: (1) a location compatibility cost used to ensure that the
events and their assigned locations are compatible regarding the
zone types; (2) a walking distance cost used to constrain the lengths
of walking paths in the adapted narrative; and (3) a regularization
cost used to prompt the walking distances between the events to be
evenly distributed. We also demonstrated in our experiments how
to extend the framework to incorporate other design constraints.

4 PROBLEM FORMULATION
4.1 Representation
4.1.1 Story Tree. Interactive narrativeswith different story branches
are created according to players’ interactions with the story during
the gameplay [28, 47, 56]. A player’s actions will decide which story
branches the player will enter into. We use a story tree to represent
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Figure 3: An example
story tree.

all story events and branches that
the player can experience. Fig-
ure 3 shows an example story
tree. The root of the tree cor-
responds to the first event (i.e.
Event A). A traversal from the
root down to a leaf node corre-
sponds to a story branch contain-
ing a sequence of events that the
player goes through in chrono-
logical order. At an intermediate
event, the player can decide to
take a certain next event down
the tree leading to possible sub-
branches. Formally, let the story
event set 𝑆 = {𝑠𝑖 }𝑖=1,...,𝑚 contain all possible events, and the story
branch set 𝐵 = {(. . . , 𝑠𝑖 , 𝑠 𝑗 , . . . )} contain all possible branches in
the story.

In the example of Figure 3, there are five events in the story event
set 𝑆 = {A, B,C,D, E}, and six story tree nodes. The story branch
set is 𝐵 = {(A, B,D), (A, B,C), (A,C, E)}. Note that as multiple
story branches may involve common events, multiple story tree
nodes can be associated with the same event. For example, the
story branches (A, B,D) and (A, B,C) share the same sub-sequence
(A, B), so they share the nodes associated with events A and B
in the story tree. On the other hand, as event C appears in both
(A, B,C) and (A,C, E), two story tree nodes are associated with the
event.

A story event 𝑠𝑖 is attributed as 𝑠𝑖 = (𝑒𝑖 , 𝑙𝑖 ), where 𝑒𝑖 is an event
location description indicating what zone types would fit the event.
For example, the event of “coming across a friend who is jogging”
is more likely to take place in a living zone rather than a dining
zone. 𝑙𝑖 is the location (expressed in terms of the index of a vertex
of the road network graph of the map) where the event happens.
We explain these parameters in the following sections.

4.1.2 Navigation Graph. Given a story tree that encodes the story
branches and events, our approach synthesizes a navigation graph
to distribute the events on a map. Graph representations have been
used for effective scene-aware virtual reality experiences [32], and
we propose navigation graphs to facilitate AR storytelling in this
work. As shown in Figure 4, the streets and roads on the map form a
road network through which players can navigate the environment.
The map also contains information of the buildings, zone types, etc.
which will be used for evaluating the environmental features for
assigning semantically compatible locations to events. The distri-
bution of events is also constrained by considering the navigation
experiences (e.g., walking distances) of players according to the
story branches.

Formally, a road network is a graph 𝐺 = (𝑉 , 𝐸), of which the
vertices 𝑉 = {𝑣𝑖 }𝑖=1,...,𝑛 denote the road endpoints and the edges
𝐸 = {(𝑣𝑖 , 𝑣 𝑗 )} are the roads. As Figure 4 shows, given story events
𝑆 and branches 𝐵 encoded by a story tree, a navigation graph
𝐺 ′ = (𝑉 ′, 𝐸′), which is a subgraph of the road network 𝐺 , can
be sampled via a mapping reduction function 𝐺 ′ = F (𝐺, 𝑆, 𝐵) de-
fined as follows:

Figure 4: Navigation graph generation. Left: An input map
showing a road network graph 𝐺 with road crossings (de-
picted as black dots) and roads. Right: a navigation graph 𝐺 ′

sampled from the road network based on the story tree.

(1) For each story event 𝑠𝑖 = (𝑒𝑖 , 𝑙𝑖 ), assign a unique location 𝑙𝑖 ∈
[1, 𝑛] corresponding to a vertex index in 𝐺 ;

(2) Based on the assigned locations of the story events, extract
vertices𝑉 ′ for the navigation graph𝐺 ′ by mapping story events
𝑆 = {𝑠𝑖 }𝑖=1,...,𝑚 to the vertices of the road network 𝐺 such that
𝑉 ′ = {𝑣 ′

𝑖
}𝑖=1,...,𝑚 = {𝑣𝑙𝑖 }𝑖=1,...,𝑚 ;

(3) Form edges 𝐸′ of the navigation graph𝐺 ′ by mapping branches
in 𝐵 into edges such that 𝐸′ = {(𝑣𝑙𝑖 , 𝑣𝑙 𝑗 ) |∃(. . . , 𝑠𝑖 , 𝑠 𝑗 , . . . ) ∈
𝐵}. Here, ∃(. . . , 𝑠𝑖 , 𝑠 𝑗 , . . . ) ∈ 𝐵 means that there exists two
consecutive events 𝑠𝑖 and 𝑠 𝑗 in any of the story branches.
As shown in Figure 4, a navigation graph is sampled from a road

network. Note that event C, which appears in two story branches
on the tree, is assigned to only one unique location on the map. We
enforce this unique location assignment for several reasons: as a
player replays an experience using the same navigation graph, the
player will experience the same event at the same location; similarly,
if different or multiple players experience a story using the same
navigation graph, the players will experience the same event at
the same location; finally, such assumption would make it more
intuitive to devise the navigation graph sampling formulation. For a
special case involving looping missions, our approach can support
it by duplicating the events of the loop with the same locations
and appending the duplicated events to the story branch. Note that,
in case a designer wants an event with the same characters and
behaviors to happen at two different locations, the designer could
simply define it as two separate events. Besides, additional vertices
could be sampled (e.g., along a long straight road) for the road
network graph if desired.

4.2 Event Location Compatibility
Assigning story events to compatible locations would enhance the
immersiveness of AR experiences. We define a compatibility score
function to evaluate how appropriate it is to assign an event to a
specific location.

Consider a zoning map with 𝑘 different zone types, correspond-
ing to labels 𝑍1, 𝑍2, . . . , 𝑍𝑘 . Given a location 𝑥 on the map, we
formulate 𝑍𝑖 (𝑥) as a random variable that obeys Bernoulli distribu-
tion, such that Pr[𝑍𝑖 (𝑥) = 1] denotes the probability that 𝑥 belongs
to the 𝑖th zone type, and Pr[𝑍𝑖 (𝑥) = 0] = 1 − Pr[𝑍𝑖 (𝑥) = 1] other-
wise. For notation convenience, we use Pr[𝑍𝑖 (𝑥)] and Pr[𝑍𝑖 (𝑥)] to
denote these two probabilities for the variable 𝑍𝑖 (𝑥) and its com-
plement 𝑍𝑖 (𝑥). In our main results, such probabilities are directly
derived from public zoning information released by governments,
thus we set Pr[𝑍𝑖 (𝑥)] = 1 deterministically if 𝑥 is of type 𝑍𝑖 , or



Location-Aware Adaptation of Augmented Reality Narratives CHI ’23, April 23–28, 2023, Hamburg, Germany

Pr[𝑍𝑖 (𝑥)] = 0 otherwise. Note that in certain scenarios where
no zoning map is available or additional specific zone types are
needed, the probabilities can also be manually set or inferred using
data-driven methods. In Section 5.2, we show results generated
by replacing zoning maps with inferences produced by an autoen-
coder. Note that a single location 𝑥 may belong to multiple zone
types, thus the random variables 𝑍1 (𝑥), . . . , 𝑍𝑘 (𝑥) are independent
of each other.

Recall that for each story event 𝑠𝑖 = (𝑒𝑖 , 𝑙𝑖 ), 𝑒𝑖 is the event lo-
cation description. We represent 𝑒𝑖 as a Boolean formula that en-
codes how compatible the story event 𝑠𝑖 is with locations of dif-
ferent zone types. An illustrative example is that a “meeting with
a professor” event may have a high compatibility with a teach-
ing zone 𝑍teaching or a working zone 𝑍working, but not a living
zone 𝑍living, thus can be described as 𝑒𝑖 = (𝑍teaching ∨ 𝑍working) ∧
𝑍living. Note that the event location description 𝑒𝑖 of the story
event 𝑠𝑖 is predefined by the designer as a constant attribute as-
sociated with that event. In this example, the probability of sat-
isfying the Boolean formula 𝑒𝑖 at location 𝑥 is Pr[𝑒𝑖 (𝑥) = 1] =

(1 − Pr[𝑍teaching (𝑥)]Pr[𝑍working (𝑥)])Pr[𝑍living (𝑥)], which is cal-
culated based on the zone type distributions at 𝑥 .

Given the event location description 𝑒𝑖 of event 𝑠𝑖 , we define the
compatibility score function for 𝑠𝑖 and a location 𝑥 :

𝐹LC (𝑠𝑖 , 𝑥) = _Pr[𝑒𝑖 (𝑥) = 1] + (1 − _)
∑
𝛾 ∈Γ Pr[𝛾 (𝑥) = 1]

|Γ | , (1)

where _ ∈ [0, 1] is a weight for balancing the two terms; Γ = {𝛾} is
the set of literals in the Boolean formula 𝑒𝑖 , and each literal is either
a variable or the complement of a variable. Figure 5 visualizes
the location compatibility score maps for three different events
considering their location descriptions.

The motivation for introducing the second term is to compensate
for the strict calculation of probability in the first term. Suppose
an event needs to be assigned somewhere of both zone types 𝑍1
and 𝑍2 in an ideal case, i.e. its event location description is e =

𝑍1 ∧ 𝑍2. For two candidate locations 𝑥𝑎 and 𝑥𝑏 for this event, with
Pr[𝑍1 (𝑥𝑎)] = 1.0 and Pr[𝑍2 (𝑥𝑏 )] = 0.0; and Pr[𝑍1 (𝑥𝑏 )] = 0.0 and
Pr[𝑍2 (𝑥𝑎)] = 0.0, while both locations receive the same score 0.0
from the first term, location 𝑥𝑎 is intuitively a closer fit. We set
_ = 0.8 by default. Users who want stricter compatibility evaluation
based on zone type probabilities may set higher _ values.

4.3 Cost Functions
Our approach aims to optimize the location assignment for all
events in a narrative to distribute them reasonably in a real-world
environment for AR experiences.We define a cost function𝐶total (𝐺 ′)
to evaluate the navigation graph 𝐺 ′ = (𝑉 ′, 𝐸′) sampled from the
road network graph 𝐺 = (𝑉 , 𝐸) on a real-world map. The cost
function consists of three cost terms for evaluating three proper-
ties of the navigation graph 𝐺 ′: the (1) location compatibility term
𝐶LC (𝐺 ′) evaluates how appropriate the events are correlated with
their assigned locations in terms of zone types; the (2) walking dis-
tance cost term𝐶WD (𝐺 ′) evaluates the walking distances following
the navigation graph in the real world; and the (3) regularization
cost term𝐶REG (𝐺 ′) evaluates the distribution of walking distances

Figure 5: Example location compatibility score maps corre-
sponding to two event location descriptions 𝑍1 ∧ 𝑍2, 𝑍1 ∧ 𝑍2
and 𝑍2 ∨ 𝑍3. Colored masks of higher transparency denote
areas of lower scores.

between adjacent event locations. Mathematically, the total cost
term 𝐶total (𝐺 ′) is defined as:

𝐶total (𝐺 ′) = 𝑤LC𝐶LC (𝐺 ′) +𝑤WD𝐶WD (𝐺 ′) +𝑤REG𝐶REG (𝐺 ′), (2)

where𝑤LC,𝑤WD, and𝑤REG are the weights for the three cost terms,
respectively. Our approach synthesizes a navigation graph𝐺 ′ by
minimizing 𝐶total (𝐺 ′) through an optimization.

4.3.1 Location Compatibility Cost. Given a navigation graph 𝐺 ′ =
(𝑉 ′, 𝐸′) sampled from the road network graph𝐺 , we evaluate how
well the vertices of the navigation graph fit with their associated
story events to deliver a realistic AR experience. Given a story
event 𝑠𝑖 = (𝑒𝑖 , 𝑙𝑖 ) and its associated location 𝑣 ′𝑖 = 𝑣𝑙𝑖 , the evaluation
is done by computing the compatibility score depicted in Equa-
tion 1. To evaluate the overall location assignments compatibility,
we define a location compatibility cost for the navigation graph𝐺 ′:

𝐶LC (𝐺 ′) = 1 − exp ©« 1
|𝑉 ′ |

∑︁
𝑣′
𝑖
∈𝑉 ′

[𝐹LC (𝑠𝑖 , 𝑣 ′𝑖 ) − 1]ª®¬ . (3)

Essentially, the more compatible the locations of the vertices are
with respect to the associated events, the lower the cost is.

4.3.2 Walking Distance Cost. As the player walks physically in
the real world to experience the interactive narratives via AR, it is
important to consider the walking distance which is related to the
player’s navigation experience. For example, players may prefer not
to walk too much unless necessary. We define a walking distance
cost to incorporate such a consideration.

At this stage, we assume that the player may prefer a shorter
walking distance as possible. Given the navigation graph 𝐺 ′ =

(𝑉 ′, 𝐸′) sampled from the road network graph 𝐺 , we penalize the
walking distance between every two consecutive events’ vertices
𝑣𝑙𝑖 and 𝑣𝑙 𝑗 considering the edges set 𝐸′ = {(𝑣𝑙𝑖 , 𝑣𝑙 𝑗 )}. Note that a
designer may set a lower weight for the walking distance cost if
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needed, for example, in case a certain amount of walking is desired
for a narrative that expects some walking.

To facilitate the computation of the walking distance cost, our
approach first precomputes theminimumwalking distance between
every pair of vertices in the road network graph 𝐺 . We denote the
minimum walking distance between vertices 𝑣𝑖 and 𝑣 𝑗 as 𝐷 (𝑖, 𝑗),
which is calculated using the Floyd–Warshall algorithm [16]. In
practice, we precompute and store the shortest path for every pair
of vertices. We define the walking distance cost as:

𝐶WD (𝐺 ′) = 1 − exp(− 𝐷

𝐷max
), (4)

where 𝐷 is the average walking distance of all pairwise adjacent
event locations in navigation graph 𝐺 ′, and 𝐷max is a normaliza-
tion term set as the maximum value among the minimum walking
distances between any pair of vertices in road network graph 𝐺 .
Essentially, this cost term penalizes long walking distances in the
sampled navigation graph 𝐺 ′.

4.3.3 Regularization Cost. Our approach can also incorporate other
considerations in forming the navigation graph 𝐺 ′. For example,
we define a regularization cost to balance the walking distances
between consecutive events’ locations. In other words, we penalize
the biased distribution of walking distances between consecutive
events’ locations. Given a navigation graph 𝐺 ′ = (𝑉 ′, 𝐸′), we mea-
sure the standard deviation of walking distances between consecu-
tive events and penalize it through a regularization cost 𝐶REG (𝐺 ′)
defined as:

𝐶REG (𝐺 ′) = 1 − exp( 𝜎𝐷

𝐷 − 𝐷max
), (5)

where 𝜎𝐷 is the standard deviation of walking distances of all
pairwise consecutive locations in navigation graph 𝐺 ′.

4.4 Graph Optimization
Recall that our optimization goal is to assign locations to the story
events so that they are reasonably distributed in the real world for
AR experiences. Hereby, we formulate the optimization problem as
a graph sampling problem. We employ the Markov chain Monte
Carlo method [19] to search for a solution that minimizes the total
cost function 𝐶total (𝐺 ′), where 𝐺 ′ = F (𝐺, 𝑆, 𝐵) is sampled from
the road network graph 𝐺 .

At each iteration of the optimization, given the current story
events 𝑆 set with certain event location assignments, an updated
set of story events 𝑆 ′ with updated event location assignments is
proposed through the following steps:

(1) Randomly select an event 𝑠𝑖 = (𝑒𝑖 , 𝑙𝑖 ) from story event set 𝑆 ;
(2) Create a new story event 𝑠′

𝑖
= (𝑒𝑖 , 𝑙 ′𝑖 ) with a new random lo-

cation vertex index 𝑙 ′
𝑖
that is not associated with any existing

story event. That is, 𝑙 ′
𝑖
∈ [1, |𝑉 |], 𝑙 ′

𝑖
≠ 𝑙𝑖 , and ∀𝑠 𝑗 ∈ 𝑆 → 𝑙 ′

𝑖
≠ 𝑙 𝑗 .

(3) Create an updated set of story events 𝑆 ′ by replacing story event
𝑠𝑖 with 𝑠′𝑖 such that 𝑆 ′ = 𝑆 − {𝑠𝑖 } ∪ {𝑠′

𝑖
}.

Our approach then determines whether to accept the proposed
story events 𝑆 ′ by computing an acceptance probability Pr(𝑆 ′ |𝑆)
using the Metropolis criterion [11, 30], as follows:

Figure 6: Our illustrative storyDetective AR. One story branch
(A,B,D, F) is highlighted in purple to help with illustration.

Pr(𝑆 ′ |𝑆) = min(1, 𝑓 (𝑆
′)

𝑓 (𝑆) ), (6)

where 𝑓 (𝑆) is a Boltzmann-like objective function that follows a
Metropolis-Hastings state searching step:

𝑓 (𝑆) = exp
(
−1
𝑡
𝐶total (F (𝐺, 𝑆, 𝐵))

)
, (7)

where 𝑡 is the temperature of simulated annealing. As the temper-
ature decreases gradually over iterations, the optimizer becomes
more greedy. By the end, the temperature drops to a low value near
zero so the optimizer accepts better solutions only. We empirically
set temperature 𝑡 = 1.0 at the beginning of the optimization and
decrease it by 0.2 every 100 iterations until it reaches zero. The
optimization is terminated if the total cost change is smaller than
3% over the past 50 iterations. Unless otherwise specified, we set the
cost weights as 𝑤LC = 0.4, 𝑤WD = 0.3, and 𝑤REG = 0.3 in our ex-
periments. We apply a self-adaptation to perform local refinement
near the end of the optimization when sampling the navigation
graph. Please refer to the supplementary material for more details.

Figure 7(b-d) shows the effects of omitting costs when synthesiz-
ing navigation graphs, in contrast to the result in Figure 7(a) with
all costs in place. Specifically, omitting any cost will decrease the
location compatibility or walking experience. Note that we used
Figure 7(a) in the main paper as the initialization to synthesize (b)
to (d) for comparison and illustration. Figure 6 depicts the story
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Figure 7: Effects of omitting costs. (a) A navigation graph considering all costs; (b) Without the location compatibility cost,
events are assigned to locations with mismatched zone types; (c) Without the walking distance cost, the average walking
distance vastly increases; (d) Without the regularization cost, the standard deviation of walking distances is high.

Figure 8: Screenshots of AR contents populated in real-world places.

details. One story branch (A, B,D, F) is highlighted in purple to
help comparison and illustration. Figure 7(b) shows a result syn-
thesized without the location compatibility cost, where the events
are not distributed to places that fit with the story context. Fig-
ure 7(c) shows a result synthesized without the walking distance
cost, where the events are distributed sparsely with respect to each
other, resulting in a longer overall walking distance. Figure 7(d)
shows a result synthesized without the regularization cost, where
the events are not evenly distributed spatially: some consecutive
events (e.g., A & B) are very far away from each other while some
(e.g., B & D) are close to each other.

5 EXPERIMENTS
In this section, we provide details of our experimental designs and
results. Section 5.1 shows ourmain results of adapting AR narratives
to different outdoor environments. Section 5.2 presents a learning-
based zoning inference module, which can be substituted for pre-
defined zoning maps. We also demonstrate the extensibility of our
approach by incorporating a few additional design constraints in
Section 5.3. Lastly, we test our approach’s scalability to cope with
larger stories with more events and branches in Section 5.4.

We implemented our approach on a machine with an Intel Core
i7-9700 CPU, anNVIDIAGeForce RTX 2070 graphics card, and 32GB
of RAM. The implementation was done in C# on the Unity3D game
engine. It typically takes 1 to 2 minutes to generate all-pairs shortest
paths depending on the density of the road network. A navigation
graph is generally synthesized in about 500 to 1, 000 iterations.

Optimizing a solution generally takes about 2 to 3 minutes in total
based on our implementation.

We also developed an application that runs on the HoloLens 2
headset to allow players to experiment with the generated experi-
ences in AR. Figure 8 shows some screenshots.

5.1 Adapting Augmented Reality Narratives
In this experiment, we focus on a Detective AR story whose struc-
ture is shown in Figure 6. The story consists of 11 events and 9
story branches, and is supposed to be experienced in a real-world
environment comprising different types of zones. Our approach
adapts this story by assigning real-world locations for the events
to take place. The adaptation result in a campus scene is shown in
Figure 9(a).

Our approach can automatically retarget the same story to differ-
ent real-world places. For the same Detective AR story, we apply our
approach to re-distribute the story to different city scenes. We show
examples of story adaptation at the Tokyo International Forum (Fig-
ure 9(b)) and the Hong Kong Convention Center (Figure 9(c)). For
each scene, the zone types are defined based on the functionali-
ties of the buildings and regions. For example, a convention center
neighborhood is designated as an institution (teaching) zone. Our
approach distributes the story events compatibly with the zone
types. For example, in the Tokyo International Forum, Event F
(finding a character in a working zone) occurs near Gran Tokyo
South Tower (in red) which is an office building. Events H, C, and G,
which should happen in a parking zone, take place in the Kajibashi
Parking Lot (in green). In the Hong Kong Convention Center result,
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Figure 9: Navigation graphs synthesized on different real-world maps.

Figure 10: Optimization process. The event locations are depicted by the pins whose colors refer to different zone types that
the events are compatible with. (a) The sampled navigation graph is initialized randomly; (b-d) the sampled graphs over the
iterations; (d) the optimized graph with the events distributed to locations of compatible zone types.

Event J (finding a character in an institution zone) happens near
the convention center (in blue), while Event D (finding a character
in a living zone) happens near the hotels (in cyan).

Figure 10 shows the optimization process on a road network
graph 𝐺 = (𝑉 , 𝐸) which is converted from the satellite data of
a university campus downloaded from the Google Map. At the
beginning, random vertex indices on the road network graph 𝐺
are sampled and assigned to the story events 𝑆 = {𝑠𝑖 }. Then a
navigation graph 𝐺 ′ = (𝑉 ′, 𝐸′) is sampled from the road network
graph𝐺 through the mapping reduction function𝐺 ′ = F (𝐺, 𝑆, 𝐵).
The optimization iteratively updates the location assignments and
the navigation graph until convergence.

5.2 Autoencoder Zoning
We provide an alternative, learning-based approach to infer the
probabilities that a location belongs to different zone types for the
location compatibility score function in Equation 1. Prior arts have
used computational methods to generate urban zones by using
contextual information [17], self-training-based cluster ensemble
strategy [2], or higher-order Markov random fields [15] on urban
images. In this experiment, we employed an autoencoder [29] for
inferring the probabilities that a location belongs to certain zone
types. To illustrate this approach, we prepared a set of exemplar
street-view images of three representative zone types including
parks, roads and buildings. The autoencoder learned the environ-
mental features of such zone types and produced the mean codes
for each zone type by averaging the codes extracted from the exem-
plar images. The similarity between the code of input street-view
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Figure 11: Environmental feature analysis using an autoen-
coder.

images at a certain location, and a zone type mean code, is used as
the probability that the input location belongs to that zone type.

Figure 11 illustrates how to use the trained autoencoder/decoder
framework to infer the zone types for a location. Given a location
𝑥 on the map, our approach first obtains the street view images
around that location using the Google Maps API. Then, it calculates
the similarity 𝜓 (𝑥, 𝑍𝑖 ) between the visual feature of location 𝑥
and the mean code of zone type 𝑍𝑖 by counting how many view
images 𝐼𝑘 (𝑥) at location 𝑥 out of 𝐾 different view directions (we
set 𝐾 = 8) are closest to the mean code 𝑐𝑖 of zone type 𝑍𝑖 through
this equation:

𝜓 (𝑥, 𝑍𝑖 ) =
1
𝐾

𝐾∑︁
𝑘=1

𝛿

(
𝑖 == argmin

𝑗

| |𝐸 (𝐼𝑘 (𝑥)) − 𝑐 𝑗 | |
)
, (8)

where 𝐸 (𝐼𝑘 (𝑥)) is the code of image 𝐼𝑘 (𝑥) computed by the autoen-
coder. 𝛿 () returns 1 if the input is true and returns 0 otherwise.
The inferred similarity 𝜓 (𝑥, 𝑍𝑖 ) is taken as the probability that 𝑥
belongs to the zone type 𝑍𝑖 , and is further used to compute the
location compatibility cost for a given navigation graph.

In our experiments, we used 7, 440 Google street view images for
training. We trained a 4-layered convolutional neural network as
an encoder to convert 256×512 resolution RGB images to 2, 048×3 -
dimensional latent vectors corresponding to the codes of the images.
We used 10, 000 batch iterations on the training images. We used
a batch size of 64, an Adam optimizer, the mean square error as
the loss function, and a learning rate of 0.001. After using these
exemplar images to train the autoencoder, our approach computes
the mean code 𝑐𝑖 for a zone type 𝑍𝑖 by averaging all codes of
exemplar images that belong to that zone type 𝑍𝑖 , extracted using
the autoencoder.

We test the accuracy of our autoencoder using a cross-validation
approach. As analyzed from the statistical tests, the accuracies of our
autoencoder in predicting the building, park, and road zones are 76%,
87%, and 78%, respectively. More specifically, the true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) for
the three zone types are: building (TP=0.763; TN=0.0057; FP=0.189;
FN=0.041), park (TP=0.859; TN=0.012; FP=0.11; FN=0.017), and road
(TP=0.785; TN=0.004; FP=0.172; FN=0.037). During the accuracy

Figure 12: A navigation graph synthesized on a campus map
using zoning maps inferred by an autoencoder. Three illus-
trative zone types (building, park, and road) are considered.
OR (denotes 𝑍1 ∨ 𝑍2), AND (denotes 𝑍1 ∧ 𝑍2) and EXCLUDE
(denotes 𝑍1 ∧ 𝑍2) in the legend are used for illustration con-
venience.

test, the threshold for our autoencoder classifier is set as 0.1, which
means that if the probability of the region belonging to any zone is
larger than 10%, then the region is classified as that zone. We iterate
over all the sample points in the scene and statistically accumulate
the errors that our autoencoder classifier made to get the cross-
validation results.

Figure 12 shows a navigation graph synthesized using the zoning
maps inferred by the autoencoder. Example street view images at
the assigned event locations suggest that the autoencoder captures
the environmental features of different zone types. Our synthesized
navigation graph using the inferred zoning maps is based on a
modified version of the Detective AR story as depicted in Figure 3(b)
in our supplementary material, in which we change the zone types
and event location descriptions accordingly. Figure 13(a) shows the
synthesis results including the distributed events and the navigation
graph. Figure 13(b–d) shows the inferred zones with strong building
(yellow), park (green), and road (blue) features, as well as the events
in the navigation graph that are compatible with these zones.

5.3 Additional Constraints
We also extend our approach with additional constraints to han-
dle the design requirements of some special scenarios. While we
provide results of applying three additional constraints in this exper-
iment to examine the extendability and flexibility of our approach,
other self-defined constraints could be applied similarly for other
purposes. For example, some constraints may enhance accessibility
by picking only wheelchair-friendly roads for wheelchair users;
and some other constraints may exclude regions with traffic (e.g.,
intersections, highways) for pedestrian safety.

Event Center. Designers using our approachmay specify an event
center around which the story events will be distributed. This con-
sideration can be encoded as an additional cost:

𝐶center (𝐺 ′) = 1 − exp ©«− 1
|𝑉 ′ |𝐷max

∑︁
𝑣′
𝑖
∈𝑉 ′

| |𝑣 ′𝑖 − 𝐿c | |
ª®¬ , (9)
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Figure 13: Navigation graphs synthesized on a campus using zones inferred by the autoencoder. (a) All events and their locations.
(b-d) Events compatible with buildings, parks, and roads are shown, respectively. The color intensities correspond to how likely
the locations belong to the respective zone types.

Figure 14: An event center specified at 𝛼 . The story events
are distributed around the event center by our optimizer.

where 𝐿c refers to the location of the event center on the map. This
cost term penalizes the distance between the event center’s location
𝐿c and each story event 𝑠𝑖 ’s assigned location 𝑣 ′

𝑖
in the navigation

graph. 𝐷max is a normalization term as defined in the walking
distance cost. Figure 14 shows an example of setting an event center
at 𝛼 around which our optimizer synthesizes a navigation graph
and distributes events.

Landmark Visibility. Our approach can be extended to consider
a landmark’s visibility which may facilitate wayfinding. This con-
sideration can be encoded as an additional cost term:

𝐶visibility (𝐺 ′) = 1 − exp ©«− 1
|𝑉 ′ |

∑︁
∀𝑣′

𝑖
∈𝑉 ′

b (𝑣 ′𝑖 )
ª®¬ , (10)

where the function b (𝑣 ′
𝑖
) returns 1 if the landmark is not visible

from location 𝑣 ′
𝑖
as determined by a ray casting in 3D, otherwise it

returns 0. The visibility evaluation is done from the location 𝑣 ′
𝑖
of

each story event 𝑠𝑖 . Our approach favors locations from which the
landmark can be seen when distributing events. Figure 15 depicts
a synthesized navigation graph that considers the CN Tower’s
visibility from the event locations in Toronto.

Location Constraint. Our approach also enables designers to in-
corporate hard location constraints to fix the assignment of events
to certain locations. It then further distributes the remaining events

Figure 15: Considering the visibility of a landmark (a tower).
The tower is visible from the locations of events A, F, and H,
while it is not visible from an arbitrary location.

Figure 16: A location constraint is specified for event J. The
optimizer distributes the remaining events while maintain-
ing this constraint.

of the story with respect to those location constraints. Figure 16
shows an example based on a region near Singapore’s Marina Bay
Sands. To encourage players to walk around the scene, the designer
manually assigns event J (finding Isabella in a teaching zone) to
happen near the institution buildings (in blue) on the right. Our
optimizer distributes the remaining story events with respect to
this hard location constraint.

5.4 Scalability Test
To validate the scalability of our approach, we tested our approach
with two additional stories of larger scales than the Detective AR
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Figure 17: Results synthesized by our approach on two larger-scale stories.

story. Based on the statistics that our user study participants took
about 45minutes on average to complete one branch of theDetective
AR story (comprising 11 events and 9 story branches), we designed
the following larger-scale stories for feasible AR experiences:

(1) Dinosaur World AR (refer to Figure 7 in our supplementary
material). In this story, there are 20 events and 30 story branches
in total. The story is about a player who has found a strange
huge egg and realizes that it is a dinosaur egg, leading to the
beginning of a fascinating journey.

(2) Exterior Star War AR (refer to Figure 8 in our supplementary
material). In this story, there are 38 events and 45 story branches
in total. The story is about a player who received a message
from a stranger who claims to be a time traveler from 2048.
Then a fascinating journey begins near a teaching building.

Figure 17 shows results synthesized with the default parameter
settings. In order to demonstrate the story branches more clearly,
we plot the abstract story tree using boxes tagged with the event
symbols. A navigation route ((𝐴, 𝐵, 𝐷, 𝐸) in our case) is highlighted
as yellow both in the synthesized result on the map and in the
abstract story tree to facilitate comparison. It took about 4 − 5
minutes to synthesize the medium-scale result and 5− 6minutes to
synthesize the large-scale result. Their final costs were 0.037 and
0.063, respectively. The results show that our approach can produce
optimized navigation graphs of different scales efficaciously.

6 USER STUDY
We conducted two user studies to evaluate the effectiveness of our
approach from different perspectives. In the first study, we evalu-
ated players’ experiences regarding event-location compatibility.

In the second study, we evaluated our approach’s efficiency in dis-
tributing events in comparison to manual designs. All participants
were recruited through advertising the user studies in our univer-
sity. Our user study experiments were approved by the university’s
institutional review boards.

6.1 Experiencing Augmented Reality Narratives
6.1.1 Evaluation Goal. A key objective of our approach is to assign
story events to compatible locations that fit the contexts of the
story plots. Therefore we conducted an AR user study to validate
the effectiveness of the location compatibility cost, which is our
core consideration.

6.1.2 Evaluation Details. We recruited 20 university students, in-
cluding 4 females and 16 males aged 19 through 28, and examined
if they could notice such location compatibility brought about by
this cost term. The study was based on the same Detective AR story
shown in Figure 6 and was conducted on a university campus as
depicted in Figure 7. Most of the participants were familiar with
the campus and knew about the functionalities of the buildings.
Each participant wore a HoloLens 2 headset to go through two
conditions of the story:

(1) All Costs: the navigation graph was synthesized and the
events were distributed with all costs considered.

(2) No Location Compatibility Cost: the navigation graph was
synthesized and the events were distributed with the loca-
tion compatibility cost omitted. In other words, the events’
location compatibility was not considered.

In both conditions, the players were guided to navigate our
sampled story event locations based on the story plot. During the
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Figure 18: Wayfinding aids for facilitating navigation. The
users navigated to our sampled event locations guided by
two types of hints including (a) a mini-map; and (b) a virtual
arrow. The hints were shown in the AR interface during the
user’s navigation along the optimized route.

storytelling, when any virtual character appeared, a dialogue box
popped up to show the character’s script, which was also played in
audio. If needed, the players could trigger two wayfinding aids: a
mini-map and a virtual arrow. So the players could follow the plot
of the story closely. The players were asked to rate the location
compatibility of events after completing a condition of the story.

We implemented two wayfinding aids on the HoloLens2 AR
headset to help players navigate: (1) a mini-map, which draws
a navigation path on a 2D flat map; (2) a virtual arrow: which
visualizes an arrow showing the direction to the next event in 3D
space. Refer to Figure 18 for visualizations of the wayfinding aids
seen in AR. The players can trigger both wayfinding aids as desired.

Before going through the story, each player was allowed to
interact with the AR setup and user interface in a warm-up ses-
sion. If a player was unfamiliar with the campus, the helper would
briefly explain the campus layout and building functionalities. Then
the player would go through the two conditions of the story. For
counterbalancing, half of the players went through the All Costs
condition followed by the No Location Compatibility Cost condition,
and vice versa. Besides using the wayfinding aids, the players could
also ask the helper for help in case they had troubles finding the
destinations or got lost during the navigation.

After going through each condition, the player would recall what
story events they encountered and where those events happened
by talking to the helper. Then the player would be asked to rate
whether the locations are compatible with the contexts of the story
events using a 5-point Likert scale (1: the lowest compatibility; 5:
the highest compatibility).

Figure 19: User ratings.

6.1.3 Results. Figure 19 shows
the user ratings. The All Costs
condition has amean score of 4.55
(median=5, SD=0.75), while the
No Location Compatibility Cost
condition has a mean score of
1.85 (median=2, SD=0.87). We
conducted a paired t-test on the
scores of the two conditions. A
significant difference (𝑝 < 0.001)
was found between the scores of
the two conditions under the 99% confidence interval, suggest-
ing that the participants thought that the story events were more
compatible with their locations under the All Costs condition in

comparison. In addition, we also collected users’ ratings on the
question “which location-assignment condition leads to a more
reasonable storytelling?”. All of the users rated that the events
with locations assigned by our approach are more reasonable in
comparison.

We collected general feedback from the participants about the
storytelling experience in AR. Most participants found our AR sto-
rytelling interesting. Some participants who had never used AR
devices before believed that our application was more exciting
than traditional desktop adventure games. Some participants sug-
gested that our application could be realized as a tour guide for
new students coming to campus or as an exercise application. Most
participants said that the walking distance of the story was not
too long. Some participants had unpleasant experiences during the
storytelling. For example, some found the user interface in AR a
bit unresponsive and hard to control. Some participants missed the
virtual characters that had already appeared in front of them so
they needed to walk back to find the characters again.

6.2 Comparison with Manual Design
6.2.1 Evaluation Goal. The goal was to investigate whether our
walking distance and regularization considerations can help de-
signers assign events’ locations on a real map more efficiently,
assuming the same design goals of ensuring location compatibility,
short walking distances, and even walking distance distribution.

6.2.2 Evaluation Details. We recruited 15 designers, including 5
females and 15 males aged 21 through 30, for another user study.
For comparison, we asked them to manually assign event locations
for the medium-scale story, Dinosaur World AR (details described in
our supplementary material), with 20 events and 30 story branches,
on a university campus map. We collected metrics and feedback
from their manual design processes.

All the designers were experienced in using the Unity game
engine for creating computer games or simulation applications so
they were familiar with the operations of Unity. We developed an
interactive user interface as an Unity plugin (shown in Figure 20)
that enabled designers to put event pins on a map via simple drag-
and-drop operations. The designer can see the story tree containing
all the story branches. The designer can also press a hotkey to
trigger an automatic analysis of their current design, which would
show the average and standard deviation of the distances of the
story branches. The designer can also see if there is any mismatch
between the story events and their locations in terms of the zone
types as well through pin and zone colors.

Before starting the design task, each designer got familiar with
our plugin interface in a warm-up session, where the helper ex-
plained its functionality. Then the designer was tasked with assign-
ing event locations for the story, considering the same major design
objectives as our approach: (a) assigning events to their compati-
ble zones (i.e. with a matching color); (b) minimizing the walking
distances of all story branches; and (c) minimizing the standard
deviation of the walking distances of the story branches. A designer
finished the design when he/she thought that the design could not
be improved further with respect to these objectives.
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Figure 20: Manual design user interface.

6.2.3 Results. Figure 21 shows the metrics collected from the man-
ual design tasks. The following summarizes the metrics: (a) Number
of zone mismatches (mean=0.93; SD=1.33; median=0); (b) Average
walking distance (in km) (mean=3.81; SD=1.60; median=3.33); (c) SD
of walking distance (in km) (mean=0.39; SD=0.29; median=0.30); (d)
Completion time (in min) (mean=37.86; SD=10.37; median=37); and
(e) Number of distance analysis triggered (mean=48.73; SD=17.92;
median=42). Comparing the manual designs with our Dinosaur

Figure 21: Data collected from the
designers. The distances are in km
and the time is in minutes.

World AR synthesis result,
our synthesis result has a
similar number of zone mis-
matches, but a generally
shorter average walking dis-
tance of 2.98km and a simi-
lar SD inwalking distance of
0.40km. Our result was syn-
thesized automatically in
about 5 minutes, while on
average it took a designer
37.86 minutes to create a
design manually with 48.73
distance analyses triggered.

The designers also rated the manual design task difficulty using
a 5-point Likert scale (1: very easy; 5: very hard) and the task effort
(1: not effort-demanding; 5: very effort-demanding). Figure 21(e-f)
shows the ratings of difficulty (mean=3.60; SD=1.12; median=3) and
effort (mean=3.80; SD=1.14; median=4). Overall, the designers rated
the manual design task as slightly difficult and demanding.

We also asked the designers for their general feedback. Many
designers thought that while it was easy to accommodate individ-
ual events at compatible locations, it was difficult to find overall
optimal short paths for the story branches while ensuring the loca-
tion compatibility of all events. Please refer to the supplementary
material for detailed records of their feedback.

7 LIMITATIONS AND FUTUREWORK
We propose an automatic approach for adapting interactive nar-
ratives to real-world places for AR experiences. Our optimization-
based approach considers the compatibility of the story events with
their assigned locations, and the players’ walking experiences in
going through the story. By sampling a navigation graph from a

real-world map, our approach can be integrated into an AR story-
telling application to guide a player to experience different story
branches in the real world. In our experiments, we adapted AR sto-
ries to different real-world places. We also conducted user studies
to validate the effectiveness of our cost terms and tested the exten-
sibility of our approach by incorporating additional constraints. We
will release the code of our approach to ease future extensions.

Our approach assumes that the input map contains all the zone
types needed for storytelling. This assumption may not hold in
reality. For instance, a rural area may not have locations matching
the parking zone type. Similarly, we assume fixed zone types, which
may vary in practice (e.g., a bustling eating areamight only be active
in the evening). It would be powerful to dynamically analyze the
compatibility of real-world places for experiencing an AR story.

We define a walking distance consideration for constraining the
lengths of walking trajectories on navigation graphs. While users
may personalize the target lengths by adjusting the cost term’s
parameters, it is worth investigating the relationships between
walking and user experiences in future work. For example, future
work may investigate how to avoid the potential feeling of discon-
tinuity during the travel from one position to another, and how the
ability to get to a location may affect the storytelling experience.

Our approach could be extended to consider low-level scene fea-
tures by using a learning-based method. In subsection 5.2, we used
an autoencoder to produce zoning maps with customized zoning
type labels (e.g., building, park). However, due to the limitations of
current computer vision techniques (e.g., segmentation, reconstruc-
tion, registration) for outdoor AR, we cannot dynamically adapt
virtual characters to interact with scene objects on the fly (e.g., play-
ing a swing). Future extensions may analyze and utilize lower-level
scene semantics in real-time with computer vision advancements.

Our current implementation does not consider potential con-
cerns regarding safety, privacy and responsibility. A possible so-
lution to mitigate such concerns using our approach is to filter
out locations (e.g., roads with traffic) where such issues may exist
when sampling on the map. In future extensions, we want to adopt
recommendations provided by Cardenas et al. [6] to avoid risks of
depicting sensitive narratives through immersive technologies.

Our current approach only supports stories with fixed events
and branches even though players may experience different story
branches based on their choices. Future work may introduce wear-
able sensors to track players’ metrics (e.g., gazes, body poses) for
triggering narratives. We are also interested in integrating multiple
random initializations with multi-thread acceleration to expedite
navigation graph syntheses.
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