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ABSTRACT
Virtual Reality (VR) applications commonly use the illusion of self-
motion (vection) to simulate experiences such as running, driving,
or flying. However, this can lead to cybersickness, which dimin-
ishes the experience of users, and can even lead to disengagement
with this platform. In this paper we present a study in which we
show that users performing a cognitive task while experiencing
a VR rollercoaster reported reduced symptoms of cybersickness.
Furthermore, we collected and analysed brain activity data from our
participants during their experience using functional near infra-red
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spectroscopy (fNIRS): preliminary analysis suggests the possibility
that this technology may be able to detect the experience of cy-
bersickness. Together, these results can assist the creators of VR
experiences, both through mitigation of cybersickness in the design
process, and by better understanding the experiences of their users.
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• Human-centered computing→ Human computer interac-
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1 INTRODUCTION
Virtual Reality (VR) headsets are not only used for gaming and
entertainment but are increasingly employed in education [43, 56],
for training applications [41, 57], and for treatment and therapy
[22, 29, 75]. VR is a promising tool for these applications, as the
increased sense of immersion and presence compared to more tra-
ditional platforms (e.g. desktop computers) has been shown to
improve outcomes and performance [4, 86, 97]. Moreover, VR al-
lows designers to create experiences which would be dangerous
or costly to recreate using traditional methods [25, 41]. VR experi-
ences can however, cause adverse motion sickness-like symptoms
(cybersickness) in users [49], with the primary cause of such symp-
toms believed to be the mismatch between perceived and expected
visual and vestibular motion [80, 81, 91].

Many VR applications, including training and immersive gam-
ing experiences, that use virtual environments which exceed the
bounds of room-scale VR rely on locomotion techniques that induce
such a mismatch between the senses. The experience of cybersick-
ness caused by these (and other) effects can lead to a decrease in
enjoyment and engagement, potentially affecting users’ sense of
presence as well as training and treatment outcomes [96, 101], addi-
tionally limiting uptake, and the commercial or therapeutic success
of VR applications. A significant amount of research has been con-
ducted into mitigation for VR cybersickness, most of which has
so far focused on investigating the effects of sensory inputs on
symptoms, such as field of view (FOV) restrictions or speed of mo-
tion (e.g., [21, 24, 48]). Such interventions can, however, diminish
presence and lead to disorientation [17, 26].

Existing work in motion-induced sickness (where users experi-
ence actual physical motion) has shown that it can be influenced
by higher cognitive processes [10, 47, 69]. There has been a small
amount of related work in VR environments, but the relationship
between cognitive demand and cybersickness in VR caused by
visual motion has not yet been explored. Since many VR applica-
tions already involve an aspect of cognitive demand, such as in
game search or attention tasks, there is a need to better understand
the relationship between cognitive load and cybersickness, as this
could help designers to better anticipate the levels of cybersick-
ness experienced by users, and their need for mitigations. Thus,
our work, presented in this paper, focuses on developing a better
understanding of this relationship.

1.1 Exploring the Use of Physiological Measures
of Cybersickness

Cybersickness is generally captured using self-report measures (e.g.
[44, 46]), typically deployed after completing an experience, or by
interrupting the experience (thus undermining participants’ sense
of immersion). This makes it difficult for researchers to gather data
on the temporal dynamics of the development of cybersickness
and such measures may even inadvertently influence participants
perception of symptoms [103].

Physiological sensors could provide a method of assessing the
continuous experience and intensity of symptoms, and could also
be used as real-time feedback to adapt VR experiences, dynamically
driving closed-loop mitigation. With physiological sensors becom-
ing less invasive and more portable, there is an emerging trend to

embed physiological sensors within VR headsets. For example, the
recent HP G2 Reverb Omnicept headset includes eye tracking, heart
rate sensors, and face tracking cameras. In our work, we also explore
the possible use of physiological measures to understand users’
experience of cybersickness. We chose to use frontal-lobe func-
tional near-infrared spectroscopy (fNIRS) sensors, a non-invasive,
portable and low-cost method of monitoring brain activity [39].
This technology is of particular interest for our study as it has pre-
viously shown potential as a measure in HCI research (eg. [59]),
and has been associated with the detection of cognitive demand
[12, 18, 64, 72] and emotional arousal [7, 31, 33]. Furthermore, when
used for entire brain coverage, fNIRS has shown the potential to de-
tect brain activity associated with motion sickness in car journeys
which is primarily reflected in posterior regions but also shows
some related activity in frontal areas [105]. Unlike Zhang et al.’s
study, we use frontal-lobe fNIRS sensors only (as displayed in Fig.
3), primarily because such a configuration could be deployed as
an integral part of a VR head-mounted display, and so is more
likely to be widely deployed and available to developers. Recent
work has also suggested that such a set up might be able to detect
cybersickness induced by VR exposure [100].

Our work is the first to address these concerns through a lab
study examining the relationship between cybersickness and cog-
nitive load, and a preliminary exploration of the use of fNIRS as
a physiological measure of cybersickness. This research provides
insight for a future in which cybersickness across VR experiences
can be detected and mitigated via headset-embedded physiological
sensors and manipulating cognitive demand.

1.2 Contributions
Through the work presented in this paper, we make the following
contributions:

• We present the results of a user study which demonstrates
that performing a cognitive task while immersed in VR can
mitigate the experience of cybersickness, which has signifi-
cant implication for the design of future VR experiences.

• We explore and propose the potential for frontal-lobe fNIRS
as a physiological measure of cybersickness, and present
preliminary findings as a point for discussion.

• Our findings validate and extend previous works which show
that fNIRS measurements over the frontal-lobe can be asso-
ciated with the detection of cognitive demand in VR, compa-
rable with subjective techniques.

In the rest of our paper we firstly present relevant existing work
related to cybersickness in VR, and the use of fNIRS as a physi-
ological measure of brain activity. We then proceed to describe
our study, in which participants were seated on a virtual roller
coaster (see Figure 1 and 2) in VR, while performing a rapid serial
visual presentation task (RSVP, see Figure 1). This highly controlled
cognitive task was chosen to investigate the effects of cognitive
demand on cybersickness and cybersickness on task performance.
We then proceed to present our findings in Section 5, which show
that performing a cognitive task in VR can partially mitigate the ex-
perience of cybersickness, and provide some preliminary evidence
that frontal-lobe fNIRS may be a suitable physiological measure
for evaluating cybersickness. We conclude with a discussion of our
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results, in which we make recommendations for the future design
of VR experiences, and consider how fNIRS might be further devel-
oped as a real-time feedback tool for understanding and improving
user experiences in VR.

2 RELATEDWORK
Cybersickness is similar to motion sickness and describes adverse
symptoms experienced when immersed in a computer-generated
virtual environment [20, 49, 70, 96]. Virtual environments that in-
volve user locomotion resulting in optic-flow are particularly prone
to causing cybersickness symptoms, due to a conflict between per-
ceived and expected physically and visually experienced self-mo-
tion. [49, 81]. These symptoms include, oculomotor-like symptoms,
like eye strain, headaches or blurred vision to motion sickness-like
symptoms such as nausea, dizziness, vertigo or stomach awareness.

2.1 The Relationship Between Cognitive
Demand and Cybersickness

In our work we investigate the effects of performing a cognitive
task on cybersickness symptoms, while experiencing visual motion
in VR. To our knowledge, no previous works have examined this;
however, a number of related studies have investigated the effects
of cognitive processes on motion-induced sickness in other types
of environments.

For example, recent work by Nooij et al. [69] showed that users’
beliefs about the possibility of perceived motion actually occurring
can effect motion sickness symptoms. In their case, users experi-
enced less sickness while viewing rotational motion when seated
in a chair capable of rotating. Mental engagement in a task can
also reduce the experience of motion sickness levels. For example,
performing cognitive tasks while immersed in a motion sickness
inducing environment can distract from experiencing symptoms,
such as nausea [10]: in this case, Bos et al. [10] induced motion sick-
ness by blindfolding participants and exposing them to off-vertical
axis rotation. Listening to music has also been theorised to reduce
motion sickness, particularly music liked by the user, which creates
a positive emotion [47, 74], suggesting that such positive effects are
likely, and not only due to simple distraction from motion sickness
symptoms. This notion is also supported by work investigating the
effects of a simple counting task on motion sickness elicited by
whole body pitch oscillation, that found no reduction of motion
sickness in relation to such a task [102].

Motion sickness and cybersickness have also been found to re-
duce with repeated exposure to a sickness inducing environment
[23, 45, 106], with recent research suggesting that cognitive dis-
traction might facilitate these habituation effects, resulting in a
speedier reduction of cybersickness symptoms over time [107]. To-
gether, this body of work suggests that adding a cognitive task to
a potentially cybersickness-inducing experiences in VR might not
only have immediate beneficial effects on symptoms (and the users’
experience), but can also help reduce future negative experiences
in such environments.

Conversely, some previous work has investigated the effects of
motion sickness on task performance. For example, motion sickness
induced by driving simulators has shown to have negative after
effects on participants performance on an n-back task [89] as well

as reaction times for emergency breaking tasks [82]. Similarly, in a
virtual navigation task presented on a concave screen, participants
performed worse when they experienced cybersickness [50]. In
contrast, in a high-fidelity driving simulator no negative effects of
motion sickness on driving performance were found. [38].

Dahlman et al. showed that participants in an optokinetic drum
that experienced stronger visually induced motion sickness per-
formed worse on short term memory tasks [19]; similarly, perfor-
mance on working memory task has been shown to be negatively
affected by motion sickness induced in a rotating chair [71]. Partic-
ipants in Matsanga’s et al.’s study [63] performed a multitasking
battery (memory search task, arithmetic problem task, visual and
auditory reaction tasks) in VR, while seated on a motion platform:
their performance declined with increases motion sickness. How-
ever, relatively little work has examined the effects of cybersickness
in VR headsets (based on visual motion alone) on task performance.
Salgado et al. [84] and Stanney et al. [92] both found that cyber-
sickness reduced performance on locomotion tasks; however, no
work has yet investigated the effects of cybersickness on cognitive
task performance in VR.

2.2 Measures of Cybersickness
One of the most commonly used scales to measure cybersickness is
the Simulator Sickness Questionnaire (SSQ) developed by Kennedy
and colleagues [44] to accommodate symptom specific to exposure
to virtual simulators. The questionnaire generates three sub-scales:
Nausea, Oculomotor and Disorientation. The SSQ is generally ap-
plied before and after exposure, and therefore is unable to give
information about the development of symptoms over time.

A simple and fast method to measure cybersickness symptoms
while immersed in the virtual environment was introduced with the
FastMotion Sickness Scale (FMS) [46]. The FMS can be administered
during stimulus presentation, with motion sickness intensity being
rated verbally every minute on a 20-point scale. This allows for a
continual measure of cybersickness intensity.

2.2.1 Neuronal correlates of Cybersickness. Ideally, it would be
possible to measure a user’s experience of cybersickness without
them needing to self-report (or be made aware of it). EEG, due to its
high temporal resolution, has been used to detect changes in neu-
ronal activity associated with motion sickness (e.g. in simulators
or moving vehicles) as well as cybersickness [15, 50, 52, 55, 66, 66].
Evidence from these studies indicates that measurable neuronal
changes may be associated with self reported sickness symptoms.

However, EEG can be cumbersome to set up, many times requir-
ing contact gel, or uncomfortable dry electrodes, which make it
difficult to deploy in consumer products. In our work, we explore
the use of frontal-lobe fNIRS as an alternative measure of neuronal
correlates related to cybersickness, which could more easily be
integrated into commercial head mounted displays, as shown by
[100].
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2.3 fNIRS and Cybersickness
fNIRS is a non-invasive brain imaging method that uses near in-
frared (NIR) light (in the 650–1000 nm wavelength range) to mea-
sure regional hemodynamic responses associated with neuron be-
haviour. fNIRS can monitor changes in oxygenated (HbO) and de-
oxygenated (HbR) hemoglobin that can be correlated with changes
in brain activity. A significant change in brain activity in a particular
region is considered when a negative correlation between HbO and
HbR is detected [16, 104]. FNIRS has a higher temporal resolution
compared to fMRI, a higher spacial resolution compared to EEG
[85], and has been successfully used to measure brain activity in
different brain regions such as the prefrontal cortex [3, 60, 73], the
motor cortex [34, 88], the auditory cortex [77], and others.

Recently, fNIRS has been explored by the HCI community as a
physiological measure, due to its portability, non-invasive nature,
low cost, relatively easy setup, and resilience to naturalistic move-
ment artefacts [60, 72, 78, 90]. It has been established as an objective
measure of cognitive demand, with more mentally demanding tasks
corresponding to higher brain activity (higher levels of HbO and
lower levels of HbR [16, 104]) over frontal areas [12, 18, 60, 64, 72].
Aside from workload, fNIRS measurements were used to detect
changes correlating to other processes and states such as emo-
tion [36, 77], pain response [27], or clinical applications to support
brain-impaired patients [1, 35]. The experience of cybersickness
and motion sickness has been shown to be reflected in related brain
activity over predominantly posterior regions, such as the occipital
and parietal cortex, using EEG [13–15, 55], and for motion sickness
in a driving simulator, using fNIRS [105]. However, there has also
been evidence suggesting that frontal brain areas are involved in
the experience of motion sickness[68, 100, 106].

In our work, we conjecture that the experience of cybersickness
is governed by higher cognitive processing, and relies on similar
processes to those needed to perform cognitive tasks. We therefore
expect that the experience of cybersickness will also be reflected in
neuronal changes found in the frontal lobe area of the brain. This
idea is also supported by findings from Zhang et al. [105], who
detected hemispheric asymmetry in car passengers experiencing
motion sickness. More activity was found over the left hemisphere,
particularly over visual areas (occipital lobe) and parietal regions,
which is inline with studies using MRI/fMRI to study motion sick-
ness [67, 83], but also over the frontal lobe. Findings by Yamamura et
al., who integrated a one sensor fNIRS device into their VR headset,
also highlighted the potential for frontal lobe fNIRS to be used to
detect cybersickness [100]. This suggests the possibility that cyber-
sickness could be detected using only frontal-lobe fNIRS sensors
(which could be embedded in a VR head mounted display).

3 STUDY OVERVIEW
In our study we investigated the effect of cognitive demand and
visual motion on cybersickness, and its neuronal correlates, for
participants experiencing a VR roller coaster simulation. We further
investigated the effect of cybersickness on their task performance.

We posed the corresponding research questions:

• RQ1: Can increased cognitive task load reduce the experience
of cybersickness symptoms resulting from perceived motion
in VR?

• RQ2: Can the experience of cybersickness be potentially
detected in frontal lobe brain activity using fNIRS?

• RQ3: Does the experience of cybersickness reduce perfor-
mance on a cognitive task in VR?

3.1 Study Design
The study was designed to be within-subject with mental task de-
mand and visually represented motion as independent variables
and cybersickness and mental demand as dependent variables. The
experiment consisted of four experimental conditions in which
the participant was seated on a virtual roller coaster which either
moved along a track or was stationary and an attentional task
(RSVP) being presented in front of them that they either had to
perform or solely use as their fixation point:

• (C1) Motion with Cognitive task
• (C2) No Motion with Cognitive Task
• (C3) Motion with No Cognitive Task
• (C4) No Motion with No Cognitive task

The roller coaster was placed in a simple “space-like” background
environment, comprising a planet surface and distant astronomical
features. This environment was chosen as it gives the participant
information about their virtual relative orientation, whilst contain-
ing few details which might distract from the task (see Figure 2). It
took 60 seconds for the roller coaster to simulate a complete round
of the track (see Figure 2). This simulation was chosen to elicit a
strong sensation of vection. The roller coaster moved at an average
speed of 1 unit per second which was affected by gravitational
forces (roller coaster track going up vs roller coaster track going
down). After each round the roller coaster decelerated to an almost
stop and accelerated again to begin the next round. Each condition
was presented twice, and lasted for 3 minutes resulting in 6 rounds
(6 minutes) of the roller coaster for the two motion conditions (C1,
C3) and 6 minutes of being seated on the stationary roller coaster
in the no-motion conditions (C2, C4).

A rapid serial visual presentation (RSVP) task was chosen to
manipulate cognitive load in the experiment. The RSVP task was
chosen for this study as it is widely used as a way of reducing
attentional resources available for other cognitive processes [40].
and it represents a highly controlled and easy to manipulate version
of an in game activity, such as reacting to enemies in a shooting
game. In the task, a series of visual stimuli appear rapidly in time
at the same point in visual space, relative to the participant. The
participant is given a target stimuli to respond to, and has to press
a button as fast as possible whenever the target appears in the
sequence. In this study ten colourful images of “monsters” were
chosen as stimuli for the RSVP (see Figure 1). These monsters were
always presented in front of the roller coaster carriage that the
participant was seated on. In C1 and C2, two out of the 10 presented
monsters were designated as targets. Targets were chosen randomly
meaning that each participant had two different targets in each
condition. In C3 and C4, participants were presented with the RSVP
images, but did not have to respond to any target. Each RSVP stream
was presented for 180 seconds and contained 360 images (monsters)
including the target monsters and the distractor monsters, (see
Figure 1). The images were presented randomly at a rate of 2 Hz,
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(a) roller coaster from the side (b) roller coaster from above

Figure 2: Roller coaster track as seen from the side (a) and from above (b)

targets were never presented one after another to avoid attentional
blink [79, 87].

The RSVP stream was presented in no-cognitive demand condi-
tions (C3, C4) as a fixation point to ensure that the visual properties
of the task were consistent across all conditions. Excluding the
RSVP from the visual display in the no-cognitive demand conditions
would have resulted in differing visual input between the condi-
tions which likely would have affected participants experience of
cybersickness. To reduce confounds related to the presentation of
the task (RSVP stream) in the no-cognitive demand conditions we
varied the targets in each cognitive task trial to ensure that none of
the monsters were perceived as always being a target, resulting in
8 out of the 10 presented monsters being targets at some point for
each participant. We found that none of the participants reacted to
the RSVP task by pressing the target button on their controller in
the no-cognitive demand trials suggesting that this manipulation
was successful.

4 METHOD
4.1 Participants
Forty participants took part in this study, participants were re-
cruited through social media as well as an internal recruitment
system, and each was compensated with £10 for their time. Due
to technical issues with the fNIRS device, data from three partici-
pants were not recorded, and so all data for these participants were
removed. Another three participants terminated the experiment
early because they were unable to tolerate cybersickness symptoms,
while another four participants did not report any cybersickness
symptoms, and were therefore also removed. This resulted in a final
sample size of 30 participants, who ranged in age from 18 to 39 years
(M = 22.97, SD = 4.97). Seventeen participants identified as female,
eleven as male, and two as gender non-binary. Six participants had
never used VR before, while the remaining 24 had various degrees
of previous VR experience. Twenty-one of them had used VR less
than 10 times prior to participating in the experiment while two
of the participants had extensive VR experience. All experimental
procedures were approved by the University of Lincoln’s Ethics

committee. Individuals suffering from photosensitive epilepsy as
well as pregnant individuals were excluded from the study.

4.2 Measures
We used the following measures during and after the study condi-
tions to record the corresponding dependant variables:

Cybersickness : Before and after each condition participants
filled out the SSQ to assess there overall experience of cybersick-
ness. To estimate participants experience of cybersickness while
immersed in the virtual environment, they continuously rated their
symptoms on the FMS scale, ranging from 0 ("no sickness at all") to
20 ("severe sickness"). A scale was placed in front of them as part of
the roller coaster carriage displaying their current level of motion
sickness, thereby, allowing them to constantly check their current
rating and adapt it if necessary (see Figure 1). The experiment was
terminated if participants reached a score of 15, to try to prevent
participants from becoming too sick. Participants were informed of
this threshold and knew the experiment would end if it was reached.
The threshold was reached by the three participants, which termi-
nated the experiment early. The rapid administration of the scale
allows for the quantification of the time course of cybersickness.

Mental Demand: The NASA-TLX [32] was administered after
each condition, and was used to assess perceived mental workload.

Physiological measure: Changes in brain activity were mea-
sured using the Octamon wireless fNIRS system (Artinis Medical
Systems, Elst). The data was collected using Oxysoft. The probe
was covering the frontal cortex and consists of 8 infrared light
sources and 2 detectors arranged in 8 data channels (S1 to S8), in-
cluding two short-separation channels (S4 and S6) as presented in
Figure 3. A channel of data is formed by a source (e.g. S1) and a
near by detector (e.g. D1). The distance between the emitters and
detectors was 35 mm, and 10 mm for the short separation chan-
nels. Each channel reports two measurements: HbO (oxygenated
hemoglobin), and HbR (deoxygenated hemoglobin). The data was
recorded using the Oxysoft software (provided by Artinis Medical
Systems, Elst, The Netherlands). fNIRS emitters used 760 nm and
850 nm wavelengths and the fNIRS data was acquired at 10 Hz.
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The optodes were positioned on participants forehead as shown in
Figure 3. Event markers were automatically inserted through a port
communication with the VR environment developed internally.

Figure 3: Sensor layout for the Artinis Octamon device in-
cludes 8 infrared light sources (blue colour) and 2 infrared
light detectors (yellow) forming 8 channels (red arrows) of
data split into two groups (Left vs Right).

4.3 Hypotheses
Based on our research questions and study design we formulated
the following hypotheses:

H1 Conditions eliciting vection due to roller coaster motion
cause more cybersickness compared to conditions in which it is
stationary. This will be reflected in higher FMS ratings and SSQ
scores. Confirming previous work [49].

H2: Performing a cognitive task will reduce the experience of cy-
bersickness symptoms in C1 compared to C3. This will be reflected
in lower FMS ratings, and SSQ scores (relating to RQ1).

H3: Performance on the cognitive task reduces with increasing
experiences of cybersickness (relating to RQ3).

H4: Conditions in which the roller coaster is in motion are
expected to be more cognitively demanding compared to when it
is stationary, because cognitive processes associated with cyber-
sickness utilises similar brain regions as the cognitive task (frontal
cortex). This will be reflected in higher NASA-TLX scores and
higher brain activity over the frontal cortex (measured by fNIRS)
for C3 compared to C4 (relating to RQ2).

H5: Conditions in which participants perform the attentional
task are more mentally demanding compared to the conditions in
which no task is performed. This will be reflected in higher NASA-
TLX scores and higher brain activity over the frontal lobe (measured
by fNIRS). Confirming previous work [12, 18, 64, 72].

4.4 Procedure
Participants were provided with information about the study and
gave informed consent. Participants performed a training condition
in VR to get used to the controls, such as increasing and decreas-
ing the cybersickness rating (see Figure 1), and responding to the
target monsters. After training, the fNIRS devices was fitted and
they started the study conditions. The conditions were presented
in two blocks. Each condition was presented once per block, with
counterbalanced ordering based on a latin square design. There
was a break period between the blocks, during which participants

could remove the headset. Before and after each condition partici-
pants verbally gave their SSQ ratings and after each condition they
additionally gave their NASA-TLX ratings. After the pre-condition
SSQ, a baseline period of 30 seconds occurred in which the VR dis-
play was black and no sound was playing followed by instructions
telling the participant which condition they would perform next,
and which monsters were their targets in the cognitive demand
conditions (instructions were visible for 5 seconds). Each experi-
mental condition lasted for 3 minutes, this was the equivalent of
3 rounds on the roller coaster (in the motion condition). The ex-
perimental conditions were followed by the post questionnaires
(SSQ and NASA-TLX) and a break (3 minutes). During the break a
black screen was displayed, and relaxing meditation music played.
Participants were instructed that to relax they could close their eyes
in this time period. After the break, the next pre-condition SSQ was
presented, with this procedure repeating four times in each block.
After performing the second block the fNIRS was removed, and
participants were debriefed.

4.5 Data Analysis
We used linear mixed effect models to analyse the effect of motion
and cognitive task on cybersickness and cognitive demand. Linear
mixed effect models, in comparison to more traditional ANOVAs,
have advantages in their ability to model non-linear individual char-
acteristics and deal with missing data. Additionally, they allow for
multiple observations from the same observer [53]. The modelling
of individual differences as random effects is an important feature
and advantage of these models. In the following results, partici-
pant was included as a random effect in the models, to account for
variability in effects across participants. Following the examples of
Winter [99], models were compared to a null model (missing the
variable of interest) using a likelihood ratio test, in order to obtain
a difference in Bayes Information Criterion (ΔBIC). In this context,
BIC may be used as a criterion for model selection, representing a
model’s likelihood, and can be seen comparable to the effect size of
a predictor [30]. Differences lower than 2 are considered to be weak
evidence, and a negative difference indicates evidence in support of
the null model, rather than the alternative model [42]. Additionally,
based on Lorah [58], we also calculated Cohen’s f2 for significant
fixed effects. For comparison we also include analyses performed
using repeated measures aligned rank transform (ART) ANOVAs.

Participants’ performance on the RSVP task in the two motion
conditions was analysed using the detection sensitivity index d’
(based on false alarm and hit rates). D’ was calculated based on the
procedure proposed by Bendixen and Andersen [8]. A response is
considered a hit rather than a false alarm if it occurs in a predefined
interval in which a response is possible. We chose this interval to
be 700ms which allowed participants to respond to a target for its
entire presentation and an additional 200ms after the target had
disappeared. To investigate the relationship between cybersickness
and performance repeated measures correlations were performed.

4.6 fNIRS Data Processing
The fNIRS data was analysed using NIRS Toolbox [85]. At first
the data was down sampled to 4 Hz. Next, the raw signals were
converted to optical density changes and then to HbO and HbR
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estimates using Beer-Lambert law, with a partial path length cor-
rection of 0.1 for both wavelengths [93]. We used the Temporal
Derivative Distribution Repair (TDDR) method to correct motion
artifacts [28]. On the first level analysis we used autoregressive
iteratively-reweighted least squares approach to estimate betas for
each tasks activation [6]. The method was tested and validated
previously against other approaches and showed better sensitivity
than other regression-based fNIRS data analysis methods in dealing
with fNIRS noise that violates assumptions of linear model [85].
The method uses both prewhitening and robust regression to cor-
rect the noise. The model provides an approach to better deal with
motion-related outliers and reduces the effect of correlations in the
noise of the fNIRS data (see [37] for the review).

It is common practice to use 60s or shorter task blocks when
analysing fNIRS data; however we wished to investigate user re-
sponses over the duration of their immersion.We therefore analysed
and report data from the first 60s, and entire 180 seconds, for each
condition. Correspondingly, we applied a 180s and a 60s BoxCar
function, used to model hemodynamic response. For group analysis,
mixed effects model was used to determine effects of the condition
as fixed effects, and subject as a random effect (formula=’beta -1 +
cond + (1|subject)). The advantage of using mixed effects models is
that they allow modelling both fixed and random effects in a data
and therefore increase power of a model [95]. The false discovery
rate (FDR) correction was used with the significance level set at 0.05
(𝑞 ≤ 0.05) [9]. Contrast analyses were used to assess differences
between each condition.

5 RESULTS
5.1 The Effect of Motion and Cognitive Demand

on Cybersickness
5.1.1 Continuous Measure of Cybersickness (FMS). Motion Sick-
ness ratings (FMS) were predicted using a linear mixed effect model
including Motion type (moving vs stationary), cognitive demand
(cognitive task vs no-cognitive task) and their interaction as fixed
effects, and the intercept for participant as random effect. The func-
tion used for the model is as follows:

Model = lmer (Motion Sickness∼ Motion Type *Cognitive Demand+
(1|Participant))

A significant effect of motion type on motion sickness was
found, 𝐹 (1, 207) = 171.82, p<.001, 𝑓 2 = .84,Δ𝐵𝐼𝐶 = 117.17. Partic-
ipants experienced more motion sickness when the roller coaster
was moving (M = 2.60, SD = 2.90) compared to it being stationary (M
= 0.53, SD = 1.30). This provides support for Hypothesis H1. A signif-
icant effect of cognitive demand (task or no task) onmotion sickness
was found, 𝐹 (1, 207) = 4.81, p =.029 𝑓 2 = .03,Δ𝐵𝐼𝐶 = −3.96. Partici-
pants experienced less motion sickness when they were performing
a cognitive task (M =1.39, SD = 2.50) compared to when they were
not (M = 1.74, SD = 2.44). No significant effect of their interaction
on motion sickness was found, 𝐹 (1, 207) = 2.21, 𝑝 = .138. A Tukey
post hoc test revealed that when the roller coaster was in motion,
sickness ratings were lower when undertaking the task (C1; M =
2.31, SD = 3.04) compared with no task (C3; M = 2.89, SD = 2.73,

t(207) = 2.60, p = .049, d = .20), supporting Hypothesis H2. How-
ever, when stationary, there was no significant difference between
undertaking the cognitive task (C2; M = 0.47, SD = 1.26) compared
with no task (C4; M = 0.58, SD = 1.34), t(207) = 0.50, p = .959, d = .08).
The motion condition resulted in higher motion sickness ratings
compared to the no motion condition both when participants were
performing a cognitive task (C1 vs. C2; t(207) = 8.22, p<.001, d = .79)
and when they were not (C3 vs. C4; t(207) = 10.32, p<.001, d = 1.07).
The motion condition with cognitive task (C1) caused higher mo-
tion sickness ratings compared to the no motion condition without
a cognitive task (C4; t(207) = 7.72, p<.001, d = .74) and similarly the
motion condition without a cognitive task (C3) caused more motion
sickness compared to the no motion condition with a cognitive task
(C2; t(207) = 10.82, p<.001, d = 1.14) (see Figure 4a).

Using ART-ANOVA a significant effect of motion type on cy-
bersickness was found, 𝐹 (1, 87) = 181.74, p<.001, 𝜂2p = .68. A sig-
nificant effect of cognitive demand on cybersickness was found,
𝐹 (1, 87) = 15.32, p<.001, 𝜂2p = .15. A significant effect of their inter-
action was found, 𝐹 (1, 87) = 10.32, 𝑝 = .002, 𝜂2p = .11.

5.1.2 Overall Experience of Cybersickness (SSQ). SSQ Scores were
predicted using a linear mixed effect model including Motion type
(moving vs stationary), cognitive demand (cognitive task vs no-
cognitive task) and their interaction as a fixed effect and the inter-
cept for participant as random effect. Analyses on the three sub
scales (Nausea, Oculomotor, Disorientation) showed similar results;
hence, for brevity, we only report results for total SSQ score. The
function of the model is as follows:

Model = lmer (SSQ Score∼ Motion Type *Cognitive Demand+
(1|Participant))

A significant effect of motion type on SSQ total scores was found,
𝐹 (1, 207) = 24.55, p<.001, 𝑓 2 = .12,Δ𝐵𝐼𝐶 = 12.9. Participants re-
ported higher SSQ total scores when the roller coaster was moving
(M = 16.24, SD = 20.55) compared to it being stationary (M = 6.05,
SD = 14.87). This provides further support for Hypothesis H1. A sig-
nificant effect of cognitive demand on SSQ total scores was found,
𝐹 (1, 207) = 10.42, 𝑝 = .002, 𝑓 2 = .05,Δ𝐵𝐼𝐶 = −0.3. Participants
reported higher total SSQ scores when they were performing a
cognitive task (M = 14.46, SD = 18.99) compared to when they were
not (M = 7.82, SD = 17.70). No significant effect of their interaction
on total SSQ scores was found, 𝐹 (1, 207) = 0.35, 𝑝 = .555. This
result fails to provide support for Hypothesis H2.

Using ART-ANOVA a significant effect of motion type on SSQ
scores was found, 𝐹 (1, 87) = 20.39, p<.001, 𝜂2p = .10. A significant ef-
fect of cognitive demand on SSQ scores was found, 𝐹 (1, 87) = 10.33,
p = .002, 𝜂2p = .05. No significant effect of their interaction was
found, 𝐹 (1, 87) = 0.76, 𝑝 = .762.

5.2 Development of Cybersickness over Time
Motion Sickness (FMS) ratings were predicted using a linear mixed
effect model including Condition Type (C1, C2, C3, C4), time (18
time points, 10 second intervals), with their interaction as fixed
effects, and the intercept for participant as random effect. The func-
tion of the model is as follows:
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(a) Predicted FMS Ratings (b) Predicted SSQ Scores

Figure 4: Predicted (a) FMS, (b) SSQ Scores for the motion and no motion condition. Red lines represent cognitive demand
conditions and blue lines represent no-cognitive demand conditions.

Model = lmer (Motion Sickness∼ Condition *Time+ (1|Participant))

A significant effect of Condition on motion sickness was found,
𝐹 (1, 2123) = 4.54, 𝑝 = .004, 𝑓 2 = .81,Δ𝐵𝐼𝐶 = 1217.3. Participants
experienced more motion sickness when the roller coaster was
moving and they were not performing a task (C3) (M = 2.89, SD
= 2.73) compared to when they were (C1) (M = 2.31, SD = 3.04,
t(2123)= 7.15, p<.001, d=0.20). For the no motion conditions, no
significant difference in motion sickness was found between the
no cognitive demand (C4)(M = 0.58, SD = 1.34) and the cognitive
demand conditions (C2) (M = 0.47, SD = 1.26, t(2123)= 1.37, p= .519,
d= 0.08). All other comparisons between conditions were signifi-
cant (p<.001). A significant effect of time on motion sickness was
found 𝐹 (1, 2123) = 599.72, p<.001, 𝑓 2 = .46,Δ𝐵𝐼𝐶 = 769.2. Mo-
tion sickness ratings increased by 0.23(±0.01) every 10 seconds.
A significant effect of their interaction on motion sickness was
found, F(1,2123) = 122.62, p<.001, 𝑓 2 = .17, ΔBIC = 317.3. Time had a
stronger effect on conditions in which the roller coaster was moving
compared to the ones in which it was stationary (see Figure 5).

5.3 The Effect of Motion and Cognitive Demand
on Perceived Workload

Total raw NASA-TLX Scores were predicted using a linear mixed
effect model including Motion type (rollercoaster moving vs roller-
coaster stationary), cognitive demand (cognitive task vs no-cognitive
task) and their interaction as fixed effect and the intercept for par-
ticipant as random effect. The same results were found for all di-
mensions of the NASA-TLX, therefore, for brevity only the total
NASA-TLX scores are reported here. The function of the model is
as follows:

Model = lmer (NASA-TLX Scores∼ Motion Type *Cognitive Demand+
(1|Participant))

Figure 5: FMS Ratings over the time period of a trial (180
seconds). Each line representing one of the four conditions:
(C1) Motion - Cognitive task, (C2) No Motion - Cognitive
task, (C3) Motion - No Cognitive task and (C4) No Motion -
No Cognitive task (including error bars).

A significant effect of motion type on total NASA-TLX scores
was found, 𝐹 (1, 207) = 35.40, p<.001, 𝑓 2 = 0.17,Δ𝐵𝐼𝐶 = 22.2. Par-
ticipants reported higher mental demand when the roller coaster
was moving (M = 36.31, SD = 28.02) compared to it being stationary
(M = 25.30, SD = 26.02). This provides support for Hypothesis H4.
A significant effect of cognitive demand on NASA-TLX scores was
found, 𝐹 (1, 207) = 384.79, p<.001, 𝑓 2 = 1.86,Δ𝐵𝐼𝐶 = 209.6. Partici-
pants reported higher mental demand when they were performing
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a cognitive task (M =48.95, SD = 24.05) compared to when they were
not (M = 12.66, SD = 16.77). No significant effect of their interaction
on NASA-TLX scores was found, 𝐹 (1, 207) = 0.01, 𝑝 = .925. This
provides support for Hypothesis H5.

Using ART-ANOVA a significant effect of motion type on NASA-
TLX scores was found, 𝐹 (1, 87) = 19.28, p<.001, 𝜂2p = .18. A signifi-
cant effect of cognitive demand on NASA-TLX scores was found,
𝐹 (1, 87) = 251.02, p<.001, 𝜂2p = .74.No significant effect of their in-
teraction was found, 𝐹 (1, 87) = 0.16, 𝑝 = .686.

Figure 6: Predicted NASA-TLX Scores for the cognitive load
and no-cognitive load condition. Red lines represent motion
conditions and blue lines represent no-motion conditions.

5.4 RSVP Task Performance
Task performance (d’prime) was predicted using a generalised linear
model, including motion (roller coaster moving vs stationary) as
fixed effect. The function of the models is as follows:

Model = glm (Task Performance ∼ Motion)
A significant effect of motion on task performance (d’) was found,

𝜒2 (1) = 6.80, p =.009,ΔBIC = 1.73. Participants performed the RSVP
task more successfully in the no motion condition (M = 1.46, SD =
0.79) compared to the motion condition (M = 1.97, SD = 0.67).

Reaction Time was predicted using a generalised linear mixed
effect model, including motion (roller coaster moving vs stationary)
as fixed effect and the intercept of Participant as random effect. The
function of the models is as follows:

Model = glmer (Reaction Time ∼ Motion + (1|Participant))
A significant effect of cognitive load on reaction time was found,
𝜒2 (1) = 21.60, p <.001, ΔBIC = 13.55. Participants responded faster
in no motion condition (M = 483ms, SD = 38ms) compared to the
motion condition (M = 506ms, SD = 32ms).

5.4.1 Relationship between Cybersickness and Task Performance. A
repeated measures correlation [5] was conducted to investigate the
relationship between cybersickness (FMS ratings and SSQ scores)
and task performance (d’ and reaction times). A moderate negative
relationship was found between performance on the task (d’) and
FMS ratings (r(29)= -.43, p = .015, N =30), a strong positive relation-
ship was found between FMS ratings and reaction time (r(29)= .57,

p <.001, N=30). Participants that rated their experience of cyber-
sickness higher on the FMS scale performed worse on the RSVP
task and took longer to react to targets. A moderate positive rela-
tionship between SSQ scores and reaction time was found (r(29)=
.45, p =.012, N=30). Participants that scored higher on the SSQ also
reacted slower to the targets. These results provide support for
Hypothesis H3, and we accept the hypothesis.

5.5 fNIRS Results
In this section we first report results using the 180s block analysis,
followed by the 60s analysis.

5.5.1 180 second analysis. In the Table 1 we report all significantly
activated channels with beta values, SE, t-stat values, p-values,
and q-values obtained from the 180 seconds block analysis. We
considered significant differences in channels where Hbo and HbR
were negatively correlated [16]. These results are also displayed in
Fig. 7 and Fig. 8, where a solid line indicates a significant increase or
decrease in activation (HbO or HbR) in a particular channel when
comparing the study conditions.

Figure 7: Schematic Illustration of the significant activation
channels in the fNIRS data (180 seconds per trial) generated
using fNIRS toolbox [85]. Hbo andHbr represent oxygenated,
respectively, deoxygenated hemoglobin levels resulting from
the fNIRS measurements. A solid line indicates a significant
increase or decrease in activation. a) shows an increase in
activation (S1 region) during the cognitive task (study con-
dition C2 compared to C4). b) shows a significant increase
in brain activation (S1 region) when experiencing motion
(study condition C3 compared to C4).

The fNIRS results indicate a significant increase in brain activa-
tion for Channel S1-D1 (see Fig. 3 and Table 1) when comparing
conditions C2 and C4 (see Fig 7a), and C3 and C4 (see Fig 7b).
These results provide further support for Hypotheses H4 and H5
respectively, and we therefore accept these hypotheses.

The results also indicated a significant drop in brain activation
in the same brain region (S1-D1) when participants performed a
cognitive task in the presence of VR motion (C1). This result was
significant when compared with all study conditions (C1 compared
to C1, C1 compared to C2 and C1 compared to C4 - see Fig. 8).
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Table 1: fNIRS results for 180 seconds analysis. Only statistically significant results are shown.

Source-Detector Type Condition Beta SE tstat p q
S1-D1 ’hbo’ ’C1-C2’ -0.0017 0.0004 -37.2453 0.0006 0.0009
S1-D1 ’hbr’ ’C1-C2’ 0.0026 0.0001 32.8690 0.0001 0.0001
S1-D1 ’hbo’ ’C1-C3’ -0.0016 0.0004 -34.3807 0.0007 0.0001
S1-D1 ’hbr’ ’C1-C3’ 0.0024 0.0008 30.2051 0.0003 0.0002
S1-D1 ’hbo’ ’C1-C4’ -0.0012 0.0001 -21.7539 0.0004 0.0007
S1-D1 ’hbr’ ’C1-C4’ 0.0017 0.0001 19.1428 0.0001 0.0001
S1-D1 ’hbo’ ’C2-C4’ 0.0005 0.0001 12.954 0.0001 0.0001
S1-D1 ’hbr’ ’C2-C4’ -0.0008 0.0001 -11.423 0.0001 0.0001
S1-D1 ’hbo’ ’C3-C4’ 0.0005 0.0004 10.6686 0.0001 0.0003
S1-D1 ’hbr’ ’C3-C4’ -0.0007 0.0001 -9.3090 0.0002 0.0001

Table 2: fNIRS results for 60 seconds analysis. Only statistically significant results are shown.

Source-Detector Type Condition Beta SE tstat p q
S1-D1 ’hbo’ ’C2-C4’ 0.0134 0.0031 4.2707 0.0001 0.0004
S1-D1 ’hbr’ ’C2-C4’ -0.0113 0.0034 -3.3094 0.0011 0.0088

Figure 8: Schematic Illustration of the significant activation channels in the fNIRS data (180 seconds per trial) generated using
fNIRS toolbox [85]. Hbo and hbr represent oxygenated, respectively, deoxygenated hemoglobin levels resulting from the fNIRS
measurements. A solid line indicates a significant increase or decrease in activation. Our results indicated that when performing
a cognitive task in the presence of VR motion (C1) there is a decrease in brain activation (S1 region) as compared to all other
conditions: a) C3, b) C2 and c) C4

5.5.2 60 Seconds Task Analysis. This section shows our analysis
for the fNIRS data when considering only the first 60 seconds of
exposure [76]. We considered significant differences in channels
where Hbo and HbR were negatively correlated [16]. The results
indicate a significant increase in brain activation for Channel S1-D1
(see Fig. 3 and Table 2) when comparing conditions C2 and C4. The
activiation seen when comparing C3 and C4 in the 180s analysis
was not evident in the 60s analysis.

6 DISCUSSION
We begin this section by briefly summarising our study results,
and then proceed to discuss insights that we have gained into the
relationship between cybersickness and cognitive load, both in
terms of perceived user experience, and neural processing. We then
present some implications of these insights for creators of VR expe-
riences, focusing on considerations for the design of applications,
and the potential deployment of fNIRS sensors in commercial set-
tings, including ethical considerations. We conclude by describing
limitations, and possible future work.



Cybersickness and Mental Demand CHI ’23, April 23–28, 2023, Hamburg, Germany

6.1 Summary of Findings
The FMS data collected during our study indicated that participants
experienced higher levels of cybersickness in the conditions which
included visual motion when compared to those with no motion,
and that cybersickness increased over time (as visualised in Figure
5). However, under the experience of motion, participants reported
lower levels of cybersickness when undertaking a cognitive task
compared to when they were not. Cybersickness experienced by
participants overall was rather low which could be explained by
the short trial durations (3min). Differences between the cognitive
demand and the none-cognitive demand conditions were significant
but had a relatively small effect size; results should therefore be
interpreted with caution. These short trials were chosen, however,
to be suitable for fNIRS analyses as these currently do not allow
for longer time windows. Higher levels of cybersickness when in
motion were also evident from the SSQ results. However, SSQ data
also showed higher levels of cybersickness when completing the
task, which is contrary to the results of our FMS data.

Participants reported higher levels of perceived workload on
the NASA-TLX questionnaire both when undertaking the task, and
when experiencing motion. Task performance was lower when
participants experienced the motion conditions, and correlated
negatively with cybersickness (reported using FMS).

Our fNIRS data showed activation on the S1-D1 channel corre-
sponding to the right dorsolateral prefrontal cortex (DLPFC), under
certain conditions. Using 60s block analysis, higher levels of activa-
tion occurred when participants were undertaking the cognitive
task (compared to no task), in the conditions without motion. This
was also observed using 180 second block analysis; however we
additionally saw a significant activation on the same channel when
participants experienced motion (compared to no motion), when
no task was being performed. There were also a drop in activation
in the motion + task condition C1, when compared to each of the
other conditions.

6.2 Insights into Cybersickness and Cognitive
Load

Whilst our FMS results show support for Hypothesis H2 (perform-
ing a cognitive task reduces the experience of cybersickness during
motion), this support is not evident in our SSQ data. This differ-
ence may be due to a number of factors. Firstly, it is possible that
these measures represent slightly different constructs (the SSQ is
intended to measure a broader range of symptoms). We also note
that FMS data is collected continually during participants experi-
ences, whilst SSQ data was collected post-hoc. Our results could
therefore reflect temporal differences in participant’s experiences,
possibly including differences in recovery times for conditions. In
addition, performing both the cognitive task and experiencing mo-
tion sickness could be more fatiguing, and so reflected more in the
post-hoc SSQ scores.

Whilst there is mixed support for H2, we consider that our FMS
results are small but robust (for example, temporal development is
consistent), and more reflective of participants experiences during
their exposure to VR, and so on balance we consider that there is
sufficient supporting evidence for this hypothesis.

6.2.1 Neural Processing and Cybersickness. Prefrontal fNIRS has
previously been discussed as a physiological measure of cognitive
demand [3, 60, 72, 73, 90], where the right prefrontal cortex is be-
lieved to play an important role. As expected, our study replicated
these findings: in the absence of visual motion, a significant acti-
vation was found over the right DLPFC when participants were
engaged in the cognitive task, compared to when they were not.
Aside from supporting previous results, this suggests that our fNIRS
data collection and processing is robust.

The corresponding activation found for the motion predictor
variable is of more interest to our study: when not engaging in
the task, a corresponding activation was found over the same area
(DLPFC) when participants experienced motion, as compared to
when they did not (180s analysis). Additionally, we note that the
motion-related activation only appeared in the 180s analysis, and is
not detected early in the exposure (60s). This phenomenon could be
caused by a number of factors, such as exposure to visual motion
or other internal processes, such as vection, boredom or fatigue.
However, if this was caused by perceived visual motion then we
expect to see the same result after 60s. We therefore conjecture that,
since cybersickness also increases during exposure to motion, the
activation is related to participants’ processing of cybersickness,
rather than to processing the visual motion itself. If this is the case,
then, not only may prefrontal fNIRS sensors be able to detect users’
experience of cybersickness induced by visual motion, but it may
also be the case that the cognitive process of cybersickness relies on
the same attentional resources as those used by the cognitive task in
our study (since they occur on the same brain region). Researchers
and practitioners should then be aware that frontal lobe activation
could correspond to different user experiences. While we consider
that this finding should be validated through further experimen-
tal work, measuring other related concepts, such as vection or
fatigue, it would have significant implications for the designers
of VR experiences, which we expand in Section 6.3. They also
have implications for those using frontal-lobe fNIRS in non-VR
research settings, such as training or therapy, where users might
inadvertently experience sickness induced by visually perceived
motion. Whilst our results were obtained using VR, previous work
has indicated that fNIRS can detect motion sickness [105], and so
fNIRS users should be aware that sickness due to various causes
might interfere with fNIRS readings.

We also note that these findings, while preliminary, are aligned
with previous works which indicated that users can be distracted
from experiencing cybersickness [10, 107]. However, rather than the
cognitive task simply distracting from cybersickness, we suggest
that this decrease in cybersickness may be due to the sharing of
attentional resources by these two processes. This notion of shared
cognitive resources is alignedwith cognitive load theory [54], which
states that a high load on the processes of cognitive control can
decrease or interfere with the performance of other tasks using the
same cognitive processes, and is further supported by our other
results. Firstly, those obtained using the NASA-TLX: not only did
participants rate conditions in which they were performing the
RSVP task as more mentally demanding, they also rated conditions
in which the roller coaster was in motion as more demanding (see
Figure 6). Secondly, we point to the observed reduced activation
on the S1-D1 channel when participants experienced both motion
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and the cognitive task together. Whilst this would seem a counter-
intuitive result, we note that work byMandryk et al. [62] found a cap
on attentional resources in dual-task conditions using fNIRS. This
suggests that our results indicate either a reduction or redistribution
of processing cognitive resources, resulting from an interaction of
the processing of cybersickness and the cognitive task. This could
also explain the reduction in task performance when experiencing
cybersickness.

6.3 Implications for the Design of VR
Applications

Based on our findings, we firstly recommend that VR developers
consider the interplay between cybersickness induced by visual mo-
tion and cognitive processing, when designing VR games, as well as
learning and training applications. For example, when anticipating
that cybersickness may occur, and considering particular mitiga-
tions (such as narrowing field of view [2]), developers may also
consider what level of cognitive load their users are experiencing,
and whether such mitigations are necessary, or could be reduced.
This may be particularly applicable to developers of action games,
where players often experience a high cognitive load at particular
points during game play, and so may not experience as much cy-
bersickness as might be otherwise expected. Since cybersickness
mitigations may compromise user experience in other ways, we
recommend that developers actively evaluate the levels of sickness
that players experience, through user research, in order to assess
what degree of mitigation is necessary.

In some cases, increasing cognitive load could in fact be used as
a mitigation in its own right. Introducing new cognitive tasks into
a VR experience may not always be a viable design option, but in
cases where the user is engaged in either game play, or a learning
experience, it may be feasible to increase the demand placed on
the player. Note that we do not recommend the addition of new
cognitive tasks into a VR experience as a means of mitigating cy-
bersickness. Rather we suggest that developers consider the level
of cognitive demand already offered by the experience. For exam-
ple, in an action game, the difficulty level could be increased or
decreased (for example spawning more or less enemies), or in a
training simulation, more difficult tasks could be presented.

Although we did not measure participants’ sense of presence
in our study, we note that our RSVP task was not presented as an
integrated part of the environment, which may have had a negative
effect on participants’ sense of presence. A strong sense of pres-
ence can have a positive effect on training and learning outcomes
in VR environments [4, 86, 97]; therefore, VR applications should
generally be designed to maximise presence, with cognitive task
being integrated into the virtual environment. Presence has also
shown to negatively correlate with perceived mental demand in a
VR surgical training simulation [11], as well as cybersickness [96]
further highlighting a complex inter-relationship between these
three phenomena, which warrants further study.

6.3.1 The use of fNIRS. Frontal-lobe fNIRS headsets are still rela-
tively expensive; however, unlike other neural sensing technologies,
they are easy to deploy. Current work (such as that presented in
this paper) is still investigating how fNIRS data can be used to
understand aspects of user experience. We consider it likely that

fNIRS sensors may be deployed in commercial headsets in future,
as so be available to the creators of commercial applications, such
as games. Currently, however, this technology is only realistically
available for smaller scale deployment.

Our preliminary results suggest that frontal-lobe fNIRS may pos-
sibly be able to detect the experience of cybersickness, and if so,
then, this could be used by designers and developers to better under-
stand the experiences of their users. Firstly, as we have mentioned,
it would be useful for developers of games to understand, during
play testing, when players experience cybersickness. Current fNIRS
headsets could be used to do this, and offer the potential for more
convenient and detailed profiling than questionnaires.

If and when fNIRS is deployed commercially, it could be further
used by designers to create adaptive experiences for users. For
example, if a particular player is experiencing high levels of sickness,
this could be detected by the software at run time and used to initiate
mitigations. This would be particularly beneficial for players who
are more susceptible to cybersickness, and so could increase the
accessibility and uptake of VR games and applications. We therefore
advocate for more research into understanding the relationship
between cybersickness and fNIRS sensor data.

6.3.2 Ethical Issues of Using fNIRS Data. VR headsets are already
incorporating physiological sensors, and, as we have suggested,
this could include fNIRS sensors in future, giving designers and
developers access to data about their users’ brain activity. This does
raise significant issues about how this data is collected and used,
not only in research [65, 94, 98], but also in commercial applications,
and overlaps with other ethical concerns over the collection of data
from the users of VR systems, such as, for example, the sharing
of data with other users [61], or the use of physiological data in
general [65].

In particular, our work highlights that researchers are still ex-
ploring how fNIRS data can reveal information about users, and
developers should be mindful of this. Information about brain func-
tion might contain medical data, or other sensitive data about users
that they themselves might not even be aware of (for example, in
our case, susceptibility to cybersickness). Designers and develop-
ers therefore need to give considerable thought as to how they
store, use or share physiological data obtained from users, and also
how they might respond to more refined information being made
available through fNIRS sensors in future. Designers should also be
transparent with users about how physiological data is used, and
provide options for users to maintain control of their own data.

6.4 Limitations and Future Work
Our work is subject to a number of limitations, which we discuss in
this section. Firstly, we note that our study elicited cybersickness
using illusory motion. While this is a common trigger for cyber-
sickness in VR, it is not the only scenario in which it may occur. It
may be that cybersickness caused by other experiences in VR may
be processed differently. Furthermore, the results obtained using
FMS were not consistent with those obtained using the SSQ. FMS
ratings also reflected an overall weak experiences of cybersickness
with the effect of cognitive demand on FMS ratings being rather
small. Whilst we consider that our FMS results are robust, and more
detailed than those obtained using the SSQ, further investigation
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of this difference is warranted, and may expose a more nuanced
relationship between cybersickness and cognitive load than we
have identified here.

Future work investigating the relationship of cognitive demand
and cybersickness should be undertaken to find out whether the
small positive effects of cognitive demand on cybersickness found
for these low sickness inducing environments translates to simula-
tions inducing stronger symptoms of motion sickness with longer
durations. The effect of cognitive demand on cybersickness could
possibly differ for such scenarios compared to our results with
the onset and the maximum experience of motion sickness being
differently affected by varying cognitive demand.

We have suggested that there is a relationship between the pro-
cessing of cybersickness and cognitive load. Again, this is an initial
finding, and warrants further exploration in order to determine
the nuances of this relationship; for example, to what extent cyber-
sickness is affected under different levels of cognitive load, and/or
different types of task. Here we compared conditions in which no
cognitive task had to be performed with conditions including a
cognitive task. Cognitive demand using the RSVP paradigm could
however also be manipulated by varying the speed of the presenta-
tion as well as the number of targets [51]. This manipulation could
be applied in future research to further investigate the effect of cog-
nitive demand on cybersickness and give insight on how different
levels of demand or task difficulty can affect ones experience of
cybersickness symptoms. We recognise that sustained experience
of illusory motion in VR, coupled with cognitive tasks, is most likely
to be associated with game experiences, and we believe that this
would be a valuable context for further work on understanding
this relationship. Future work could also focus on what types of
cognitive tasks show these beneficial effects, and how they can be
best integrated into the existing VR environment to maintain users’
sense of presence. These cognitive tasks should not be perceived as
separate but rather as part of the virtual world.

The virtual environment used as a proof-of-concept in our study
is rather controlled, with participants experiencing passive self-mo-
tion following a predefined trajectory (roller coaster track).Work us-
ing a less controlled virtual environment that participants were able
to explore themselves while searching for targets also found posi-
tive effects of cognitive distraction on cybersickness[107]. Based
on this we suggest that increasing cognitive demand should reduce
adverse symptoms in any virtual environment that is likely to cause
cybersickness based on active and passive locomotion.

While we have suggested that fNIRS may be able to detect cyber-
sickness, our study represents only a preliminary investigation of
this relationship. The delayed onset of fNIRS activation is congru-
ent with the temporal development of sickness, but only provides
partial evidence. For example, it is possible that other processes
are involved, or that the processing of illusory motion is contribu-
tory factor. We therefore advocate for more detailed study of the
detection of cybersickness using fNIRS, possibly focusing on the
detection of levels of cybersickness, which would represent a useful
tool for designers and developers of VR systems. We also note that
in our experiments we detected frontal lobe activation after 180s of
exposure motion conditions, which was not detected after 60s. If
this is due to the experience of cybersickness, the question arises
as to how long fNIRS data would need to be collected in order to

reliably detect it. This is difficult to generalise from our study, as
participants reported relatively low levels of cybersickness: it seems
likely that less data would be required for more intense experiences.
We suggest that further work to validate our results could also in-
vestigate whether this is the case. We also note that cybersickness
is a highly individual experience, and that users also adapt to it over
time, so some degree of personalisation and adaptation of system
parameters may also be appropriate for robust detection.

Finally, we believe that fNIRS is a potentially very useful tool,
both for research and for commercial developers seeking to create
adaptive VR experiences. Our work has examined cybersickness
and cognitive load specifically, but we believe that there is potential
for this technology to be used to explore and enhance other aspects
of user experience. We have also focused on frontal lobe sensors, as
these are the most accessible and most likely to be integrated with
existing headsets, but investigations using more complex sensor
arrays is also of interest as possible future work. For example, in our
case the experience of cybersickness while performing a cognitive
task will most likely activate a much more complex pattern of brain
areas (not just frontal ares) including several visual brain areas
(such as MT). Further analysis, such as Connectivity analysis and
an increased number of sensors covering the entire head would
be important to draw further conclusions about the underlying
neural mechanisms of the interaction between cybersickness and
cognitive task demand.

7 CONCLUSIONS
In this paper we have studied the relationship between cognitive
demand and cybersickness in VR, and also explored the neural
relationship between these process using fNIRS. We used an ex-
perimental setup in which participants performed a cognitive task
in VR, while seated on a roller coaster. We collected data about
their feelings of nausea and workload, as well as neurological data
about their brain activity, using frontal-lobe fNIRS. Our results in-
dicate that symptoms of cybersickness may be partially mitigated
by engaging in a cognitive task.

Analysis of our fNIRS data suggests an inter-relationship be-
tween the processing of cybersickness and cognitive load, and that
they are both processed in the pre-frontal cortex. This further sug-
gests that fNIRS may be used to detect the experience of cybersick-
ness in users. we have highlighted the potential for the designers
of VR experiences to make use of these findings when mitigating
for cybersickness, and also the potential for fNIRS to be deployed
in commercial VR headsets, and leveraged by developers to create
adaptive experiences, especially for the players of VR games.
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