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ABSTRACT 
Artifcial intelligence (AI) in healthcare has the potential to improve 
patient outcomes, but clinician acceptance remains a critical barrier. 
We developed a novel decision support interface that provides inter-
pretable treatment recommendations for sepsis, a life-threatening 
condition in which decisional uncertainty is common, treatment 
practices vary widely, and poor outcomes can occur even with op-
timal decisions. This system formed the basis of a mixed-methods 
study in which 24 intensive care clinicians made AI-assisted deci-
sions on real patient cases. We found that explanations generally 
increased confdence in the AI, but concordance with specifc rec-
ommendations varied beyond the binary acceptance or rejection 
described in prior work. Although clinicians sometimes ignored or 
trusted the AI, they also often prioritized aspects of the recommen-
dations to follow, reject, or delay in a process we term “negotiation.” 
These results reveal novel barriers to adoption of treatment-focused 
AI tools and suggest ways to better support difering clinician per-
spectives. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and 
tools; • Applied computing → Health informatics. 
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1 INTRODUCTION 
Artifcial         
comes, reduce costs, and save clinicians time and efort. Yet at 
present, even the most encouraging AI solutions face signifcant ob-
stacles to deployment and acceptance in real-world clinical settings 
[59]. AI-based tools that seek to improve decision-making across 
diverse deployment contexts must produce recommendations that 
are both acceptable to health care providers and transparent in the 
case of errors [30, 82]. In addition, health care providers generally 
consider themselves to be content experts in their felds, and they 
are naturally skeptical of decision aids that may limit their auton-
omy and challenge their sense of identity [70]. These issues have 
motivated studies that aim to evaluate and improve the human-
AI collaborative system in health care [35, 40, 53], often drawing 
on insights from interpretable AI [52, 67, 85]. By helping clinical 
experts understand the conditions in which AI predictions fail, clin-
ical decision support (CDS) systems could help produce AI-assisted 
decisions that are better than those made by humans or algorithms 
alone, improving patient outcomes. 

Despite these eforts, efective complementarity between hu-
mans and AI-based CDS has largely not yet been realized, in part 
because it is difcult for clinicians to calibrate their trust in newly 
developed AI systems. Experimental studies demonstrate that trust 
can be miscalibrated in both directions: experienced clinicians often 
dismiss AI recommendations regardless of quality, while novices 
over-rely on incorrect advice [7, 31]. Prior work has investigated 
several strategies to mitigate these discrepancies, including provid-
ing explanations of the process underlying a given recommendation 
[1, 12, 85], communicating the uncertainty of predictions [78, 90], 
and familiarizing users with the AI’s global strengths and weak-
nesses as identifed from external validation [14, 32]. However, 
none of these methods appear to work universally across contexts, 
particularly in health care; in some domains, they may infate or 
undermine confdence [31, 40, 90], while in others they may be 
poorly-aligned with human decision-making processes [2, 32]. In 
order to cultivate an appropriate level of reliance, interpretable 
AI systems must account for decision-maker characteristics, task 
complexity, AI performance, and other factors in ways that are not 
yet fully understood [52, 57, 67]. 

Importantly, most work in this area has focused on diagnostic 
systems—that is, systems designed to help clinicians make a clinical 
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diagnosis (e.g., identifying cancer in a radiograph [16]) or predict 
a future clinical event (e.g., clinical deterioration [35, 68]). These 
systems have the beneft of a known or expert-annotated “ground 
truth” upon which algorithms can be developed and calibrated. 
As such, they aim to improve clinical care by reducing diagnostic 
errors, providing insight into the likelihood of future events, and 
minimizing cognitive burden. 

A separate, emerging class of CDS systems is designed to deliver 
treatment recommendations—for example, which type of chemother-
apy to give to a cancer patient or whether or not to administer 
intravenous fuids to a hospitalized patient identifed as being at-
risk. In these systems, the “best” decisions are often difcult to 
identify, either due to a lack of clinical evidence [22, 86] or due to 
expert disagreement on the best course of action [24, 63]. There-
fore, treatment-focused AI models often seek to discover optimal 
decisions by correlating treatments with their average efects on 
patient outcomes, a task which is signifcantly more challenging 
than diagnosis or prediction but which has the potential to more 
powerfully impact patients. 

While clearly diferent from a modeling perspective, a key ques-
tion is whether AI tools that do not have a clear correct decision re-
quire diferent approaches for human-AI interaction design. For diag-
nostic aids and risk-assessment tools, AI-assisted decision-making 
behavior is often conceptualized as taking place at a single point in 
time (e.g. a physician encounter) and as involving a limited number 
of options (e.g. either agreement or disagreement with a diagno-
sis) [14, 16, 35, 45, 80, 83]. In contrast, decisions about treatments 
often span a wider range of options and take place across multiple 
time-points that can confound outcomes. For instance, a clinician 
may prescribe one treatment on the frst visit, then observe that 
it is having little efect on the patient’s condition and administer 
a diferent treatment upon the second visit. Determining the opti-
mal decision in this context requires understanding both how past 
treatment decisions have afected the current patient state, and how 
future treatment decisions might infuence the expected outcome. 
This complex reasoning task is well-known in causal modeling [60] 
and has been described in early-stage design studies in health care 
[46]. It has not, to our knowledge, been explored in th

2.1

e context of 
a functioning treatment decision support tool. 

In this work, we sought to explore how clinicians interact with 
real AI-based treatment recommendations in a setting where se-
quential treatments can afect outcomes in complex ways [46]. Our 
clinical domain of interest was the intensive care unit (ICU), an envi-
ronment characterized by acutely ill hospitalized patients and corre-
spondingly dynamic, time-sensitive decisions. We designed and im-
plemented an interactive CDS interface that delivers interpretable 
recommendations for treating sepsis, a life-threatening medical 
condition with relatively few existing evidence-based care proto-
cols and substantial heterogeneity in treatment patterns among 
clinicians [17]. The foundation of our CDS was an existing well-
known AI model that could reduce patient mortality if followed 
[50] but that has not been prospectively evaluated in a clinical set-
ting. The resulting CDS system formed the basis for a think-aloud 
study with 24 clinicians, all of whom practice in the ICU and have 
experience treating sepsis. We aimed to understand their responses 
to the recommendations and explanatory evidence provided by the 

AI, including both how they perceived it to infuence their decisions 
and how their actual treatment choices were afected. 

A mixed-methods analysis of the think-aloud transcripts and 
structured decision responses showed that explanations improved 
clinicians’ perceptions of the AI’s usefulness and made them more 
confdent in their own decisions, a fnding that is consistent with 
prior literature [1, 80, 85]. However, their overall rates of binary 
concordance with the AI recommendations did not appear to be 
afected by explanatory visualizations. Instead, analysis of partic-
ipants’ think-aloud decision processes revealed a more nuanced 
picture of individual decision-making than described in the liter-
ature thus far, involving four distinct behavior patterns with the 
AI: 

(1) Ignore, in which the decision-maker is not afected by the 
AI recommendation in any decision; 

(2) Negotiate, in which the decision-maker weighs and priori-
tizes individual aspects of the recommendation to follow or 
adjust; 

(3) Consider, in which the decision-maker dichotomously de-
fers to or overrides the recommendation; and 

(4) Rely, in which the decision-maker accepts some part of the 
recommendation in every decision. 

These behavior patterns, particularly in the Negotiate group, in-
dicate that recommendations for treatment decisions in the ICU 
may be subject to partial forms of reliance that could impact the 
efcacy of chosen treatments in undetermined ways. Our results 
also pointed to ways in which the formulation of the model used 
for this study hindered clinicians from using it efectively, opening 
new directions for model improvement and evaluation. We discuss 
the implications of the behavior patterns and obstacles we observed 
on the further development of AI-based treatment decision support 
tools. 

2 BACKGROUND AND RELATED WORK 

        Sepsis Diagnosis and Treatment in the ICU
Sepsis is a life-threatening medical condition that afects over 1.7 
million adults in the United States each year and is the leading 
cause of death in hospitals [18]. Sepsis occurs when the body’s 
response to an infection causes systemic infammation and organ 
dysfunction [28], which can in turn lead to septic shock and death 
[71]. Sepsis is also the most costly condition in U.S. hospitals [10], 
and as such it represents a major target for quality improvement 
eforts at the local and national level [36]. Timely identifcation and 
appropriate management of sepsis is crucial to reducing mortality 
rates [28]. Key diagnostic strategies include frequent clinical assess-
ments, blood cultures to identify pathogens, and measurement of 
laboratory values that may indicate infection; treatment strategies 
include control of the infectious source with antibiotics or antivi-
rals, intravenous (IV) fuids to maintain appropriate fuid balance, 
and vasopressors (such as norepinephrine) to maintain appropriate 
blood pressure [28]. 

Sepsis has long been a focus of AI research; however, nearly 
all of this research is devoted to early identifcation and diagnosis. 
Multiple machine learning algorithms exist for mining hospital elec-
tronic health record data to identify patients with sepsis [58, 64, 77]. 
These systems are generally accurate, and several hospital systems 
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have already implemented algorithmic early warning systems for 
sepsis [35, 69]. However, the implementation of these systems has 
not tended to afect treatment decisions or patient outcomes [38]. 
Conceptually, early warning systems may fall short of their goal of 
improving the quality of care when they fail to provide information 
that is both novel and actionable. 

In contrast, relatively little AI research has focused on sepsis 
treatment. Guidelines for treating sepsis in the ICU are continu-
ally evolving [28], and although individual treatment decisions at 
specifc time points (e.g., whether to give fuids or vasopressors) 
are certainly highly infuential on patient outcomes on average, the 
physiological complexity of sepsis renders the infuence of treat-
ments on individual outcomes largely unknowable. As such, rec-
ommendations face signifcant challenges in translation to wider 
clinical practice [75], resulting in substantial variability in care 
practices [6] and continued high mortality levels [74]. 

Machine learning approaches for sepsis treatment aim to stan-
dardize and improve sepsis care by leveraging historical patient 
trajectories. The most prominent example of this approach is the AI 
Clinician developed by Komorowski et al. [50], and it is the model 
that forms the basis for our clinician-facing work. By improving 
the consistency and timeliness around treatment with IV fuids and 
vasopressors, sepsis treatment models such as the AI Clinician have 
immense potential to reduce mortality (from around 13% to around 
5%, according to [29]). However, for this potential to be realized, 
clinicians actually have to act on the AI recommendations at the 
bedside. Indeed, studies evaluating the efects of these predictions 
have only considered retrospective data and not how (or if) such 
tools might be utilized by human clinicians. Because model rec-
ommendations are impactful only if they are implemented, it is 
critical to understand how a model like the AI Clinician might be 
integrated into an ICU clinician’s workfow, and whether human-AI 
collaboration can indeed outperform unaided human clinicians. 

2.2 Explainability, Interpretability and 
Decision-Making 

The design of explainable and interpretable ML-based tools has be-
come a major focus of research in the HCI community [26, 76, 90]. 
While early eforts in explainable AI (XAI) focused on feature-based 
explanations, current conceptions of interpretability comprise a 
wider range of techniques, including uncertainty and confdence 
metrics [65], nearest-neighbors [39], and counterfactuals [91]. In 
concert with human-centered design methods, these technical ap-
proaches can be integrated into algorithmic systems with the intent 
of improving trust and human-AI team performance [5, 37, 67]. 

However, there remain substantial challenges in designing and 
validating interpretable AI systems, particularly in high-stakes 
decision-making domains such as health care. Model explanations 
themselves can be prone to issues such as over-sensitivity to input 
values or giving seemingly-sensible explanations for incorrect pre-
dictions [73]. When explanations are presented to decision-makers 
alongside predictions, a line of studies ranging from Bussone et 
al. [12] to more recent work [20, 85, 90] has shown that these 
explanations tend to increase trust in the model even when it is un-
warranted. Explanations can also interact with reasoning fallacies 
such as confrmation and availability bias [21, 45], but mitigating 

these efects requires knowledge of a normatively correct reasoning 
process [84] that may not always be available. 

In the translation of promising AI tools into a real-world set-
ting, the evaluation of decision quality poses its own challenges. 
While expert consensus can serve as a useful proxy for the ground 
truth [40], the accuracy of a real-world decision is often funda-
mentally unknowable and contentious [47]. Taking an alternative 
strategy, some AI systems instead strive to provide clinicians with 
useful non-prescriptive information, such as highlighting informa-
tive parts of a medical image [27], displaying information from 
similar historical cases [13], or identifying patients at high risk 
of future deterioriation [35, 68]. These approaches serve to focus 
attention without making specifc recommendations, thereby indi-
rectly improving decisions but also making the AI algorithms more 
ignorable (potentially reducing beneft). 

The present study was specifcally designed to address the chal-
lenges described above: imperfect and biased models, potentially 
misleading and hard-to-interpret explanations, and in particular the 
lack of an objective ground truth. Rather than evaluating decision-
making along a single axis of quality, we used a combination of 
behavioral and attitudinal measures [66] to understand how an 
imperfect AI system would afect its users within a high-stakes 
environment in which the correct decision is unknowable in real-
time. 

2.3 Clinician Perceptions of Decision Support 
Tools 

While ML-based tools for clinical decision-making have great poten-
tial utility, they face the combined challenges of building efective 
XAI as well as broader obstacles to adoption of CDS tools. Yang 
et al. [87] describe difculties in gaining acceptance from expert 
clinicians without formal validation of the tool, as well as the in-
herent challenge of situating CDS at the right time and place for 
decision-making. Similarly, Cai et al. [14] emphasize clinicians’ 
need to understand the overall design and validation of the CDS 
before they can trust it on individual instances. Studies of deployed 
AI systems by Beede et al. [9] and Wang et al. [83] have identi-
fed clinician frustrations with the added workload of using a CDS, 
particularly when those systems do not adequately complement 
their expertise. Early-stage studies of CDS tools have also found 
that acceptance of AI recommendations is often more strongly de-
termined by the clinician’s expertise than by the quality of the 
recommendation [31, 80]. 

On the other hand, a few deployed systems have met with suc-
cess and clinician acceptance. For example, AI-driven CDS systems 
for image-based diagnosis have been increasingly accepted as tools 
to reduce clinician burden and prioritize attention [9, 80]. Related 
to sepsis, early-warning systems such as Sepsis Watch and the 
Targeted Real-time Early Warning System (TREWS) have been 
accepted by clinicians at the hospitals where they are deployed 
[35, 69], despite being initially met with ambivalence [34]. These 
tools may have been readily accepted because (1) they could be rigor-
ously validated using ground-truth data, (2) they ultimately helped 
coordinate providers and prioritize care [35] rather than directly 
replacing clinical judgment; and (3) acceptance does not rely on clin-
ician behavior change and they can therefore be easily ignored by 
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untrusting clinicians. However, while these diagnosis-focused tools 
are a promising model for AI-based CDS, they represent only one 
of many points in the care workfow in which complex decisions 
may be needed. 

In particular, relatively few studies have examined the acceptabil-
ity of AI-generated treatment recommendations: Jacobs et al. used a 
mock AI system to evaluate clinician decisions on antidepressant 
selection [40], while Yang et al. presented clinicians with projected 
survival curves conditioned on a device implantation decision [87]. 
Kaltenhauser et al. examined intravenous fuid administration in 
intensive care, although their study was more focused on under-
standing decision-making without an AI rather than the infuence of 
AI on treatment decisions [46]. In contrast to diagnoses, which are 
relatively straightforward to learn from historical data, treatment 
recommendations in CDS have predominantly been derived from 
clinical best-practice guidelines rather than AI [8, 43]. However, 
broad best-practice guidelines are of limited utility at the bedside 
because their recommendations fail to account for patient-level 
variation and the interaction between multiple variables over time 
[49]. Machine learning approaches have the potential to deliver 
treatment recommendations that are more specifc and personal-
ized, but how they will be received by clinicians remains an open 
question. 

3 DESIGN OF AN INTERACTIVE AI-DRIVEN 
CDS SYSTEM 

As an initial step towards bringing AI-based recommendations to 
clinical practice for sepsis treatment, we designed and implemented 
an interactive patient trajectory visualization tool called the AI 
Clinician Explorer. This tool serves as both an exploratory tool 
for historical patient data and as an interface for a real treatment 
recommendation model developed from retrospective clinical data 
(the AI Clinician). The following sections describe the underlying 
model as well as the design of the front-end visualization system. 

3.1 Reinforcement Learning for Sepsis 
Treatment 

Unlike many AI problem formulations which treat the patient as 
a static data point on which to make a prediction, sepsis manage-
ment in the ICU requires a dynamic approach that considers the 
changing state of the patient over time. In particular, models need 
to account for the fact that long-term outcomes, such as mortality, 
may not be the direct result of a single action but rather a series of 
actions over an evolving trajectory. The AI Clinician [50] addresses 
these challenges by applying a reinforcement learning (RL) strategy. 
Like most RL approaches in health care, the AI Clinician works by 
modeling a patient trajectory as a sequence of memoryless states 
derived from available biometric signals (vital signs, lab values, 
etc.). At each timestep, the agent—either a clinician or a model—can 
choose from a predefned set of actions, which then results in the 
agent receiving a numerical reward (or penalty). As shown in Fig. 
1, the AI Clinician uses �-means clustering to defne 750 possible 
patient states, then applies an algorithm called policy iteration to 
determine which of 25 diferent treatment actions most optimally 
reduces mortality in each state. The model’s actions represent 5 
possible levels of IV fuids and 5 vasopressor dosages binned by 

Figure 1: Overview of the AI Clinician’s training methodol-
ogy, summarized from [50]. The model takes as input a set 
of historical trajectories comprising patient vitals, labs, and 
treatments discretized at 4-hour intervals. Each timestep is 
represented as one of 750 diferent states (determined using 
clustering) followed by one of 25 possible treatment actions. 
The output of the model is a set of treatment values (or Q-
values), which estimate the future rewards that would be 
obtained from taking a given action. The policy that the AI 
Clinician would follow is to take the action with the largest 
value estimate in each state. 

quantiles, representing a substantial but non-exhaustive subset of 
the treatment choices that a human clinician might make. 

The AI Clinician publication is widely known and highly infu-
ential in both the critical care and CDS communities [79, 88]. Yet it 
has also faced criticism because its recommendations often devi-
ate from bedside clinicians’ best understanding. This may be due 
to inherent biases in how patients’ outcomes are weighted in the 
model’s evaluation process, a problem known in RL as of-policy 
evaluation [41]. Additionally, more recently-developed techniques 
using deep neural networks may improve on the accuracy of the 
AI Clinician [29, 61, 89]. However, since these more recent meth-
ods also rely on of-policy evaluation, reliable benchmarks of their 
performance remain elusive. For this study, we chose Komorowski 
et al.’s approach because it is the best-known model of its kind, and 
therefore most likely to gain clinician acceptance in the absence of 
concrete evidence that any such AI model improves outcomes. 

We replicated the AI Clinician’s methodology using the publicly-
available MIMIC-IV dataset [42] (a more recent version of the 
MIMIC-III dataset used by the original model developers), and pro-
vide the code on GitHub for future reproducibility1. MIMIC includes 
granular clinical data on all ICU admissions to a large academic 
medical center over a multi-year time period, and therefore is a 
unique resource for this project. The model was trained on a cohort 
of 18,143 patients who met standard diagnostic criteria for sepsis 
at some point during their ICU stay. We verifed that the model 
performance on held-out data was similar to the original reported 
performance, as measured by a bootstrapped policy value estimate 
computed using weighted importance sampling2. Specifcally, the 
model whose predictions were displayed had a policy value of 83.8 

1https://github.com/cmudig/AI-Clinician-MIMICIV 
2The accuracy of an RL policy cannot be computed directly on retrospective data 
because we cannot observe the outcomes of following the policy. Instead, weighted 
importance sampling (WIS) works by averaging the survival/mortality rewards associ-
ated with each trajectory, weighted by how similar the clinicians’ actions were to the 
model predictions. 

https://github.com/cmudig/AI-Clinician-MIMICIV
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(possible values range from −100 to 100), while the values reported 
by Komorowski et al. on MIMIC-III ranged between 80 and 90 [50]. 

3.2 Visualization System Design 
We next developed a novel front-end visualization system which 
we term the AI Clinician Explorer. This system enables clinical ex-
perts to search for patients in the MIMIC-IV dataset, visualize their 
disease trajectories, and compare model predictions to actual treat-
ment decisions delivered at the bedside. The AI Clinician Explorer 
was designed for use both as a tool for research and education on 
AI in sepsis, and as a starting point for an eventual clinician-facing 
interface for real-time decision-making in the live clinical envi-
ronment. An initial prototype was created using inspiration from 
prior literature, notably ClinicalVis [33]. We then iterated on this 
design and tailored it for use by ICU clinicians, based on feedback 
from experienced ICU physicians and other experts in biomedical 
sciences, informatics, and psychology. The fnal system consists of 
the following primary components: 

Browse and flter patients. The Patient Browser page helps 
users fnd cases of interest by allowing them to flter and sort a 
list of patient trajectories by a variety of task-specifc metrics. The 
most straightforward of these include flters for age, gender, co-
morbidities, outcomes, and commonly-used disease severity scores 
(SOFA and SIRS). During the iterative development process, we 
identifed a need to flter for specifc actions and recommendations 
at a timestep level (i.e., the 4-hour time periods over which the 
model aggregates data and makes treatment recommendations), 
which is more granular than fltering at the patient-level. We added 
flter controls that allow the user to select from the 25 possible 
clinician and model actions on a pair of grids. This was used to 
identify timesteps in which, for example, clinicians tended to give 
IV fuids while the model recommended vasopressors. 

Visualize patient trajectory. The Patient Trajectory page, rep-
resented in Fig. 2, was designed to help clinicians quickly assess 
a patient’s state throughout their ICU stay. Similar to ClinicalVis 
[33], our trajectory visualizations communicate the patient’s cur-
rent vital signs and lab values numerically, and depict their trends 
over time using line charts. Abnormal values are highlighted in red, 
while trend arrows show changes in each value relative to the last 
4 hours. Clinicians’ feedback on the time-series charts indicated 
that the visualizations were highly usable, particularly compared 
to how data is currently presented in existing hospital-based elec-
tronic health records (EHRs). We also worked with the clinicians to 
reorder and regroup the features into semantic categories, which 
served to align the page’s structure with standard reporting con-
ventions and facilitate skimming. 

Compare model predictions and clinician actions. As de-
scribed in Sec. 3.1, the AI Clinician categorizes each patient to one 
of 750 states, and each state is associated with a predicted treat-
ment recommendation. For each timestep in each patient trajectory, 
the interface displays heatmaps showing the AI Clinician’s recom-
mended action (Fig. 2c) and the distribution of historical clinician 
actions in that state (Fig. 2d). This pair of visualizations surfaced 
the insight that the AI Clinician often assigns similar treatment 
values to multiple actions rather than strongly preferring a single 
action. We therefore explored ways to present multiple treatment 

options during the study, resulting in the Alternative Treatments 
visualization condition. 

Interpret state clustering. Presenting explanations of the AI 
Clinician’s predictions was a key aspect of both the patient browser 
interface and the clinician-facing study. A few explainability meth-
ods have been developed specifcally for reinforcement learning 
(XRL) [55, 62]; however, these methods generally either require 
diferent training methods (to create intrinsically interpretable poli-
cies) or accurate models of patient trajectory dynamics (to predict 
counterfactual outcomes). To align our work with both the existing 
AI Clinician model and prior XAI literature [85, 90], we opted to 
use standard XAI techniques to explain the state clustering, which 
has a major impact on the model output as it determines which 
groups of patients are recommended similar treatments. For each 
of the 750 possible states, we trained an XGBoost classifer [19] to 
predict whether a patient was in that state or not. We then used 
Shapley Additive Explanations (SHAP) [54] to identify the features 
that most often contributed to patients being included in the state.3 

These features are depicted in the State Interpretation chart, and 
were used in the Feature Explanation study condition. 

We used the AI Clinician Explorer to select patients for our 
clinician-facing study, as described in greater detail in Sec. 4.1. The 
system also formed the basis of the interface that study participants 
used to make decisions. (In the study we controlled which model 
visualizations and time points participants saw rather than giving 
them access to the entire AI Clinician Explorer, thus better replicat-
ing the information set that would be available to clinicians in real 
life.) The tool is built using a Flask back-end, a Svelte front-end, 
and a database comprising BigQuery and Google Cloud Firestore 
components. The source code for the tool and study interface is 
available on GitHub to support future research4. 

4 STUDY METHODS 
We conducted a mixed-methods study to understand the challenges 
that clinicians face when attempting to incorporate AI advice, to 
explore how participants perceive their decision-making diferently 
with AI support, and to evaluate the efect of explanations on ac-
ceptance. We explored the following research questions: 

(1) How do AI-generated sepsis treatment recommendations 
and explanatory visualizations afect clinicians’ perceptions 
of decision-making? 

(2) How do visual explanations of model predictions afect ac-
ceptance of the AI’s advice? 

(3) What challenges do clinicians perceive in incorporating AI 
treatment recommendations into their decision-making? 

We recruited 24 practicing ICU clinicians from a large multi-
hospital academic hospital system in the eastern United States. 
Our sample included three types of ICU clinicians representing 
the range of providers that make sepsis treatment decisions in the 
ICU: attending physicians, advanced practice providers (APPs), and 
critical care fellows in training. Attending physicians are the most 

3The choice of explanation technique can have a signifcant efect on what conclusions 
are drawn from feature importance charts. In our case, the combination of XGBoost and 
SHAP qualitatively yielded more parsimonious, clinically sensible explanations than 
other classifers (random forests, SVMs) or explanation techniques (SVM coefcients, 
permutation importance).
4https://github.com/cmudig/ai-clinician-explorer 

https://github.com/cmudig/ai-clinician-explorer
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Figure 2: Main interface in the AI Clinician Explorer, designed to support browsing patient trajectories, interpreting model 
recommendations and comparing predicted treatment values against historical clinical actions. (a) The timestep control allows 
the user to step through the patient’s ICU stay at 4-hour intervals. (b) The patient state is shown in small-multiple line charts, 
with abnormal values highlighted in red. (c) Heatmap showing the estimated value of taking each of the 25 possible actions (� 
values) from the current state. (Values are only estimated for actions with more than 5 observed clinician actions, as shown by 
the colors in the Clinician Probabilities plot.) (d) Probability of clinician actions for patients in the current state. (e) Description 
of the current patient state, as well as a chart showing most strongly contributing features according to SHAP. (f) Mortality 
rate of patients after being observed in this state. 

senior clinicians in the ICU. APPs and fellows are generally less 
senior but still make independent decisions about sepsis treatments. 
Most participants were attending physicians, although their level 
of experience in the ICU varied signifcantly, as shown in Table 1. 
Sessions were conducted on Zoom and lasted between 20 and 50 
minutes; participants received 50 USD in compensation. 

During the study, participants used a simplifed AI Clinician Ex-
plorer interface to assess and make treatment decisions for four pa-
tients while thinking aloud. Patients were selected from the MIMIC-
IV dataset by the authors, as described in Sec. 4.1. Participants were 
free to explore all patient data prior to the time-step of interest, 
which included demographics, vital signs, lab values, mechanical 
ventilation settings, and a record of all treatments administered 
since the beginning of the patient’s ICU stay. 

Patients were presented in a randomized order. For each patient, 
participants saw a diferent version of the AI recommendation 
(“visualization condition”), presented in a fxed order with each 
successive condition containing more information. We elected to 
present visualization conditions in a fxed order to minimize cogni-
tive burden on our participants and to give them an opportunity to 
progressively acquaint themselves with the features of the AI Clini-
cian interface. As summarized in Fig. 3, the visualization conditions 
were as follows: 

(1) No AI. Participants made the decision without an AI recom-
mendation. 

(2) Text Only. Participants were introduced to the AI and given 
a simple text-based recommendation (e.g., “For this patient, 
the AI recommends...”) 

(3) Feature Explanation. In addition to the textual recommen-
dation, participants were shown a SHAP feature attribution 
chart explaining how the patient’s state was determined (Fig. 
3b). 

(4) Alternative Treatments. Finally, for this condition partici-
pants were shown a bar chart with fve possible treatment 
actions ranked by the AI-generated quality score. Bars were 
also color-coded by the frequency at which clinicians in 
the historical dataset took each action for similar patients, 
providing participants with a sense of both how common a 
decision was and the quantity of data that the recommenda-
tion was based on (Fig. 3c)5. 

The AI was introduced to participants as “Sepsis-AI,” a tool that 
“analyzes patients’ electronic health records and uses an artifcial 
intelligence-based algorithm to recommend fuids and vasopressor 
doses that optimize mortality based on historical data.” To prevent 
5Although this visualization includes two diferent types of information (AI-predicted 
value and aggregate clinician behavior), we opted to include it as a single experimental 
condition to minimize the study burden for participants while collecting relevant 
think-aloud feedback for future iterative design. 
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Participant Role Years ICU Experience 

P1 APP 1-2 
P2 APP 3-5 
P3 Fellow 3-5 
P4 Fellow 1-2 
P5 Fellow <1 
P6 APP >10 
P7 Attending 5-10 
P8 Attending 5-10 
P9 Attending >10 
P10 Attending 5-10 
P11 Attending >10 
P12 Attending >10 
P13 APP >10 
P14 Attending >10 
P15 Attending 3-5 
P16 Attending >10 
P17 Attending >10 
P18 Attending 5-10 
P19 APP >10 
P20 APP 3-5 
P21 Attending 3-5 
P22 Attending >10 
P23 Attending 5-10 
P24 Attending 3-5 

Table 1: Summary of study participants, their roles, and their 
level of experience working in the ICU. ICU = intensive care 
unit; APP = Advanced Practice Provider. 

bias we avoided referring to the AI as the “AI Clinician,” since some 
participants may have been familiar with the discussion surround-
ing the original publication. 

After reviewing each patient’s history and current status, par-
ticipants were asked to choose a treatment action to apply to the 
patient related to both the IV fuid amount and vasopressor dosage. 
Although the recommendation included specifc dosages of IV fu-
ids and vasopressors, we limited participants’ choice set to (up to) 
three options in an efort to capture clinicians’ frst-order decision-
making process, and to better replicate the way clinicians make 
resuscitation decisions at the bedside [56]. This design had the 
added beneft of increasing the analytic tractability of our results. 
The three options were: begin/increase, end/decrease, or leave un-
changed. If a treatment strategy was not currently being used (e.g. 
patient not on vasopressor), the end/decrease option was removed, 
leaving participants with 4-6 possible actions per patient. After 
making each treatment decision, participants reported their con-
fdence in their own treatment choice (on a 7-point Likert scale 
bounded by “not at all confdent” and “extremely confdent”) and 
their beliefs about how challenging the case was (on a 7-point Likert 
scale bounded by “extremely easy” and “extremely challenging”). 
For all visualization conditions except for No AI, participants also 
rated the usefulness of the Sepsis-AI recommendation (on a 7-point 
Likert scale bounded by “not at all useful” and “extremely useful”) 
and the degree to which the Sepsis-AI recommendation afected 

their confdence in their own treatment choice (on a 7-point Lik-
ert scale bounded by “... much less confdent” and “... much more 
confdent”). 

Once participants had entered their decisions on all four cases, 
we concluded the session with a brief semi-structured interview 
to understand how clinicians used the diferent visualizations as 
well as their perspectives on when they might perceive the AI to 
be helpful. 

4.1 Case Selection 
In any study involving acceptance of AI-generated recommenda-
tions, the scenarios that are chosen can have a large impact on 
participants’ level of concordance with, and perceived trust in, the 
AI. As discussed in Sec. 3.1, a variety of factors make the “accu-
racy” of the AI Clinician’s treatment recommendations impossible 
to determine with certainty. Therefore, instead of choosing cases 
based on a target level of accuracy, we deliberately chose cases and 
decision points in which the AI Clinician’s recommendation was 
substantially diferent from historical clinician actions. Specifcally, 
we used the AI Clinician Explorer to identify patients (and timesteps 
within patients) in which the AI Clinician recommended one treat-
ment strategy (e.g. vasopressors and no IV fuids) for patients in 
a particular state, but a plurality of clinicians gave an alternative 
treatment (e.g. IV fuids and no vasopressors). This approach had 
the added beneft of replicating situations in which the AI recom-
mendations might challenge clinician judgment. To make the cases 
more realistic, each patient was given a randomly-generated name, 
and the visualization was accompanied by a hypothetical clinical vi-
gnette summarizing the patient’s status. The vignettes were written 
to provide only generic clinical context (e.g. “sepsis from a urinary 
tract infection”), with no information that could guide treatment 
decisions beyond what was included in the dataset. A summary of 
the cases is shown in Table 2. 

4.2 Analysis 
Ratings of confdence and AI usefulness were compared quantita-
tively to assess participants’ attitudes towards each of the visualiza-
tion conditions. Using the Python statsmodels package6, ordinary 
least squares (OLS) regression models were ft to each 7-point Likert 
scale outcome using the visualization condition as the only predic-
tor. Models controlling for the participants’ role, gender, and years 
of experience yielded similar results. All models cluster standard 
errors at the respondent level using robust Huber-White estimators. 
For post hoc (pairwise) comparisons, we adjust for multiple tests 
using the Holm–Bonferroni method. 

In the absence of a ground truth correct decision, treatment 
choices were evaluated in terms of their concordance against three 
reference standards for each patient: (1) the AI Clinician’s recom-
mendation, (2) the action taken by the clinician(s) on the actual 
patient in the MIMIC-IV database, and (3) the majority action cho-
sen by attending physician participants in the No AI visualization 
condition. The latter served as an approximation for the “clini-
cal consensus” decision for each patient, although (as expected) 
variability was observed even within these experts’ decisions. To 
understand the relationship between visualization condition and 

6https://www.statsmodels.org 

https://www.statsmodels.org
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Figure 3: Visualization conditions used in the study. All participants were shown the base interface with patient trajectory 
views from the AI Clinician Explorer. The right half of the interface contained one of the following conditions when the AI 
was shown: (a) A textual description of the AI’s recommendation, introduced in the Text Only condition and shown alongside 
subsequent visualization conditions as well. (b) The Feature Explanation chart shows the fve variables that contributed most 
strongly to the AI’s characterization of the patient state, and how each variable’s values deviate from the average. (c) The 
Alternative Treatments chart shows fve possible actions and the frequency at which clinicians historically took each action. 

Patient Pseudonym Ruth Silva Loretta Sturtevant Jefrey Williams Victoria Thompson 

Demographics 
Key Characteristics 

AI Recommendation 

Original Clinician Decision 

Majority Attending Decision 

76 y/o female 
mechanically ventilated, 
undiagnosed sepsis, cur-
rently hypotensive 

no change in fuids 
increase pressors 
increase fuids 
no change in pressors 
increase fuids 
no change in pressors 

39 y/o female 
type I diabetes, chronic 
renal insufciency, previ-
ously received IV fuids 

increase fuids 
increase pressors 
increase fuids 
no change in pressors 
increase fuids 
no change in pressors 

74 y/o male 
congestive heart failure, 
mechanically ventilated, 
recent admission, cur-
rently on high dose 
vasopressor 
increase fuids 
decrease pressors 
increase fuids 
decrease pressors 
increase fuids 
decrease pressors 

63 y/o female 
previously received vaso-
pressor and IV fuids, cur-
rently hypotensive 

increase fuids 
no change in pressors 
no change in fuids 
increase pressors 
increase fuids 
no change in pressors 

Table 2: Summary of the four patient cases selected for the think-aloud study. De-identifed patient data was derived from the
MIMIC-IV dataset. Three reference treatment decisions are shown for the time interval at which patients were presented: the
AI Clinician’s recommendation, the decision that was made by the clinician that treated the actual patient in the MIMIC-IV
dataset, and the decision taken by the majority of attending physicians in our study in the No AI condition. 

 
 
 

concordance, we used logistic regression in a similar fashion as 
above. 

The 12.6 total hours of think-aloud sessions were machine tran-
scribed using Descript7 and manually cleaned in preparation for 
qualitative analysis. After reviewing these transcripts and notes 
in an interpretation session, the team developed a set of 23 codes 
that could systematically capture distinct decision-making behav-
iors. The four segments corresponding to each patient case were 
excerpted from each transcript and coded using this code book by 
two members of the research team. These coders met to discuss and 
resolve coding discrepancies and refne code defnitions as needed. 

7https://www.descript.com 

Finally, participants’ broader viewpoints on decision-making us-
ing the AI were extracted using open coding, and themes were 
identifed using afnity diagramming. 

5 RESULTS 
The following sections provide frst an overview of participants’ 
attitudes towards the AI in each of the visualization conditions (Sec. 
5.1), followed by the decision-making behavior patterns observed 
in the think-aloud transcripts that help explain participants’ use of 
the AI (Sec. 5.2). We then describe how as expert decision-makers, 
participants interrogated the underlying assumptions of the AI we 
presented them with, and refected on how it could better assist 
them (Sec. 5.3). 

https://www.descript.com
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5.1 Perceptions of Decision-Making with AI and 
Explanations 

Across several measures, participants’ perceptions of the AI varied 
as a function of visualization condition. Participants reported that 
the AI was more useful and that it increased their confdence to 
a greater degree when participants saw one of the two explana-
tion conditions (Feature Explanation or Alternative Treatments), 
relative to when they saw the Text Only recommendation. Below, 
we report quantitative fndings for the four Likert-scale responses 
we measured alongside relevant qualitative responses that help 
contextualize the data. The full pattern of results is reported in Fig. 
4. 

Usefulness of the AI. Visualization condition was associated 
with signifcant diferences in participants’ ratings of the AI’s use-
fulness (� (2, 69) = 4.251, � = 0.03). Participants rated the AI as 
being more useful in the Feature Explanation condition than in the 
Text Only condition (Δ = 0.83, 95% CI [0.24, 1.43], � = 0.018) and 
directionally more than in the Alternative Treatments condition 
(Δ = 0.75, 95% CI [−0.03, 1.53], � = 0.12). 

Efect of AI on confdence. Similarly, Visualization condition 
afected how participants rated the AI’s impact on their confdence 
(� (2, 69) = 7.946, � = 0.002). Participants reported that the AI 
had a more positive efect on their confdence in the Feature Ex-
planation condition than in the Text Only condition (Δ = 1.08, 
95% CI [0.51, 1.66], � < 0.001) and directionally more than in the 
Alternative Treatments condition (Δ = 0.67, 95% CI [−0.05, 1.38], 
� = 0.13). 

In the think-aloud sessions, several participants mentioned the 
positive efects of seeing explanatory evidence, either in the form 
of the Feature Explanation or Alternative Treatments. In the latter 
condition, clinicians particularly appreciated the AI’s ability to com-
pare outcomes of multiple possible decisions (P16, P18, P24): “Seeing 
the diferent outcomes to those decisions in a similar case, I think is... 
the most convincing to change your clinical decision making” (P24). 
However, the ability to see other clinicians’ actions in this condition 
was less uniformly endorsed. Some respondents appreciated the ad-
ditional reassurance of the sensibility of their decisions (P5, P7, P8, 
P24), while others (P10, P12, P17) expressed concern that it would 
steer novice clinicians towards common errors committed by less 
experienced clinicians: “I’m highly suspect of what other people do. 
And I don’t think that that’s a good way to practice medicine” (P17). 

Confdence in treatment choice. Participants’ confdence in 
their treatment choices was not signifcantly diferent across Visu-
alization conditions (� (3, 92) = 2.220, � = 0.11) and no pairwise 
comparisons between conditions were statistically meaningful af-
ter adjusting for multiple comparisons (�s > 0.17). However, there 
was a directional increase in confdence ratings when explanatory 
visualizations were provided, particularly in the Alternative Treat-
ments condition. We hypothesize that one beneft of the Alternative 
Treatments condition on decision confdence may have been that 
it presented evidence for multiple treatment options, not just the 
often-discordant top recommendation. 

Perception of case difculty. Visualization condition signif-
icantly afected perceptions of case difculty (� (3, 92) = 4.112, 
� = 0.02), with the provision of AI and its associated explanations 
increasing perceived difculty. Comparing individual conditions, 

we fnd that participants perceived the cases as being signifcantly 
less challenging in the No AI condition than in the Alternative 
Treatments condition (Δ = 1.08, 95% CI [0.46, 1.71], � = 0.003) and 
directionally less challenging than in the Feature Explanation con-
dition (Δ = 0.79, 95% CI [0.14, 1.45], � = 0.09). Our interpretation 
of this pattern is that explanatory evidence may have prompted 
clinicians to consider more factors when making their decision, 
especially when explanations did not align with their mental model 
of the patient or when the recommendations went against their 
clinical judgment (P12, P17, P22, P24). The resulting cognitive bur-
den may have made the case seem more difcult. For instance, one 
clinician noted: 

“I would not have guessed that the decision or the rec-
ommendation was being based on something like a BUN 
[blood urea nitrogen] change. I assumed it was based 
on the CVP [central venous pressure], and I don’t think 
that CVP was considered in [the Feature Explanation 
chart]. And so it kind of makes you try and guess where 
the recommendations are coming from, and you spend a 
little bit more mental energy thinking about that.” (P17) 

5.2 Patterns of Interaction with the AI 
In contrast to the attitudinal metrics, participants’ actual decisions 
for each patient did not vary meaningfully as a function of visual-
ization condition. The light blue bars in Fig. 5a show that clinicians 
chose the same treatment choice as the AI about 42% of the time 
regardless of the visualization condition—only a slight increase over 
the 33% base rate of concordance without seeing the recommen-
dation at all. If any concordance (same choice according to either 
fuids or vasopressors) is included, participants again have roughly 
similar rates of agreement with the AI, except for a slightly lower 
rate in the Text Only AI condition (Fig. 5b). 

When the AI was shown, we did observe a slight reduction in 
concordance with actions taken by the clinician treating the orig-
inal patient as well as the majority attending decision (Fig. 5c-f). 
Specifcally, the average full concordance with the majority attend-
ing decision was 50% across the three AI conditions, compared to 
63% in the No AI condition. This may indicate that participants 
were swayed to do something other than the “typical” clinician 
action when using the AI. Yet the actions they ultimately took did 
not perfectly align with the AI either: out of the 36 AI-assisted 
decisions in which the participant did not fully agree with attend-
ings, only 6 decisions showed full concordance with the AI. Though 
not statistically signifcant by logistic regression modeling, these 
somewhat counter-intuitive relationships led us to hypothesize that 
individual-level variations could be contributing to the roughly-
constant overall rate of concordance with the AI. 

Therefore, to gain more granular insight into when participants 
chose to accept AI recommendations, we turned to the qualitative 
analysis of participants’ think-aloud transcripts. As described in Sec. 
4.2, we developed codes to capture whether and how participants 
engaged with the AI along various aspects of its recommendations, 
as well as the reasons they provided for accepting or rejecting 
the recommendation. Grouping together participants with similar 
codes revealed four distinct behavior patterns, each of which was 
associated with diferent degrees of reliance on the AI. The four 



CHI ’23, April 23–28, 2023, Hamburg, Germany Sivaraman et al. 

Figure 4: Summary of quantitative measures obtained from participants’ self-ratings within each visualization condition: (a) 
participants’ confdence in each decision; (b) how difcult they rated each case; (c) their rating of the usefulness of each version 
of the AI; and (d) how much the AI afected their confdence. * signifes � < 0.05; + signifes � < 0.1. Error bars indicate 95% 
confdence intervals. 

Figure 5: Rates of concordance between participants’ decisions and three reference decisions: the AI recommendation, the 
decision of the clinician in the original dataset, and the decision taken by the majority of attending physicians in the No AI 
condition. The left column (“Full”) shows agreement with both the IV fuid and vasopressor recommendations, while the right 
column (“Any”) depicts agreement for either of the two treatment strategies. Each proportion is calculated over a total of 24 
decisions; error bars indicate 95% confdence intervals. 
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behavior patterns are summarized in Fig. 6 and described in more 
detail below. 

5.2.1 Ignore: Participant makes own decisions. For seven partici-
pants (21 total decisions using the AI), the AI never meaningfully 
infuenced their decision in any way indicated by their think-aloud 
transcripts. Instead, their decision was predominantly driven by 
their initial clinical assessment, and not afected by recommenda-
tions even when explanatory visualizations were provided. These 
participants were often able to reject the recommendation because 
they were highly confdent in their decision already, due to charac-
teristics of the patient they identifed as important based on their 
clinical experience: “She’s young and doesn’t have heart problems 
and she’s very net negative. So fuids would be the frst thing I do 
for her, for sure” (P5). Perhaps as a result of their confdence, these 
participants sometimes gave no verbal acknowledgement of the 
AI recommendation (3/21 decisions) despite the fact that it was 
clearly demarcated to them and they knew it was present. When 
participants did engage with the recommendation, they tended to 
critique it while holding their own assessment fxed. For example, 
P11 rejected a recommendation to give vasopressor and a small 
amount of IV fuid, arguing: 

“She may be hypovolemic... because of the hyperglycemic 
state, but certainly I would not... start a pressor on this 
patient. [...] And IV fuids at a dose of 75 mLs over the 
next four hours... I disagree with that as well, because I 
think that this patient might be losing a lot of fuid on 
the urine output because of hyperglycemia. (P11) 

Interestingly, this engagement with the recommendation also 
afected some participants’ confdence despite not afecting their 
decision. In these cases the AI served to either confrm the ini-
tial assessment—“made me feel better about that decision” (P5)—or, 
more commonly, to induce doubt when the recommendation was 
discordant (P6, P7, P17, P18). For instance, P17 noted that the rec-
ommendation “to a certain degree made me question more than I 
would’ve. It actually probably made me think more about starting 
vasopressors, when any other time I would’ve just given the fuid bolus 
and not thought about it.” However, because these participants were 
already confdent in their clinical reasoning and fairly settled on 
their decision, the AI recommendation was insufcient to cause 
them to change course. 

5.2.2 Negotiate: Participant chooses aspects of the recommendation 
to accept. Unexpectedly, the most common behavior pattern we 
observed was of participants selectively adopting aspects of the 
recommendation as a form of auxiliary evidence. As with the Ignore 
group, the twelve participants in the Negotiate group still frequently 
made decisions that were not infuenced by the AI (18/36 decisions). 
But in many cases, as shown in the middle columns of Fig. 6, they 
accepted at least one aspect of the recommendation: 

(1) Overall treatment choice. In 14/36 decisions, participants 
agreed with the treatment recommendation for either fu-
ids or vasopressors, but not both. For instance, P6 initially 
decided to follow a recommendation to begin vasopressors; 
however, upon re-examining the patient data, they noticed: 
“She hasn’t gotten any [fuids]... okay, interesting. Hmm. I would 
probably give a little fuid too.” 

(2) Quantity of treatment. Participants engaged with the AI 
recommendation’s specifc dosage levels in 12/36 decisions, 
most often rejecting the values based on their knowledge of 
the patient: “She’s 39. I know she has chronic renal failure, but 
that doesn’t mean that she cannot use fuid” (P10). However, 
when the dosage values were within the range that partic-
ipants would expect, they found value in the specifcity of 
the AI recommendations: 
“I think a big challenge in the ICU is having a sense of... 
how much fuid to give a patient. [...] I think in that 
situation, I’m sort of more willing to give [the AI]... more 
of the nuance of the decision making. Like the big picture, 
we both seem to be in agreement. [...] And so then if the 
AI says, ‘this is how much fuid I think they need in this 
period of time,’ that’s one less decision that I have to tax 
myself or burden myself with.” (P8) 

(3) Timing of treatments. Finally, some participants expressed 
agreement with the AI’s overall recommendation but re-
frained from making the recommended changes concur-
rently. For instance, P7 deferred the vasopressor component 
of one recommendation, refecting that “I don’t necessarily 
disagree, it’s a relatively small dose of norepinephrine. [...] I 
would probably start with the fuids, but then I would esca-
late to vasopressors if there was no response probably within a 
couple hours.” Conversely, one participant was swayed by a 
vasopressor recommendation to postpone their own decision 
to give fuids (P22). 

We termed this behavior negotiation because participants as-
signed value or priority to various aspects of the recommendation, 
and thereby were able to arrive at an intermediate solution that 
balanced its most important aspects with their own intuition. Par-
ticipants often prioritized parts of the recommendation using two 
factors: 

(1) Risk level and urgency. In 12/36 decisions, participants 
used their perception of the severity of the patient’s sepsis 
to decide how much to reconsider their treatment plan. Dis-
cordant recommendations for patients whose vitals seemed 
relatively stable were more likely to gain acceptance than 
those that appeared to be deteriorating. For example, weigh-
ing a recommendation to give vasopressors against their 
initial assessment to give fuids, P3 responded, “I would say 
if I was alone without the computer helping me, I would give a 
trial of fuid. But I’m comfortable doing what they say. I think 
it’s a coin toss anyway.” 

(2) Evidence presented by the AI. More so than other groups, 
participants in this group used the explanatory visualiza-
tions as a source of evidence with which to understand the 
main point of the AI recommendation. For example, P18 was 
convinced by the Alternative Treatments chart to give fuids 
over their initial decision to start vasopressors: 
“Looks like very few people would have gone back on 
pressors, which is what I wanted to do. [...] I think it’s 
fair. She needs something modestly aggressive because 
her [blood pressure] is quite low and it’s been falling. [...] 
Yeah, I think this is a reasonable choice.” 
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Figure 6: Patterns of reliance observed in participants’ decisions, summarized from qualitative coding of think-aloud transcripts
The columns represent behaviors observed in an individual decision: Ignore All (decision not afected by AI), Treatment (accepted
recommendation on one treatment strategy but not the other), Quantity (dosage levels), Timing (when to administer each
treatment), and Accept All (fully changing the decision to align with the AI). The rows are sets of participants, grouped by
these behaviors. Colors are normalized within participant groups (3 decisions per participant using the AI). 

. 
 
 
 

Interestingly, this participant was discouraged from taking 
a less-common path by not only the AI’s recommendation, 
but the summary of aggregate clinician behavior that the 
Alternative Treatments chart provided. On the other hand, 
negotiations sometimes led clinicians to ultimately reject 
the recommendation because they could not justify to them-
selves how an explanatory chart led to the recommendation. 
For instance, on a Feature Explanation chart, P24 questioned 
“why a low [blood urea nitrogen] would lead to starting fuids 
and not vasopressors,” ultimately leading them to go against 
the AI. 

Perhaps because of the additional value they were able to obtain 
from the AI, Negotiate participants rated the recommendations 
more useful than other groups, with an average 7-point Likert 
rating of 4.6 (�� = 1.27) compared to 2.8 (�� = 1.79). 

5.2.3 Consider: Participant conditionally accepts or ignores the rec-
ommendation. Three participants were similarly open to accepting 
the AI recommendation as the Negotiate group, but they either fully 
relied on the AI or made the decision on their own. Specifcally, in 
3/9 of their decisions, they yielded control of the decision to the 
AI, primarily based on their sense of uncertainty. For instance, P9 
resolved to follow the AI recommendation for a difcult case: “I am 
ambivalent about this one. Her [blood pressure] is slightly low. Her 
heart rate is actually coming down, fuid balance is positive... I think 
it’s fne. We can do what the AI recommends.” Conversely, the same 
participant confdently dismissed a diferent recommendation: “For 
this patient [the AI] is recommending a vasopressor dose of 0.25 of 
norepinephrine? Yeah, I don’t think so.” In this way, the three Con-
sider participants used the AI to drive their decisions when they 
were uncertain, but resumed control of decision-making in highly 
certain cases. 

5.2.4 Trust: Participant always accepts some part of the recommen-
dation. Finally, two participants were infuenced by the AI for at 
least part of their decision in every decision they made. These 
participants often emphasized that the AI was based on objective 
data, perhaps leading them to consider its recommendations more 
willingly than other participants. For example, after reviewing the 
Alternative Treatments visualization, P16 refected, “This higher 
score means that they had better outcomes? Well then I’m gonna have 
to go with that. [...] The data looked pretty good.” 

5.3 Perspectives on AI for Treatment 
Decision-Making 

Throughout and after the think-aloud portion of each session, par-
ticipants commented on how their decision-making processes in 
the simulated study environment compared with the decisions they 
made on a day-to-day basis. They also refected on their habits and 
standard practices as clinicians, and how an AI might or might not 
be used to benefcially transform those practices. Below we discuss 
four themes that emerged from these discussions. 

5.3.1 Participants’ decisions are ofen guided by bedside information-
gathering techniques rather than metrics used by the AI. We did not 
explicitly probe for next actions other than IV fuids and vasopres-
sors, but eleven participants mentioned that a helpful next step 
would be additional data collection in the form of bedside assess-
ment unavailable to the AI system. This usually took the form 
of dynamic assessments for fuid responsiveness via the physical 
exam, a procedure known as a “straight leg raise,” or use of bedside 
ultrasound imaging. For instance, P21 noted that this information 
could help resolve a confict with the AI on how much IV fuid to 
administer: “If the AI was disagreeing with me, what I would do is 
walk into the room, do a leg raise, do a ultrasound... and then based 
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on that information, I would decide how much volume to give.” In 
fact, participants viewed this information as more reliable than 
any data used by the AI. They used this distinction to assert the 
superiority of human decision-making, reinforcing their identity 
as expert decision-makers while not outright rejecting the AI rec-
ommendation: 

“At the bedside, I would acquire one piece or two pieces 
of reliable, better quality data than the algorithm has 
available. And then I would use that to make my de-
cision [...] It’s not fair to ask an algorithm to make a 
prediction that is as reliable as that is, because it doesn’t 
have access to that.” (P23) 

Participants similarly expressed concerns that the AI did not 
have access to more gestalt characteristics such as the patient’s 
general appearance (P3, P7, P13): “How ill do they look?” To be clear, 
participants could not use these assessments during the study either, 
as they could only view the numerical data and general patient 
vignettes that we provided. Nevertheless, some clinicians (P20, P23) 
contrasted their confdence in these contextual assessments against 
the statistical nature of the AI: “My bias as a clinician is that there 
is signifcant between-patient variability that is clinically signifcant, 
such that population level estimates used to inform individual patient 
care is fraught” (P23). 

5.3.2 The discretized dosage levels and time-scales used by the AI 
do not match with clinical practice. By design the AI Clinician col-
lapsed all fuid and vasopressor dosage levels into 25 bins based 
on quantiles, ensuring a roughly uniform distribution of training 
labels. However, in practice this discretization led to confusion and 
doubt because all of the IV fuid bins were relatively low compared 
to the amounts clinicians were used to (presumably because most 
timesteps did not involve substantial fuid administration). For ex-
ample, the third treatment level for fuids is 75 mL over four hours, 
to which one participant commented, “I’ve never ordered such a 
small dose of fuids... To me that’s like sprinkling water on her” (P18). 

The AI also aggregates data and provides recommendations at 
4-hour intervals, which balances the rate of biometric data availabil-
ity in the training dataset with the typical frequency of decision-
making in the ICU. Clinicians overall found the 4-hour timescale 
appropriate for viewing the patient’s trajectory and for making 
decisions on relatively stable patients, but they noted that they 
“would not feel comfortable” committing to higher-risk treatment 
decisions over that duration (P4, P7, P14, P17). Shorter-term de-
cision points were viewed as a bufer against uncertainty about 
treatment responsiveness: “In those situations where you’re on the 
fence... you’re gonna give your [IV fuid bolus], and you’re gonna 
follow in that hour to two hours after they get the bolus to see if 
it had an efect” (P14). In terms of measuring reliance on the AI, 
this reduction in timescale resolution led to clinicians efectively 
postponing agreement with the recommendation to a later decision 
(P4, P10, P17, P20), potentially nullifying the potential beneft of 
advance prediction by the AI. 

5.3.3 Clinicians become skeptical of AI when it deviates from stan-
dardized or individual care practices. Participants often compared 
the AI’s recommendations to the guideline-recommended prac-
tice of treating septic patients with hypotension, which comprises 

administering IV fuids (typically around 30 mLs per kilogram of 
body weight) and then vasopressors if the patient’s blood pres-
sure does not normalize [28]. These guidelines explicitly state that 
there is room for variation and that individual treatment plans 
should still be customized to each patient’s unique circumstances, 
a fact acknowledged by participants—“you have to sort of be willing 
to be fexible” (P16). Nevertheless, eight clinicians mentioned dur-
ing decision-making that they would expect the AI to recapitulate 
rather than deviate from the guidelines. For instance, one partici-
pant voiced the tension they felt between the AI’s recommendation 
and their training: “So I see the score, but going of of the data and 
all of my knowledge of sepsis, we have to try to give her some fuids. 
We never jump straight to vasopressors” (P19). It is impossible to 
know if the AI’s recommendation to give vasopressors was a better 
decision, although some evidence shows that early administration 
of vasopressors could beneft patients [72] and expert opinion in-
creasingly emphasizes vasopressors over fuid administration [44]. 
Yet these recommendations were dismissed as nonsensical given 
the patient’s current status: “Thinking she’s not hypotensive. So why 
in the world is the AI asking me to start pressors? I’m rapidly losing 
faith in Sepsis AI” (P12). 

Participants also wanted the AI to concur with their personal 
practices, which they often defned in contrast to the predominant 
habits of other clinicians. For instance, two participants found the 
AI’s recommendations “a bit fuid aggressive” (P2) at times, particu-
larly because they perceived that many clinicians overuse fuids: 
“I’ve seen it in ICU where we’re just like bolusing them blindly. And 
the next thing you know, they’re pufy like the Michelin man” (P1). 
Five participants (particularly more experienced clinicians) framed 
their personal practices as the standard of comparison for both the 
AI and other clinicians, in that when “the recommendation starts 
not very in line with what I would personally do with the patient, I 
don’t think it’s useful” (P20). Because they viewed the AI as based 
on the actions of a general population of clinicians less skilled than 
themselves, participants were able to dismiss recommendations 
that aligned with norms they were already comfortable deviating 
from. 

5.3.4 Rigorous and credible evidence of the AI’s efect on outcomes 
is a prerequisite to trust. Aside from their reactions to individual 
decisions, several participants expressed that their overall level of 
trust in the AI would be determined based on the description of 
methodology and evidence provided to them before they ever used 
the tool (P3, P9, P12, P17). These participants believed they would 
read available background information on the tool, then either 
“adopt it as a valuable tool or... shoot holes in it and say, ‘I don’t 
believe in this methodology and I’m not gonna use this tool anyway”’ 
(P17). The credibility of the AI would partially be determined by the 
reputability of its developers and the journal in which its validation 
study was published: “If... there was a study in New England [Journal 
of Medicine] that said that Sepsis AI... improved outcomes, then I 
would say it could be kind of useful” (P9). Once a high volume of 
credible evidence was available in favor of using the AI, participants 
believed they would more willingly trust its recommendations (P3, 
P9). 

Although participants agreed that rigorous and credible evalu-
ation was required, they were divided on how such a tool should 
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be evaluated. The most common suggestion was to conduct a ran-
domized controlled trial with the AI to validate whether the second 
opinion it provided improved patient care (P12, P23); others sug-
gested simply testing the association between recommendation 
acceptance and patient outcomes (P7, P9). In contrast, P17 sug-
gested that the AI should simply use their decisions as the ground 
truth and aim to replicate them, as is currently done for diagnostic 
models: 

“You could be convinced if somebody presented this to 
you and said, ‘Hey, we’ve been looking at your clinical 
practice, and... you’re 95% aligned with this. And so, you 
know, if we just set this to run, it’s going to do the same 
thing that you would do 95% of the time, and you don’t 
have to wake up.”’ (P17) 

Regardless of what form the validation study took, participants 
agreed that upfront knowledge about the model’s quality would 
not supersede clinical judgment on individual cases, leaving the 
door open to patterns of conditional and partial reliance even after 
trust is established. 

6 DISCUSSION 
We describe the development of an interactive CDS system for sep-
sis treatment, as well as a mixed-methods study that examined how 
clinicians interacted with that system to identify critical barriers to 
AI adoption in health care. Our results confrm prior fndings sug-
gesting that providing clinicians with explanatory evidence, either 
in the form of feature explanations or alternative treatment com-
parisons, can increase clinicians’ perceptions of the AI’s usefulness 
and confdence in their decisions [1, 80]. In terms of reliance on the 
AI, prior work studying reliance on CDS tools [12] and explainable 
AI [85, 90] led us to expect that clinicians would calibrate their own 
certainty against the AI and make a binary decision about whether 
to accept its advice in each case. However, only a few participants 
(the Consider group, Sec. 5.2.3) exhibited this dichotomous form 
of reliance. Instead, most participants engaged in a more nuanced 
form of partial reliance on the AI, often involving a negotiation 
between the initial clinical assessment and various aspects of the 
recommendation. Furthermore, several participants did not inte-
grate the AI into their decision-making in any material way—for 
these participants the CDS only served to lower their confdence 
in their decision-making and increase the perceived difculty of 
the case. Below, we discuss the implications of our results (key 
implications in bold) for the design of AI-based CDS and how to 
validate these systems in practice. 

6.1 Designing AI for Complex Clinical 
Decisions 

For a large number of health care decisions there is no evident 
“right answer” [23]. In these situations, successful AI should sup-
port clinicians in making better decisions on average, but must 
do so absent immediate feedback about the appropriateness of the 
recommendations. Out of the four broad decision-making behav-
iors we observed, the Negotiate behavior is closest to what one 
might consider an “appropriate” form of reliance on the AI in this 
setting. In contrast to the other three groups, participants who 
negotiated partial forms of reliance perceived a range of plausible 

next steps for each patient, not just a single action stemming from 
their clinical assessment. Furthermore, they were able to override 
aspects of the recommendation when they had specifc contextual 
reasons to do so. On the other hand, clinicians had to develop their 
own assessments of which parts of the recommendation to rely on, 
perhaps resulting in more inconsistent decisions. 

One approach to improve AI-assisted clinical decision-
making could be to support negotiation by helping clinicians 
prioritize credible aspects of the recommendation. For in-
stance, instead of recommending a rigid treatment plan over a 
four-hour interval, an algorithm could leverage historical data to 
compare the value of starting multiple treatments concurrently 
with the value of applying them sequentially, helping inform com-
parisons that clinicians may already be making. Alternatively, it 
could present evidence in favor of general treatment strategies at a 
binary level (e.g. fuids and no vasopressors) rather than specifc 
values (e.g. 250 mL of fuids) unless the specifc dosage was known 
to have an impact on mortality. These systems would serve to re-
inforce the belief that humans can make more nuanced decisions 
than AI systems, a belief we observed in this study. This type of AI 
would “know its limits” but still be able to guide decision-making 
by providing a framework by which clinicians could inform their 
decisions, rather than providing only prescriptive recommenda-
tions that are easily rejected. Though technically non-trivial to 
develop, such an AI may yield advice that can be more easily and 
consistently assessed by clinicians. 

Our study also examined the efects of model explainability, an 
ongoing area of debate in AI-based CDS research [2, 3, 32], on 
participants’ perceptions and behaviors using the AI. Our fndings 
are consistent with prior XAI research [12, 85, 90] showing that 
explanations are a helpful complement to AI predictions, but that 
explanations alone will not signifcantly impact reliance. In partic-
ular, we observed that while the Feature Explanation chart helped 
participants decide how much weight to place on the recommen-
dation overall, it did not support their ability to assign value to 
individual recommendation components. On the other hand, the 
Alternative Treatments approach may have better supported nego-
tiation behaviors by allowing the AI to “present its fndings” (P4) 
across a range of options. While similar to multi-class prediction 
charts used in prior work on diagnosis models [40, 80], the fact 
that the actions depicted in our visualization were quantitative (i.e., 
specifc dosage levels) may have yielded the additional beneft of 
helping participants understand the overall trend predicted by the 
model, and thereby negotiate intermediate solutions. Future ex-
plainable treatment recommendation systems could extend 
the Alternative Treatments approach to facilitate more nu-
anced comparisons of diferent choices, such as by projecting 
future patient states and outcomes conditioned on diferent 
choice sequences. 

Another important fnding for explainability is its potential efect 
on cognitive efort. AI is meant to improve the efciency of clinical 
decision making, saving clinicians time and reducing workload. Yet 
we found that explainable AI has complex efects on cognitive efort, 
especially when clinicians must decompose every recommendation 
into aspects with difering levels of credibility. On one hand, partici-
pants in the Ignore group tended to lose confdence and waste time 
comprehending a recommendation that ultimately would not afect 
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their choice. On the other, the visually dense explanations may 
have served as a cognitive forcing function to consider previously-
neglected options [11], as Negotiate participants sometimes did. 
These results might suggest that the visibility and complexity of the 
AI recommendations be adjusted based on the users’ confdence or 
the discordance between their decision and the AI. However, many 
participants also believed that once the AI was trusted, they would 
want to review it for confrmation of all their decisions, echoing 
Kulesza et al.’s fndings that complete explanations tend to help 
despite requiring increased cognitive efort [51]. Further research 
is needed to understand the tradeofs between providing con-
frming recommendations to build trust, and saving clinician 
efort on discordant but non-useful recommendations. 

One simple solution to improve AI acceptance could be to focus 
adoption eforts on novice clinicians that may lack confdence in 
their ability to independently make clinical decisions. However, con-
trary to prior work showing negative efects of task expertise and 
AI familiarity on acceptance of AI recommendations [7, 25, 31, 40], 
the behavior patterns we observed did not appear correlated to 
seniority or experience level. Two of the seven Ignore participants 
were not attending physicians, while both of the Trust participants 
were attendings. While some prior work has examined how clin-
ician demographics afect their needs for adopting AI [15], our 
interviews suggested an additional factor to consider: many clini-
cians are already regularly exposed to decision rules and behavioral 
interventions derived from historical data and expert committees, 
and they often hold diverging beliefs about how this clinical advice 
should infuence decision-making. Even with similar experience 
levels, clinicians express varying degrees of awareness (and skep-
ticism) of how recommendations are generated [48, 87], but the 
efects of diferences in these attitudes have yet to be examined. A 
better understanding of these perspective diferences, and 
how they relate to experience level, may lead to designs that 
better serve people reluctant to factor AI advice into their 
decisions. 

6.2 Validating that AI-Based Decision Support 
Improves Outcomes 

Unlike much prior work on AI-assisted decision-making in health 
care [14, 40, 78, 87], this study (1) used a real model trained to op-
timize treatment decisions, (2) provided clinical experts with real 
de-identifed patient data, and (3) utilized a think-aloud protocol 
to capture further nuance beyond a multiple-choice survey. Par-
ticipants responded to this realism in turn by revealing a more 
complex picture of clinical decision-making with an AI, one that 
in many ways does not ft the structure imposed by the AI. They 
expressed treatment goals in terms of information gathering (rather 
than always focusing on outcomes), adjusted dosage levels based 
on the patient’s perceived needs, and temporally rearranged parts 
of the recommendation to more closely align with their standard 
practices. While this fexibility may well be desirable and even nec-
essary in real-world decision-making, it creates an inherent tension 
with attempts to measure the quality of a system: the more realis-
tically an AI tool is integrated into clinical decision-making, 
the harder it becomes to assess whether the tool improves 
outcomes using standard validation techniques. 

Yang et al. [87] and Amann et al. [2] described a “chicken-and-
egg” problem in which clinicians will not adopt AI recommenda-
tions unless they are backed by a credible validation study—yet in 
order for a validation study to succeed, clinicians need to adopt the 
AI’s recommendations. This is particularly important in light of 
developing policies on AI in health care, such as the recent guidance 
by the U.S. Food and Drug Administration that treatment decision 
support systems such as the AI Clinician should be regulated as 
medical devices [81]. But unless clinicians are obligated to use 
the AI as part of a randomized controlled trial, the AI’s efective-
ness in prospective validation will be confounded with clinicians’ 
low level of trust in the system, resulting in a poor (and possibly 
over-optimistic) estimate of its performance in deployment. Com-
pounding this challenge, our results suggest that binary acceptance 
or rejection of recommendations in the sepsis treatment context 
is not an accurate indicator of the AI’s efect on decision-making. 
After all, participants often gave credence to the AI, yet they rarely 
followed its recommendation completely. In an in situ validation 
study, how would partial or delayed acceptance be measured and 
assessed? Developing acceptance metrics that account for par-
tial reliance behaviors or changing reliance over time may 
help investigators perform validation studies that better cap-
ture potentially benefcial efects of the AI beyond binary 
acceptance. 

Another source of complication in validating AI-based recom-
mendation systems is that reliability may vary signifcantly across 
diferent patient subgroups, requiring the user to develop a mental 
model of the AI’s error boundaries [4]. However, even when clini-
cians in our study negotiated with the AI, they tended to approach 
its recommendations with a fxed level of trust or skepticism; their 
level of credence was rarely afected by the type of patient they 
were treating. We suggest that instead of counting on end users 
to develop mental models of the AI’s reliability, AI develop-
ers can collaborate with domain experts to extract, deploy 
and validate specifc AI behaviors. In other words, rather than 
considering the AI as an agent whose advice needs to be evaluated 
across a wide range of clinical decisions, we propose to use AI as 
a source of evidence whose recommendations can be separately as-
sessed for specifc subtypes of patients and disease states. This type 
of human-AI collaborative process could still yield more individ-
ualized recommendations than clinical trials (which are often too 
costly to run for all patient groups of interest), yet it would be more 
straightforward to evaluate than an AI that attempted to optimize 
for all patients. These selectively-validated recommendations can 
then be introduced to clinicians in stages, building the credibility 
of the AI while minimizing the chance of unforeseen AI errors. 

6.3 Study Limitations 
Although showing participants real AI recommendations for real 
patients yielded a more nuanced picture of decision-making, it also 
may have skewed our observations toward the particularities of 
the cases and recommendations we selected. Our depictions of the 
patient cases were limited to the structured data available in the 
MIMIC-IV dataset, meaning they had access to roughly the same 
amount of information as the AI. Additionally, we were unable to 
incorporate more domain-specifc explanation techniques, such as 
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explainable RL (XRL), since they would have required substantial 
changes to the previously validated AI Clinician model. As a result, 
the SHAP explanations we showed focused on only one part of the 
model (the state clustering), thus limiting their potential useful-
ness to end users. Future work should investigate whether using 
more transparent model architectures and RL-specifc explanation 
strategies improves clinical utility over the visualizations we tested. 

Our study design and recruiting strategy was primarily focused 
on obtaining a rich set of think-aloud data for every decision we 
observed. While this resulted in ample data for qualitative analysis, 
it also meant we were unable to assess the statistical signifcance 
of some of our quantitative results, particularly levels of concor-
dance with the AI. In the future we plan to build on these results 
by conducting a similar study with a larger pool of participants, 
enabling us to more accurately estimate the efects of providing 
AI explanations. Importantly, the present work indicated a need 
for more granular ways to collect structured data about decisions, 
which will inform the design of subsequent survey instruments. 

Finally, this study was conducted with clinicians at a renowned 
academic hospital system in the United States. As such, they were 
likely more familiar than the modal clinician with the idea of ap-
plying clinical protocols or AI tools to improve decision-making. 
However, it is not clear whether this familiarity would tend to 
make them more or less accepting of tools such as the AI Clinician. 
Further research in institutions that have been slower to adopt 
clinical decision support tools is needed to evaluate the generaliz-
ability of these fndings in other settings. Regardless, the fact that 
we observed such variation even in a relatively advanced hospital 
setting indicates that there is much work to be done in improving 
the acceptability of AI to clinicians. 

7 CONCLUSION 
To our knowledge, this paper is one of the frst to rigorously as-
sess clinicians’ interactions with a real AI system that predicts 
the efects of treatment strategies under uncertainty. This form 
of AI aims to complement human decision-makers by revealing 
previously-unseen patterns in historical outcomes, in contrast to 
deep learning models that are simply designed to save clinician 
efort by recapitulating human decision-making. While many clini-
cians in our study were generally receptive to the idea of AI support, 
the ones who found the AI Clinician most useful in practice were 
those who saw it as a source of additional evidence—a piece of 
data that could inform their decision alongside their assessment. 
Reshaping these AI tools as a source of individually-validated rec-
ommendations may be one way to clarify their intended use and 
to facilitate evaluation of their impacts on decisions in the process. 
Together with advances in human-centered algorithm design and 
more nuanced decision metrics, we envision this work as a step 
towards AI-driven prediction tools that foster a refned notion of 
“appropriate reliance.” 
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