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ABSTRACT 
While user interfaces (UIs) display elements such as images and text 
in a grid-based layout, UI types difer signifcantly in the number 
of elements and how they are displayed. For example, webpage 
designs rely heavily on images and text, whereas desktop UIs tend 
to feature numerous small images. To examine how such diferences 
afect the way users look at UIs, we collected and analyzed a large 
eye-tracking-based dataset, UEyes (62 participants and 1,980 UI 
screenshots), covering four major UI types: webpage, desktop UI, 
mobile UI, and poster. We analyze its diferences in biases related to 
such factors as color, location, and gaze direction. We also compare 
state-of-the-art predictive models and propose improvements for 
better capturing typical tendencies across UI types. Both the dataset 
and the models are publicly available. 
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• Human-centered computing → Empirical studies in ubiq-
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1 INTRODUCTION 
What grabs user attention in the setting of looking at user interfaces 
(UIs) is a long-standing interest in HCI research. Understanding this 
is essential for designers hoping to guide users’ attention, convey 
critical information, and avoid visual clutter [75, 81]. However, after 
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many years of work on this topic, we still have only a rudimentary 
sense of how diferent types of UIs difer in visual saliency. For 
instance, posters often bring together only a few images, while 
desktop and mobile UIs typically apply more components, struc-
tured as widgets. Awareness of how such diferences carry over 
to eye-movement patterns is crucial. The hypothesis underlying 
the work presented here is that one should expect the users’ gaze 
patterns to refect the visual features of the UI. 

This paper represents a two-pronged approach to advancing 
the understanding of eye movements that occur with particular 
UI types. Firstly, we collected and analyzed the UEyes, a novel 
eye-tracking dataset captured by a high-fdelity in-lab eye tracker 
at a large scale. While previous work used mouse movements or 
manual annotations as a proxy for eye movements, UEyes ofers 
access to fne-granularity ground-truth data for visual saliency. Our 
dataset ofers multi-duration saliency maps and scanpaths of 62 
users who looked at 1,980 diferent UIs, 495 each from desktop, 
mobile, webpage, and poster applications. With this paper, we ana-
lyze and compare saliency-related tendencies across the UI types, 
addressing both bottom-up factors related to the visual primitives 
of the stimulus, such as color bias, and top-down (learned) ones 
connected with the distribution of features in the dataset, such as 
location bias and scanpath direction. We present several previously 
unreported fndings illuminating what distinguishes particular UI 
types. 

Secondly, the dataset informed the assessment and improvement 
of computational models for visual saliency. Given a UI as input, a 
saliency model can predict saliency maps or scanpaths, simulating 
how users perceive that UI. These models assist UI designers by 
predicting where users are likely to fx their gaze within a given 
design: this enables updating it to emphasize the important areas in 
the UI better. Such models may help them ‘refow’ UI designs and 
create versons that maintain the desired visual emphases across 
various screen sizes. 

Data-driven approaches require high-quality datasets if they are 
to employ modern computational models (e.g., based on deep learn-
ing) efectively and improve our understanding of visual saliency. 
There is a plethora of work on saliency modeling, predicting where 
viewers look [21, 36, 39, 41, 48, 51, 55, 68], and numerous scanpath 
models, predicting gaze over time [2, 3, 33, 47, 64, 89]. Current ap-
proaches all display a limitation, though: they work well only when 
domain-specifc data are available. Yet, datasets thus far have been 
relatively small (e.g., MASSVIS [11] and iSUN [96]) and often limited 
to specifc types of designs (e.g., only mobile UIs [53]). In contrast, 
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our UEyes dataset is composed of high-quality eye-tracking data for 
various UI types – webpages, mobile UIs, desktop UIs, and posters 
– so is more generalizable and valuable for a broader range of appli-
cations. In addition, although Leiva et al. [53] proposed analysis for 
mobile UIs, no prior research that we know of has analyzed biases 
in saliency maps (e.g., location bias) and in scanpaths (e.g., saccade 
angle) for comparison across UI types. We aimed to fll this gap by 
systematically analyzing and comparing eye-tracking data across 
several UI types. 

Furthermore, the UEyes dataset enables dedicated models to 
predict visual saliency and scanpaths between distinct UI types. A 
multi-type dataset is important because accuracy decreases signif-
cantly when tested on UI types not included in the training data. 
Designers could use these models to inform a better user experience 
for interfaces. With visual saliency models, designers can improve 
their designs by means of well-grounded conclusions about how 
users are likely to view their UIs [15]. Predictive models for scan-
paths are unlike saliency maps in that they retain information about 
the order of fxations and their temporal dynamics. It is important 
that the applications keep this information available. For example, 
these models allow designers to understand visual fows and adjust 
their designs to encourage users to view the UI elements in the 
desired order [69]. 

The prior project most relevant for our work proposed a crowd-
souced dataset (Imp1k) and a Unifed Model of Saliency and Im-
portance (UMSI) trained on images from various design classes: 
webpages, movie posters, mobile UIs, infographics, and advertise-
ments [29]. It created a generalizable model for visual importance 
that performed well for various design types. However, it did not 
further address diferences in how users view those particular types. 
Our collection and classifcation of images accomplished that aim 
by focusing on common UI types and introducing a systematic 
eye-tracking analysis and comparison across the respective types. 
Unlike the UMSI researchers, we collected real-time eye-tracking 
data via an eye tracker. Although crowdsourcing approaches enable 
amassing large datasets (e.g., Imp1k and SALICON [39]) via proxies 
for eye-tracking data, such as cursor- or webcam-based methods, 
they cannot simulate the results collected by actual eye trackers. 
Webcam-based approaches sufer from low accuracy, while cursor-
based methods refect cognitive processes diferent from those be-
hind eye movements [83]. 

In sum, this paper makes three contributions: 

(1) We present the frst analysis and comparison of eye move-
ments across commonly used UI types. We report diferences 
related to location bias, color bias, saccade angle and ampli-
tude, and visited vs. revisited elements. 

(2) We compare the performance of several predictive models for 
saliency maps and scanpaths across the UI types. In light of 
our data, we present improvements to existing models, such 
as changes in loss terms, training strategies, and modeling 
features (e.g., “inhibition of return”). 

(3) We release the largest in-lab eye-tracking dataset (from 62 
participants and 1,980 UI screenshots), with associated meta-
data and eye-tracking logs, grouped into webpages, desktop 
UIs, mobile UIs, and posters. 

2 RELATED WORK 
Predicting where people look is paradigmatically more ambigu-
ous than such typical tasks related to computer vision as image 
segmentation [63] and object detection [42]. For a starting point, 
we hypothesized that signifcant diferences should be observable 
among UI types for the same reasons that considerable diferences 
have been reported between scenes and between individuals. Difer-
ences among individuals and stimulus types can be attributed both 
to physiologically determined bottom-up factors and to learned top-
down features [100]. On one hand, the biological basis for bottom-
up saliency is rooted in the parallel processing of retinal input in 
the visual cortex [85]. Bottom-up features are constituted by a few 
physiologically determined visual primitives – size, color, shape, 
orientation, and motion [54, 92]. Objects that in the given context 
stand out in one or more of these respects tend to attract atten-
tion. For instance, larger objects, which also have more stimulus 
energy, have greater saliency too. Top-down factors, on the other 
hand, bring in task-linked goals and expectations. Expectations 
form through repeated exposure to instances of a particular type 
of stimulus [78]. 

2.1 Visual Saliency in Natural Scenes 
Previous work on visual saliency outside the human-computer 
interaction (HCI) domain has focused on non-UI stimuli and natural 
scenes. Consequently, viewing patterns reported for them may not 
hold for UIs. Research looking at the saliency of natural scenes 
has found several replicated efects, or (viewing) biases, which we 
revisit in this paper: 

Center bias: Researchers have reported a bias toward look-
ing at the center of the screen when viewing natural 
scenes [35, 65]. The efect has been replicated with artifcial 
media, especially video [59], text [73], and single objects [65]. 
Whether it is present for UIs is unclear, since much of their 
most informative elements lie in the upper half of the display. 

Horizontal bias: In observation of natural images that feature 
objects, fxation paths tend to be distributed more horizon-
tally than vertically [65, 66]. Again, UIs difer from natural 
scenes in that they arrange the information vertically rather 
more than horizontally. Therefore, we might expect to see 
the efect weaken. 

Color bias: Color brightness and contrast are among the pri-
mary features driving bottom-up saliency [27, 32]. Visual 
designs such as websites and mobile UIs typically contain col-
orful icons and images perceived as highly salient. Therefore, 
we would expect this bias to remain. 

2.2 Visual Saliency in UI Designs 
The HCI feld’s research into visual saliency has looked at either 
eye-movement data limited to a single UI type (e.g., mobile UIs [53]) 
or proxy constructs that, while correlated with eye movements, are 
not ideal for saliency modeling. The visual impression is the reported 
visual appeal of a UI’s graphical regions or objects as measured via 
rating scales; results have been reported for both desktop [56] and 
mobile interfaces [61]. In contrast, visual saliency is a construct 
related to the control of visual attention, not self-reports on what 
is felt to be important. 
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A concept closely related to saliency is that of visual importance. 
Bylinskii et al. [15] extended a pretrained neural network [79] for 
predicting which regions in a graphic design are felt to be more 
critical. Their work measured importance by utilizing cursor explo-
ration of a blurred page. However, a “poor man’s eye tracker” [19], 
which involves an element of refective judgment of importance, is 
not a good proxy for gauging visual saliency [83]. Finally, research 
on visual clutter is directly motivated by theories of saliency. Work 
by Rosenholtz [75] showed how one might exploit models of vi-
sual saliency to compute indices for how cluttered users perceive a 
display to be. 

2.3 Visual Saliency Datasets 
Many existing visual saliency datasets cover only specifc types of 
designs or feature a relatively small number of saliency results. Most 
of them encompass one specifc type of visual design alone, with 
data collected from a set of participants in a context limited to visu-
alization (e.g., MASSVIS [11]), indoor and outdoor natural images 
(e.g., iSUN [96], SALICON [39], MIT1003 [43], MIT300 [41], and 
NUSEF [72]), mobile user interfaces [53]), visual fows in viewing 
of comics [16], webpages [80], posters [67], etc. While CAT2000 [9] 
comprises 20 categories, all of them are classes of natural im-
ages, with additional augmented natural images (including the 
non-photorealistic rendering of natural images, such as sketches 
and cartoons, and noisy natural images, such as low-resolution 
scenes and Gaussian-noised images). UEyes, the dataset we col-
lected for this work, contains eye-tracking data for four common 
categories of UIs and extensive variety of images, with focus on 
visual designs. 

Although prior work has explored the power of crowdsourced 
collection of saliency-related data, (e.g., Imp1k [29] and SALI-
CON [39]), crowdsourcing precludes the use of high-fdelity in-lab 
eye trackers. As noted above, the proxy sensors, such as cursor 
movements or webcams, present issues of their own. For instance, 
accuracy issues with webcam-based methods [96] may arise during 
facial landmark tracking, eye region extraction, and calibration with 
the webcam. Cursor-based approaches [4, 39, 44, 45], in turn, refect 
slower, more deliberative cognitive processes than eye movements 
do. 

2.4 Computational Visual Saliency Models 
Given a stimulus image, a computational model of visual attention 
predicts a saliency map [7] or a scanpath showing the order in 
which eye fxations are expected to occur over the image area [53]. 
Stimulus-driven saliency models are computed via visual primi-
tives [8, 10]. They work well for frst-time exposure, for things the 
user has not seen before [31, 37]. In contrast, task-driven models 
gauge a user’s familiarity [78], which is afected by expectations, lo-
cation memory, and search strategies. Data-driven modeling makes 
predictions based on image features, and the architectural assump-
tions allow it to capture domain-specifc viewing tendencies [53] 
better than other sorts of modeling. 

Computational modeling of saliency has attracted computer 
vision and HCI researchers’ interest since the work of Itti and 
Koch [37]. More recent research on saliency maps has explored 

emerging types of deep learning architecture. An early approach ap-
plied an ensemble of deep networks (eDN) [87], using deep nets as 
extractors for hierarchical features and combining the outputs with 
a support vector machine. DeepGaze I [48] followed the same logic, 
considering a sparsifcation loss term, center bias, and a smoothing 
kernel. ML-Net [20] fne-tuned the features for saliency predic-
tion to improve on the previous two models. Then, the Saliency 
Attentive Model (SAM) [21] added temporal tuning by employing 
progressive formation of saliency with ConvLSTM blocks to process 
features. 

To consider the evolution of saliency maps over time, Fosco 
et al. [30] proposed a multi-duration saliency factor, predicting 
saliency with distinct durations. Generative adversarial networks 
(GANs) also reached a good approximation of saliency distribu-
tions [17, 68]. Some models improved the prediction performance 
by exploiting contextual information and encoding the similarity be-
tween images [46, 58, 71]. SalFBNet [25] is especially noteworthy for 
employing a recursive feedback architecture feeding later computa-
tion blocks back to an earlier stage in the computations; it proved 
useful in recognition tasks when compared to purely feedforward 
networks [97]. All these advances in technique notwithstanding, 
similar results could be achieved by increasing the networks’ capac-
ity. For example, EML-NET [38] has been applied for multi-branch 
prediction at the decoding stage. UniSal [26] unifed the prediction 
of saliency between image and video stimuli. DeepGazeIIE [55] 
employed a combination of multiple backbones. 

Scanpath prediction is a more challenging problem, since infor-
mation on the order of fxations must be retained. Itti and Koch [37] 
implemented an inhibition of return (IOR) mechanism to generate a 
sequence of fxations by means of the computed saliency maps. This 
work inspired a group of techniques that utilize a saliency map for 
scanpath generation. For example, Tavakoli et al. [74] proposed a 
joint sampling mechanism to estimate the saliency and gaze points. 
Wloka et al. [91] improved on the Itti saccade-generation system by 
considering the high-level saliency estimated with deep nets and a 
peripheral conspicuity map obtained via low-level approaches to 
saliency. In other work, Chen and Sun [18] introduced an advanced 
architecture to learn the inhibition of return maps from data. Xia 
et al. [94] estimated joint saliency and fxation location with an 
auto-encoder in a framework mimicking [74]. 

Other recent work has developed scanpath models that can gen-
erate a sequence of fxation locations. For example, Verma and 
Sen [86] employed a recurrent architecture to generate a sequence 
of fxations in a grid-based representation, and PathGAN [3] uses 
GAN-based training to estimate a fxation sequence with location 
and duration. Our project considered such prior work by comparing 
several well-known predictive models that use saliency maps and 
scanpaths, assessing their ability to model observed diferences 
among UI types. 

3 THE DATASET: UEYES 
The UEyes dataset is composed of both the 1,980 UI screenshots 
and the associated metadata and eye-tracking logs from 62 viewers, 
collected in a laboratory by means of a modern eye tracker. This 
dataset contains 495 screenshots from each of the following UI 
types: 
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Webpage: We collected 494 webpage images from the Alexa 
500 dataset [90], 1,507 images from the Visual Complexity 
and Aesthetics dataset [62], and 200 images from the Imp1k 
dataset [29]. We extended the breadth of the webpage image 
set by capturing 103 additional webpage screenshots. 

Desktop UI: The desktop UI image set contains the Waltteri 
Github desktop UI dataset [23], representing 51 desktop UIs, 
and an additional 303 desktop UI images collected in line 
with the criteria presented below. 

Mobile UI: We extracted a sample of 1,761 images from among 
the 46,064 mobile UI images from the RICO dataset [24]. We 
extended the set with 42 further mobile UI images. 

Poster: The poster image set contains 200 ads and 198 info-
graphics from the Imp1k dataset [29], along with 103 addi-
tional posters we collected. 

The images additional to the ones from pre-existing dataset were 
chosen either for breadth of representation (being substrantially 
diferent from the others) or because of their widespead use in day-
to-day life. The additional mobile UI images we collected besides 
the ones in existing datasets are in the categories of school apps, 
library apps, music apps, and setting pages. This was to ensure 
a diversity-rich and representative dataset. Also, the addition of 
more desktop UI images supported a balanced fnal dataset. Images 
containing pornography were fltered out, and then all images of 
each type were pooled together and sampled randomly to create 
“image blocks” for user assessment (55 blocks in all for the study). 
Each block included nine images representing each UI type, for 36 
images per block. 

For the data collection process, the screen angle was adjusted for 
each participant to mimic the user-specifc typical viewing experi-
ence. Participants sat approximately 50–65 cm from the screen, and 
the same visual angle was used for all UI types, even the mobile 
UIs, to ensure a fair comparison. This allowed for consistent data 
collection and analysis across the UI types: consistent presentation 
across the types guarantees that the tracking technology’s accuracy 
limits do not disproportionately afect the mobile UI results. 

3.1 Participants 
We recruited 66 participants (23 male and 43 female) via mailing 
lists and social-media-based promotion. The average age was 27.25 
(SD = 7.26). Participants had normal vision (43) or, from wearing 
glasses (18) or contact lenses (5), corrected-to-normal vision. No 
participant was colorblind. We dropped four users’ gaze data for 
reason of inaccurate eye-tracking calibration. The study took one 
hour for each user, who received 30 Euros in compensation. 

3.2 Experimental Design 
From the pool of 55 blocks, our system randomly selected nine 
blocks for each user (for 36 images in all, as described above). Hence, 
each block included nine images for each UI type. Within each block, 
the images were presented in a randomized order. 

3.3 Apparatus 
The images were shown on a desktop monitor (HP Compaq 
LA2405wg, 24 inches). The monitor’s dimensions were 32.5 × 52 cm 
and its resolution was 1920 × 1200 px. We used a Gazepoint GP3 eye 

tracker with a sampling rate of 60 Hz to collect high-quality gaze 
data. The eye tracker was placed under the screen and tilted upward. 
Its angle was adjusted to suit the individual participant. With the 
participants seated approximately 50–65 cm from the tracker, the 
eye-tracking software (Gazepoint Control) indicated a desirable 
distance. 

3.4 Procedure 
The procedure began with calibrating the tracker via Gazepoint 
Control’s nine-point calibration and testing on the calibration test 
screen. After that calibration, the participant was shown three im-
ages, of diferently sized grids, and instructed to look at the corners 
of the grids, starting from the top left and moving clockwise. This 
served quality control in the post-processing stage. Each participant 
then completed nine blocks as defned above, with self-managed 
breaks. The participant looked at each UI image presented, for seven 
seconds, and was asked to examine the images as if in a correspond-
ing real-world situation. Just as in other bottom-up saliency studies, 
no specifc task was assigned. After the last block of UI images, the 
participant flled out a demographics questionnaire. 

3.5 Data Processing 
We double-checked the collected data to guarantee the dataset’s 
quality, and we removed any user data exhibiting inaccurate cali-
bration or duplicate results. Accordingly, the fnal dataset contains 
94.86% of the raw data collected. Fixations beyond image bound-
aries (6.8% of the fxations) were not considered for analysis. We 
describe the UEyes dataset in detail in Supplementary Materials. 

4 FINDINGS 
With the discussion below, we examine the data related to loca-
tion bias, color bias, saccade angle and amplitude, and visited vs. 
revisited elements, across all UI types. 

4.1 Efect of Location 
Figure 2 shows the location bias for each of the UI types, and Figure 3 
displays the corresponding distribution of fxations by quadrant. 
We computed the location bias by normalizing the saliency distribu-
tion relative to the individual UI image’s size and then aggregating 
all the UI saliency results associated with each UI type. Overall, in 
contrast against the recognized center bias with natural images [13], 
we noticed that the upper-left quadrant of all UI types tends to at-
tract more fxations than the other quadrants. This general result 
indicates that participants paid more attention to the upper-left 
portion of the UIs. For the webpages, mobile UIs, and posters, fxa-
tions are spread across the entire upper-left region, while there are 
two bands of salient regions in desktop UIs: one right above the 
center of the UI and the other near the upper left-hand corner. The 
most salient area of webpages is around the center-right section of 
the upper-left quadrant, while that quadrant’s uppermost portion 
attracts the most attention in the mobile UI condition. Desktop UIs 
and posters deviate from this pattern, with the most salient area 
appearing just above the center of the desktop UIs and posters. 

An omnibus test revealed statistically signifcant diferences in 
the average number of fxations per user for the visual content 
specifc to each quadrant (where Q1 = top right, Q2 = top left, Q3 
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Webpage Desktop UI Mobile UI Poster 

Figure 1: Examples of user interfaces in the UEyes dataset. The full dataset contains 495 images of each UI type: webpage, 
desktop UI, mobile UI, and poster. 

(a) All UI types (b) Webpage (c) Desktop UI (d) Mobile UI (e) Poster 

Figure 2: Location bias – the distribution of fxations over normalized screens. In contrast against the center bias of natural 
images, fxations in user-interface settings are mostly in the upper left. 

= bottom left, and Q4 = bottom right). For example, in the general 
(all-UI-type) condition, �2 (3) = 183.930, � < .0001. Similar results 
were obtained for each specifc type of UI. 

We then ran Bonferroni-Holm corrected pairwise comparisons 
in post-hoc testing and found that the diference between Q1 and 
Q2 was statistically signifcant in all cases (� < .001). The Q1 vs. Q3 
diference and the Q1 vs. Q4 one were statistically signifcant when 
users viewed the images for three seconds or longer (� < .001), 
Also, the diference between Q2 and Q3 and that between Q2 and 
Q4 was statistically signifcant in all cases (� < .001). Finally, the 
Q3 vs. Q4 diference was signifcant when the viewing time was 
three seconds or longer (� = .018). 

4.2 Efect of Color 
We show color bias across diferent UI types in Figure 4. The top 
color bar shows the 16 most prevalent colors in the original UI 
images for diferent UI types. The other color bars rank the top 16 
colors by the number of fxations on those colors, sorted by fre-
quency. We computed the 16 most prevalent colors using �-means 
clustering, therefore similar colors are merged together. Figure 4 
characterizes the color bias across the UI types examined. The up-
permost bar in each pane shows the 16 most prevalent colors in 
the original UI images, for the relevant UI type. The other bars 
present those top 16 colors ordered by the frequency of fxations on 
them. We computed the 16 most prevalent colors by using �-means 
clustering; therefore, similar colors are merged. Figure 5 compares 
the colors displayed (“All colors” in the plots) with those colors 
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(a) All UI types (b) Webpage (c) Desktop UI (d) Mobile UI (e) Poster 

Figure 3: Location bias – fxations’ distribution by quadrant. The upper-left quadrant tends to attract more fxations than other 
quadrants, across all UI types. 

receiving fxations. This comparison of brightness reveals that, on 
average, brighter colors attract more attention than darker ones. 
Designs for webpages, desktop UIs, and mobile UIs seem to draw 
greater attention to more brightly colored areas relative to the color 
mix displayed. Posters constitute the only exception: the average 
brightness value of the colors where fxations occur is lower than 
that of the colors displayed. However, the single color at which 
participants look most often in posters is still a light one. Although 
desktop UIs’ fxation-receiving colors are brighter, on average, than 
the colors shown overall, the three colors with the largest numbers 
of fxation points in these UIs are dark ones. To investigate further 
whether a reliable efect exists, we computed the pixel brightness 
values by using sRGB Luma coefcients (ITU Rec. 709) [6], which 
refect the corresponding standard chromaticities, and compared 
distributions between fxation and non-fxation brightness values. 
Bartlett’s test of homogeneity of variances was statistically signif-
cant neither for all UIs combined (�2 (3) = 1.003, � = .8004) nor for 
any UI type individually (�2 (3) ≤ 0.832, � ≥ .8416). Therefore, we 
conclude that color does not signifcantly afect visual saliency. 

4.3 Saccade Angle and Amplitude 
Saccade angle and amplitude reveal the tendency and speed of 
eye movements. Such data can facilitate optimizing UI elements’ 

placement and the fow of information in a UI. By understanding 
these metrics, designers can align their designs well with the natural 
gaze behavior of users, thereby potentially promoting a better user 
experience. Figure 6 shows the distributions for the direction and 
distance between two consecutive fxation points, represented by 
the saccade angle and amplitude in the polar-coordinate system. 
We can see that, overall, user gaze moved mainly towards the right 
or bottom portion of the UIs. However, UI types do difer markedly 
in this respect. Users showed a greater preference for left-to-right 
movement in the webpage condition than with other UI types. 
Similarly, users tended to scan posters from left to right, with a 
small number of downward movements, but they showed greater 
variety in the distances by which the gaze moved rightward. In 
contrast, users looked both from left to right and from top to bottom 
when viewing desktop UIs and mobile UIs. The distances in moves 
toward the right are larger than those toward the bottom in the 
desktop condition. They remained in about the same range for 
mobile UI designs. 

A Kruskal-Wallis chi-squared test showed statistical signifcance 
for all UI types (e.g., �2 (3) = 484.41, � < .0001 overall), so we 
ran pairwise comparisons (Bonferroni-Holm corrected) as post-hoc 
tests, fnding that all directions were signifcantly diferent from 
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(a) All UI types (b) Webpage (c) Desktop UI 

(d) Mobile UI (e) Poster 

Figure 4: Color bias – the 16 most prevalent colors in UIs (top row) and the 16 colors fxated upon most, by frequency, for 
fxations lasting up to 1 s (second row), up to 3 s (third row), and up to 7 s (bottom row). 
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(d) Mobile UI (e) Poster 

Figure 5: Color-brightness bias plots comparing the brightness of all the colors displayed and fxated upon. Overall, brighter 
colors tend to attract slightly more attention than darker ones, especially for short time spans. 

each other for all UI types; the rightward direction is the most of the UIED model [95], a model for detecting images and texts on 
frequent, followed by motion toward the left, bottom, and top. UIs. Then, we counted the number of elements in each category 

that were visited (fxated upon) and revisited (fxated upon again). 
Once visited, an element is considered revisited if it receives at4.4 Visited vs. Revisited Elements 
least three fxation points and the previous fxation was on another 

We segmented the UIs and classifed the UI elements into three element. The results are shown in Figure 7. We observed that text 
categories – image, text, and face – by extending the functionality 
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(a) All UI types (b) Webpage (c) Desktop UI (d) Mobile UI (e) Poster 

Figure 6: Analyzing saccade bias reveals the direction and distance between consecutive fxation points. Gaze directions lead 
mainly toward the right or bottom portion of the UIs, with the distances being larger near the right – users prefer moving the 
gaze from left to right (with larger motions) and from top to bottom. 

(a) All UI types (b) Webpage (c) Desktop UI (d) Mobile UI (e) Poster 

Figure 7: Visit vs. revisit bias analysis showing the ratios of visited to revisited elements in three element categories. Text 
elements are more likely than images to be visited and to be revisited. 

elements have a higher fxation probability in our data than images. 
While the dataset’s desktop UIs feature many small images (such 
as icons), which are more prominent than text, the opposite was 
visible in posters: they had large images, typically in a small quantity. 
Webpages have about the same number of image and text elements. 
It is worth noting that mobile UIs exhibited lower visit and revisit 
ratios both than other UI types, refecting mobile UIs’ reduced 
opportunities for users returning to the same content later. 

We found statistically signifcant diferences in visit and in re-
visit ratios between element types (image, text, and face) for all UI 
types. For example, in comparison of the visit ratios for the overall 
condition, �2 (2) = 9.295, � < .01. Post-hoc pairwise comparisons 
(Bonferroni-Holm corrected) revealed statistical signifcance for 
all UI types compared. We conclude that text attracts fxations the 
most, followed by images and then faces. 

4.5 Summary 
We can summarize our results thus: The upper-left quadrant tends 
to attract the most fxations, while brighter colors do not attract 
signifcantly more fxations than less bright colors. As users gaze at 
UIs, their saccades move mainly from left to right and from top to 
bottom. Participants in our experiment tended to spend more time 
looking at text elements than images, which accounts for the sac-
cade directions’ left-to-right tendency. Overall, our fndings related 

to mobile UIs are consistent with the results of Leiva et al. [13]. 
When introducing further analysis metrics, we found biases spe-
cifc to each UI type. The following characteristics and diferences 
emerged, recapped here by UI type: 

Webpage: Participants preferred to scan more from left to 
right when looking at webpages, with larger distances be-
tween consecutive fxations than they showed with other UI 
types. 

Desktop UI: Rather than fxations being spread over the top-
left quadrant, the salient areas of desktop UIs are separated 
into two areas: right above the center and around the top-left 
corner. 

Mobile UI: Mobile UIs exhibit lower visit and revisit ratios 
than other UI types. This indicates that users tend to focus 
more on a few elements of the UI (the most attractive ones) 
while ignoring others and that there is less likelihood of 
going back to look at the same elements. 

Poster: In comparison to desktop UIs and mobile UIs, partici-
pants demonstrated a much stronger intention to scan from 
left to right, with only a small proportion of saccades being 
directed from top to bottom. The distances between consec-
utive fxation points show more signifcant variation here 
than with other UI types. 
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5 ASSESSING SALIENCY MAP MODELS 
With the backdrop of the diferences identifed between UI types, 
we conducted a comparison among data-driven predictive models 
for saliency maps. We considered the state-of-the-art traditional 
optimization-based model (GBVS) and data-driven models (the SAM 
and UMSI) alongside improved versions that we developed our-
selves, SAM++ and UMSI++. 

Graph-Based Visual Saliency (GBVS) [34]. GBVS is a bottom-up 
saliency map model for detecting informative features on the basis 
of the entire image. It employs the saliency-based visual attention 
model proposed by Itti and Koch [37] to extract visual features 
as computed via linear center-surround operations with Gauss-
ian pyramids for intensity, color, and orientation. It then forms 
graph-based activation maps from visual features and normalizes 
them to highlight conspicuity. The global visual feature extrac-
tion and graph-based activation maps enable the model to capture 
saliency maps at the global level, which is more efcient than prior 
approaches relying on local information. 

Saliency Attentive Model (SAM) [21, 22]. SAM incorporates an 
attentive convolutional long-short term memory (Attentive Con-
vLSTM) saliency map model to focus on distinct spatial location 
features to enhance sequential predictions. The model iteratively 
and progressively refnes the predicted saliency map results via the 
LSTM architecture. The SAM learns a set of prior maps generated 
with Gaussian functions to learn saliency priors, such as the center 
bias typical of human eye fxations, thereby obtaining improved 
feature-extraction capabilities without needing hand-crafted prior 
information. 

UMSI [29]. UMSI is a unifed model of saliency and importance 
trained on images from several design classes, including posters, 
infographics, mobile UIs, and natural images. It uses an encoder-
decoder architecture and aggregates image information at multiple 
scales to predict visual importance in the input graphic designs. 
The UMSI employs an automatic classifcation module for the in-
put graphic designs, to better capture the saliency patterns with 
class-specifc information. It was trained on a dataset for visual 
importance from cursor-based crowdsourced data. Again, while the 
cursor is a good proxy for eye-tracking, it cannot properly simulate 
the results captured via data from eye trackers. 

UMSI++ and SAM++ (Ours). UMSI++ and SAM++ are variants 
we created by employing new loss terms and a two-step training 
process. The main module of the original UMSI model was trained 
with KL-divergence [40] and Cross-Correlation [52] losses with 
coefcients 10 and -3. The output of the UMSI model is the fipped 
saliency maps requiring post-processing via black-to-white inver-
sion. Our UMSI++ model employs an end-to-end joint training 
process that entails refning the model via multiple loss terms. Over 
the frst 10 epochs of training, the model approaches the ground-
truth saliency maps by using the Mean Squared Error (MSE) loss be-
tween the predicted and the ground-truth saliency maps. This helps 
the model accurately predict the saliency maps. For the remaining 
epochs, the model is trained with a combination of loss terms, in-
cluding the KL-divergence and Cross-Correlation loss terms [52] 

used in the UMSI, alongside two additional loss terms: the Normal-
ized Scanpath Saliency (NSS) loss and the Similarity loss. The NSS 
loss quantifes the average normalized saliency at fxation points, 
while the Similarity loss measures the intersection between the pre-
dicted and the ground-truth saliency maps. These loss terms help 
the model better capture fxations and improve its overall perfor-
mance. Both KL-divergence and Cross-Correlation are distribution-
based: they focus on the continuous distributions of the saliency 
maps, rather than on individual points or locations. In contrast, NSS 
and Similarity are location-based in that they focus on the locations 
of fxation points in the saliency maps. Together, these loss terms 
have been shown to perform well in predicting fxation points, and 
they can help the model better capture eye fxations [12, 99]. Com-
putation details are given in Supplementary Materials. The training 
takes about an hour on one NVIDIA GeForce RTX 2080Ti GPU. For 
comparison, we apply the same training pipeline and loss terms to 
the SAM architecture to get the result for the SAM++ model. 

5.1 Evaluation Metrics 
We evaluated the accuracy by means of six widely applied metrics. 

Area under ROC Curve (AUC). AUC is the most commonly used 
metric for saliency map performance. It evaluates the saliency map 
as a binary classifer of fxation points at various thresholds. The 
Receiver Operating Characteristic Curve (ROC Curve) shows the 
rates of the actual positive points and the false positive ones at 
multiple discrimination threshold values. AUC is defned as the 
area under such a curve measuring the true and false positive 
rates under the binary classifer, which one can compute by taking 
the integral of the area under the ROC curve in practice. AUC-
Judd [14, 43] is a variation of AUC. The true positive rate is defned 
as the ratio of the number of true positive points to the number of 
ground-truth fxation points above various threshold values, while 
the false positive rate is that of the number of false positive points 
to the total number of non-fxation pixels. 

Normalized Scanpath Saliency (NSS) [70]. NSS is the average 
normalized saliency at fxation points. Relative to the AUC metric, 
NSS is more sensitive in detecting false positive points. The AUC 
score can be high even when there are many false positive points, 
given a large number of true positive points – low-valued false 
positive points do not afect the AUC score. However, all false 
positive points decrease the normalized saliency value. Thus the 
NSS score penalizes all the false positive points. 

Information Gain (IG) [49, 50]. IG is used for measuring saliency 
results beyond systematic bias. 

Similarity (SIM) [76, 82]. SIM refers to the intersection between 
the predicted and the ground-truth saliency maps, thereby indicat-
ing the overlapping of the two maps. It is defned as the sum of the 
minimum value of the normalized predicted saliency map and of 
the normalized ground-truth map. The similarity score is lower for 
sparse maps. It is sensitive to failed detection of saliency points: the 
absence of saliency values points to zero similarity, hence reducing 
the similarity score. 
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Pearson’s Correlation Coefcient (CC) [52]. CC is employed for 
evaluating the correlation or dependence between the predicted 
and the ground-truth saliency maps. 

Kullback-Leibler (KL) Divergence [40]. KL Divergence quantifes 
the diference between the distributions of the saliency map pre-
diction and the ground truth, while the other metrics listed here 
measure the similarity. 

Computation details are provided in Supplementary Materials. 
The various metrics difer in their sensitivity to false positives 
or false negatives, what is measured, and the category of metric 
involved, thus: 

Sensitivity: All these metrics are sensitive to false negatives, 
with the KL, IG, and SIM signifcantly penalizing false nega-
tives, especially when the predicted values are close to zero. 
The normalization step of NSS increases the penalty for de-
tecting false positives and thus makes it more sensitive to 
false positives than other metrics. The CC is, by defnition, 
a symmetric metric, so it shows equal sensitivity to false 
positives and false negatives. The AUC score is insensitive to 
false positives – it can be high even if the resulting saliency 
maps have many true positives. 

Measurement: The KL measurement assesses dissimilarity 
while the other metrics gauge similarity. Accordingly, better 
models have lower KL scores but higher scores for other 
metrics. 

Metric category: The location-based metrics (AUC, NSS, and 
IG) evaluate models in terms of fxation points, while 
distribution-based ones (SIM, CC, and KL) compute evalua-
tion based on saliency maps as the continuous distribution. 

5.2 Results 
To set a benchmark for saliency maps’ prediction, we compared the 
computational saliency map models qualitatively and quantitatively 
and judged the predicted location bias. We used the dataset’s frst 52 
image blocks (1,872 images) as the training data and the remaining 
three blocks of images (108 images) for testing. All the results shown 
here come from evaluation with the test data. 

5.2.1 Qalitative Evaluation. We present the qualitative compari-
son of the various models by UI type in Figure 8. For all the models, 
false positive errors constitute the main kind of error in the re-
sults. All of them can capture informative areas such as images 
and text elements, but not all of these truly attract the user’s atten-
tion, and sometimes, only a small part of an image is considered 
salient. Therefore, it is generally challenging for predictive models 
to distinguish between informative areas and salient areas. Both 
GBVS and the pretrained UMSI typically capture all image and text 
areas, which leads to high false positive error levels. Models trained 
on UEyes achieve better results than the pretrained models. Our 
improved model UMSI++ generates the saliency maps that most 
closely approach the ground-truth fxations, relative to the other 
models and across all the UI types. 

5.2.2 Qantitative Comparison across UI Types. We begin by ad-
dressing the importance of training on multiple types of UIs, be-
cause training with only one type leads to accuracy reductions with 
other types. We trained our UMSI++ model on either mobile UI 

or webpage data from UEyes, respectively, and testing on all UI 
types used the same test set. Accuracy in predictions for other UI 
types (those diferent from what was seen during training) dropped 
signifcantly. For example, when the model was trained on mobile 
UIs, its accuracy fell from 0.899 to 0.844 when it was tested instead 
on webpages, from 0.890 to 0.803 for desktop UIs, and from 0.924 
to 0.849 for posters. Similarly, when the model was trained on web-
pages, its accuracy decreased from 0.905 to 0.832 for mobile UIs, 
from 0.890 to 0.813 for desktop UIs, and from 0.924 to 0.848 for 
posters. How people perceive visual hierarchies and look at UIs 
when viewing any given type of UIs could not truly be generalized 
to other UI types. 

Quantitative comparison of the models as evaluated via the met-
rics detailed in Section 5.1 attests that training on UEyes provides 
both the SAM and the UMSI models with higher accuracy and 
stronger generalization ability. Furthermore, our improved model, 
UMSI++, outperforms the state-of-the-art models by most metrics, 
as Table 1 indicates. Since AUC is a standard evaluation metric 
with a range of 0 to 1 for saliency map prediction (where larger 
values indicate higher accuracy), it lets us quantitatively evaluate 
and compare the models across UI types graphically in the manner 
shown in Figure 9. The pretrained SAM model performs better 
than the pretrained UMSI. However, after training on UEyes, the 
two perform similarly for all the UI types. By introducing new loss 
terms, UMSI++ achieved the best performance across all the UI 
types, while SAM++ does did not show greater accuracy than the 
original SAM trained on UEyes. For both SAM and UMSI architec-
tures, the predictions for desktop UIs were the least accurate for 
every UI type. This is consistent with our observations from the 
qualitative results. 

5.2.3 Predicted Location Bias. Figure 10 presents a visualization 
of the location bias of the saliency maps predicted by the various 
models considered. All models except GBVS can capture the upper-
left location bias identifed for UIs. The models trained on our UEyes 
dataset can capture that location bias more accurately than the 
pretrained ones. After training with UEyes, the SAM, SAM++, and 
UMSI models achieved similar results for saliency location bias. Our 
improved model displays the greatest similarity to the ground truth 
for location bias. It is clearly evident from the visualization that all 
the models over-capture the salient areas and produce many false 
positive errors, which aligns with what we found in the qualitative 
comparison. Saliency is tricky to detect for mapping predictions in 
contexts of webpages and (especially) desktop UIs. Salient areas are 
spread more sparsely in the upper-left quadrant of webpages than 
in other UI types. The salient portions of desktop UIs are separated 
into the two sub-areas mentioned earlier on, one right above the 
center line and the other near the top left. It is far more challenging 
for the models to simulate sparser areas. Still, the models trained on 
UEyes capture such sparse salient areas better, while other models 
can only capture the entire areas, with many more false positives. 
All of the models except GBVS can capture the most salient parts 
of mobile UI designs (the upper-left quadrant) and posters (right 
above the center) well. The ones trained on UEyes are similarly 
accurate in their location bias results across webpages, desktop 
UIs, and mobile UIs; however, UMSI++ reveals the location bias 
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Figure 8: Saliency maps’ qualitative comparison. Compared to other models, our improved model UMSI++ generates saliency 
maps closer to ground truth across all UI types. 
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Model AUC-Judd ↑ NSS ↑ IG ↑ SIM ↑ CC ↑ KL ↓ 

GBVS 0.756 ± 0.104 0.256 ± 0.197 3.214 ± 0.668 0.513 ± 0.097 0.314 ± 0.193 3.916 ± 2.630 
SAM Pretrained 0.822 ± 0.074 0.377 ± 0.170 3.143 ± 0.768 0.562 ± 0.081 0.522 ± 0.146 2.721 ± 1.457 
SAM on UEyes 0.885 ± 0.057 0.434 ± 0.185 3.337 ± 0.774 0.663 ± 0.081 0.720 ± 0.127 2.016 ± 1.263 
SAM++ on UEyes 0.868 ± 0.060 0.414 ± 0.179 3.165 ± 0.774 0.666 ± 0.080 0.717 ± 0.127 1.604 ± 1.185 
UMSI Pretrained 0.778 ± 0.090 0.346 ± 0.178 3.177 ± 0.796 0.521 ± 0.078 0.431 ± 0.155 3.757 ± 1.769 
UMSI on UEyes 0.878 ± 0.066 0.424 ± 0.187 3.376 ± 0.807 0.639 ± 0.085 0.699 ± 0.156 2.676 ± 1.408 
UMSI++ on UEyes 0.905 ± 0.044 0.401 ± 0.173 3.320 ± 0.744 0.733 ± 0.069 0.833 ± 0.078 1.166 ± 0.772 

Table 1: Saliency maps’ quantitative evaluation, with mean ± SD reported for each metric. Arrows indicate the direction of the 
importance; e.g., ↑ means “higher is better”. The best result in each column is presented in bold. UMSI++ outperforms the other 
models for most evaluation metrics. 

GBVS SAM Pretrained SAM on UEyes SAM++ on UEyes 

UMSI Pretrained UMSI on UEyes UMSI++ on UEyes 

Figure 9: Comparison of saliency map models’ predictive accuracy, with AUC-Judd (designed to measure saliency map perfor-
mance) as the metric. Larger values indicate higher accuracy. The fgure shows that UMSI++ performs best across all the UI 
types. 

connected with posters better than the other models do, thanks to report on how well computational models fared with the four UI 
its detection of lower saliency at the top of posters. types, from a comparison of four models: 

Itti-Koch-based model [37]. The Itti-Koch-based model is a model 
6 ASSESSING SCANPATH MODELS proposed in the pre-deep-learning era. It generates a saliency map 
In scanpath prediction, the goal is to predict a sequence of fxations. by extracting visual features for intensity, color, and orientation 
The problem is much more challenging than that of saliency maps through a set of linear center-surround operations, then employs 
because the order of the fxations must be retained. Below, we a “winner-takes-all” strategy to select the attended position. The 
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Figure 10: Comparison of the location bias of saliency maps predicted by diferent models across UI types. UMSI++ shows the 
greatest similarity to the ground-truth location bias. 
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model repeatedly applies inhibition of return feedback to inhibit 
the chosen position in the saliency map and, thereby, arrive at the 
resulting scanpath. 

DeepGaze III [47]. DeepGaze III predicts the sequence of fxation 
points in scanpaths over static images. It takes both the input image 
and the positions of the previous four fxation points to predict the 
density/probabilistic map for the next fxation point. After that, it 
generates the scanpath by recursively selecting the next fxation 
point with the highest probability value from the density map and 
adding the new predicted fxation point to infer the density map 
for the next point. DeepGaze III’s method concentrates on applying 
fxation point detection to form the fnal scanpath. 

DeepGaze++ (Ours). DeepGaze++ ofers an alternative. Although 
DeepGaze III can take the information of previous fxation points 
to generate the density of the next point, it often arrives at similar 
density maps for consecutive fxation point predictions. In the 
proposed modifcation, we repeatedly select the position with the 
highest probability from the density map and apply inhibition of 
return to inhibit the chosen position in the saliency map. For the 
�th previous fxation point’s information, we assign a weight of 
1 − 0.1 · (� − 1) to the inhibition of return feedback so that older 
fxation points have less efect on the prediction results. 

PathGAN [3]. PathGAN is a deep convolutional-recurrent neu-
ral network trained on adversarial examples. The generator takes 
the image as input to generate the corresponding scanpath. The 
discriminator encodes both the image and the scanpath to ascer-
tain whether a scanpath is realistic for a given image. This enables 
PathGAN to generate more realistic scanpaths. However, it focuses 
exclusively on the path and cannot predict fxation points. 

PathGAN++ (Ours). The PathGAN model can generate more 
accurate trajectories for scanpaths than other models, but we can 
increase the scanpaths’ accuracy still further to have PathGAN++ by 
adding a Dynamic Time Warping (DTW) loss term that maximizes 
the similarity between the predicted scanpath and the ground truth 
in temporal order. 

6.1 Evaluation Metrics 
We used six metrics, measuring various properties, to evaluate the 
scanpath models. All are commonly applied for scanpath evalua-
tion [1, 28], with the frst three described below seeing the most 
frequent use in this feld, since they capture the temporal and spatial 
aspects of visual attention. The fnal three metrics were employed 
for completeness. 

Dynamic Time Warping (DTW). DTW is a standard metric for 
similarity between two temporal sequences, of diferent lengths [5, 
77]. The DTW metric fnds the optimal match and computes the 
distance for two scanpaths monotonically without missing essential 
features. 

Time Delay Embedding (TDE). TDE creates the sets of time-delay 
embedding vectors for the predicted and the ground-truth scan-
paths by collecting all the consecutive subscanpaths of a given 
length as vectors [84, 88]. We look for the vector from the predicted 

scanpath for each time-delay embedding vector from the ground-
truth scanpath with the minimal distance. Thus, TDE measures the 
diferences between subscanpaths to evaluate the scanpaths. 

Eyenalysis. Eyenalysis performs a double mapping between two 
scanpaths [60]: for each fxation point along one scanpath, the 
procedure fnds the spatially closest fxation point on the other 
scanpath, and then it performs the same procedure the other way 
around. Eyenalysis measures the average distances for all the closest 
pairs found. 

Cross-Recurrence (REC). REC involves measuring the matching 
ratio of fxation points within the two scanpaths [98]. To use this 
metric, we truncate the two scanpaths to the same length, that of 
the shorter of the two scanpaths. Then, we defne fxation pairs 
whose distance is below a certain threshold value as recurrences 
(we set the threshold to be the image size scaled by 0.05). The REC 
process counts the recurrences and computes the percentage of 
recurrences out of all the fxation pairs on the two scanpaths. 

Weighted Determinism (DET). DET is the percentage of recur-
rent fxation points on subscanpaths in which all the pairs of cor-
responding fxation points are recurrences and all such recurrent 
fxation point pairs contain diferent fxation points from both scan-
paths [1, 28]. In its original formulation, the Determinism metric [1] 
produces only the number of corresponding subscanpaths. We pro-
pose computing their percentage, to measure the subscanpaths 
better. 

Center of Recurrence Mass (CORM). CORM refers to the distance 
between the center of recurrences, thus indicating the dominant lag 
of recurrences [1, 28]. The CORM score is lower when the recurrent 
fxation point pairs on the scanpaths are closer in time. 

Whereas DTW, TDE, and Eyenalysis measure fxations’ position 
and sequence in temporal order as they match the two sequences 
diferently, REC and DET measure only the similarity of fxation 
positions. They have higher values if the fxation points in the two 
sequences are close, irrespective of the temporal order. The CORM 
measurement serves to detect the dominant lag of recurrences. 

6.2 Results 
6.2.1 Qalitative Evaluation. Our qualitative comparison of the 
various models across UI types is depicted in Figure 11. Overall, 
the models cannot predict results accurately relative to the ground-
truth data. The pretrained PathGAN model and the DeepGaze III 
model get stuck in local areas, so the predicted points end up in 
clusters. Because of the similar density maps predicted by DeepGaze 
III for consecutive fxation points, that model selects positions 
for fxation points that are nearby, thereby producing a cluster of 
points and getting “bogged down” in that cluster. PathGAN can 
only generate the scanpath, without considering fxation points. 
Therefore, it is impossible to infer which points users give more 
visual attention from the PathGAN results. The Itti-Koch-based 
model, PathGAN trained on UEyes, DeepGaze++, and PathGAN++ 
show better prediction results. That said, most scanpaths predicted 
by PathGAN and PathGAN++ trained on UEyes are biased to be 
around the center of the UIs. Also, all the models tend to predict 
scanpaths with many fxation points, not all of them in salient areas. 
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Figure 11: Scanpaths’ qualitative comparison. DeepGaze++ can predict fxation points better but cannot predict realistic 
scanpaths. PathGAN++ is able to predict a realistic trajectory but not accurate fxation points. Trajectories’ frst portion is 
presented in blue, and their end in black (color gradient). The starting point is highlighted with a red border. 
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6.2.2 Qantitative Evaluation. Table 2 presents how the models 
stack up by each of the evaluation metrics outlined in Section 6.1. 
For a fair comparison, since these metrics depend on the scanpath 
length, we made sure that the predicted scanpaths generated by 
all the models have exactly 15 fxation points. Since DTW is a 
standard metric for scanpaths’ evaluation (where smaller values 
indicate higher accuracy), we can elaborate on our comparison of 
the models across UI types in the manner shown in Figure 12. For 
all models apart from the Itti-Koch-based one, desktop UIs have 
higher DTW values, indicating lower accuracy of the predicted 
values than seen with other UI types: scanpaths in desktop UI 
conditions are harder to predict. All of the models are at their best 
with mobile UIs. DeepGaze III was the worst-performing model 
for all UI types except mobile UIs. The PathGAN++ model shows 
superior performance in comparison to the other models by the 
DTW, TDE, and Eyenalysis metrics. This is a testament to our 
model’s ability to simulate real scanpath trajectories. However, the 
results are still qualitatively inaccurate. We can conclude, then, that 
the metrics currently applied for evaluating scanpaths may not be 
sufcient to capture the more nuanced aspects of eye movements. 

6.2.3 Comparison between PathGAN++ and DeepGaze++. Com-
paring the performance of PathGAN++ and DeepGaze++ reveals 
that each model has its own strengths and limitations. Though 
PathGAN++ excels at generating realistic trajectories by dint of the 
discriminative component in the model architecture, it falls short 
in predicting proper fxation points, and the points generated often 
lie outside the areas of interest. DeepGaze++, on the other hand, 
is better at predicting fxation points, since its operation is based 
on saliency maps that highlight elements in the UIs. However, it 
can sufer from repetitive density maps for consecutive fxation 
point predictions, leading to unrealistic scanpaths. Additionally, 
the mechanism for inhibition of return is deterministic and not 
diferentiable, so it cannot be optimized by means of any loss terms. 
This trait can hamper its optimization. 

6.2.4 Saccade Angle and Amplitude Distribution. Figure 13 charac-
terizes the saccade-angle and amplitude-distribution aspect of our 
comparison. None of the models can capture the same distributions 
as the ground-truth data. Human saccade directions are primarily 
from left to right, with a small proportion of motions from top to 
bottom. The pretrained PathGAN model and DeepGaze III have 
clustered distributions due to the “stuck points” on the predicted 
scanpaths. PathGAN trained on UEyes and PathGAN++ both dis-
play an incorrect center bias to the distribution. Furthermore, the 
inhibition of return implemented in the Itti-Koch-based model and 
DeepGaze++ avoids small distances between consecutive fxation 
points. Hence, the saccade amplitudes are more signifcant than in 
the ground truth. We found that most saccade directions predicted 
by DeepGaze++ are rightward ones for desktop UIs, mobile UIs, 
and posters, which demonstrates that DeepGaze++ can capture the 
actual tendencies visible with these UI types. However, it is still 
incorrect for webpages and cannot predict the gaze’s tendency to 
move toward the bottom of the UIs. 

6.2.5 Visited and Revisited Elements. Our comparison of visited-
and revisited-element ratios for the various models is described 
in Supplementary Materials. All the models can correctly predict that 

text elements are more likely to receive fxations than images are. 
The pretrained PathGAN model and DeepGaze III underestimate 
the visiting and revisiting ratios both. DeepGaze++ displays the 
best prediction for the former but overestimates the revisit ratios 
for all UI types. All the models refect the fact that both ratios are 
lower with mobile UIs than with other UI types. Still, every model 
except DeepGaze++ underestimates the visiting and the revisiting 
ratio for this type of UI. Most models’ predictions for element visit 
and revisit ratios are the closest to the ground truth in the case of 
poster designs. PathGAN++ is the model that yields the predictions 
closest to the ground truth for visiting and revisiting of elements, 
with the exception of its underestimation for mobile UIs. 

7 DISCUSSION 
Our study sheds new light on the eye-movement behavior that 
occurs with specifc UI types. Here, we summarize the main fndings 
pertaining to how people look at UIs, then discuss the challenges 
and limitations that accompany current computational models. 

7.1 How People Look at UIs 
We have found that, in general, users pay more attention to the 
upper-left region in a UI. While prior work demonstrated this for 
mobile UIs [53], we can now confrm a similar pattern extending 
across all types of UI considered in our project, inclusive of poster 
designs. Also, we have found that saccades take the gaze mainly 
toward the right or bottom portion of the UI. Further, movements 
of the gaze toward the right exhibit larger distances between con-
secutive points than motions toward the bottom. 

At the same time, we found that text elements are more likely to 
be fxated on than images, which explains saccades’ typical motion 
from left to right rather than vice versa, although the latter result 
may be an artifact of our dataset, since most of our UIs, being in 
the English language, forced participants to read the text from left 
to right. Still, the ratio of images to text does not afect the ratios 
of visited and revisited elements in these two element categories. 
Another noteworthy fnding is that saccades toward the right-hand 
part of the UIs show larger distances between consecutive points 
than those landing nearer the bottom. It is among the evidence that 
user interfaces are not glanced at in the same manner as natural 
scenes [53]. Instead of a center bias, there is a strong top-left bias. 

Our data allow a deeper dive into various subtle diferences 
among the types of UIs examined. Several distinctions exemplify 
this: 

Webpages: We found that users tend to look from left to 
right on webpages, showing larger inter-fxation distances 
than with the other interface types. These large distances 
might explain why computational scanpath models exhibit 
their worst performance with webpages while computational 
saliency models perform quite well with other types of UIs. 

Desktop UIs: Because desktop UIs have two salient areas (one 
just above the center and the other at top left), it proves 
difcult for computational models of saliency maps and scan-
paths to deliver accurate predictions. These were found to 
perform poorly with the multi-modal gaze distributions in 
such conditions. 
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Model DTW ↓ TDE ↓ Eyenalysis ↓ REC ↑ DET ↑ CORM ↓ 

Itti-Koch-based 6.282 ± 0.973 0.147 ± 0.027 0.043 ± 0.022 2.224 ± 2.053 2.021 ± 10.854 34.497 ± 22.890 
DeepGaze III Pretrained 7.650 ± 2.899 0.250 ± 0.078 0.124 ± 0.072 1.290 ± 3.281 1.025 ± 8.510 13.838 ± 24.082 
DeepGaze++ 5.230 ± 1.180 0.133 ± 0.031 0.043 ± 0.022 1.876 ± 1.700 1.778 ± 10.046 31.590 ± 23.120 
PathGAN Pretrained 4.381 ± 1.559 0.160 ± 0.054 0.072 ± 0.036 3.896 ± 5.049 7.039 ± 18.651 22.528 ± 22.970 
PathGAN on UEyes 4.354 ± 1.322 0.121 ± 0.040 0.045 ± 0.024 2.414 ± 2.455 5.687 ± 17.960 27.613 ± 21.644 
PathGAN++ on UEyes 4.236 ± 1.332 0.120 ± 0.041 0.043 ± 0.022 2.810 ± 2.743 5.761 ± 16.053 27.956 ± 21.544 

Table 2: Evaluation of scanpaths, with the mean ± SD reported for each metric. Arrows denote the direction of the importance; 
e.g., ↑ means “higher is better.” Each column’s best result is highlighted in boldface. PathGAN++ outperforms the other models 
by all three metrics applied for measuring the fxation sequence in temporal order (DTW, TDE, and Eyenalysis). 

DeepGaze III PathGAN PathGAN PathGAN++Itti-Koch-based DeepGaze++ Pretrained Pretrained on UEyes on UEyes 

Figure 12: Comparison of predictive accuracy for scanpath models, with DTW as the metric (measuring the fxation sequence in 
temporal order). Smaller values indicate higher accuracy. The fgure shows that DeepGaze++ performs best, across all UI types. 

Mobile UIs: Mobile UIs have lower visit and revisit ratios than 
other UI types, indicating that users focus more on the “at-
tractive” elements while ignoring the others and that there is 
less of a tendency to return to the same content. Further, we 
noticed that most scanpath models can predict the low visit 
ratio of mobile UIs and, accordingly, display better predictive 
accuracy with mobile UIs than with all other UI types. 

Posters: As with other UIs, users tend to scan posters from left 
to right, with a small number of saccades toward the bottom 
and with highly varied fxation distances. Here, the distances 
of consecutive fxation points show more pronounced varia-
tion than other UI types’. This renders their prediction by 
current computational scanpath models harder. 

7.2 Current Computational Models 
Our results highlight that, in eforts to predict visual saliency, train-
ing of computational models with eye movement over user inter-
faces yields superior performance to training with proxy data, such 
as mouse movements or manual annotations, or even training with 
data collected from viewing of natural scenes. While that is unsur-
prising, we have demonstrated this superiority quantitatively. In 
particular, we showed that training the UMSI on UEyes increases 
its AUC performance score from 0.778 to 0.878. Upon inspecting the 
predictions, we found that much of this diference can be attributed 
to cases of over-detection by the UMSI: it predicts saliency across 
expanses of the UI more extensive than what the user may have had 
time to inspect, and this is refected in its high false positive rate. 

That said, after training on our dataset and with our modifcations 
to the model, the accuracy of the UMSI improved considerably. 

7.3 Limitations and Future Work 
7.3.1 The Mobile UI Viewing Seting. The fxed-screen setting used 
in our experiment, while guaranteeing consistent data collection 
and analysis across UI types, does not accurately simulate the real-
world experience of viewing a mobile UI while holding a cellular 
phone. To improve the realism in this regard, one could rescale 
the mobile UI screenshots for a mean viewing distance of 30 cm, 
as prior literature recommends [53, 57]. With our roughly 60 cm 
distance between participants’ eyes and the screen, the physical 
size of the stimuli displayed should be about twice what it is on a 
mobile screen. This issue notwithstanding, our fndings for mobile 
UIs corroborate reports by Leiva et al. [53]. 

7.3.2 Semantic Understanding of UI Elements. The current classi-
fcation of visited and revisited UI elements into broad categories 
(text, image, and face) does not capture the semantic diferences 
within each category. Future work could focus on developing more 
detailed and nuanced classifcation of visited and revisited UI ele-
ments by extracting their semantic meaning [93] to aford a greater 
understanding of users’ gaze-related behaviors. 

7.3.3 False Positives in Saliency Maps. While computational mod-
els of saliency maps can capture informative areas such as images 
and text regions, they still tend to generate false positive errors and 
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All UI types Webpage Desktop UI Mobile UI Poster 

Figure 13: Distributions of saccade angles and amplitudes compared across scanpath-based predictive models. Human saccade 
directions are primarily left-to-right, with a small proportion being from top to bottom. None of the models can capture the 
same distributions as the ground-truth data. 
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over-detect salient areas, thereby producing low accuracy and reli-
ability. Future work can improve the model’s ability to diferentiate 
between truly salient areas and false positives, and it could bring 
additional features, such as user task goals, into play to guide the 
saliency prediction. 

7.3.4 Inaccurate Scanpath Models. Today, no single scanpath 
model can accurately capture both the scanpath trajectories and the 
fxation points of human eye movements. Further improving the 
model requires a fuller understanding of the factors that infuence 
gaze behavior (such as visit and revisit tendencies) and incorpora-
tion of those factors into the model. Additionally, better metrics are 
needed for assessing the quality of predicted scanpaths. Developing 
such metrics should contribute to a deeper understanding of the 
scanpath models’ performance and, by doing so, guide the design 
of better models. 

7.3.5 Individual-Specific Diferences. Individuals difer in the view-
ing strategies they apply when looking at user interfaces. Person-
to-person variations in viewing strategy can afect gaze behav-
ior, and predictive models need to take them into account. Future 
work could focus on understanding and modeling the individual-to-
individual diferences in viewing strategies, in general terms and 
for each of the UI types. This can be accomplished by means of per-
sonalized predictive models that account for diferences between 
individuals. 

8 CONCLUSION 
In this paper, we present UEyes, a large-scale eye-tracking dataset 
that covers 1,980 UIs of various types, along with multi-duration 
saliency maps and scanpaths. Moreover, we present the frst in-
depth analysis and comparison of eye-movement tendencies across 
common UI types. We also contribute solid performance analysis of 
state-of-the-art predictive models for saliency maps and scanpaths 
across the various UI types. 

Open Science 
The dataset and trained models are available at https:// 
userinterfaces.aalto.f/ueyeschi23. The dataset includes raw CSV 
log fles recorded with the GP3 HD eye tracker, associated heatmaps 
and scanpaths, the image stimuli (screenshots), and metadata refer-
ring to the design type. 
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