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Figure 1: Drava enables concept-driven exploration by aligning semantic latent dimensions with human concepts. (a) UMAP 
projection of image patches of breast cancer specimens. (b) All image patches are organized and piled up based on the density 
of tissues. (c) All image patches are grouped into a grid layout according to the tissue density and color. The two visual concepts 
reveal a strong association of the presentation of invasive ductal carcinomas (IDC), i.e., the orange label. (d-e) More examples. 

ABSTRACT 
Latent vectors extracted by machine learning (ML) are widely used 
in data exploration (e.g., t-SNE) but sufer from a lack of inter-
pretability. While previous studies employed disentangled repre-
sentation learning (DRL) to enable more interpretable exploration, 
they often overlooked the potential mismatches between the con-
cepts of humans and the semantic dimensions learned by DRL. To 
address this issue, we propose Drava, a visual analytics system 
that supports users in 1) relating the concepts of humans with 
the semantic dimensions of DRL and identifying mismatches, 2) 
providing feedback to minimize the mismatches, and 3) obtaining 
data insights from concept-driven exploration. Drava provides a 
set of visualizations and interactions based on visual piles to help 
users understand and refne concepts and conduct concept-driven 
exploration. Meanwhile, Drava employs a concept adaptor model 
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to fne-tune the semantic dimensions of DRL based on user refne-
ment. The usefulness of Drava is demonstrated through application 
scenarios and experimental validation. 
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1 INTRODUCTION 
Presenting analyzed small multiples (e.g., patches of medical images, 
miniature visualizations of a large genomic sequence) using latent 
vectors learned by machine learning (ML) models has become a 
common practice in many visual analytics systems [6, 10]. A latent 
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vector, usually represented as multi-dimensional quantitative 
values, is a compact representation of the analyzed data to capture 
relevant information. For example, a 64×64 pixel image can be 
represented as a 10-dimensional latent vector. Compared with 
analysis using raw data or human-crafted metrics, latent vectors 
enable users to organize and explore a large amount of data 
and conduct analysis tasks, such as fnding similar items and 
identifying outliers, more efciently. 

Even though latent vectors can accurately capture patterns ex-
tracted from the analyzed data, they cannot be directly interpreted 
by humans like the original images or texts. For this reason, latent 
vectors are usually used to represent the similarity between data 
items, assuming the latent vectors of two similar items are close 
in a latent space. For example, dimension reduction methods (e.g., 
t-SNE [58], UMAP [41]) are widely used to visualize latent vec-
tors in 2D space, showing the similarities and diferences among 
data items. Other prior studies proposed to hierarchically cluster 
items based on their latent vectors to conduct pattern-driven visual 
analytics [6]. However, defnitions of “similar items” vary depend-
ing on analysis tasks, and there is no single defnition that can be 
applied to all scenarios. Even though some prior studies have incor-
porated user input to learn user’s perception of similarity [10, 32] 
and even to extract human-readable concepts (e.g., gender from 
face images) [37, 68], visual analytics based on latent vectors still 
sufers from their limited interpretability. 

Disentangled representation learning (DRL) [12, 22] is a promis-
ing approach that can provide more explainable latent vectors 
through unsupervised learning, i.e., without human labels. By disen-
tangling features and encoding them as separated dimensions in the 
latent vectors, DRL can generate latent vectors whose values carry 
semantics and can reveal human-understandable concepts, e.g., the 
value on one dimension indicates whether a person is smiling or not 
(Figure 1d). We call such dimensions semantic dimensions. Some 
recent visualization tools [18, 20, 59] have successfully employed 
DRL in their analysis and demonstrated the efectiveness of DRL. 
For example, Gou et al. [18] used DRL for trafc light images to 
summarize images based on human-readable concepts, such as 
color, brightness, and rotation. These studies usually assumed that 
the learned semantic dimensions can perfectly capture human con-
cepts, and the concepts can be accurately represented by a set of 
synthesized images. However, these assumptions do not always 
hold. Potential mismatches can exist between the semantic 
latent dimensions learned by ML models and the concepts of 
humans. As shown in Figure 2a, one latent dimension correlates 
to the angle of human head according to the synthesized images. 
But when using this dimension to organize images, our experi-
ment results show that the model confuses “angle of the head” with 
“whether part of the face is covered”, e.g., covered by a dark shadow 
or a fower (Figure 2b). Meanwhile, previous studies focus on us-
ing DRL to diagnose supervised ML models rather than building 
an understanding of the data [18, 20]. They provide limited dis-
cussion about user needs in understanding and utilizing DRL for 
concept-driven data exploration. 

This study aims to provide a more interpretable and fexible vi-
sual exploration of small multiples by better aligning concepts 
of human users with the semantic latent vectors generated by 
ML models. We propose Drava, an interactive system that utilizes 
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Figure 2: Mismatches between semantic latent dimensions 
and human concepts (red dashed boxes). (a): Synthesized 
images through value traversal of a latent dimension. (b): 
Items with the same latent values as the left- and right-most 
synthesized images. 

Disentangled Representation learning as A Visual Analytics ap-
proach for concept-driven data exploration. In Drava, a dataset 
is represented as a set of small multiples [57], i.e., a series of ba-
sic charts or graphics that show instances or diferent slices of 
the dataset (Figure 1). Hereafter, we call each small multiple as 
a data item. For each data item, DRL learns a multi-dimensional 
latent vector, certain dimensions of which have semantic mean-
ings. Drava supports an interpretable exploration of these items by 
supporting users in correlating and aligning the semantic dimen-
sions with human concepts. The interactive visualizations and algo-
rithms in Drava are motivated and guided by a three-step workfow 
that we propose. Throughout this workfow, users 1) understand 
ML-learned semantic dimensions and identify their potential mis-
matches with human concepts, 2) refne and align ML semantic 
dimensions with human concepts, and 3) generate new knowledge 
about the analyzed data through concept-driven exploration. Par-
ticularly, Drava automatically ranks latent vectors and proposes 
a concept adaptor that can refne a concept based on human in-
put. Meanwhile, a set of interactions based on visual piles [33] 
are provided, enabling users to efectively arrange, summarize, and 
compare items based on human-readable concepts. We demonstrate 
the usefulness of Drava through experimental validation and four 
usage scenarios. Drava is available at https://qianwen.info/DRAVA/. 

2 BACKGROUND: DISENTANGLED 
REPRESENTATION LEARNING 

DRL is a promising machine learning method that is able to extract 
interpretable features without human supervision. Given an input 
item x, the goal of DRL is to learn a vector z that captures the 
features of x in a disentangled manner. For example, as shown in 
Figure 2a, a DRL model learns to represent an image of a human face 
using z and captures the feature “the angle of head” independently 
in �1 (i.e., the second dimension of z). Similarly, an area chart can 
be described as a vector z where �0 indicates the height of the chart, 
�1 indicates the trend, etc. DRL assumes x as a joint distribution of 
independent and dependent generative factors [22]. While these 
independent factors will be captured in separated dimensions of 
z (i.e., semantic dimensions), the dependent factors will remain 
entangled in other dimensions of z that are not used for representing 
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the independent factors. In other words, some dimensions of z 
will have semantic meanings while others will not. For a precise 
mathematical defnition of disentangled and entangled dimensions, 
we refer the readers to [8, 21, 22]. 

A DRL model learns disentangled representations via two loss 
terms, a reconstruction term and a regularization term. The recon-
struction term evaluates the diferences between the input item x 
and the reconstructed item x̂, encouraging the model to learn z that 
capture the main characteristics of the input item. The regulariza-
tion term encourages disentanglement of the latent vectors. A DRL 
model is usually constructed by encouraging disentanglement in 
standard generative models, such as VAE [22] and GAN [12]. The 
state-of-the-art DRL approaches are largely based on VAE mainly 
due to their better training stability than GAN-based methods. For 
example, the loss function of �-VAE is defned as 

��� (� |� ) [log �� (� |�)] − ���� (�� (� |�) | |� (�)) (1) 

The frst term is a reconstruction loss, and the second term is a 
regularization for disentanglement. With � > 1, �-VAE encourages 
disentangled z by putting a constraint on the latent bottleneck. Prior 
studies have proposed various regularization terms for disentan-
glement. For more details, refer to prior studies [21, 36]. Given its 
wide popularity, we use �-VAE in Drava with some modifcations 
(subsection 6.1). The proposed framework can be easily adapted to 
other VAE-based DRL, such as FactorVAE [28] or �-TCVAE [11]. 

3 RELATED WORK 
First, since Drava aims to assist data exploration using explainable 
latent vectors, it is closely related to visual analytics on latent vec-
tors and, more broadly, visual analytics for ML models whose 
hidden layers generate latent vectors of the input data. 

Many visual analytics tools have been proposed to support in-
teractive explorations of latent vectors. Dimensionality reduction 
techniques, such as t-SNE [58], UMAP [41], PCA [1], and their 
variants [35, 66], are widely used to assist the visualization of la-
tent vectors. Most of them focus on analyzing the latent vectors 
generated by a specifc model [67], such as a convolutional neural 
network [25, 34, 46], a graph neural network [24], and a recurrent 
neural network [35, 42, 54]. Other studies aim to provide more 
generic methods for visually exploring the latent space [7, 37, 51]. 
Most relevant to our study is LSC [37], which provides compre-
hensive support for mapping and comparing semantic dimensions 
in the analysis of latent vectors. However, LSC requires users to 
manually identify semantic dimensions, either by importing data 
labels or by interactively grouping items. 

Apart from showing latent vectors, previous studies have com-
bined interactive visual analytics with interactive or explainable 
ML to introduce interpretability into the analysis of latent vec-
tors [18, 23, 68]. Several studies [18, 20, 59] used DRL to extract 
semantic dimensions and associate model performance with hu-
man concepts (e.g., brightness of images, location of objects). The 
semantic dimensions learned by DRL are directly used without 
refnement, mostly because they are low-level concepts that can be 
easily extracted by ML. Jia et al. [23] proposed a visual explainable 
active learning approach that asks users questions and uses their 
answers to learn explainable attributes that can be used to classify 

images from unseen classes. Zhao et al. [68] proposed a visualiza-
tion tool where users can explore and label image patches with a 
certain concept. These labels are used to train a concept extractor 
network, enabling users to diagnose model predictions using the 
learned concept. 

However, these studies mainly focus on understanding the work-
ing mechanism of ML models and improving model performances 
(i.e., VIS for ML). How to utilize explainable latent vectors for 
concept-driven data exploration (i.e., XAI for VIS) has not been 
extensively discussed. Drava is built upon previous visual analytics 
studies on latent vectors and ML models. Unlike previous studies, 
Drava focuses on aligning interpretable latent vectors with human 
concepts to assist concept-driven data exploration. 

Second, Drava learns the visual representation and supports 
the exploration of small multiples [57], a series of miniature 
visualizations that represent diferent facets, subsets, or instances 
of a dataset. Current studies in data visual exploration usually 
present small multiples as points (e.g., [7, 16, 47, 51]), glyphs (e.g., 
[29, 63]), or images (e.g., [18, 27, 37]) and place them in a grid, a 
dimension reduction projection, or a data-driven layout. For ex-
ample, Sharkzor [27] enabled users to interactively organize im-
ages and their groups while providing visual cues for groups (e.g., 
badges). AxiSketcher [29] uses glyph representations and ofers 
sketch-based interactions to fexibly arrange data items in the 2D 
space. Even though these studies provided valuable insights, they 
provide limited support in inspecting and summarizing a group 
of small multiples, which are important to reveal and remove the 
mismatches between human concepts and ML semantic dimensions. 
Some interaction techniques have been proposed to better organize 
small multiples and facilitate the exploration, such as interactive 
piling [4, 30, 33] and hierarchical clustering [6, 31]. For example, 
interactive piling is inspired by physical piles and enables users to 
efectively group, aggregate, browse, and compare small multiples. 
However, these interactions are usually designed for specifc appli-
cation scenarios and cannot be directly applied to concept-driven 
exploration. In Drava, we adapt interactive piling to facilitate the 
concept-driven exploration of small multiples, especially focusing 
on the interpretation of semantic dimensions, the mismatch iden-
tifcation between ML semantic dimensions and human concepts, 
and guidance on refning semantic dimensions. 

Third, to better guide user exploration and insight generation, 
researchers have proposed interactive ML for visual data 
exploration, which learns what visual concepts are important to 
users from user feedback [5, 10, 15, 32, 61]. For example, Behrisch et 
al. [5] trained a classifer to interactively capture users’ notion of 
interestingness when exploring many scatter plots. This classifer is 
then used to recommend potentially interesting plots and guide the 
exploration of large multidimensional data. Cai et al.[10] provides 
an interactive tool that empowers users to refne an ML model 
by communicating what types of similarities are most important 
when searching certain medical images. Peax [32] proposes an 
efcient and accurate query of a certain visual pattern in sequential 
data by learning from users’ binary feedback on samples selected 
through active learning strategy. However, prior studies mainly 
use interactive ML to assist with similarity queries, i.e., modeling 
the similarity between items and user-selected targets. Despite the 
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Figure 3: A three-step workfow that guides the application of DRL for the concept-driven exploration of small multiples. 

helpful guidance that these studies provide in data exploration, they 
cannot provide a comprehensive overview of the analyzed data. 

Like these approaches, Drava employs learning from user in-
put to provide more precise exploration guidance. Furthermore, 
Drava provides semantic dimensions and supports summarization, 
exploration, and analysis based on diferent visual concepts. 

4 WORKFLOW AND TASKS 
In this section, we decompose the overall goal of concept-driven 
visual exploration using DRL into three main steps (Figure 3). We 
discuss the user tasks within each step from two aspects: the char-
acteristics of DRL, as discussed in the DRL literature [8, 22, 28]; and 
the user needs in visual data exploration, largely informed by the 
task summarization work in previous studies [16, 33, 37]. These 
user tasks have been well established in previous studies and can 
be reused to efectively guide the design of Drava. Moreover, reuses 
in the task analysis can increase the design quality and reduce 
expenditure, as recommended in [44, 55, 56]. 

Step 1: Interpret ML Semantic Dimensions. Since only a 
subset of the latent dimensions correlates with semantic mean-
ings, users should be assisted to identify the semantic dimensions 
efciently (T1.1). For a specifc dimension, users can interpret its 
semantic meaning (T1.2) through 1) synthesized images generated 
by single value traversal of this dimension or 2) data items sorted 
and grouped by their value in this dimension. A group summary 
can help users to efciently understand the semantic meaning of a 
large number of items, associate it with a human concept, and iden-
tify mismatches. Unlike previous studies that group items based on 
their overall similarities, concept-based analysis requires to group 
and summarize items based on certain concepts. Therefore, proper 
aggregations should be provided to highlight the concept of interest 
and fade out others (T1.3) when summarizing an item group. 

Step 2: Align ML Semantic Dimensions with Human Con-
cepts. Once a mismatch is identifed, users modify the semantic 
dimension to better align it with the human’s defnition of concepts. 
Such refnement should be user-friendly and conducted upon objects 
that users are familiar with (T2.1), e.g., data items and item groups 
rather than numerical values of latent dimensions. Meanwhile, vi-
sual cues should be provided to guide and facilitate the user refnement 

(T2.2), e.g., highlight the items that are grouped wrongly due to a 
concept mismatch. 

Step 3: Generate New Human Knowledge about the Data. 
Users explore the data items based on the identifed concepts (T3.1) 
to generate insights about the analyzed items, including the distri-
bution of items on one or multiple visual concepts, the association 
between diferent concepts. Such analysis can be further enhanced 
by correlating the concepts with other item metadata (T3.2), such as 
the spatial information and the item labels. 

The three steps are interconnected (i.e., arrows in Figure 3). For 
example, users may directly go to Step 3 from Step 1 if they do 
not observe obvious mismatches. Users can also go back from Step 
3 to Step 2 if they fnd some semantic dimensions fail to support 
their analysis tasks and require further refnement. Drava provides 
a set of dedicated interactive visualizations and algorithms that are 
closely coupled with this three-step workfow. 

5 VISUAL INTERFACE 
The user interface of Drava (Figure 4) consists of a Concept View, 
an Item Browser, and an optional Spatial View. The interactions 
related to visual piles are based on the design space proposed by 
Lekschas et al. [33], selected, modifed, and extended to better refect 
tasks described in section 4. 

5.1 Concept View 
In the Concept View (Figure 4a), each latent dimension is visualized 
as a histogram and a list of synthesized images. The histogram 
shows the distribution of all items based on their values on the 
corresponding latent dimension (T3.1). Since the exact values of a 
latent dimension do not have specifc meanings, we use synthesized 
images rather than numbers as the tick labels of the �-axis in the 
histogram. The synthesized images are generated by the decoder in 
the DRL model. For one specifc latent dimension, the synthesized 
images are generated using a set of latent vectors whose values 
only difer on this dimension. These synthesized images illustrate 
the visual changes associated with the value traversal on the inves-
tigated dimension and help users understand its semantics (T1.2). 
Users can flter items based on their values on specifc semantic 
dimensions by clicking on bars of a histogram (Figure 4F). 
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As explained in section 2, only a subset of the latent dimensions 
are semantic and correlate with human concepts [8, 28]. Therefore, 
it is important to provide a mechanism that guides users in the 
exploration of a potentially large number of dimensions. Drava cal-
culates a salience score for each latent dimension (subsection 6.3), 
indicating how important a particular latent dimension is for the 
synthesized images. As shown in Figure 4A, all latent dimensions 
are ranked based on their salience scores, and the normalized score 
of each latent dimension is visualized by the width of a gray bar 
(T1.1). Users can change the dimension name based on their in-
terpretation of the associated concept to facilitate the following 
analysis. Users can also remove irrelevant dimensions and add other 
customized dimensions from the item metadata. 

5.2 Item Browser 
The Item Browser (Figure 4b) layouts all items in a 2D space where 
users can freely arrange and group items. Arranging items based 
on their values of certain semantic dimensions enables users to in-
terpret semantic dimensions and understand the item distribution 
among a certain concept (T3.1). A set of synthesized images are 
added to the �− and/or �−axis to guide the interpretation of latent 
semantic dimensions and the exploration of data items (Figure 4B). 
Since the visual appearance of the synthesized images largely de-
pends on the latent vector, Drava allows users to select an item and 
use its latent vectors to generate synthesized images. This interac-
tion enables users to further validate the concept associated with a 
latent dimension and identify possible mismatches (T1.2). 

Since the number of items can be large and the items often 
overlap with each other, efective grouping and summarizing mech-
anisms are needed. In Drava, users can either manually group items 
using a lasso selection or automatically group items based on their 
proximity in the 2D space. Drava provides various methods for 
summarizing a group of items and revealing abnormal items inside 
this group (T1.3), as shown in Figure 5a-b. When items are arranged 
horizontally (i.e., 1D grouping), items will be stacked along the ver-
tical direction, and each item will be visualized as an item preview. 
Users can select the grouping method in the confgure panel based 
on the characteristics of items and concepts. 

Labels can also be added to individual items or item groups to 
incorporate more item metadata into the analysis and investigate 
their associations with concepts, as shown in Figure 5c (T3.2). To 
investigate more details about an item group, users can browse 
items by hovering on their item previews (Figure 4D). A pop-up 
menu, shown upon right-clicking on an item group, enables users 
to depile this group or browse the items in a separate window. 
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5.3 Spatial View 
The Spatial View (Figure 4c) is an optional view for data items that 
have spatial/context information. For example, in Figure 4, each 
item indicates a region of interest in a huge genomic interaction 
matrix and is arranged according to its genomic location. Users 
can zoom and pan to obtain an overview or inspect further details. 
The Spatial View is coordinated with other views to reveal the 
correlations between concepts and item context (T3.2). When users 
flter items in the Concept View, the corresponding items will fade 
out in the Spatial View. 

5.4 User Refnement 
Instead of directly modifying the hard-to-interpret latent values, 
Drava supports refnement towards groups and items (T2.1). For 
one selected semantic dimension �� , Drava groups items (21 bins 
by default) based on their values of this dimension �� to represent 
the gradual changes associated with this dimension. First, this de-
fault group assignment may have inappropriate thresholds, e.g., 
assigning similar items into two adjacent groups. Therefore, Drava 
enables users to merge (Figure 6b1) or split (Figure 6b2) groups to 
construct more meaningful groups according to one concept. More 
importantly, due to the imperfection of algorithms, the latent values 
may not accurately depict the concept for certain items, leading 
to inappropriate � position and group assignment for these items. 
Users can align the concepts and semantic dimensions by changing 
the item position (Figure 6b1) and reassigning the group of these 
items (Figure 6b3). 

Several mechanisms are provided to assist users in locating ab-
normal items and groups (T2.2), as shown in Figure 6a. First, users 
can decide whether to merge or split groups by comparing these 
groups side by side (a1). Second, Drava enables users to identify 
abnormal items through previews (a2). For example, as shown in 
Figure 4C, all items are grouped based on the thickness of their 
diagonal. Users can locate an abnormal item because its preview is 
darker than others. Users then examine this item through in-place 
browsing (Figure 4D), extract it using the pop-up menu (Figure 4E), 
and drag and drop it to a proper group based its diagonal thickness. 
Apart from identifying abnormal items through previews, users can 
also browse a group in a separate window and arrange the items 
using selected metrics (a3). In our experiments, we found certain 
metric values are useful in identifying abnormal items, including 
the reconstruction loss, the deviation of the latent value, the item 
metadata, and the uncertainty score. 

After user refnement, Drava supports two mechanisms, local 
and global, to update the items and/or the underlying model (Fig-
ure 6c). By default, Drava employs a local updating mechanism, 
which remembers the user refnement, applies it to items with 
similar latent vectors, but does not modify the underlying model. 
Similar items are defned by setting a threshold � to the �2 dis-
tances of their latent vectors to the that of the refned items. On the 
contrary, global update initializes and fne-tunes a concept adaptor 
(subsection 6.2). The values for all other items at this dimension 
will be updated accordingly by this concept adaptor. The global 
refnement is triggered by clicking the update concept button. Since 
it is hard for users to label an item with an exact numerical value, 
global refnement can only be triggered when items are grouped 
for a certain concept. 

6 MODEL SETUP AND IMPLEMENTATION 

6.1 Learning Semantic Dimensions using DRL 
Our DRL model is based on the �-VAE [22]. The structure of the 
DRL model is illustrated in Figure 7, encoder (a) and decoder (b). 
Each convolution block consists of a convolution layer, a batch 
normalization layer, and a leaky ReLU (Rectifed Linear Unit) ac-
tivation. The decoder architecture is the transpose of the encoder. 
Following the practice in [53], we do not include Max Pooling layers 
by setting ������ = 2 in the convolution layer. All usage scenarios 
in this paper use this structure and only vary in 1) the number 
of convolution and transposed convolution blocks, 2) the kernel 
size and the number of channels of the convolution and transposed 
convolution layers, and 3) the output size of the fully connected 
layer (i.e., the number of dimensions for the latent vector). 

We use the loss function proposed by Burgess et al. [8], which 
progressively increases the information capacity during the 
training process. An Adam optimization is used to train the model. 
Note that we use the mean � of the normal distribution learned 
by the encoder rather than the sampled � ∼ N(�, �2) as the latent 
vector for the input data, which enables deterministic latent values 
for each data item. 

Even though we implement and evaluate Drava using �-VAE, 
the proposed framework can be easily adapted to other VAE-based 
DRL models, such FactorVAE [28] and �-TCVAE [11]. 

6.2 Concept Adaptor 
The concept adaptor is a lightweight model that modifes seman-
tic dimensions based on user refnements. For each semantic di-
mension, one concept adaptor will be generated if users use this 
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Figure 7: Architecture of the encoder, the decoder, and the 
concept adaptor. 

dimension to arrange items, refne the item groups, and apply a 
global update. Since it is hard for users to associate the concept 
with an exact numerical value, the concept adaptor is only used 
to refne a concept for already grouped items. In other words, the 
concept adaptor is a multi-class classifer. The concept adaptor uses 
the feature map generated by the encoder hidden layer as input 
and predicts the group that the input item should belong to. 

Figure 7c illustrates the structure of the concept adaptor. The 
convolution block contains a convolution layer (kernel size =4, 
stride =2) and a batch normalization. The convolution layer has 
� output channels where � equals to the number of item groups. 
A � × 1 vector will be obtained after a global max pooling layer 
and then feed into a softmax function. A cross entropy is used to 
calculate the loss. An Adam optimization is used to train the model. 

Once items are grouped based on the values of one dimension, 
users can initialize a concept adaptor accordingly. The training 
ends when the validation loss does not decrease. For all the datasets 
used in section 8, the initialization took less than two minutes on 
a machine with one Tesla K80 GPU. After users have refned the 
item groups (i.e., change the classifcation label) for some items, 
the concept adaptor will be fne-tuned accordingly. During the fne-
tuning, we increase the weight of the items that have been refned 
by the users. For the back-end models, only the concept adaptor 
is updated with user refnement, while the encoder and decoder 
are fxed. For the data items, only the values of the specifc latent 
dimension (i.e., dimension used as the � axis) will be updated by 
the concept adaptor, while other dimensions will remain the same. 

6.3 Dimension Ranking 
We rank all latent dimensions based on their importance to help 
users quickly locate semantic dimensions. Inspired by the salience 
scores used in interpretable ML [26], we gauge the importance of 
a latent dimension via the sensitivity of the reconstructed image 
�̂ to changes in the magnitude of a latent dimension �� . However, 
directly using the gradients ��̂/��� has several issues. First, it is a lo-
cal importance score that is calculated for a particular reconstructed 
image. Second, it is a vector rather than a scalar value and can be 
hard to compare across. Third, it counts pixel-level diferences that 
are not necessarily consistent with human perception. To solve 
these issues, we use a simple but efective method, i.e., averaging 

dimensions with the highest scores dimensions with the lowest scoresa b

Figure 8: Dimensions (rows) with diferent salience scores 
(a–b). The visual changes are clearer when changing the val-
ues of the dimensions with the highest salience scores (a) 
compared to the dimensions with the lowest scores (b). 

the importance score across output dimensions and across a set of 
sampled latent vectors. To mimic human perception of the synthe-
sized images, we use latent vectors of the synthesized images as 
samples. Instead of using the reconstructed output, we use the fea-
ture maps generated by the second last layer of the decoder, aiming 
to capture high-level features rather than pixel-to-pixel diferences. ∑ 1 ���,� (�� )| |

� × � × � ���,� �,�,� 

Where �� is the ��ℎ sampled latent vector, ��,� is its value at di-
mension � , ��,� (�� ) is the feature map (�, �) of the second to last 
decoder layer. 

The salience score serves as a useful indicator for semantic di-
mensions (Figure 8). Theoretically, a dimension with a high salience 
score is not necessarily equal to a semantic dimension, e.g., a di-
mension is not semantic but signifcantly infuences the output. 
However, the DRL model will minimize the existence of such di-
mensions by disentangling features and encoding them as separate 
dimensions. Ranking all dimensions based on salience scores can 
help users exclude many latent dimensions that do not contribute 
to the output and have little semantic meanings (e.g., Figure 8b). 

6.4 Implementation 
The implementation of Drava includes a front-end for interactive 
visualization and a back-end for data storage and the DRL model. 
The front-end is implemented in TypeScript using React [17], Pil-
ing.js [33], and Gosling.js [39]. The visualizations are rendered 
using SVG, Canvas, and WebGL. The back-end DRL model and 
concept adaptor are implemented in Python with PyTorch [45]. 
The front-end and back-end communicate via a Flask [19] web 
server built in Python. Users can easily apply Drava to their own 
datasets through two YAML confguration fles that confgure the 
back-end model training process and the front-end interface, re-
spectively. The source code and documentation are available at 
https://qianwen.info/DRAVA/. 

7 EXPERIMENTAL VALIDATION 
In this section, we evaluated the back-end model in Drava from 
three aspects: 1) the representativeness of the latent vector, 2) the se-
mantic meaning of individual latent dimensions, and 3) the improve-
ments from concept fne-tuning. Previous studies either focused 
on assessing the disentanglement of latent dimensions [8, 22, 28] 
or overlooked the possible mismatches between human concepts 
and semantic dimensions [18, 20, 59]. Therefore, it is important 

https://qianwen.info/DRAVA/
https://Gosling.js
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a b c d

Figure 9: Examples of reconstructed outputs on four diferent 
datasets (a–d). The frst row shows the original inputs and 
the second row represents the reconstructed outputs. 

dataset dsprites CelebA 
concept pos_x pos_y scale smiling bangs 

random guess 0.333 0.333 0.333 0.5 0.5 
Drava (no human refne) 0.87 0.93 0.62 0.70 0.77 

Table 1: Semantic meaning of individual latent dimensions. 
We compare Drava (i.e., using the value of one latent dimen-
sion to classify the corresponding concept) with random 
guesses on fve concepts from two datasets. The results show 
that the latent dimension value could efectively indicate the 
corresponding concept. 

to validate the quality of these semantic latent vectors and their 
fne-tuning mechanism. 

Representativeness of the Latent Vector. We used the recon-
struction quality to show whether the latent vectors can capture all 
the important visual features of the input data. Figure 9 exemplifes 
the reconstruction quality of the latent vectors for the four datasets 
used in the application scenarios (section 8). Instead of the absolute 
similarity or the realism of the reconstructed images, we focused 
on evaluating whether the reconstructed images are able to capture 
important concepts. For the relatively simple dsprites shapes dataset 
(b), the model is able to generate images that are very similar to the 
input data. For more complex datasets (a, c-d), even though some 
details in the input data are missing, the model can reconstruct 
salient concepts. 

Semantic Meaning of Individual Latent Dimensions. To 
evaluate whether a single latent dimension can sufciently depict 
a concept, we classifed items based on their values on a certain 
semantic dimension and reported the classifcation accuracy. Specif-
ically, for � classes belonging to a concept, � − 1 thresholds are 
learned to classify items. For example, the “smiling” concept has 
two classes, smiling and not smiling. We frst identifed a latent 
dimension �� that is related to the “smiling” concept. We then clas-
sifed each item based on whether its value on this dimension �� is 
larger or smaller than a threshold �ℎ� , which was chosen to maxi-
mize the classifcation accuracy of all items. We used the dsprites 
and the CelebA datasets because they have labels for a diverse set of 
concepts. The results in Table 1 demonstrated that the latent dimen-
sion value could efectively represent the corresponding concept 
but also showed space for further improvement. 

Improvements from Concept Fine-tuning. We evaluated the 
fne-tuning mechanism of the concept adaptor by comparing the 
classifcation accuracy of a specifc concept before and after user re-
fnement. This evaluation used the “scale” concept from the dsprites 
dataset and the “smiling” and “bangs” concepts from the CelebA 
dataset, because they have relatively low accuracy without any 
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Figure 10: We compared our concept adaptor with active 
learning (baseline) on three diferent concepts (i.e., scale, 
smiling, and bangs) under three conditions (i.e., N = 1%, 2%, 
5%). Each line graph shows the accuracy over 15 iterations. 
The concept adaptor (yellow) overall showed higher accuracy. 

human refnement (Table 1). We chose an active learning method 
as the baseline for evaluating the concept adaptor. The baseline had 
the same architecture as the concept adaptor. We used simulated 
user feedback to obtain reproducible results in a variety of settings. 
Following the common practices in evaluating interactive machine 
learning [13] and active learning [49], we simulated user feedback 
as an oracle (i.e., always providing correct labels to the queried 
items). Both the concept adaptor and the baseline used the same 
simulation at each iteration but with diferent initialization. The 
active learning baseline is initialized with 5% labels. The concept 
adaptor is initialized with no labels but the same item groups as that 
in Table 1. Such an initialization simulates how users would divide 
items into several groups for a specifc concept based on their la-
tent dimension values. At each iteration, � items were refned (for 
the concept adaptor) or labeled (for the baseline) and models were 
trained until the validation loss did not decrease, which typically 
took around 10-20 epochs and less than 20 seconds. We experi-
mented with three metrics for selecting the � items: uncertainty 
scores of the classifcation, the standard deviation of the latent di-
mension value, and diferences between the latent dimension value 
and the classifcation threshold. We found that refning items with 
the highest uncertainty score led to the best model performances. 
Even though we used an oracle to simulate user refnement here, 
real-world users can easily examine and label these items in Drava 
by selecting a metric of interest as the � axis in Item Browser. 

We ran experiments under three settings: � = 1%, 2%, and 5% 
of the items. A total of 15 iterations were performed for each ex-
periment. The results in Figure 10 were obtained by averaging the 
results of three experiments. First, the increased accuracy indicated 
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that the concept adaptor helped align a concept and a semantic 
latent dimension. Compared with the baseline, the concept adaptor 
generated more accurate concepts by leveraging the values of the 
semantic dimension. Second, the curves of the concept adaptor 
were more smooth than the baseline, indicating a more stable im-
provement over iterations. Third, while the concept adaptor and the 
baseline required the same amount of user efort at each iteration 
(i.e., the same � and the same user simulation), the concept adaptor 
required less user efort at the initialization than the baseline (i.e., 
drawing two or three lasso selections vs. labeling 5% of the items 
one by one). Fourth, it was not surprising that the diference be-
tween the concept adaptor and the baseline model decreased with 
the increase of � and iteration steps. The advantages of the concept 
adaptor mainly result from using the semantic dimension values. 
As more and more items are labeled, these semantic dimensions 
become less useful in describing a concept. 

8 APPLICATION SCENARIOS 
In this section, we present four application scenarios of Drava using 
one simulated dataset and three real-world datasets. For all four 
application scenarios, the DRL model is trained on the whole dataset 
with no labels used. The four application scenarios are conducted 
under collaboration with domain users, including two postdoctoral 
researchers on computer vision (P1 and P2, both for subsection 8.1 
and subsection 8.2), two researchers on genomic analysis (P3 and 
P4, for subsection 8.3), and a professor on histopathological image 
analysis (P5, for subsection 8.4). For each application scenario, we 
frst provided a tutorial to introduce the functionalities of Drava. 
We then demonstrate our analysis and validate our fndings with 
the participants. Participants can freely explore Drava and conduct 
additional analysis on the provided dataset. We further collected 
qualitative feedback about Drava from the participants. 

8.1 Simple Shapes 
Data, Model, and Analysis Overview. This scenario uses the 
dsprites dataset [40], which consists of three types of simple shapes 
(i.e., square, ellipse, heart) with diferent scales, positions, and ori-
entations. We uniformly sampled 1,000 items. The DRL model has 
four convolution blocks, each of which has 32 channels, a kernel of 
size 4, and a stride of 2. The latent vector has 8 dimensions. Even 
though this is a simple dataset, it can work as a proxy for more 
complicated datasets, such as the bounding boxes in object detec-
tion or the masks for cell segmentation. In this scenario, we explore 
the distribution of items according to concepts related to position 
and size, which are identifed, validated, and refned by users. 

Arranging Items based on Concepts of Interest. To start 
with, we display all items in a 2D space using UMAP, a dimension 
reduction method that is commonly used for visualizing items 
with latent vectors. While the UMAP successfully put items with 
similar shapes and scales close to one another, the shape position 
information is mostly ignored, as shown in Figure 11a. The position 
information can be important for some analysis tasks, e.g., object 
detection in autopilot. 
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Figure 11: The application scenario using the simple shape 
data. (a) A UMAP projection puts images together even 
though the positions of shapes are diferent. (b) Users can 
arrange images based on shape positions. (c) Images are ar-
ranged based on the scales of shape, but the left-most side is 
mostly squares (c1), indicating the need for user refnement. 

Based on the synthesized images in the Concept View, the 
position-related information is successfully extracted in two top-
ranked dimensions, which we rename to dim_x and dim_y (Fig-
ure 1e). As shown in Figure 11b, all items are arranged and grouped 
based on the � and � position of the shape. We choose the average 
method to summarize a group, which enables us to inspect the 
positions of shapes without browsing individual items one by one. 

Refne a Semantic Dimension. The scale, i.e., size, of the 
shapes is also a vital piece of information for some analyses and 
has been successfully extracted in a latent dimension (named as 
dim_size). We verify this semantic dimension in the Item Browser, 
setting dim_size as � axis and its deviation � as the � axis. While 
all items are sorted based on their size from left to right, we fnd 
that items on the left side are all squares (Figure 11c1). We speculate 
this is because an ellipse or a heart, even with the same scale, is 
smaller than a square in terms of absolute pixel areas. 

To obtain a semantic dimension that better matches the analysis 
purpose and indicates the scale regardless of shape types, we refne 
dim_size using the concept adaptor. We set the “reconstruction 
loss” as the � axis to reveal abnormal items (Figure 11c2) and modify 
the � position of these items. We then group the items into three 
main groups, indicating large, medium, and small scales, respec-
tively. After clicking the update concept button, the concept adaptor 
is initialized based on our grouping. We further refne these groups 
using the browse separately function, examining each group and 
updating the group mainly by moving items of ellipse or heart 
shape from the medium group to the large group. After several 
updates, we click the update concept button again. The concept 
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adaptor is fne-tuned based on the refned item groups and updates 
the grouping of all items. After several iterations, we obtain three 
groups that more accurately refect the scale of shapes without the 
infuence of shape types (refer to section 7 for quantitative results). 

8.2 Celebrity Images 
Data, Model, and Analysis Overview. This usage scenario uses 
the celebrity images from the CelebA dataset [38]. The DRL model 
is trained on the complete dataset, and we randomly sample 1,000 
items for the exploration in Drava. The DRL model has fve con-
volution blocks, each of which contains a kernel of size 3, a stride 
of 2, and 32, 64, 128, 256, and 512 channels, respectively. The la-
tent vector has 20 dimensions. In this scenario, we investigate the 
quality of the CelebA dataset based on the diversity, balance, and 
association of the concepts in this dataset. 

Examine Dataset Diversity. Collecting a diverse dataset is 
important in ML to improve the model performance in real-world 
deployment and avoid algorithmic discrimination of certain pop-
ulations [65]. The concepts extracted by Drava ofer an efective 
approach to investigating the diversity of a dataset. 

Based on the synthesized images in the Concept View, we can 
afrm that diverse visual concepts exist in the analyzed data items. 
The analyzed items vary in a number of aspects, including emo-
tional expression, gender, angle, skin color, background color, hair 
length, and hairstyle. To further verify our interpretation of the 
semantics of individual dimensions, we can interactively change 
the latent vector to update the synthesized images and group items 
based on their latent values at a selected dimension (Figure 1d). 

Investigate Dataset Balance. We then analyze the item distri-
bution along individual concepts as dataset imbalance can introduce 
bias during model training and impair model performance. For ex-
ample, for the “skin color” concept, a dataset with a large number 
of items with fair skin and only a small number of items with dark 
skin can lead to an ML model that has poor performance on the 
latter. As shown in Figure 12a, we arrange and group items based 
on dim_9, which captures skin color based on the synthesized im-
ages. Through browsing items in these groups, we fnd only the 
right several groups include people with dark skin (a1), indicating a 
relatively small portion. When we browse individual items in each 
group (a2), we can fnd that this portion is even smaller since the 
model considers people with dark skin and people with shadows on 
their faces as similar. This observation implies an imbalance related 
to skin color, which may introduce a bias into a model trained on it. 

Confrm Concept Association. Based on Figure 12a, we 
suspect a correlation between dark skin and dark background. Such 
correlations can be treated as causalities by ML models [68] and 
need to be avoided. We confrm this suspicion by arranging all items 
using dim_9 (skin tone) as the �-axis and dim_16 (background 
darkness) as the �-axis. The resulting distribution (Figure 12b) dis-
pels our suspicion. Even though the distribution is not uniform, the 
dataset contains both items that have fair skin and dark background 
(b1) and items that have dark skin and light background (b2). 

8.3 Genomic Interaction Matrix 
Data, Model, and Analysis Overview. This usage scenario uses 
a genome interaction matrix for the HFFc6 cell line published by 
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arrange by skin color
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Figure 12: The application scenario using celebrity images. 
(a) Items are grouped based on a visual concept that is related 
to skin color. (b) Items are then rearranged by adding another 
visual concept that is related to the background darkness as 
the � axis. The dataset contains both items that have fair skin 
and dark background (b1) and items that have dark skin and 
light background (b2). 

Rao et al. [48]. The matrices describe the chromatin interactions 
between diferent genomic locations, which is related to the physi-
cal folding of DNA that afects the regulation of gene expression. 
In a genome interaction matrix, rows and columns represent ge-
nomic locations, and the color intensity indicates the interaction 
probability between a pair of locations. Experts typically examine 
regions of interest (ROI) that have unique visual patterns and indi-
cate specifc biological events. Since the size of the matrix is huge, 
i.e., 3 billion × 3 billion for human genomes, this analysis process 
is often laborious and time-consuming. 

We generate small multiples for one specifc type of ROI called 
Topologically Associated Domains (TAD), which are visually repre-
sented as squares that are presumably organized hierarchically. We 
frst extract TADs from the interaction matrix using OnTAD [3] 
and then use the DRL model to generate a latent vector for each 
TAD. We demonstrate Drava using the 855 TADs extracted from 
chromosome 5 of the HFFc6 cell line. The DRL model has three 
convolution blocks with flter sizes of 7, 5, 3 and channel sizes of 
32, 64, 128, respectively. The latent vector has 8 dimensions. 
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Figure 13: The application scenario using a genomic interac-
tion matrix. (a1-a4) Four representative items vary on three 
concepts: the thickness of the diagonal (a1 and a4), the pres-
ence of nested squares (a1 and a2), and the asymmetric struc-
ture of the nested squares (a2 and a3). (b) A group has both 
the items with nested squares and the items with thick di-
agonals (orange marks). Each item is displayed upon mouse 
hovering. (c) Arranging items using dim_nest as � axis and 
dim_thick as � axis clearly separates these two concepts. 

In this scenario, we investigate diferent types of TADs by iden-
tifying, validating, and refning concepts that correspond to im-
portant visual patterns of TADs. Guided by these concepts, we 
are able to locate diferent types of TADs and examine the spatial 
distribution of these TADs on the whole genome. 

Understand Data through Concepts. The visual appearance 
of TADs in a heatmap can serve as efective proxies of the un-
derlying data patterns and biological events [3, 30]. Therefore, by 
interpreting the visual concepts, we can inspect how the underlying 
data and the associated biological events vary among the analyzed 
items. In the Concept View, we identifed three dimensions of inter-
est. Dim_7 (renamed as dim_thick) indicates the thickness of the 
diagonal (e.g., an item changing from Figure 13a1 to a4), which is 
related to the resolution of the TAD on the matrix since we resize 
all TADs into a fxed pixel size for the DRL model. Dim_0 indicates 
the asymmetry of the nested TAD structure (e.g., an item changing 
from Figure 13a2 to a3). Dim_6 (renamed as dim_nest) corresponds 
to whether a TAD data item contains additional nested squares 
(i.e., nested TAD such as a2, a3) or not (i.e., single TAD such as a1, 
a4). Other dimensions are either hard to interpret because there is 
little variation in the synthesized images or can not be associated 
with meaningful domain insights. Dim_thick and dim_nest are 
the top two dimensions based on the salience scores, indicating 
the usefulness of the dimension ranking. The three dimensions 
(dim_thick, dim_0, dim_6) correspond to important attributes of 
TADs, as described by An et al. [3]. 

Verify and Refne Concepts. After obtaining a basic under-
standing of the semantic meaning of each dimension through their 
synthesized images, we further verify the three concepts one by 
one through grouping and browsing data items. Interestingly, we 
fnd that dim_nest confuses the thickness of the diagonal with 

the nested structure of TADs. As shown in Figure 13b, items are 
grouped based on dim_nest and use “partial” to generate item pre-
views. Users can identify items with thick diagonals from the item 
preview (as annotated by the orange marks) and examine them 
in detail by hovering over them. This issue can hardly be re-
vealed through the synthesized images (Figure 13c1), which 
are widely used as the only method to interpret semantic 
meanings in previous literature [18, 59]. This observation 
shows the importance of further verifying a concept base on data 
items and the need for user refnement. 

Since dim_thick can indicate the TAD size, we use it as the � 
axis to help refne the concept associated with dim_nest. As shown 
in Figure 13c, items arranged in diferent vertical positions based on 
their diagonal thickness, enabling successful separation of nested 
TAD (e.g., a2, a3) from single TADs with thick diagonal (e.g., a4). 
Users can refne dim_nest by a lasso selection on all single TADs 
that have large dim_nest values and moving them to the left-most 
position (e.g., assigning them a small value for dim_nest), as shown 
in Figure 13c3. The refnement is recorded using the local updating 
mechanism and applied to similar items. 

Locate items of interest. After the refnement, users can easily 
locate nested TADs in Figure 13C4 through a lasso selection. They 
can also flter these TADs based on dim_thick and dim_nest using 
their histograms. The nested structure in TADs is important to 
understand the boundary usage in gene regulation [3]. For this 
purpose, these identifed items can be further examined in the 
Spatial View (Figure 4), which reveals the genomic locations of 
these TADs and associated them with other context information 
(e.g., chromatin accessibility). 

8.4 Breast Cancer Specimen 
Data, Model, and Analysis Overview. This usage scenario uses 
breast histopathology images downloaded from [43]. This dataset 
contains 277,524 patches (50 × 50 pixels) extracted from stained 
whole mount slide images of breast cancer specimens from 162 
patients scanned at 40x magnifcation. The DRL model is trained on 
the whole dataset. In this usage scenario, we explore the 1,745 image 
patches from one patient. The DRL model has fve convolution 
blocks, each with a kernel of size 3 and 32, 64, 128, 256, and 512 
channels, respectively. The latent vector has 12 dimensions. In this 
scenario, we examine the presence of cancer cells in these items 
and analyze the performance of a classifcation model. Specifcally, 
we identify concepts and associate them with domain semantics. 
We then use these concepts to describe the characteristics of hard-
to-classify items. 

Interpret Visual Concepts and Assign Domain Semantics. 
We frst visualize all the items using UMAP (Figure 1a). However, 
the UMAP projection is not ideal since it is based on the overall 
similarities and considers some irrelevant information, such as the 
position of tissue patches and the orientation of tissue patches. 

Therefore, we check the Concept View to fnd dimensions that 
can indicate concepts with domain semantics. Based on the syn-
thesized images, we speculate that dim_5 is related to the density 
of tissues and dim_2 is related to the color of the stained tissues. 
Our interpretation of these two dimensions is further confrmed 
by examining the grouped items in the Item Browser. As shown in 
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Figure 14: The application scenario using the breast 
histopathology images. (a) Arranging image patches from 
breast cancer specimens based on concepts learned by Drava 
shows a strong association between the presence of IDC (the 
color of item labels) and the two visual concepts, i.e., the tis-
sue density (a2 vs. a3, the � axis) and the tissue color (a1 vs. 
a2, the � axis). We further (b) flter these items and (c) display 
them in a grid layout to identify confdent false-positive pre-
dictions without visual clutter. (d) The spatial view enables us 
to locate the items in the original whole-mount slide image. 

Figure 1b, when all items are arranged based on dim_5, items on the 
left side have almost no white space, indicating a high tissue density, 
while items on the right side have more white spaces, indicating 
loose tissues or fatty tissues. When all items are arranged based on 
dim_2, items on the left side have a more purple hue while items 
on the right side have a more pink hue. We then rename dim_5 as 
dim_density and dim_2 as dim_color. 

We arrange all items using dim_density as the � axis and 
dim_color as the � axis and then add a label for each item from 
the item metadata to indicate whether this item contains Invasive 
Ductal Carcinoma (IDC), a subtype of breast cancer cells (i.e., or-
ange and blue item labels in Figure 14a). As shown in Figure 14a, 
there is a strong correlation between the presence of IDC and the 
two visual concepts mapped on the � and � axes. We group items 
(Figure 1c) to reduce the visual clutter. Items with purple and dense 
tissues (Figure 14a1) are more likely to contain IDC (i.e., orange 
labels) while items that are closer to pink (a2) and contain less 
dense tissue (a3) are less likely to contain IDC (i.e., blue labels). This 
association is further confrmed by a pathologist. Even though the 
identifcation of cancer cells needs to consider a variety of factors, 
the color and the tissue density are strong indicators of the presence 
of cancer cells. Cancer cells are typically dense, which leads to less 

white space, and have larger and darker nuclei than normal cells, 
which leads to more purple color. 

Identify Hard Examples for IDC Identifcation. Identifying 
regions in the whole mount slide image (i.e., items in our analysis) 
with IDC is an important task for pathologists to assign an ag-
gressiveness grade to cancer. Since dim_dense and dim_color are 
related to the identifcation of cancer cells, we further analyzed how 
they infuence on the prediction of IDC in an ML model. We train 
an IDC classifcation model by fne-tuning a ResNet34 model, as 
described in [52], and record the model prediction and confdence 
score for each item. 

Confdent wrong predictions and false negatives are more con-
sequential in real-world deployment [9], as patients may fail to 
receive the treatment they need. Therefore, we are especially inter-
ested in false-negative prediction with high confdence scores. We 
import item metadata to the concept view and flter items accord-
ingly, i.e., ground truth = positive, prediction = negative, confdence 
score > 0.8, as shown in Figure 14b. According to the Item Browser 
(Figure 14c), the fltered items are close to each other in the Item 
Browser, containing tissues that are not very dense and have a more 
purple hue. Since items with cancer cells usually contain dense 
tissues, this may explain why the classifcation model makes very 
confdent but wrong predictions. We further examine the original 
spatial positions of these items in the Spatial View (see Figure 14d), 
where other items are faded out with a semi-transparent white 
mask. We fnd the items of interest (i.e., non-masked items) are 
from regions where fatty tissues are surrounded by cancer cells, 
as shown by the orange boxes. This can explain why these items 
have many white spaces and only contain a small number of cancer 
cells. This observation is valuable for understanding and improving 
this IDC diagnosis model. First, it indicates when and where the 
IDC prediction model tends to make confdent false negative pre-
dictions and a double-check from human experts is needed. Second, 
the training strategy can be modifed accordingly (e.g., increasing 
the sample weight of these loose and purple tissues) to improve the 
model performance. 

8.5 User Feedback 
We collected qualitative user feedback about Drava from the col-
laborated domain users. 

Participants commented that Drava provided “an attractive addi-
tion” (P5) to the current analysis methods. They liked the compre-
hensive user interaction provided by Drava. P4 commented that “the 
item preview is engaging and useful”. Participants (P1, P4, P5) com-
mented that it is not always easy to interpret a semantic dimension 
using one set of synthesized images. Therefore, the functionalities 
to generate synthesized images for a given baseline and to summa-
rize item groups for a certain dimension are helpful. All participants 
agreed that Drava provided helpful guidance in interpreting and 
refning the ML semantic dimensions. 

The participants also provided valuable suggestions for further 
improvements. While some dimensions were reported as “easy to 
associate with human concepts”, participants also complained that 
some dimensions had unclear semantics and were hard to interpret. 
This issue might be caused by the entangled concepts (section 2) or 
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the quality of the synthesized images. Instead of manually chang-
ing baseline images for the synthesized images (Figure 4B), P3 
suggested that Drava should recommend several baseline images 
to facilitate the interpretation of semantic dimensions. P1 and P2 
were concerned about the extent to which their refnements will 
infuence the back-end model. P1 stated that refning item groups 
without updating the back-end model (i.e., a local update) made 
him “feel safer and in control”. Such concerns about automation are 
consistent with the observations in previous studies [64]. On the 
other hand, P1 also agreed that the local update can be inefcient 
and that updating the back-end model is necessary when analyzing 
a large number of items. P1 and P2 both provided suggestions for 
improving the global update mechanism, such as annotating how 
items change after updating the concept adaptor. 

9 DISCUSSION 

9.1 The Scope of Drava 
Dependence on DRL Performance and Data Quality. The 
concept-driven exploration provided by Drava is based on interpret-
ing, refning, and utilizing semantic dimensions. Therefore, Drava’s 
capability depends on what semantic dimensions a DRL model can 
learn, which highly relies on the DRL model performance and the 
data quality [28]. Drava may fail to capture the desired concepts in 
the semantic dimensions due to the limited capabilities of the model 
or the low quality of the dataset. We believe that advances in DRL 
will further empower Drava and provide more opportunities for 
concept-driven data exploration. Additionally, the concept adaptor 
in Drava enables users to improve an unsatisfed concept through 
user refnement. In the worst-case scenario where the desired con-
cepts can not be learned by the DRL model, Drava can serve as a 
pure interactive active learning tool that learns a concept merely 
based on user labeling. 

Visual Complexity of Concepts. Apart from DRL performance 
and data quality, whether a concept can be identifed in Drava 
is also related to its visual complexity. Here, a visually complex 
concept indicates an abstract or subjective concept that has diverse 
visual representations, which makes it hard to visually summarize 
and interpret the concept via either the synthesized images or 
interactive piles. For example, in the CelebA dataset, some concepts 
are simple and have clear visual representations (e.g., black objects 
near eyes for a “sunglass” concept), but other concepts are rather 
complex and involve varying visual presentations (e.g., “attractive” 
can be related to either short or long hair, oval or round face shapes), 
making it hard to be visually summarized. 

Format and Characteristics of Data Items. To achieve the 
concept-driven exploration in Drava, data items need to fulfll two 
requirements. First, the data items must be visually perceivable 
for humans. Image datasets naturally fulfll this requirement. For 
other types of datasets (e.g., sequences, matrices), a workaround 
is to visualize the dataset and use the visualization (or segments 
of the visualization) as data items. For example, in subsection 8.3, 
we convert a genome interaction matrix dataset into a heatmap 
visualization and treat each ROI in the heatmap as a data item. 
Second, these data items need to have similar appearances and 
share the same concepts, as shown in section 8. Data items with 
dramatically diferent appearances not only make it challenging 
for the ML model to learn and extract concepts but also results in 

high cognitive loads for users to identify and validate concepts. For 
example, Drava can not be applied to the ILSVRC dataset [50], which 
contains diverse images depicting 1,000 diferent object categories. 

9.2 Human Factors in Drava 
Human factors play an important role in human-in-the-loop AI 
tools [2, 10, 65]. Here, we discuss two important human factors 
in Drava, i.e., cognitive biases and cognitive load, including their 
impacts, our design considerations for mitigating the impacts, and 
the limitations of the current design. 

Cognitive Bias. ML models do not know what a human con-
cept is. It is the users who associate the concepts of humans with 
the semantic dimensions of ML. As a result, the interpretation and 
refnement of the semantic dimensions can be infuenced by users’ 
cognitive biases (e.g., confrmation bias, anchoring bias, and avail-
ability bias). To facilitate the user interpretation, Drava supports 
concept validation through various interactions (e.g., changing the 
baseline image, arranging and piling items) rather than merely rely-
ing on the observation of a set of synthesized images. We also plan 
to support hypothesis generation and testing [60] to further reduce 
misinterpretation. However, Drava does not have mechanisms that 
are specifcally designed for minimizing cognitive biases. Future 
studies are needed to systematically investigate the causes of and 
the solutions for cognitive bias in human–AI collaboration. 

Cognitive Load. While more latent dimensions will potentially 
enable the model to capture more meaningful concepts, it will also 
increase the cognitive load of users. Drava alleviates this issue by 
enabling users to rank dimensions based on their salience scores 
and remove less relevant dimensions. We have successfully tested 
Drava in application scenarios with at most 32 latent dimensions. A 
large number of dimensions (e.g., 100) can challenge the cognitive 
capacity of users and undermine the usability of Drava. Like other 
hyperparameters in ML, the number of latent dimensions needs to 
be carefully selected to strike a balance between the representative 
of the latent dimensions and the cognitive load of the users. Promis-
ing directions for reducing the cognitive load include progressively 
revealing the information [62] and tracking provenance data [14]. 

9.3 Relation to Dimension Reduction Methods. 
The application scenarios present examples where the item arrange-
ment based on a dimension reduction method (i.e., UMAP) fails 
to fll the analysis needs. Particularly, Drava enables visual explo-
ration and analysis that focuses on the similarity of certain concepts 
rather than overall similarity. Drava complements the widely used 
dimension-reduction-based visual exploration tools. Drava is most 
suitable for analysis scenarios in which data items are similar (i.e., 
share multiple concepts) and the analysis concentrates on specifc 
concepts. Dimension reduction projection (e.g., t-SNE, UMAP) is 
still an efective method for visualizing latent vectors, especially 
when the items form distinct clusters, and when the analysis focuses 
on overall similarity among items. 

9.4 Scalability of Rendering and Interaction. 
The rendering scalability of Drava is mainly limited by its rendering 
engine in the Item Browser, which is built upon Piling.js [33]. The 
Item Browser can handle the rendering of and the interaction with 
2,000 items with reasonable performance: the Item Browser can be 

https://Piling.js
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initialized in less than 15 seconds and perform the interaction ani-
mation in no less than 50 frames per second on a laptop (MacBook 
Pro, 2020). Data loading is only performed when users open the tool 
for the frst time. Loading depends on the bandwidth of the internet 
connection and the size of the dataset. It typically takes less than 30 
seconds for the four datasets described in the application scenarios. 
Drava currently does not provide direct support for visualizing and 
interacting with more than several thousand items. In the future, 
we plan to further improve its scalability via item sampling and 
dynamically adjusting the level of detail. 

9.5 Limitations of Evaluation 
We evaluated Drava on four application scenarios with fve domain 
users. The evaluation demonstrated Drava’s capability on diferent 
types of datasets, domains, and analysis scenarios. At the same time, 
we admit the limitations resulting from the selection of participants 
and the setting of the evaluation. In particular, we only selected fve 
participants in a non-random manner. The evaluation was based 
on self-reported feedback and included limited independent user 
exploration. While the evaluation revealed valuable insights and 
feedback, the generalizability of the results should be treated with 
caution. In the future, we plan to conduct a user study with a larger 
group of participants. Apart from assessing the usability of Drava, 
this user study will help validate the proposed workfow (section 4) 
and understand user behaviors in human–AI collaboration. 

10 CONCLUSION 
This paper introduces Drava, a visual analytics system that employs 
DRL to support the concept-driven exploration of small multiples. 
Focusing on the ambiguity and imperfection of DRL semantic di-
mensions, Drava proposes a set of interactive visualizations and 
algorithms to help users better interpret DRL semantic dimensions, 
align them with human concepts, and utilize them for visual explo-
ration. The application of Drava for data exploration complements 
the widely used dimension-reduction-based visual exploration tools, 
especially for situations where 1) the analyzed items are similar and 
share multiple visual concepts and 2) the analysis focuses on certain 
visual concepts rather than the overall similarity. Our application 
scenarios demonstrate the usefulness of Drava on various datasets 
and for diferent analysis purposes. Finally, Drava demonstrates 
the possibilities of employing XAI techniques to help users better 
understand data and support visual data exploration across a wide 
range of domains. 
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