Rapsai: Accelerating Machine Learning Prototyping of
Multimedia Applications through Visual Programming

Ruofei Du
Google Research
San Francisco, CA, USA
me@duruofei.com

Scott Miles
Google Research
Mountain View, CA, USA
sjmiles@google.com

Anuva Kulkarni
Google Research
Mountain View, CA, USA
anuvak@google.com

Na Li
Google Research
Mountain View, CA, USA
linazhao@google.com

Maria Kleiner
Google Research
Mountain View, CA, USA
mmandlis@google.com

Xingyu “Bruce” Liu
Google Research
Mountain View, CA, USA
liubruce@google.com

Jing Jin
Google Research
Mountain View, CA, USA
jingjin@google.com

Xiuxiu Yuan
Google Research
Mountain View, CA, USA
xiuxiuyuan@google.com

Ahmed Sabie

Google Research
Mountain View, CA, USA
ahmedsabie@google.com

Michelle Carney
Google Research
Mountain View, CA, USA

michellecarney@google.com

Yinda Zhang
Google Research
Mountain View, CA, USA
yindaz@google.com

Sergio Orts Escolano
Google Research
San Francisco, CA, USA
sorts@google.com

Abhishek Kar Ping Yu Ram Iyengar Adarsh Kowdle
Google Research Google Research Google Research Google Research
Mountain View, CA, USA Mountain View, CA, USA Mountain View, CA, USA San Francisco, CA, USA
sorts@google.com piyu@google.com ramiyengar@google.com adarshkowdle@google.com
Alex Olwal
Google Research

Mountain View, CA, USA
olwal@acm.org

ABSTRACT

In recent years, there has been a proliferation of multimedia appli-
cations that leverage machine learning (ML) for interactive expe-
riences. Prototyping ML-based applications is, however, still chal-
lenging, given complex workflows that are not ideal for design
and experimentation. To better understand these challenges, we
conducted a formative study with seven ML practitioners to gather
insights about common ML evaluation workflows.

The study helped us derive six design goals, which informed
Rapsai!, a visual programming platform for rapid and iterative de-
velopment of end-to-end ML-based multimedia applications. Rapsai
features a node-graph editor to facilitate interactive characteriza-
tion and visualization of ML model performance. Rapsai streamlines
end-to-end prototyping with interactive data augmentation and
model comparison capabilities in its no-coding environment. Our

!Rapsai is an abbreviation for Rapid Application Prototyping System for A

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI ’23, April 23 — 28, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04...$15.00
https://doi.org/10.1145/3544548.3581338

evaluation of Rapsai in four real-world case studies (N=15) sug-
gests that practitioners can accelerate their workflow, make more
informed decisions, analyze strengths and weaknesses, and holisti-
cally evaluate model behavior with real-world input.

CCS CONCEPTS

» Computing methodologies — Visual analytics; Machine learn-
ing; » Software and its engineering — Visual languages.

KEYWORDS

Visual Programming; Node-graph Editor; Deep Neural Networks;
Data Augmentation; Deep Learning; Model Comparison; Visual
Analytics

ACM Reference Format:

Ruofei Du, Na Li, Jing Jin, Michelle Carney, Scott Miles, Maria Kleiner,
Xiuxiu Yuan, Yinda Zhang, Anuva Kulkarni, Xingyu “Bruce” Liu, Ahmed
Sabie, Sergio Orts Escolano, Abhishek Kar, Ping Yu, Ram Iyengar, Adarsh
Kowdle, and Alex Olwal. 2023. Rapsai: Accelerating Machine Learning Pro-
totyping of Multimedia Applications through Visual Programming. In CHI
’23: Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems, April 23 — 28, 2023, Hamburg, Germany. ACM, New York, NY, USA,
23 pages. https://doi.org/10.1145/3544548.3581338

1 INTRODUCTION

Recent advances in deep learning [26, 30-32, 40, 50, 52, 58, 74] have
enabled the use of a plethora of on-device machine learning (ML)

https://doi.org/10.1145/3544548.3581338
https://doi.org/10.1145/3544548.3581338
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581338&domain=pdf&date_stamp=2023-04-19

CHI 23, April 23 - 28, 2023, Hamburg, Germany

oy

N

rapsai studio

Du et al.

73

=
(a) Nodes Library

(c) Preview Panel

(c2) model comparison

image Body Segmentation
Audio

Input image

Input Stream

-
Rl = 1y

Simple Audio £ L - -
+ 2y £ Y& Y
8] €\["s

G
Output

0

Tensor

oo
o 0 192 | (256

Reset

(d) Node Inspector

Inputs:

Image Comparison
depth AP depth API +

columnLabels

Properties
ColumnLabels

input, depth API, depth API + segmentatic
HideU!

Image

outputimage
ftputimay

Images

(b) Node-graph Editor

& Preprocessimage ,

©

Image Processor

0-0-0

© Preprocess Image O

5 TensorTo

© Postprocess Depth O]
> Model 2 Depthmap 2

3
| image Comparison

o TensorTo

© Postprocess Depth O Depthmap
o Model

Figure 1: Rapsai empowers machine learning (ML) researchers and practitioners to rapidly build and iterate on real-time ML
applications ingesting multimedia data with a visual programming interface. (a-b) users can build new multimedia pipelines
by connecting input, effect, models, and output nodes within a node-graph editor; (c) users can interactively evaluate the
generality of ML models with (c1) interactive data augmentation, and (c2) qualitative comparison to understand the differences
and trade-offs between multiple models. (d) users can change settings of a specific node, e.g., labels of image comparison.

models for real-time multimedia applications. Examples include
people segmentation for film production and video conferences [29,
43], depth estimation for 3D reconstruction [22, 33, 85], hand and
body tracking for interaction [5, 84], and audio denoising for remote
communication [13, 48].

Rapid prototyping and evaluation of ML has gained recent at-
tention in natural language research. Examples include prompt-
based [35, 79, 80] and sketch-based [11] prototyping with large lan-
guage models, visual analytic systems for comparing language clas-
sification [47], and image classification models [21, 62]. Practition-
ers are also increasingly leveraging commercial platforms [8, 78]
to deploy and try out cloud-based ML models.

In contrast to language models, development of multimedia ap-
plications pose unique challenges, often requiring special-purpose
models, with a variety of options to solve problems such as face,
body, and hand pose estimation, as well as scene or depth under-
standing [41]. Perception models that are designed for low-latency,
real-time multimedia applications tend to have large variations in
input and output possibilities, which makes both visualization and
prototyping difficult to generalize.

Given high complexity, the development of high-performance,
real-time multimedia prototypes typically requires coordination of
a cross-functional team of ML practitioners, such as ML researchers,
engineers, designers, and UX researchers. Their collaboration is par-
ticularly critical when fine-tuning and evaluating model robustness,
characterizing strengths and weaknesses, and inspecting perfor-
mance in the context of the usage scenario. Iterative development

is further complicated by the need to integrate updated models into
applications before they can be evaluated.

To better understand this space, we conducted a formative study
with seven computer vision researchers, audio ML researchers, and
engineers. We gained key insights from their current workflow of
model development, evaluation, and deployment: (1) quantitative
analysis on training and testing datasets is not sufficient to compare
amodel’s real-world performance to prior art; (2) model deployment
is often hindered by corner cases reported by users in the testing
phase; (3) building an efficient end-to-end GPU pipeline with other
perception models is often beyond the skills of most ML researchers
and engineers.

The formative study allowed us to derive six design goals, which
informed the development of Rapsai. Rapsai is a visual program-
ming platform (Fig. 1) that streamlines the iterative development
of perception pipelines through a node-graph editor interface. It
enables users to interactively gain insights into model behavior and
assess trade-offs through data augmentation modules that acceler-
ate the systematic comparison of different deep learning models.

We evaluate Rapsai with 15 ML practitioners in four real-world
case studies — portrait depth, scene depth, portrait matting, and
audio denoising. Our results show that Rapsai has the potential to
improve how ML practitioners evaluate model effectiveness, assess
strengths and weaknesses, holistically evaluate behavior, and create
end-to-end multimedia applications.

Rapsai

Contributions

Our contributions are summarized as follows:

(1) Six design goals for iterative prototyping with perception
models, derived from a formative user study (N=7).

(2) System design and implementation of Rapsai, a visual pro-
gramming platform with interactive data augmentation, model
comparison in a node-graph editor, cross-device input/output,
and direct deployment of GPU-accelerated deep learning
pipelines.

(3) Four case studies with 15 ML researchers and engineers that
show the potential of Rapsai to improve rapid prototyping
with on-device models.

2 RELATED WORK

Our work is inspired by prior art in visual programming and visual
analytics for machine learning models, as well as existing systems
for ML experimentation and evaluation.

2.1 Visual Analytics of ML Models

Tools for visual analytics are widely used in model evaluation and
debugging. They help researchers gain insights faster, find direc-
tions to improve in model architecture, and facilitate comparison
and selection of better models. We reviewed the most relevant sys-
tems for the model evaluation and debugging task and summarized
their features in Appendix Table 1. We further discuss key exam-
ples and refer readers to the survey by Hohman et al. [28] for a
comprehensive review.

Aggregated vs. Instance-based visualization. Aggregated
visualization provides quantitative metrics over a batch of data,
while instance-based visualization provides qualitative details for
individual examples, thus uncovering nuances in model quality
for corner cases among different models. Such tools play a vital
role in many ML tasks, such as visual saliency [12], matting [49],
superresolution [76], colorization [2], where subjective scoring
is important and ground truth is often absent, or in tasks evalu-
ating model robustness by input perturbation [18]. For example,
Ribeiro et al. [54] designed LIME, a system that visualizes per-class
masks of the classifier results overlaid on the input images. They
showed that even users without ML experience can gain insights.
Hohman et al. [28] emphasizes the importance of visual analytics to
support model users (application developers, designers, etc.) who
may have limited ML experience with selecting and experimenting
with models. More work is needed in the instance-based visual-
ization area so that we can see more successful cases like LIME.
However, visualizing multimedia (image and sound) results is not
an easy task. The most recent survey on visual analytics techniques
for ML [83] highlighted that most research focuses on textual or
tabular data, whereas few works study multimedia. We observe two
main challenges. First, while LIME successfully showed one type
of visualization, there can be many different types of visualizations
for multimedia results. We therefore need a set of visualizations to
cover different result types in image and sound research. Second,
visualizing multimedia results requires domain expertise in graph-
ics and/or audio. Past research [44, 51] point out that multimedia
systems often require GPU-based rendering for the systems to be

CHI 23, April 23 - 28, 2023, Hamburg, Germany

usable in near real-time, since CPU performance can be a bottle-
neck. We developed Rapsai to be flexible and extensible, allowing
for the addition of various visualizations for different perception
models and use cases. Additionally, Rapsai addresses the latency
issue by providing real-time, GPU-based rendering capabilities.

Comparison of model quality. Model comparison provides in-
sights into differences in model performance. Comparisons can
be made at either the aggregated level or instance-based level.
Comparison tools operating at the aggregated result level mainly
support the comparison of different metrics. In the language do-
main, Murugesan et al. [47] proposed DeepCompare for interactive
model comparison using aggregated visualizations like histograms,
treemaps of results, and heatmaps of the neuron weights. Johnson
et al.[36] designed NJM-Vis, a system comparing sentiment mod-
els by listing positive and negative sentences containing relevant
keywords. Both model developers and model users can develop
insights into which model performs better. In the image domain,
Spinner et al. [62] designed ExplAlner, a plugin for TensorBoard for
visualizing the saliency map besides the input image, with positive
and negative examples laid out in a row. All these prior works rely
on known ground truth. However, we highlight that instance-based
visual comparison can be even more important for research areas
without ground truth, such as generative modeling [55], because
they rely on manual evaluation by human evaluators [7]. One such
example is the VASS system by He et al. [27], which is specifically
designed for semantic segmentation models and can visualize col-
ored masks for different scene objects. Users found the ability to
compare the visualized results “the most insightful part of the tool”.

Existing visual analytics tools demonstrated that instance-based
visualization can provide insights for ML practitioners, but few
works explored how it helped users for models without ground
truth. We study researchers’ practice of how they gain insights
from comparing generative model results. Our study includes four
different models for images and sounds to be representative of
diverse application domains.

2.2 DPipeline vs. model interpretability

Existing visual ML analytics tools often focus solely on the model
in isolation, with less attention to end-to-end evaluation and debug-
ging. This approach can be a major hurdle when integrating models
into applications, particularly in multimedia applications where
end-to-end pipelines may include rendering operations (e.g., crop,
resize, slice, etc.) and more than one model. Focusing on the model
in isolation may also not provide adequate insights into how it will
perform with other models, as errors in pre- and post-processing
operations and upstream models can impact the final output.

In Rapsai, we examine how model developers and model users
gain insights from ML pipelines. We review some popular systems
for this purpose. MediaPipe [44] is an efficient framework for build-
ing real-time perception pipelines, where each computing unit (e.g.,
an ML model, tensor operations, or rendering pass) is represented
as a node in a MediaPipe graph. Colab [23] is a web-based interac-
tive computing system, adapted from Jupyter Notebook [39] and
integrated with cloud-based computation resources. HuggingFace
Spaces [78] is a model playground that facilitates experimentation
and interaction. It enables researchers to write preprocessing logic

CHI 23, April 23 - 28, 2023, Hamburg, Germany

in Python, including the user interface, and to run models using a
Colab-like infrastructure. It allows for the creation, sharing, and
execution of ML pipelines.

In this work, we study how the existing multimedia systems
reviewed in this subsection are used. Previous research on explain-
able AI [19] has largely focused on model interpretability, but we
argue that the field should also consider pipeline interpretability.
The insights from our study informed the Rapsai tool’s design to
address pipeline interpretability challenges. Our Rapsai evaluation
demonstrates its effectiveness in helping model developers and
model users gain insights into how models work in end-to-end
pipelines.

2.3 Visual Programming of Machine Learning
and Graphics Applications

Rapsai leverages visual programming to support complex pipeline
authoring. The concept of visual programming and node-graph
editors dates back to 1960s, where it was referred to as “a pictorial
program” and “man-machine communications” [64]. It has proved
to be useful in helping domain-specific experts complete specific
difficult programming tasks, such as process control program for
oil refinement or circuit design [37, 53]. Even today, these concepts
are widely applied in computer-aided design (Blender [6], Maya [4],
3DS Max [3]), game engines (Unity [72]), AR/VR applications (Snap
Lens Studio [60], TikTok Effect House [70]), programming learning
platforms (Scratch [57]), and data pipeline systems [1].

In the machine learning domain, emerging visual programming
systems have significantly empowered application development
on many fronts. In natural language research, several works have
explored interactive prompt-based prototyping [35, 79, 80] to help
model users design with large language models. Each prompt step
is visualized as a node and prompts are chained as a connected
graph of nodes to represent a custom tailored application of a
language model. Wu et al. [79] showed how PromptChainer can
help model users build language pipelines. Further, Wu et al. [80]
showed that by explicitly visualizing steps and their flow as oppose
to treating the model as a black box, users found the model to
be more transparent, debuggable and designable. In multimedia
research, tools like Fiebrink’s Wekinator [17] help composers and
performers use ML in creative practice, and Katan et al. [65] use
interactive machine learning to engage people with disabilities
in musical interface development. Diaz et al. [14] use interactive
machine learning for game development. Carney et al. [9] show
how the web-based Teachable Machine can help educators and
students learn machine learning classification and train models
with intuitive visual tools. Users in 201 countries have created over
125,000 classification models with Teachable Machine.

Few academic works address image or audio pipeline prototyp-
ing with ML models. There are commercial graphics platforms that
provide some convenient features to build image pipelines, espe-
cially for the non-ML components. Shader Graph in Unity [71]
provides an intuitive way to fine-tune shader programs, whereas
xNode [73] offers developers a general-purpose node-graph frame-
work, and Snap Lens Studio [60] provides augmented reality (AR)
developers a node-based scripting system for AR effects.

Du et al.

In contrast to prior art, Rapsai is uniquely designed for support-
ing image and audio pipeline prototyping for ML practitioners,
including both model developers and model users, like engineers, UX
researchers, and prototype creators. Built on top of prior state-of-
the-art work and informed by our findings of how practitioners
use pipelines for experimentation and prototyping, Rapsai was de-
signed as a holistic solution for prototyping end-to-end image and
audio applications. Through Rapsai, we study whether visual pro-
gramming tools can help practitioners build pipelines and gather
insights into new ideas to improve the ML models in their applica-
tion contexts.

3 FORMATIVE STUDY AND FINDINGS

To unveil use cases and challenges for a rapid prototyping system for
multimedia ML applications, we conducted a formative study using
semi-structured interviews with a preliminary mock-up (Fig. 2) of
the system. The key process and findings of this study are presented
here, with detailed protocol available in the appendix.

3.1 Formative Study with Semi-structured
Interviews and Mock-up

We recruited seven deep learning practitioners (31-41 years old,
X = 34, SD = 3.9) via group email invitations at our institution.
The participants, labeled I1-17, were not familiar with Rapsai and
were not involved in this project previously. The individual semi-
structured interviews took place remotely via Google Meet and
lasted 45-60 minutes. Each interview consisted of three stages: a
background survey, an ML process interview, and a discussion of
our mock-up.

O EFFECT

Effect

& Custom model 1 Effect] O Canvas

—_— param 1 s) Showin previe
Image 1 param2 5
gt 3.256.25
outp 1024 in preview

Effect2

O outPuT

& Custom model 2)

MisC

Performance @ Showin previe P 56,25 Qimage

Figure 2: Mock-up interface used in the formative study.

Background Interview. In the first phase (10 minutes), the
interviewer asked demographic questions, followed by questions
about the participants’ professional experiences of training and
evaluating neural networks, as well as building multimedia appli-
cations. All of our participants reported at least six years of ML
experiences (6-12 years, X = 9, SD = 2.2) with image and/or audio
data. All of the participants are ML researchers or engineers who
self-reported a familiarity with deep learning ranging from 6 — 7
on a 7-point Likert scale [42].

Rapsai

ML process interview. In the second phase (20 minutes), the
interviewer asked the participants about the general procedure of
their ML debugging and prototyping process, the challenges they
have encountered when tuning deep learning models and shipping
models to products, and the tools they have used to accelerate their
evaluation of neural networks. The participants were also asked
about what they liked and disliked of their current tools.

Discussion of an Envisioned System. We next presented a
mock-up figure (Fig. 2) of our envisioned system to the participants.
We asked about their first impressions, their preferred features
in the mock-up, what features they would like to add, and any
suggestions to improve the system design.

3.2 Tasks and Challenges

Three researchers organized participants’ responses with the affin-
ity diagram approach. Across application areas and model types,
the participants described three main tasks (T1-T3) and six chal-
lenges (C1-C6) in their ML workflow when iterating from model
development to multimedia applications.

T1. Examine models’ robustness and understand error patterns. Ro-
bustness is a vital criteria for model launch in production. A model
needs to perform well not just on training and testing data, but also
on real data in the target application. During the training phase, ML
researchers usually perform extensive data augmentation on the
training sets to improve robustness. Data augmentation can gen-
erate new and diverse examples by translating, cropping, rotating,
shearing of images, or adding noise, adjusting pitch or sampling
rate of audio. However, during the model evaluation phase, the ac-
tual data collected from users and in-the-wild sources often reveal
unforeseen issues. Researchers need to examine these issues, get
insights into which direction to improve the model, then retrain the
model. We summarize two real-world challenges that researchers
encountered in this model evaluation process:

C1. Lack of data processing for input in-the-wild. Collect-
ing and preparing data in-the-wild is an essential step in the
model evaluation phase. However, it is not trivial to process
data for input in-the-wild due to (i) irregular formats, (ii)
additional coding, and (iii) requirement of external devices.
Firstly, inputs from the wild seldom match the requirement
of an ML model. For example, a video input from the we-
bcam may have a different aspect ratio or resolution than
the required tensor shape of a model (I1-14); a microphone
recording needs to be converted to a fixed sampling rate as a
tensor input (I5-16). The complexity of processing all kinds
of input formats yield longer cycles between finding failure
cases and fine-tuning new models. 4 requested that a “new
tool should minimize efforts in coding”. Thirdly, participants
need to find data from external devices that can reflect the
real use cases, such as video or image taken from a front-
facing camera on mobile devices (I5-16), or audio taken from
a new microphone (I7).

C2. Lack of interactive data and model tuning. Being able
to change data and model, as well as interact with the re-
sults during the model evaluation phase, is crucial in help-
ing researchers identify directions to improve their models.
However, it is not easy to achieve this with the current tools,

CHI 23, April 23 - 28, 2023, Hamburg, Germany

and some researchers resorted to developing their own tools
for this purpose. For example, 12, I4, and I6 rely on custom-
programmed pipelines to adjust brightness and contrast, and
for adding noise when evaluating models on real data: “mod-
els can be affected by over-fitting, so need to test with a large
variety of image augmentations” (I12). Many participants com-
mented on the limitation of existing tools: “TensorBoard is
limited, <you> can’t change the scale of the color map or inter-
act with the point cloud.” (17), “3D data is hard to visualize...
metrics may not have great instructional meaning for depth
data”. ‘T need to verify if <my model> works under different
lighting conditions” (14).

T2. Qualitatively compare model performance. Quantitative metrics
play crucial roles in some domains like image and sound classifi-
cation. In other fields, such as depth estimation, image generation,
and sound denoising, ML practitioners rely on qualitative examples
to gain insights and thus desire direct comparison by examples to
evaluate model performance.

C3. Loss of application context. Metrics of a sole model lacks
the application context from the larger pipeline and are not
always reliable for specific domains such as depth estimation.
For example, two depth predictors with very similar IMAE?
or IRMSE? scores may result in different behaviors on data
in-the-wild: “Metric doesn’t help <in my depth models>, it’s
always good for all the models, so it’s no use. They need hu-
man eyes to evaluate.” (16) “Loss cannot give you the insights
you want, need human reviewers to do quality checks.” (I3)
In other examples, two depth estimation models with differ-
ent metrics may result in comparable results for end-user
applications, such as interacting with a 3D model, since ani-
mating a mesh does not require perfect depth maps. Hence,
stakeholders may select the faster model for deployment.

C4. Lack of direct comparison and sharing. For image-to-
image and sound-to-sound models, our participants often
want to isolate bad examples of a specific error pattern to
discuss with stakeholders, or share an extended challenge
set for human annotators to label. They desired tools to
allow side-by-side model comparison in varying conditions
based on different sources of input, data augmentation, and
visualization techniques. In addition, our participants wanted
to be able to easily share the challenge set and results with
collaborators.

T3. Frequently integrate models into applications. Integrating models
into applications is often a long and tedious process. ML practi-
tioners need to adapt their models to the application pipelines (e.g.,
adjusting input/output resolution, reducing model size, and adding
training sets), trade off between overall accuracy and latency, and
collect real-world user feedback. They face two major challenges:
slow iterations and insufficient controllability of a built pipeline.

C5. Slow iterations. Integrating models into applications often
requires a different skill set than an ML researcher has, in-
cluding front-end programming (e.g., using Java, Swift, or
JavaScript) and graphics interloping (e.g., using OpenGL or

2IMAE: the mean absolute error of the inverse depth

3IRMSE: root mean squared error of the inverse depth

CHI 23, April 23 - 28, 2023, Hamburg, Germany

WebGL). 16 explained why a prototyping platform is pre-
ferred: “Test in production app is difficult and time-consuming.
Last time, it took months to integrate into Google Photos.”. 12
commented: “A lot of time goes into visualization of challenge
sets, benchmarking, and metrics. Usually takes weeks. ” Worse
still, different ML pipelines are built from scratch for differ-
ent models though they share similar input, processing, and
output: “There’s no general solution <so far>, there’s different
input and output for different models, <I> spent a lot of time
in building demos.” (12). Adapting an unfamiliar model into
an existing pipeline is also a hard task: “You have to build
pipeline, and the question is how you adapt those models into
your pipeline.” (I7). Nevertheless, the participants needed to
re-compile the end-user application with new models and
deploy their model on device (e.g., Android phones), which
can take 10-30 minutes every time the model changes (I4).
Cé6. Insufficient controllability. Our participants wanted to
examine individual components and intermediate results in
a pipeline to understand where the errors come from and the
bottleneck is: “We need to integrate the model with other mod-
ules — (to evaluate) can we improve the higher-level model?”
(I7) For researchers who do not build applications by them-
selves, it often requires detailed communication between
teams to figure out where the bug occurred: “There is often
miscommunication between the production team and ours.”

(11)

3.3 Discussion of the Envisioned System

The idea of a visual programming interface for multimedia appli-
cations with ML models captivated all participants. [4 commented:
“Good! It’s flexible. You have the option to modify the graph live.” 11
remarked: “Tt’s useful to exchange results across researchers and devel-
opers.” Meanwhile, participants posed forward-looking questions:
“How easy will it be to customize the pipeline for our models?” (I5)
“How can you make sure the inputs and outputs are valid for a node?”
(I7) “Can we output several models with different quantization and
compare?” (14)

Finally, participants provided various enhancement suggestions
for the proposed system: “Would be nice to have a video sequence as
input and quickly spot low-performant frames.” (11) “For the visualiza-
tions, flexibility would be good, like hiding some images, annotating
images.” (I5) “It will be helpful to have available data to play with.”
(17) “Tt would be nice to magnify pixels and examine at the pixel level.”
(I2). We incorporate the relevant suggestions into design goals in
the following section.

4 DESIGN GOALS

Informed by the formative studies, we conducted three brainstorm-
ing sessions with 12 participants, including researchers, engineers,
and designers who have worked on ML-related projects, four of
which participated in the formative study. Our intention was to
elicit design goals for Rapsai through an understanding of their
pain points:
G1. Provide a visual programming platform for rapidly
building ML prototypes (C3, C5). Most ML researchers do
not have the bandwidth nor capabilities (most researchers

Du et al.

train models in Python) to write end-to-end prototypes,
which typically requires a wide range of knowledge in the
application domain, e.g., Java for Android, Swift for iOS, and
JavaScript for the web. They often prefer to refrain from ad-
ditional coding jobs when building end-to-end prototypes or
pipelines. Therefore, it might be beneficial to provide users
with a visual programming tool so that they can rapidly build
ML applications.

G2. Support real-time multimedia user input in-the-wild
(C1, C5). Getting early-stage user adoption and feedback
plays a crucial role between model development and end-
user applications. However, users’ webcam input, micro-
phone recordings and uploaded photos often have differ-
ent data formats than that required by the model, which
requires common operations such as normalization, expand-
ing dimensions and conversion to GPU tensors. Providing
an abstraction for these preprocessing steps could provide
users with more instant connection between raw input and
a generic perception model.

G3. Provide interactive data augmentation (C2, C6). We
need to provide ways to support interactive data augmenta-
tion and model tuning to quickly gain insights into model
performance. This is needed not only by ML researchers, but
also for product teams to be able to gain insights and make
evaluations on the fly.

G4. Compare model outputs and render results directly
side-by-side (C3, C4). Being able to evaluate and compare
models on the fly is crucial to day-to-day ML development.
We need to support ways to apply different models to the
same data for comparison, as well as provide visualizations
for comparing different data types.

G5. Share visualization with minimum efforts (C4, C5). A
recent survey in model trustworthiness pointed out that
model evaluation is a collaborative process, and agreement
by domain experts/colleagues is a critical step [10]. However,
sharing challenge sets, results, and findings is cumbersome
using current tools. We aim to provide easy ways of sharing
so that people do not need to install software, or do extra
manual work.

G6. Provide off-the-shelf models and datasets (C5, C6). For
model comparison, researchers often want to compare with
the existing state-of-the-art models. It is time-consuming to
find those models, set them up to run in the same pipeline
and use the same input data. Hence, we aim to provide ready-
to-use pretrained models for popular ML applications.

5 RAPSAI: SYSTEM ARCHITECTURE

We designed Rapsali iteratively over a year with weekly feedback
from three teams of ML practitioners from the formative study. Its
final design consists of four coordinated panels: (a) Nodes Library,
(b) Node-graph Editor, (c) Preview Panel, and (d) Node Inspector.
The system is mainly written in JavaScript and leverages Tensor-
Flow.js [59] for ML capabilities, Arcs.js* for reactive pipeline, and
three.js [69] for graphics rendering. We synchronize the pipeline
modification with a remote server powered by Firebase [24]. In

4Arcs]s: https://github.com/project- oak/arcsjs- core

https://github.com/project-oak/arcsjs-core

Rapsai

Nodes

Image o}

Previews

noisywav

CHI 23, April 23 - 28, 2023, Hamburg, Germany

Audio o (o]

Live Camera ®)

Inspector Details

cleanedwav

ream through webcam.

Properties

o Frequency

R — Properties

Group
universal

Figure 3: Input nodes allow users to upload local photos, fetch URLs, stream live webcam, record audios, or fetch video streams

from a remote device’s camera.

this section, we first detail each component of the interface, and
then dive deep into the underlying architecture and discuss our
strategies to maximize the performance.

5.1 Nodes Library

In the Nodes Library panel, we provide a comprehensive list of 38
nodes to satisfy the requirements from the four case studies. Here,
we define a minimum set of primitive nodes to build the majority
of ML pipelines for multimedia applications. We refer readers to
Appendix D for the full list of nodes.

Input nodes contain six types of input: image node, video node,
audio node, live camera node, live audio node, remote stream node as
shown in Fig. 3. To meet our goal G2, these nodes support collecting
single or continuous image and sound data from various sources,
such as cameras and microphones from user devices, uploads from
local file systems, and online resources. This design supports data
collection in different scenarios. For example, the image node allows
users to capture a photo from their webcam, upload from their hard
drive, or fetch from a list of remote URLs. The video node allows
users to record a video with their external webcam or upload a
video from disk or YouTube. The audio node allows users to record
sounds from their microphone, or upload audio files from their
disk or Internet. The live camera node allows users to use their live
camera stream, similar for the live audio node. The remote stream
node allows users to stream input from another device (e.g., mobile
phone) via WebRTC, by opening a URL of the page with a lobby
node, which is detailed in Appendix B.3).

Effect nodes contain interactive nodes for data augmentation
and graphical processing nodes to apply shaders to tensors (G3).
For example, as shown in Fig. 4, computer vision practitioners can
crop and translate a region of interest in the input to verify an
image model’s invariance to translation. Similarly, they can rotate,
shear and resize an image to examine potential biasing issues in the
training sets, or apply blur and noise to test a model’s robustness.
For audio practitioners, we provide augmentation tools such as

trimming the audio, changing volume, and adding background
noise from a collection of 17 presets. Please refer to Appendix D
for the complete set of options.

pere—

(b) audio processor

(a) image processor

Figure 4: Effect nodes for interactive data augmentation. Rap-
sai empowers deep learning practitioners to interactively
apply common data augmentation methods to data nodes
and examine the robustness of their models.

For graphical processing nodes, we offer shader processing and
image mixer nodes for building end-to-end vision-graphics pipelines.
The shader processing node allows creators, animators, and engi-
neers to write custom fragment shaders to process or create new
images on the GPU. To facilitate a large community, we also lever-
age the ShaderToy API and allow users to bridge a complicated
shader into the ML pipeline. This unblocks novel use cases such
as creative AR filters for virtual conferences and advanced data
augmentation such as distortion and pixelation. The image mixer
node is inspired by the layer mixing approach in commercial image
processing software, hence allowing users to blend two images in
26 modes®.

Model nodes contain a list of state-of-the-art pre-trained mod-
els, covering a wide range of tasks in image and audio research
(G6). We also allow users to load their own models with a Custom

SCanvas blending modes: https://developer.mozilla.org/en-US/docs/Web/API/
CanvasRenderingContext2D/globalCompositeOperation

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation

CHI 23, April 23 - 28, 2023, Hamburg, Germany

Model Runner node. Currently, the model runner supports Tensor-
Flow.js, TFLite, and TFLite Micro models. We also provide some
high level task oriented model APIs, such as body segmentation
and image classification, from TensorFlow.js models API 6 In this
paper, we focus on discussing use cases with image-to-image and
audio-to-audio models only.

Figure 5: Comparison nodes: (a) Image comparison allows
users to hover over an image and examine the zoom-in details
across different models. (b) Audio comparison plays audio
inputs one-by-one with automatic track switching.

Output nodes provide different ways for visualizing model
results. Basic visualizers such as image viewer and audio player
allow practitioners to plug them into any node from the pipeline
to probe the output, therefore they can easily debug intermediate
results. The comparison visualizer offers practitioners an intuitive
and interactive way to qualitatively analyze results (G4).

Tensor nodes contain a set of helper utilities for pre- and post-
processing, such as converting data from tensor to an image, or
applying normalization to the raw tensor output. For example, the
“preprocess image” node converts an input image to a 4D tensor —
an input format that is required by most image models. The “tensor
picker” node allows users to select a tensor from an array of output
tensors, and a “tensor postprocess” node allows users to convert a
tensor to an image and apply normalization calculators.

The above set of primitive nodes enable perception pipelines of
image-to-image and sound-to-sound models. For advanced users,
we offer a set of prebuilt nodes to visualize output from different
classes of models. For example, a bar viewer to visualize classifica-
tion results, a webpage viewer to embed online surveys for remote
user studies, and WebRTC nodes for getting real-time camera input
from mobile devices. We refer readers to the appendix for more
details.

5.2 Node-graph Editor

To provide a visual programming platform (G1), we developed a
node-graph editor (Fig. 6) with a modular architecture and open
sourced its core as Arcs]s7.

In the node-graph editor, users can drag a node from the nodes
library, connect nodes by dragging a line between their connectors,
duplicate a node, and remove a node. As shown in 7(a-b), users can
explore what node they can connect to by dragging out an edge
from the node as a list of candidate nodes will pop up to choose
from. This interaction allows for free exploration while ensuring
the connection is valid.

®TensorFlow.js model APIs: https://github.com/tensorflow/tfjs-models
7 ArcsJs: https://github.com/project-oak/arcsjs-core

Du et al.

5.3 Preview Panel

The preview panel contains the visualization of each visible node, as
well as their interactive controls. For example, in the data augmen-
tation node, users can drag sliders to change an image’s brightness,
contrast, and blurriness in real time and get instant feedback in the
image viewer node. Users can also hover over an image comparison
node to observe the magnified views of results side-by-side (Fig. 5).
When a node is selected in the node-graph editor, its corresponding
visualization is highlighted in the preview panel, and vice versa.
Users can double click on a node to rename it.

The preview panel can also generate a unique, shareable URL for
collaborative work on an ML pipeline (G5). Anyone with the URL
can open the webpage to interact with the ML pipeline, without
requiring any software to be installed.

5.4 Node Inspector

Each time the user clicks on a node, the node inspector panel
changes accordingly. Using the node inspector, users can change
properties, for example, by uploading new test sets to the system
in input nodes, altering the model’s parameters, or changing the
color maps of the visualization.

To allow easy sharing and temporary prototyping, we group
properties into two categories, persistent properties and instanta-
neous properties. Persistent properties are parameters adjustable
by the pipeline owner in the node inspector, and are synced with
the cloud server. Instantaneous properties are those that can be
changed in the preview panel. Those are mainly for interaction by
anyone who opens the webpage, and are designed to be ephemeral.

5.5 GPU Pipeline

Rapsai is designed with the goal of real-time performance for fre-
quently comparing models and adapting to real-time multimedia
applications. Hence we leverage GPU computing in every stage of
the pipeline.

(1) For model inference, Rapsai automatically creates an off-
screen WebGL context and leverages TensorFlow.js for eval-
uating the uploaded Keras or Graphdef model.

(2) In data augmentation nodes (image processing), we leverage
a hardware-accelerated HTML canvas to process the image
or video in real time instead of using CPU arrays.

(3) In shader processing nodes, we create WebGL canvases for
visualizing the results with fragment shaders. However, au-
dio mixing and changing volume still runs on the CPU.

6 CASE STUDIES

We conducted four case studies to evaluate Rapsai’s ability to help
ML practitioners acquire qualitative insights into ML models in
end-to-end pipelines. We worked closely with four computer vision
and audio teams. We performed case studies with 15 participants
working at Google, of which five were team leads who had offered
continuous feedback to Rapsai during its development, whereas the
remaining participants had no prior involvement. We interviewed
team leads to delve deeply into how Rapsai could aid in their model
development and address product-related issues, whereas novice
users could reveal insights regarding usability and additional pain
points from different perspectives.

https://github.com/tensorflow/tfjs-models
https://github.com/project-oak/arcsjs-core

Rapsai

O segmented Image
© Preprocess Image O

© o
Image Processor O

O

© Preprocess image O

© Get Size From Rect O

CHI 23, April 23 - 28, 2023, Hamburg, Germany

© TensorPicker O

2

3 o—0
Postprocessor | DepthiMap vi

8 & Images Mixer

©
Image Comparison

© TensorPicker2 OO &> DepthMapvi °
Postprocessor wio segmentation
&
O TensorPicker3 OO O DepthMapv2i-
Postprocessor only syn
>
© TensorPicker4 O O O > DepthMapv22- o

Postprocessor syn + real

& DepthMapvz3- ¢
Postprocessor only real

v}
O

O TensorPicker5 O

Figure 6: Node-graph editor in Rapsai allow users to efficiently build a perception pipeline with interaction data augmentation
and model comparison. This figure shows the corresponding node-graph pipeline to render Fig. 5.

Candidates

Image:

Image Processor
Model

Mobilenet

Body Segmentation

(a) node suggestion (b) link suggestion

Tensor Tonsor

Qine x Q o x Image rocessor . Audio Comparison]

PoL - =@ o
oA e ot
° g e Properties
et e
Properties Mode
+ + R
ol Vo 4

(c) node filters (d) node inspectors

Figure 7: Examples of Rapsai’s node-graph editor and inspectors: (a) when the user drag-and-drops an edge from a node to blank
area in the editor, Rapsai automatically suggests a list of compatible nodes; (b) invalid nodes are greyed out to prevent users
from programming errors; (c) users can filter nodes with keywords in the node library; (d) users can change node properties on

the rightmost node inspector panel.

6.1 Study Protocol and Demographics

We recruited 15 participants (28-56 years old, x = 37.7, SD = 7.0)
via email invitations within Google, labeled P1-P15. Eight studies
took place in a quiet room with a 27-inch display and the par-
ticipant’s laptop, while the rest were conducted remotely with
screen sharing in video conferences. Eight participants were ML re-
searchers who routinely train models in their day-to-day work, and
nine participants prototyped multimedia demos for models devel-
oped by themselves or their team. 13 participants reported longer
than four years of experiences in ML. 12 participants ranked their
familiarity with deep learning as five or more, on a seven-point Lik-
ert scale [42]. The session for each participant lasted 55-60 minutes
and consisted of four stages; a background interview (6.1 + 0.8 min),
a video tutorial (4 min), a visual analytics procedure using Rapsai
with semi-structured interviews (39.4 + 4.6 min), and a discussion
of Rapsai and future perception prototyping platforms (10.2 + 2.0
min). Two interviewers hosted each session with one interviewer
conducting the interview and the other taking notes. Onsite par-
ticipants interacted with Rapsai alongside the interviewers, while
remote participants shared their screen and followed instructions
from the interviewer.

After the case studies, we kept Rapsai available to all Google em-
ployees and distributed an exit survey to all participants. They rated
their experiences using Rapsai and Colab, a widely used experimen-
tation platform by all the participants, along various dimensions.
We detail the questions in the exit survey and its limitations in the
appendix E.3.

The background interview employs a shorter list of questions
from the formative study, in which participants reported a wider
range of ML experiences (1-26 years, X = 6.8, SD = 6.0). We first
played a tutorial video to familiarize participants with Rapsai, then
instructed them to perform three tasks: (1) build a new multime-
dia pipeline with Rapsai, (2) interact with the data augmentation
node and identify advantages and disadvantages of the ML models,
(3) compare two or more ML models, use examples to justify the
preferred one, and discuss their findings. The pipeline used in the
tasks varied depending on the areas of focus for the different team
members.

6.2 CS1: Portrait Depth with Relighting Effects

The first case study investigates the portrait depth pipeline, which
uses two publicly-available models from TensorFlow Hub: AR por-
trait depth [68] and Mediapipe segmentation [45], as well as three

CHI 23, April 23 - 28, 2023, Hamburg, Germany

Du et al.

Image Comparison

source depth depth + segmentation

o Bod OO0 Preprocess OO
B —— G portrait Dept
mage o0 fo} >
Image Processor O

o
© Preprocess image O- >3

depth relighting

depth+seg relighting depth relighting

depth+seg relighting

e
i

& o
v O,
f & Relighting Effects
G ToDepthMap O (sun)
[+
Postprocess '
©
& Image Comparison
— & o
o & o

Postprocess G Relighting Effects
= ——— L (moon;

G ToDepthMap O &

Figure 8: The Portrait Depth pipeline connects a body segmentation model, four portrait depth estimation models, two relighting
shader effects for end-user applications and comparisons with respect to the source. For simplicity, we only show results of two

models here. Please refer to the supplementary for more results.

portrait depth estimation models developed by the participants. The
depth estimation takes a single color portrait image as the input
and produces a depth map, which estimates per-pixel distance to
the camera. We invited 4 participants (P1, P5, P7,P10) in CS1, where
P5 and P10 were not involved in model development.

Specifically in CS1, we found that all portrait depth models per-
form much better when using a body segmentation model first, as
evidenced in Fig. 8. Hence, we instruct all participants to compare
the models with and without the segmentation node. However, in
conventional ML pipeline development it typically requires hours
of extra coding to bridge an ML model to the pipeline, which disin-
centives engineers from trying out new ML models. Participants
also compared five ML portrait depth pipelines with different aug-
mentation techniques, as shown in Fig. 5 and in the appendix.

Generating depth maps from RGB images is never the end of
model development. Previously, we demonstrated that portrait
depth can be used to render 3D photos [16] in real time while
in Fig. 8, we compare different depth pipelines for relighting effects
of portrait images that are not included in the training set.

6.3 CS2: Scene Depth for Visual Effects

The second study uses two internal scene depth estimation models
developed by the team. Similar to the portrait depth model, the
scene depth model estimates a depth map given a generic color
image and can be further applied to a wide range of augmented
reality applications such as occlusion-aware rendering, rain effects,
fog effects [15]. In Fig. 9, we present one pipeline that generates
real-time depth-aware fog effect [15] from an input RGB image.
Four participants (P2, P4, P8, P9) were invited for CS2 and only P2
was involved in the model development.

In Rapsai, we provide a variety of different color maps® for visu-
alizing grayscale depth maps, including Turbo, TurboPlus, Inferno,
Magma, Plasma, Viridis, to help users to observe details, estimate
quantitative values, and notice error patterns.

6.4 CS3: Alpha Matting for Virtual Conferences

Accurate segmentation, also known as alpha matting, is the vital
key to a wide range of applications such as virtual backgrounds in

8Colormaps adopted in Rapsai: https://www.shadertoy.com/view/7sIfRX

https://www.shadertoy.com/view/7slfRX

Rapsai

depthi

source

Image O o (e}

O Preprocess Image O—0 o—=0
Image Processor O T—0 SceneDepthvi O
o [

o

O

>3

<

O

Scene Depth v2

CHI 23, April 23 - 28, 2023, Hamburg, Germany

depth2

Fog o
o o
]
T Iy s 5 ° o Image Comparison
Range Depthmap G FogEffect ¢
>
e e ¢
o ensor To
Depthmap 2 9
Remap Value Tensor To
(>3
Range2 O Depthmap3 f)
o o
o6 TensorTo & © 9
Depthmap 4 O FogEffect
>3
>3

Figure 9: The Scene Depth pipeline leverages a data augmentation node, two scene depth estimation nodes, and a shader
processing node for depth-based visual effects such as fog effects.

remote conferences and film production [81], photo relighting [49],
and 3D face synthesis [66].

In this case study, we use the aforementioned publicly-available
Mediapipe segmentation model and two (alpha) matting models [49]
for improving the segmentation results in video conferences. The
matting model requires two inputs of both the original image and
a rough segmentation mask from a body segmentation model, then
outputs a refined segmentation mask, making it complicated to
examine the weaknesses in the end-to-end pipeline, as shown in
Fig. 10. In addition, evaluating matting models require extensive
feedback from users with different virtual backgrounds. Hence, we

place a shader node in the end to mix input image, background im-
age, and the matting results. Two participants (P3, P6) were invited
for CS3 while only P3 was involved in the model development. We
also invited P2 from CS2 for an additional round to try the Matting
pipeline since P2 was interested in mixing the scene depth model
with the matting model. They accidentally discovered that depth
was predicted as a radial gradient with solid background.

6.5 CS4: Audio Denoising for Communication

In contrast to the three visual case studies, this fourth case study
investigates two sound-to-sound models for an audio denoising
task. Audio denoising, which aims to remove background noise,

CHI 23, April 23 - 28, 2023, Hamburg, Germany

Du et al.

Image Comparison

segmentation

matting1

matting2

semgnetation+background matting+background matting2+background

Image Processor O

(o 0 768

to 768

t0 512

to 512

O Tensor Picker

O Tensor picker

© virtual Background
(v
>

>3
ob Normalize O—0C Tensortoimage O D\magccomparlson

>
>3

& Virtual Background
(Matting)

(o}
Q

o0 Normalize O—0 Tensortolmage Q" C

©

©

& Virtual Background
(Matting 2

(o}
(o}

>3

Figure 10: The matting pipeline connects a body segmentation model together with two matting models, and uses a shader

processing node for virtual background replacement application.

has gained popularity in many real-time applications in recent
years [61]. Five participants (P11-P15) were invited and instructed
to build pipelines as shown in Fig. 11.

Specifically in CS4, we embedded a webpage node to collect qual-
itative feedback regarding model performance in audio denoising.
Interestingly, not all participants agreed that the updated audio
denoising version was better. With different background noising
mixed into the user’s recordings, some participants found that the
updated model compressed their voice too much, or preferred to
have more background context in their audio calls.

7 FINDINGS AND DISCUSSION

Through observing five ML experts exploring the performance
of their own models, and ten other ML practitioners conducting
perception prototyping and model analysis, we found that Rapsai
helped facilitate rapid and deeper understanding of model benefits
and trade-offs. Overall, all participants were able to make insights
about the differences between the models and select the better
model. All participants (13/15) who work on generative models (e.g.,
image-to-image, sound-to-sound) find it useful in their workflow,

while two researchers who worked on classification tasks find it
less useful in daily development. Since Rapsai is not designed for
classification tasks, we discuss their feedback and present how
Rapsai could be extended for classification tasks in Appendix C.3.
We next discuss our findings from the exit survey, as well as four
major insights from the case studies.

7.1 Rapsai vs. Colab: Less Control but More
Transparent and Collaborative

Fig. 12 depicts the quantitative results of our exit survey. We ran
Mann-Whitney’s U tests to evaluate the difference between Rapsai
and Colab in the responses of our seven-point Likert scale questions.
We found significant effects where users rated Rapsai more trans-
parent about how it arrives at its final results (Rapsai 6.13 + 0.88
vs. Colab 5.0 + 0.88, z = —3.09, p < .005) and more collaborative
with users to come up with the outputs (Rapsai 5.73 + 1.23 vs. Co-
lab 4.15 + 1.43, z = —2.86, p < .005). Participants were satisfied
with final results from both systems (Rapsai 6.00 + 0.88 vs. Colab
5.46 + 1.12, z = —1.47, p = 0.15).

Rapsai
Audio - Webpage
o Where was this recording made? *
cleanedw O AtHome
(») O Atwork
CCA Denoise [J Inlarger crowded (street, mall, event, etc)
processedvav S [in small crowded area (bus, elevator, etc)
r— [J Atbeach, park, outside
[J inacar
I ‘Audio Comparison
[other.
() eraer
What was going on while this recording was made? *
[J Party / event - many people talking
Honking
g 7
0] Automatic track switching] O windy

Figure 11: The audio denoising pipeline connects an audio
input node, an audio processing node for data augmenta-
tion, two denoising models, an audio comparison node, and
a webpage node for collecting user feedback. With a prebuilt
pipeline, users were able to record their voice at home, com-
pare the performance of two models and submit qualitative
feedback directly to the model developers via webpages such
as Google Forms.

However, most participants regarded Colab as a superior tool
for assisting them in thinking deeper into how to complete the task
(Rapsai 5.60 + 1.72 vs. Colab 6.38 + 0.97, z = —0.97, p = 0.35) and
gave them greater control over the system (Rapsai 5.93 + 0.91 vs.
Colab 6.38 + 1.09, z = —0.91, p = 0.36). This is largely due to all the
participants being expert users and familiar with testing models
by programming: “Colab is more familiar and gives higher control
than Rapsai’s graphical interface. But Rapsai is quicker to use.” (P12).
“Rapsai is great for quick visualizations of intermediate outputs in a
pipelined ML system where the individual modules are fairly stan-
dard and have predictable inputs/outputs. Colab allows for arbitrarily
complex Python code and control over the model/input/outputs which
can be helpful for complex applications but sometimes tedious for
simple pipelines.” (P2).

Participants’ preference for Rapsai or Colab varied based on the
usage scenario. P15 commented: “If I needed to set up training of a
standard model or small variant using pre-existing data, Rapsai would
be ideal. If I wanted to try some novel architecture (e.g., custom loss
function), I would have to resort to Colab or similar.”. P3 remarked on
different target user groups: “Raspsai is more visual and intuitive,
Colab is more flexible but also requires having programming skills,
so it’s not for everyone. Rapsai allows for faster prototyping and
results visualization.”. P9 commented on using Rapsai and Colab for
different phases in model development: ‘T prefer to use Colab at the
beginning stage for debugging. When the architecture of the model is
almost fixed and <I> need to compare the models which are trained
or built from different configurations, I will consider using Rapsai.”

7.2 Rapsai Accelerates Creating and Mixing
Multimedia Pipelines With ML Models

Rapsai facilitates development of machine learning-based
multimedia applications. We discovered that building a real-time

perception pipeline is often beyond the expertise of ML researchers.

CHI 23, April 23 - 28, 2023, Hamburg, Germany

Their current workflow shows great pain points, which often in-
volves substantial communication and arduous hand-holding across
teams. After watching a 4-minute tutorial video on Rapsai, all par-
ticipants were able to build a custom pipeline from scratch within
15 minutes (avg=10.72, std=2.14). Participants usually spent less
than five minutes getting the initial results (avg=3.98, std=1.95),
then were trying out different input and output for the pipeline.
Participants appreciate its intuitive interaction and visualization:
“It’s great that I don’t need to do much to have a visual pipeline. I have
to do a lot of the demo myself.” (P4). “Using a video <as input> helps
me get a cross-time feel of how the model performance varies, which
is hard to capture with metrics.” (P10). Moreover, participants find it
useful for comprehending models’ distinctions: “Tt’s a convenient
tool for us to understand the difference between various models and
speeds up the testing cycle with a very friendly-to-use interface.” (P1).
In the exit survey, all the participants commented that it will
take them much shorter time to build pipelines in Rapsai than
Colab. P6 commented: ‘T spent about half a minute to create an
image classification pipeline, and I spent 2-3 minutes to build a depth
estimation pipeline from scratch, since it took some time to figure out
how to preprocess the input and visualize the output... while Colab is
more flexible for different tasks, I guess it could range from 1 hour to a
day or two.”. P13 commented: “In my case, I started from an existing
template but overall it was quite fast, I'd say less than 5 min.”.

| (] Rapsai
o 6.4 61 6.4 P
571 60 o 5.6 . 5.9 I 5.7 Colab
3 .
? 6 I so I I
P I 4.2
©
B4
;.‘—) 3
5 2
1 T T T T

Match goal Think through Transparent Controllable Collaborative

Figure 12: Participants’ ratings on a seven-point Likert scale
(details in Appendix E.3), accompanied by error bars repre-
senting standard deviations. Participants regarded Rapsai to
be more transparent and collaborative than Colab, whereas
Colab assisted users in thinking through the task and control-
ling the pipeline more effectively through programming. We
found significant effects on the transparent and collaborative
dimensions (p < 0.01) via Mann-Whitney’s U tests.

Rapsai fosters innovative applications of ML models by
mixing models and graphics in node-graph editors. With read-
ily available models and example pipelines, ML practitioners are
more inclined to experiment with novel ideas. For instance, P2 tried
to connect a body segmentation model with a scene depth model
and was surprised to find the radial effects in depth prediction. P8
mixed scene depth API, shader effects, with the matting models to
create a pipeline of people segmentation with foggy background.

7.3 Rapsai Can Assist in Identifying Issues with
ML Models and Training Sets

Rapsai’s interactive data augmentation node can help ML
researchers identify unforeseen architectural issues. For in-
stance, in the data augmentation stage of CS1, P1 was surprised to
find that adding noise had a huge impact on the performance of

CHI 23, April 23 - 28, 2023, Hamburg, Germany

the portrait depth model. P1 related this to the small kernel size
(3 x 3), therefore recommended the team to increase the kernel
size or applying denoising to the application pipeline. In CS2, P10
found a significant performance issue with the contrast slider and
derived that the issue could be the receptive field: “It can help me
understand how I should change the model architecture and what
training examples to add’.

Rapsai can further identify biased augmentation of the
training sets. ML practitioners also find Rapsai helpful for detect-
ing training process flaws. In CS3, P3 discovered that one model
is more sensitive to blurriness than the other: Tt gives me an in-
tuition about which data augmentation operations that my model
is more sensitive, then I can go back to my training pipeline, maybe
increase the amount of data augmentation for those specific steps that
are making my model more sensitive.” In CS2, P8 commented after
completing the data augmentation task: “Comparing various noise
parameters in the input to a model is useful to identify augmentation
bias. ”

Rapsai helps determining whether more training data is
required. Researchers also found Rapsai useful to streamline their
workflow for augmenting data in-the-wild. In CS2, P2 appreciated
Rapsai’s simplicity: “You can quickly explore many other hypotheses
— is this going to mess up my model? In Colab, I need to have many
hypotheses in mind, then code for that specific use case. I think the
best part is that this is composable.” (P2). In CS4, P15 favored the
“background noise mixing” mode: “It’s a fair amount of work to add
some background noise, I have a script, but then every time I have to
find that script and modify it. I've always done this in a one-off way.
It’s simple but also very time consuming. This is very convenient.”.

Rapsai can help identify edge cases using inputs in the
wild. The majority of the participants found Rapsai useful in iden-
tifying edge cases using inputs in the wild. By uploading photos
in the wild, ML researchers were able to identify challenging edge
cases with transparent objects and long-range depth in CS2: “the
bottle is a good example to show the difference... here the mountain is
much farther away from the thing, and the sky should have values of
0, I think <but it didn’t>" (P4). Using the data augmentation node,
participants were able to identify edge cases of rotation, bright-
ness, and inconsistency over cropped regions: ‘T can manipulate the
brightness to see when the model fails.” (P2). Despite that a model gen-
erally outperforms another model, researchers found contradictory
cases using Rapsai with the data augmentation node: “Interesting...
one model should perform better than the other but performed worse
when the audio volume is <low=."” (P13 in CS4).

7.4 Rapsai Helps Model Selection, Learning
From Pipelines, and Study deployment

Rapsai provides qualitative evidence to select the optimal
model. With the comparison nodes, Rapsai supports ML researchers
in model selection with comparable metrics, as metrics in the do-
main of depth or matting are not necessarily reliable: “Metrics can
be the same even though somehow there might be errors. ” (P1). When
two models have similar performance, stakeholders may not always
choose the model with the superior metrics, but rather the model
that best matches their use case: “There are some times when you

Du et al.

don’t want all noise cancellation. People sometimes prefer audio with
less noise cancellation because you want some context.” (P11) .

Rapsai assists ML practitioners in visually summarizing
the capabilities of ML models with positive and negative ex-
amples. For instance, P6 found differences in a model’s capabilities:
“The side face is not correct for one model, and good for the other.”.
P10 found a good range of aspect ratios with the cropping tool:
“Cropping helps me decide how to crop to best use the model.”.

Sharing qualitative findings in presentations and publica-
tions. Eight of the 15 ML practitioners we interviewed spent over
four hours per week analyzing individual cases and relied largely
on qualitative results to compare model performance: ‘T spend
hours per week examining visual results by zooming in and zooming
out.” (P9). They share comparative results with coworkers using
external tools such as Microsoft PowerPoint, Adobe Illustrator, or
Google Slides. Fortunately, Rapsai streamlines this process: ‘It helps
presentation. It takes days to prepare the best examples.” (P5). “This
is helpful to visualize the current capabilities of our model. We are
working with potential partners and it is useful for them to be able
to try out the model.” (P10) In addition, researchers find it useful to
gather feedback: ‘It’s useful for getting quick feedback. Cutting time
to need to run Colab or run a Mediapipe graph.” (P14)

Visual exploration of end-to-end pipeline for novice pro-
totyping practitioners. Rapsai provides senior ML practitioners a
convenient tool to demonstrate an end-to-end multimedia pipeline:
“T can use this to demonstrate the envisioned pipeline to <a junior
engineer> and it clarifies the ambiguities.” (P6). Meanwhile, it helps
junior ML practitioners to quickly build a multimedia pipeline with-
out diving deep into the production codebase for integration: “It’s
much faster than building prototypes before, previous experience is
fragmented.” (P7).

Enable quick remote field study in the wild. Rapsai can
also be used to rapidly deploy a remote in-the-wild field study.
Before deploying an ML model (e.g., denoising) to production, it
often requires extensive qualitative user feedback with real-world
user data. However, existing survey tools such as Google Forms and
Amazon Mechanical Turk cannot easily record live audio from users
and then run ML models within the page. In Rapsai, users can easily
set up a model comparison node as well as a webpage node with a
Google Form embedded, which addresses these needs: “Recording
from microphone is very good, it will be very fast turn around if I want
to try it in real life. I need it to share with the <product managers>
and researchers for user study.” (P14).

8 LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations of our study and current
system, and provide future plans to address them where applicable.

Limitations of case study. Our case study and surveys could
have been conducted more effectively by comparing Rapsai to a
“sandbox” system, whose UI resembles Rapsai’s but lacks the node-
graph editor feature. Note that it is hard to attribute the success
of Rapsai to individual features in it. The sample size (N=15) of
our study with ML practitioners within the same organization may
not be representative of the AI+HCI community as a whole. We
envision that by providing a few templates with tutorials, Rapsai can
further lower the barrier for entry-level users to create multimedia

Rapsai

(a) running Colab though a customized GAN model:

RapsAiServer that takes custom functions (e.g. the tflite_inference function above)
,

as input
We will package this into a python module

[1 &1 cellhidden

~ Start RapsAiServer that shows interactive web page in colab

The page sends http requests to RapsAiServer which calls the custom python function to do inference

(850, Eflife inference)

CHI 23, April 23 - 28, 2023, Hamburg, Germany

® (1)

% 10 B0 20

(b) in Rapsai, one can change the input to in-the-wild images without modifying the code:

O ImageToTensor O

© Tensor To Image

© Tensor ToImage 2

D

3@

Figure 13: Experimental colab node that supports cloud-based inference of custom Python models.

pipelines. We expect that a future long-term deployment study with
both novice and expert users will capture the merits and drawbacks
of Rapsai in greater detail.

Lack of support for PyTorch and cloud-hosted models. As
a first step in a visual programming platform that bridges model
development and multimedia applications, Rapsai leverages Ten-
sorFlow.js and offers utilities to convert TensorFlow models. It does
not support native execution of PyTorch models. For cloud-hosted
models that require a long inference time, Rapsai may not be the
ideal solution as interactivity may not be of interest with regard
to the execution latency. As a workaround shown in Fig. 13, we
experimented with a Colab node that supports running custom
Python scripts with Rapsai inputs, and outputting results back to
Rapsai. However, the extra 1-3 second latency prevents Rapsai to
perform interactive data augmentation for Colab-hosted models. In
the future, we aim to support PyTorch and cloud-hosted models via
community-contributed nodes, whereas a node could be linked to
a remote server and fetch results by executing a block in the Colab
notebook.

Generalizability to text and 3D data types. In this work,
we focused primarily on multimedia data including images, video,
and audio. More work would need to be done to better integrate
text and 3D data types into Rapsai. Users cannot add new custom
tensor logic without contributing a new code in Rapsai. Recent
advances in neural rendering [46] also require novel and efficient
rendering pipelines on the web, which is out of scope for Rapsai
in its current stage. As an initial step, we present a preliminary
example of bridging large language models and graphical pipelines
in Appendix C.1.

Closer integration with the training pipeline and aggre-
gated metrics. Systems like UMLAUT [56] have shown that in-
teractive visualizations during training can provide early insights
during model development. Rapsai is primarily designed for the
testing and prototyping phases. Currently, it does not provide a
visual summary of the model’s performance over the entire dataset,
but rather complements existing pipelines such as TensorBoard
and eliminates the need to write code substantially in Colab. In
the future, we hope to enable model researchers to being able to
interactively analyze their models in Rapsai during the training

phase to identify data augmentation or model issues sooner. Also by
integrating into the training pipeline, Rapsai will be able to provide
aggregated metrics.

Extended visualization libraries from different ML teams.
Rapsai implemented the most commonly used nodes based on feed-
back from four multimedia ML teams, thus supporting image viewer,
depth map visualization, shader visualization, audio player, and
comparison nodes. However, this is still far from a complete set of
data formats in the wild. For example, P1 and P5 would like to have
point cloud visualization for their 3D models. P2 and P4 wanted to
adjust hue in the interactive augmentation node. Although that can
be achieved through a custom shader, P2 and P4 lack shader pro-
gramming experience. In the future, we would like to open source
Rapsai’s infrastructure to allow deep learning practitioners to ad-
vance visual programming and analytics of end-to-end perception
pipelines.

9 CONCLUSION

In this paper, we introduced Rapsai, a visual programming plat-
form for interactive data augmentation, model comparison, and
prototyping of multimedia ML applications. The design of Rap-
sai was informed by interviews and brainstorming sessions with
perception ML practitioners, and was iteratively improved with
experts. We evaluated Rapsai in four case studies with 15 deep
learning researchers who built multimedia pipelines from scratch
and compared different models. Analysts were able to holistically
select the best model and further explain their strengths and weak-
nesses through examples. In addition, the unique data augmentation
and qualitative comparison nodes were shown to enable new ap-
proaches to test robustness and share results in presentations and
publications. In future work, we plan to extend the framework
to support text and 3D data and integrate more closely with the
training pipeline and cloud-hosted models.

ACKNOWLEDGMENTS

We would like to extend our thanks to Jun Zhang and Satya Amara-
palli for a few early-stage prototypes, and Sarah Heimlich for serv-
ing as a 20% program manager, Eric Turner and Shahram Izadi for

CHI 23, April 23 - 28, 2023, Hamburg, Germany

reviewing the manuscript, Sean Fanello, Danhang Tang, Stephanie
Debats, Walter Korman, and Anne Menini for providing initial feed-
back for the manuscript. We would also like to thank our reviewers
for their insightful feedback.

REFERENCES

(1]

[2

—

T
)

=

[10

(11

[12

[13]

[14]

[15

[16

[17

(18]

[19]

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J
Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, et al. 2015. The Dataflow Model: a Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data
Processing. (2015). https://doi.org/10.14778/2824032.2824076

Saeed Anwar, Muhammad Tahir, Chongyi Li, Ajmal Mian, Fahad Shahbaz Khan,
and Abdul Wahab Muzaffar. 2020. Image Colorization: a Survey and Dataset.
ArXiv Preprint ArXiv:2008.10774 (2020). https://arxiv.org/pdf/2008.10774
Autodesk. 2022. 3DS Max. https://www.autodesk.com/products/3ds-max
Autodesk. 2022. Maya. https://www.autodesk.com/products/maya/overview
Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan
Zhang, and Matthias Grundmann. 2020. Blazepose: On-Device Real-Time Body
Pose Tracking. ArXiv Preprint ArXiv:2006.10204 (2020). https://arxiv.org/pdf/
2006.10204

Blender. 2022. Blender. https://www.blender.org/

Ali Borji. 2021. Pros and Cons of GAN Evaluation Measures: New Developments.
https://doi.org/10.48550/arXiv.2103.09396

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-shot Learners. Advances in Neural
Information Processing Systems 33 (2020), 1877-1901. https://doi.org/10.48550/
arXiv.2005.14165

Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell,
Jordan Griffith, Jonas Jongejan, Amit Pitaru, and Alexander Chen. 2020. Teach-
able Machine: Approachable Web-Based Tool for Exploring Machine Learning
Classification. In Extended Abstracts of the 2020 CHI Conference on Human Factors
in Computing Systems. ACM. https://doi.org/10.1145/3334480.3382839

Angelos Chatzimparmpas, Rafael Messias Martins, Ilir Jusufi, Kostiantyn Kucher,
Fabrice Rossi, and Andreas Kerren. 2020. The State of the Art in Enhancing
Trust in Machine Learning Models With the Use of Visualizations. In Computer
Graphics Forum, Vol. 39. Wiley Online Library, Wiley Online Library, 713-756.
https://doi.org/10.1111/cgf.14034

John Joon Young Chung, Wooseok Kim, Kang Min Yoo, Hwaran Lee, Eytan
Adar, and Minsuk Chang. 2022. TaleBrush: Sketching Stories With Generative
Pretrained Language Models. In CHI Conference on Human Factors in Computing
Systems. 1-19. https://doi.org/10.1145/3491102.3501819

Runmin Cong, Jianjun Lei, Huazhu Fu, Ming-Ming Cheng, Weisi Lin, and Qing-
ming Huang. 2018. Review of Visual Saliency Detection With Comprehensive
Information. IEEE Transactions on Circuits and Systems for Video Technology 29,
10 (2018), 2941-2959. https://doi.org/10.1109/TCSVT.2018.2870832

Alexandre Defossez, Gabriel Synnaeve, and Yossi Adi. 2020. Real Time Speech
Enhancement in the Waveform Domain. ArXiv Preprint ArXiv:2006.12847 (2020).
https://doi.org/10.48550/arXiv.2006.12847

Carlos Gonzalez Diaz, Phoenix Perry, and Rebecca Fiebrink. 2019. Interactive
Machine Learning for More Expressive Game Interactions. In 2019 IEEE Conference
on Games (CoG). IEEE, IEEE, 1-2. https://doi.org/10.1109/CIG.2019.8848007
Ruofei Du, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo Duarte, Jason Dour-
garian, Joao Afonso, Jose Pascoal, Josh Gladstone, Nuno Cruces, Shahram Izadi,
Adarsh Kowdle, Konstantine Tsotsos, and David Kim. 2020. DepthLab: Real-Time
3D Interaction With Depth Maps for Mobile Augmented Reality. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology
(UIST). ACM, 829-843. https://doi.org/10.1145/3379337.3415881

Ruofei Du, Yinda Zhang, Ahmed Sabie, and Jason Mayes. 2022. Portrait Depth
API: Turning a Single Image into a 3D Photo with TensorFlow.js. https://blog.
tensorflow.org/2022/05/portrait-depth-api-turning-single-image html

Rebecca Fiebrink, Perry R Cook, and Dan Trueman. 2011. Human Model Evalua-
tion in Interactive Supervised Learning. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 147-156. https://doi.org/10.1145/1978942.
1978965

Ruth Fong, Mandela Patrick, and Andrea Vedaldi. 2019. Understanding Deep
Networks Via Extremal Perturbations and Smooth Masks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2950-2958. https://doi.
org/10.1109/ICCV.2019.00304

Krishna Gade, Sahin Cem Geyik, Krishnaram Kenthapadi, Varun Mithal, and
Ankur Taly. 2019. Explainable Al in Industry. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (An-
chorage, AK, USA) (KDD ’19). Association for Computing Machinery, New York,
NY, USA, 3203-3204. https://doi.org/10.1145/3292500.3332281

[20

[21

[28

[29

[30

(31]

(32]

&
&

[34

[35

[36

(37

[38

[39

[40

[42

[43

Du et al.

Leo Gao, John Schulman, and Jacob Hilton. 2022. Scaling Laws for Reward Model
Overoptimization. arXiv preprint arXiv:2210.10760 (2022).
Michael Gleicher, Aditya Barve, Xinyi Yu, and Florian Heimerl. 2020. Boxer:
Interactive Comparison of Classifier Results. Computer Graphics Forum (Jun.
2020). https://doi.org/10.1111/cgf.13972
Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow. 2019.
Digging Into Self-Supervised Monocular Depth Estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 3828-3838. https:
//doi.org/10.1109/ICCV.2019.00393
Google. 2022. Colab. https://colab.sandbox.google.com/
Google. 2022. Firebase. https://firebase.google.com
Google. 2022. TensorBoard. https://www.tensorflow.org/tensorboard
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770-778. https://doi.org/10.1109/CVPR.2016.90
Wenbin He, Lincan Zou, Arvind Kumar Shekar, Liang Gou, and Liu Ren. 2021.
Where Can We Help? A Visual Analytics Approach to Diagnosing and Improving
Semantic Segmentation of Movable Objects. IEEE Transactions on Visualization
and Computer Graphics 28, 1 (2021), 1040-1050. https://doi.org/10.1109/TVCG.
2021.3114855
Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. 2018. Visual
Analytics in Deep Learning: an Interrogative Survey for the Next Frontiers. IEEE
Transactions on Visualization and Computer Graphics 25, 8 (2018), 2674-2693.
https://doi.org/10.1109/TVCG.2018.2843369
Andrew Howard and Suyog Gupta. 2020. Background Features in Google Meet,
Powered by Web ML. https://ai.googleblog.com/2019/11/introducing-next-
generation-on-device.html
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 1314-1324. https://doi.org/10.1007/978-1-4842-6168-
11
Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. ArXiv
Preprint ArXiv:1704.04861 (2017). https://arxiv.org/pdf/1704.04861.
Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely Connected Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 4700-4708. https://doi.
org/10.1109/CVPR.2017.243
Varun Jampani, Huiwen Chang, Kyle Sargent, Abhishek Kar, Richard Tucker,
Michael Krainin, Dominik Kaeser, William T Freeman, David Salesin, Brian
Curless, et al. 2021. SLIDE: Single Image 3D Photography With Soft Layering and
Depth-Aware Inpainting. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 12518-12527. https://doi.org/10.1109/ICCV48922.2021.01229
Katarzyna Janocha and Wojciech Marian Czarnecki. 2017. On Loss Functions for
Deep Neural Networks in Classification. https://doi.org/10.48550/ARXIV.1702.
05659
Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra Molina, Aaron Donsbach,
Michael Terry, and Carrie Cai. 2022. PromptMaker: Prompt-Based Prototyping
With Large Language Models. In CHI Conference on Human Factors in Computing
Systems Extended Abstracts. ACM. https://doi.org/10.1145/3491101.3503564
David Johnson, Giuseppe Carenini, and Gabriel Murray. 2020. NJM-Vis: Interpret-
ing Neural Joint Models in NLP. In Proceedings of the 25th International Conference
on Intelligent User Interfaces (Cagliari, Italy) (IUI 20). Association for Comput-
ing Machinery, New York, NY, USA, 286-296. https://doi.org/10.1145/3377325.
3377513
Gabor Karsai. 1995. A Configurable Visual Programming Environment: a Tool
for Domain-Specific Programming. Computer 28, 3 (1995), 36-44. https://doi.
org/10.1109/2.366147
Yury Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, and Matthias Grund-
mann. 2019. Real-Time Facial Surface Geometry From Monocular Video on Mobile
GPUs. ArXiv Preprint ArXiv:1907.06724 (2019). https://arxiv.org/pdf/1907.06724
Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damian Avila, Safia Abdalla, and Carol Will-
ing. 6. Jupyter Notebooks - a Publishing Format for Reproducible Computational
Workflows.
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature
521, 7553 (2015), 436-444. https://doi.org/10.1109/ACCESS.2019.2912200
Na Li, Jason Mayes, and Ping Yu. 2021. ML Tools for the Web: a Way for Rapid
Prototyping and HCI Research. 315-343. https://doi.org/10.1007/978-3-030-82681-
10
Rensis Likert. 1932. A Technique for the Measurement of Attitudes. Archives of
Psychology (1932).
Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian L Curless, Steven M
Seitz, and Ira Kemelmacher-Shlizerman. 2021. Real-Time High-Resolution Back-
ground Matting. In Proceedings of the IEEE/CVF Conference on Computer Vision and

https://doi.org/10.14778/2824032.2824076
https://arxiv.org/pdf/2008.10774
https://www.autodesk.com/products/3ds-max
https://www.autodesk.com/products/maya/overview
https://arxiv.org/pdf/2006.10204
https://arxiv.org/pdf/2006.10204
https://www.blender.org/
https://doi.org/10.48550/arXiv.2103.09396
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1145/3334480.3382839
https://doi.org/10.1111/cgf.14034
https://doi.org/10.1145/3491102.3501819
https://doi.org/10.1109/TCSVT.2018.2870832
https://doi.org/10.48550/arXiv.2006.12847
https://doi.org/10.1109/CIG.2019.8848007
https://doi.org/10.1145/3379337.3415881
https://blog.tensorflow.org/2022/05/portrait-depth-api-turning-single-image.html
https://blog.tensorflow.org/2022/05/portrait-depth-api-turning-single-image.html
https://doi.org/10.1145/1978942.1978965
https://doi.org/10.1145/1978942.1978965
https://doi.org/10.1109/ICCV.2019.00304
https://doi.org/10.1109/ICCV.2019.00304
https://doi.org/10.1145/3292500.3332281
https://doi.org/10.1111/cgf.13972
https://doi.org/10.1109/ICCV.2019.00393
https://doi.org/10.1109/ICCV.2019.00393
https://colab.sandbox.google.com/
https://firebase.google.com
https://www.tensorflow.org/tensorboard
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TVCG.2021.3114855
https://doi.org/10.1109/TVCG.2021.3114855
https://doi.org/10.1109/TVCG.2018.2843369
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://doi.org/10.1007/978-1-4842-6168-_11
https://doi.org/10.1007/978-1-4842-6168-_11
https://arxiv.org/pdf/1704.04861.
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/ICCV48922.2021.01229
https://doi.org/10.48550/ARXIV.1702.05659
https://doi.org/10.48550/ARXIV.1702.05659
https://doi.org/10.1145/3491101.3503564
https://doi.org/10.1145/3377325.3377513
https://doi.org/10.1145/3377325.3377513
https://doi.org/10.1109/2.366147
https://doi.org/10.1109/2.366147
https://arxiv.org/pdf/1907.06724
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1007/978-3-030-82681-_10
https://doi.org/10.1007/978-3-030-82681-_10

Rapsai

Pattern Recognition. 8762-8771. https://doi.org/10.1109/CVPR46437.2021.00865
Camillo Lugaresi, Jiugiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee,
Wan-Teh Chang, Wei Hua, Manfred Georg, and Matthias Grundmann. 2019.
MediaPipe: a Framework for Building Perception Pipelines. https://doi.org/10.
48550/arXiv.1906.08172

MediaPipe. 2022. MediaPipe Selfie Segmentation. https://tfhub.dev/mediapipe/
tfjs-model/selfie_segmentation/general/1

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (2021), 99-106.

Sugeerth Murugesan, Sana Malik, Fan Du, Eunyee Koh, and Tuan Manh Lai.
2019. DeepCompare: Visual and Interactive Comparison of Deep Learning Model
Performance. (Sep. 2019). https://doi.org/10.1109/MCG.2019.2919033

Ahmed Omran, Neil Zeghidour, Zalan Borsos, Félix de Chaumont Quitry, Malcolm
Slaney, and Marco Tagliasacchi. 2022. Disentangling Speech From Surroundings
in a Neural Audio Codec. ArXiv Preprint ArXiv:2203.15578 (2022). https://doi.
org/10.48550/arXiv.2203.15578

Rohit Pandey, Sergio Escolano, Chloe Legendre, Christian HAsmne, Sofien Bouaziz,
Christoph Rhemann, Paul Debevec, and Sean Fanello. 2021. Total Relighting. ACM
Transactions on Graphics (Aug. 2021). https://doi.org/10.1145/3450626.3459872
Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. 2018. Image Transformer. In Proceedings of
the 35th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 4055—
4064. https://doi.org/10.1109/CVPR46437.2021.01212

Donghao Ren, Bongshin Lee, and Tobias Héllerer. 2017. Stardust: Accessible and
Transparent GPU Support for Information Visualization Rendering. Computer
Graphics Forum (June 2017), 61-70. https://doi.org/10.1111/cgf.13178

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-
CNN: Towards Real-Time Object Detection With Region Proposal Networks.
In Advances in Neural Information Processing Systems, C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28. Curran Associates, Inc.
https://doi.org/10.5555/2969239.2969250

Alex Repenning. 1993. Agentsheets: A Tool for Building Domain-Oriented
Visual Programming Environments. In Proceedings of the INTERACT ’93 and
CHI °93 Conference on Human Factors in Computing Systems (Amsterdam, The
Netherlands) (CHI *93). Association for Computing Machinery, New York, NY,
USA, 142-143. https://doi.org/10.1145/169059.169119

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (San Francisco, California, USA) (KDD ’16). Association for Computing
Machinery, New York, NY, USA, 1135-1144. https://doi.org/10.1145/2939672.
2939778

Lars Ruthotto and Eldad Haber. [n.d.]. An Introduction to Deep Generative
Modeling. GAMM-Mitteilungen 44, 2 ([n.d.]), €202100008. https://doi.org/10.
1002/gamm.202100008

Eldon Schoop, Forrest Huang, and Bjoern Hartmann. 2021. Umlaut: Debugging
Deep Learning Programs Using Program Structure and Model Behavior. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 1-16.
https://doi.org/10.1145/3411764.3445538

Scratch. 2022. Scratch. https://scratch.mit.edu/

Hoo-Chang Shin, Holger R. Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella
Nogues, Jianhua Yao, Daniel Mollura, and Ronald M. Summers. 2016. Deep Con-
volutional Neural Networks for Computer-Aided Detection: CNN Architectures,
Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical
Imaging 35, 5 (2016), 1285-1298. https://doi.org/10.1109/TMI.2016.2528162
Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger, Ping
Yu, Kangyi Zhang, Shanqing Cai, Eric Nielsen, David Soergel, Stan Bileschi,
Michael Terry, Charles Nicholson, Sandeep N. Gupta, Sarah Sirajuddin, D. Sculley,
Rajat Monga, Greg Corrado, Fernanda B. Viégas, and Martin Wattenberg. 2019.
TensorFlow.js: Machine Learning for the Web and Beyond. https://doi.org/10.
48550/arXiv.1901.05350

Snap. 2022. Lens Studio. https://ar.snap.com/en-US/lens-studio

Samuel Sonning, Christian Schiildt, Hakan Erdogan, and Scott Wisdom. 2020.
Performance Study of a Convolutional Time-Domain Audio Separation Net-
work for Real-Time Speech Denoising. In ICASSP 2020 - 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 831-835.
https://doi.org/10.1109/ICASSP40776.2020.9053846

Thilo Spinner, Udo Schlegel, Hanna Schafer, and Mennatallah El-Assady. 2019.
ExplAlner: a Visual Analytics Framework for Interactive and Explainable Machine
Learning. IEEE Transactions on Visualization and Computer Graphics (2019).
https://doi.org/10.1109/TVCG.2019.2934629

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul F Christiano. 2020. Learning to
Summarize with Human Feedback. Advances in Neural Information Processing

[64

[65

[66

[67

[75

[76

[77

g
&,

[79

[80

)
ot

(82

(83

(84]

oo
2

CHI 23, April 23 - 28, 2023, Hamburg, Germany

Systems 33 (2020), 3008-3021.

WR Sutherland. 1966. On-Line Graphical Specification of Procedures. SJCC,
Boston, Mass (1966).

Justin Talbot, Bongshin Lee, Ashish Kapoor, and Desney S. Tan. 2009. Ensem-
bleMatrix: Interactive Visualization to Support Machine Learning With Multiple
Classifiers. In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (Boston, MA, USA) (CHI "09). Association for Computing Machinery,
New York, NY, USA, 1283-1292. https://doi.org/10.1145/1518701.1518895
Feitong Tan, Sean Fanello, Abhimitra Meka, Sergio Orts-Escolano, Danhang Tang,
Rohit Pandey, Jonathan Taylor, Ping Tan, and Yinda Zhang. 2022. VoLux-GAN: a
Generative Model for 3D Face Synthesis With HDRI Relighting. In Special Interest
Group on Computer Graphics and Interactive Techniques Conference Proceedings.
ACM. https://doi.org/10.1145/3528233.3530751

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga Bolukbasi, Andy Coenen, Se-
bastian Gehrmann, Ellen Jiang, Mahima Pushkarna, Carey Radebaugh, Emily Reif,
and Ann Yuan. 2020. The Language Interpretability Tool: Extensible, Interactive
Visualizations and Analysis for NLP Models. https://doi.org/10.48550/ARXIV.
2008.05122

TensorFlow. 2022. AR Portrait Depth APL
model/ar_portrait_depth

three.js authors. 2022. Three.js. https://threejs.org

TikTok. 2022. Effect House. https://effecthouse.tiktok.com/

Unity. 2022. Shade Graph. https://unity.com/features/shader-graph

Unity. 2022. Unity. https://unity.com/products/unity-platform

Unity. 2022. XNode. https://assetstore.unity.com/packages/tools/visual-
scripting/xnode-104276

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. Advances in Neural Information Processing Systems 30 (2017). https:
//doi.org/10.5555/3295222.3295349

Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. 2021. Towards Real-
World Blind Face Restoration With Generative Facial Prior. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9168-9178.
https://doi.org/10.1109/CVPR46437.2021.00905

Zhihao Wang, Jian Chen, and Steven CH Hoi. 2020. Deep Learning for Image
Super-Resolution: A Survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence 43, 10 (2020), 3365-3387. https://doi.org/10.1145/3485132

James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda
Viégas, and Jimbo Wilson. 2019. The What-If Tool: Interactive Probing of Machine
Learning Models. IEEE Transactions on Visualization and Computer Graphics 26,
1(2019), 56-65. https://doi.org/10.1109/TVCG.2019.2934619

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s Transformers: State-of-the-Art Natural Language Processing.
ArXiv Preprint ArXiv:1910.03771 (2019). https://arxiv.org/pdf/1910.03771
Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie Cai. 2022. PromptChainer: Chaining Large Language
Model Prompts Through Visual Programming. In CHI Conference on Human
Factors in Computing Systems Extended Abstracts. ACM. https://doi.org/10.1145/
3491101.3519729

Tongshuang Wu, Michael Terry, and Carrie Cai. 2022. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In CHI Conference on Human Factors in Computing Systems. ACM.
https://doi.org/10.1145/3491102.3517582

Ning Xu, Brian Price, Scott Cohen, and Thomas Huang. 2017. Deep Image Matting.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2970-2979. https://doi.org/10.1109/CVPR.2017.41

Xiwei Xuan, Xiaoyu Zhang, Oh-Hyun Kwon, and Kwan-Liu Ma. 2022. VAC-CNN:
a Visual Analytics System for Comparative Studies of Deep Convolutional Neural
Networks. IEEE Transactions on Visualization and Computer Graphics 28, 6 (jun
2022), 2326-2337. https://doi.org/10.1109/TVCG.2022.3165347

Jun Yuan, Changjian Chen, Weikai Yang, Mengchen Liu, Jiazhi Xia, and Shixia
Liu. 2021. A Survey of Visual Analytics Techniques for Machine Learning.
Computational Visual Media 7, 1 (2021), 3-36. https://doi.org/10.1109/ACCESS.
2019.2958551

Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George
Sung, Chuo-Ling Chang, and Matthias Grundmann. 2020. Mediapipe Hands:
On-Device Real-Time Hand Tracking. ArXiv Preprint ArXiv:2006.10214 (2020).
https://arxiv.org/pdf/2006.10214

Yinda Zhang, Neal Wadhwa, Sergio Orts-Escolano, Christian Hane, Sean Fanello,
and Rahul Garg. 2020. Du?Net: Learning Depth Estimation From Dual-Cameras
and Dual-Pixels. In European Conference on Computer Vision. Springer, Springer,
582-598. https://doi.org/10.1007/978-3-030-58452-8_34

https://tthub.dev/tensorflow/tfjs-

https://doi.org/10.1109/CVPR46437.2021.00865
https://doi.org/10.48550/arXiv.1906.08172
https://doi.org/10.48550/arXiv.1906.08172
https://tfhub.dev/mediapipe/tfjs-model/selfie_segmentation/general/1
https://tfhub.dev/mediapipe/tfjs-model/selfie_segmentation/general/1
https://doi.org/10.1109/MCG.2019.2919033
https://doi.org/10.48550/arXiv.2203.15578
https://doi.org/10.48550/arXiv.2203.15578
https://doi.org/10.1145/3450626.3459872
https://doi.org/10.1109/CVPR46437.2021.01212
https://doi.org/10.1111/cgf.13178
https://doi.org/10.5555/2969239.2969250
https://doi.org/10.1145/169059.169119
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1002/gamm.202100008
https://doi.org/10.1002/gamm.202100008
https://doi.org/10.1145/3411764.3445538
https://scratch.mit.edu/
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.48550/arXiv.1901.05350
https://doi.org/10.48550/arXiv.1901.05350
https://ar.snap.com/en-US/lens-studio
https://doi.org/10.1109/ICASSP40776.2020.9053846
https://doi.org/10.1109/TVCG.2019.2934629
https://doi.org/10.1145/1518701.1518895
https://doi.org/10.1145/3528233.3530751
https://doi.org/10.48550/ARXIV.2008.05122
https://doi.org/10.48550/ARXIV.2008.05122
https://tfhub.dev/tensorflow/tfjs-model/ar_portrait_depth
https://tfhub.dev/tensorflow/tfjs-model/ar_portrait_depth
https://threejs.org
https://effecthouse.tiktok.com/
https://unity.com/features/shader-graph
https://unity.com/products/unity-platform
https://assetstore.unity.com/packages/tools/visual-scripting/xnode-104276
https://assetstore.unity.com/packages/tools/visual-scripting/xnode-104276
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.1109/CVPR46437.2021.00905
https://doi.org/10.1145/3485132
https://doi.org/10.1109/TVCG.2019.2934619
https://arxiv.org/pdf/1910.03771
https://doi.org/10.1145/3491101.3519729
https://doi.org/10.1145/3491101.3519729
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1109/CVPR.2017.41
https://doi.org/10.1109/TVCG.2022.3165347
https://doi.org/10.1109/ACCESS.2019.2958551
https://doi.org/10.1109/ACCESS.2019.2958551
https://arxiv.org/pdf/2006.10214
https://doi.org/10.1007/978-3-030-58452-8_34

CHI 23, April 23 - 28, 2023, Hamburg, Germany

APPENDIX

We elaborate on the survey of visual analytics systems, supported
nodes in Rapsai, more example applications, case study protocols,
and exit surveys.

A SURVEY OF VISUAL ANALYTICS SYSTEMS

In addition to instance-based visualization reviewed in related work,
for completeness, we add aggregated visualization literature in this
appendix. There are different techniques to visualize aggregated
metrics. For classification models, researchers often use the confu-
sion matrix. Talbot et al. [65] presented an interactive visualization
system called EnsembleMatrix for exploring the space of ensemble
models and demonstrated that the metric visualization helped users
with various ML experiences be able to combine multiple classi-
fiers in order to build an improved model. For regression models,
researchers typically use L1 or L2 norm loss [34]. Popular train-
ing tools such as TensorBoard [25] visualize loss plot by default
in its result page. We list the visual analytics systems in Table 1,
which summarizes the main dimensions we compared against. It
clearly shows that Rapsai addresses all multimedia formats, sup-
ports generative models, which few systems support. In addition,
Rapsai provides interactive data augmentation and no-code pipeline
authoring, which is unique for visual ML analytics systems.

B EXTENDED EXAMPLES OF SUPPORTED
NODES IN RAPSAI

Data Augmentation in the Image Processor Node

In Fig. 14, we present more examples of interactive data augmen-
tations using the Image Processor Node of the Effect Nodes
category. In the Image Processor Node, the crop tab allows users to
select a region of the image or video as output, move the selection,
and instantly see the impact on model performance; the resize tab
allows users to change the aspect ratio of the image and verify if
the model is adaptive to various resolutions; the shear and rotate
tabs allow users to displace the image by an amount proportional
to the y coordinates and rotate the image; the brightness, con-
trast, blur, noise tabs allow users to change the brightness levels,
contrast levels, blurriness, and noisiness of the image with GPU
acceleration.

Users can further connect the intermediate processed images
with ML models, then output the results in Image Comparison
nodes to obtain side-by-side comparison (Fig. 15) without coding
efforts.

B.1 Data Augmentation in the Audio Processor
node

In the Audio Processor Node of the Effect Nodes category, we
provided researchers a variety of background noise, including park,
bus, cafe, construction, downtown, group meeting, party, crowd, street,
rain, restaurant, shopping mall, supermarket, and train. Users can
change the volume of the background noise and see how their
model performs under different noise levels.

Du et al.

B.2 More Examples of the Shader Effects Node

In the Shader Library node, we provide a list of pre-written shader
effects for virtual conferences including reflections, sketching, pixe-
lation, and 3D environments, as shown in the supplementary video
and Fig. 16. Though Rapsai offers a no-coding environment for
most ML practitioners, it also provides advanced users with Shader
Effects Nodes to write their own fragment shader for visual effects
in GLSL. This enables custom depth-based effects such as relighting
and fog effects, shown in the Fig. 9, and also enables rapidly tuning
graphics parameters such as kernel sizes of Gaussian blur for virtual
background with foreground segmentation. We further present five
example shader effects in Fig. 16, including television effects with
distortion, halftone effects, tone-transfer effects, vignette effects,
and a 3D effect by projecting the input image onto a virtual screen.

B.3 Lobby Node for Streaming Cross-device
Videos

The Lobby Node allows users to stream up to four camera videos
from other devices (e.g., a mobile phone) as input. User can join
an URL provided by the Lobby Node with a specific Group ID to
start streaming. The Lobby Node can access video streams from all
the joined clients and output stream through an ML or a graphics
pipeline on a more powerful device (e.g., a laptop) via WebRTC. This
is useful when an ML model is trained for on-device use cases such
as a mobile phone and ML practitioners need to perform testing or
user studies with on-device in-the-wild input.

C ADDITIONAL APPLICATIONS

In addition to the four case studies presented in the main paper, we
discuss additional applications in this section.

C.1 Bridging Large Language Models and
Computer Graphics Applications

Since our case study, we have further extended Rapsai’s node library
with text input and large language models such as ChatGPT. In
Fig. 18, we prompt ChatGPT [20, 63], a large language model by
OpenAl with “write a shadertoy shader to show edges in an image”.
Then the second output from the ChatGPT node extracts the code
snippets from the responses using regular expression matching.
The fragment shader code from ChatGPT is applied to the input
camera node and outputs a video stream with highlighted edges.
Please refer to the supplementary video for more results. Please note
that this is only a preliminary exploration into bridging language
prompts and graphical applications and we hope future work would
further extend this direction.

C.2 Augmented Reality Stickers with Real-time
Facial Landmarks

With Mediapipe FaceMesh models’ [38], ML prototypers can use
Rapsai to quickly build virtual try-on applications with real-time
facial landmarks (Fig. 19).

C.3 Compare Image Classification Results

Though Rapsai is not designed for image classification tasks, we
also support comparing image classification results with simple

“MediaPipe FaceMesh: https://google.github.io/mediapipe/solutions/face_mesh.html

https://google.github.io/mediapipe/solutions/face_mesh.html

Rapsai

CHI 23, April 23 - 28, 2023, Hamburg, Germany

aggregated instance-based . non-developer model interactive data pipeline

system visualization visualization domain supported model types users comparison augmentation authoring
EnsembleMatrix [65] v - image classification v - - -
TensorBoard [25] - all all - - - -
LIME [54] - v image classification v - - -
What-If [77] v - image classification v v - -
Boxer [21] v - image classification - - - -
LIT [67] v v language classification v - - -
DeepCompare [47] v - language classification v v - -
NJM-Vis [36] v v language classification v v - -
VAC-CNN ([382] v v image classification v v - -
ExplAlner [62] v v image classification - - - -
VASS [27] - v image generative - v - -

image, audio, enerative,

Rapsai) 4 %ideo flassiﬁcation 4 4 4 4

Table 1: Overview of target domains and key features of Rapsai and prior visual analytics systems for machine learning.

Image Processor [ar—

Resize
100 150

Reset | Reset

Image Processor Image Processor

jhiness Contrast
2 5

100 —— 100 100

Reset | Reset

Rotate Brightness.

Roset | Rosat

(e) brightness (f) contrast

(g) blur (h) noise

Figure 14: Supported visual data augmentation operations in our Image Processor node: (a) crop, (b) resize, (c) shear, (d) rotate,

(e) brightness, (f) contrast, (g) blur, (h) noise.

resize

brightness contrast

(a) intermediate results of interactive data augmentation applied onto a single input image

rotate

(b) side-by-side comparison of segmentation results with different augmentation techniques

Figure 15: Rapsai enables ML practitioners to quickly generate side-by-side comparison of a wide range of data augmentation

techniques with an image in-the-wild.

visualizations, such as bar charts, as shown in Fig. 20. Many partici-
pants in our case studies also play with this pipeline and expressed
their interest in having aggregated metrics together with this side-

by-side comparison. With Rapsai, our major focus is to deliver a
rapid prototyping tool for multimedia applications and we retain

this feature to be further implemented by the community after
releasing the code. Our study participants proposed an interesting
direction of combining aggregated metrics. For instance, P9 sug-
gested: “T'd like to have image classification models with smoothing

CHI 23, April 23 - 28, 2023, Hamburg, Germany Du et al.

television half-tone tone-transfer vignette

Figure 16: Shader Effects nodes allows users to choose a pre-defined shader from a library of over 50 visual effects or write their
own fragment shader using GLSL.

Lobby Live Camera Fragment Shader Output Stream
aggravating- OUTPUT CODE
O RemoveVideo O

garden'’s Lobby: i
hello - .
o " -
mellow-p... X ~ —— = O
A\

| o (¢]
9 > o
P >
Lobby o) Fragment Shader
>3
o o

O outputStream O

Figure 17: Lobby nodes allows users to stream camera videos from another device (e.g., mobile phone) and run the pipeline on a
another device (e.g., a laptop).

m 1 1

Fragment Shador

9-9-9-0-0-0

(a) Rapsai pipeline with LLMs (b) input text node and ChatGPT node

(c) processed video with edge highlighting

Figure 18: Rapsai can automatically extract code snippets from ChatGPT results and apply real-time visual effects to an input
video stream. (a) shows the Rapsai pipeline in the node-graph editor, (b) shows our input prompts and the responses from
ChatGPT, and (c) shows the input video frame and the resulting output.

> Camera O O Facelandmark O

o ' o]
o AR Sticker

Image O

(a) camera input

(b) AR sticker effect (c) example AR sticker pipeline

Figure 19: ML prototypers can use Rapsai to quickly build AR sticker applications using real-time tracking of facial landmarks.

filters, and see how it averages the probabilities of a class.”. At the current stage, Rapsai can act as a complement to existing tools such

Rapsai

as Colab, and speed up the prototype and collaboration process in
image classification.

C.4 Photo Enhancement with GFPGAN

Using a pretrained GFPGAN model [75], which can be used to
restore old photos or improve Al-generated faces, one of the authors
constructed a photo-enhancement pipeline in less than ten minutes
using Rapsai, as illustrated in Fig. 21. The pipeline is built with only
seven nodes in Rapsai: input node, image processor, preprocessing
node, customized model node, postprocessing node, tensor to image
node, and image comparison node.

D FULL LIST OF NODES IN RAPSAI

We list all the supported nodes in Rapsai before the case study. Note
that Rapsai is extendable for expert users by adding new nodes in
JavaScript.

D.1 Input nodes

(1) image: capture a photo from webcam, upload from hard
drive, or fetch from a list of remote URLs.

(2) video: record a video with external webcam or upload a
video from disk or YouTube.

(3) audio: record sounds from microphone, or upload audio files
from disk or Internet

(4) live camera: use live camera stream, similar for the live
audio node.

(5) remote stream: stream input from another device (e.g., mo-
bile phone) via WebRTC, by opening a URL of the page with
a lobby node.

(6) lobby: create a WebRTC server to accept video streaming
from other devices. Remote stream nodes that connect to
the lobby node with the same name are sharing output via
WebRTC streaming.

D.2 Effect nodes

(7) image processor: crop and translate a region of interest
in the input to verify an image model’s invariance to trans-
lation; rotate, shear, resize an image to examine potential
biasing issues in the training sets; apply blur and noise to
test a model’s robustness.

(8) image mixer: mix images with GPU-based blending modes'°

(9) audio processor: trim the audio, change volume, and add
background noise from a collection of 17 presets.

(10) fragment shader: program and apply a screen-space graph-
ical shader effect.

(11) shader library: offers a pre-defined list of shader code to
avoid coding into the “fragment shader”.

D.3 Model nodes

(12) custom model runner: enter the URL of an TensorFlow.js
model or upload a TensorFlow model into the pipeline.

(13) body segmentation: run a deployed MediaPipe body seg-
mentation model.

Ohttps://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/
globalCompositeOperation

CHI 23, April 23 - 28, 2023, Hamburg, Germany

(14) audio denoising: run a deployed MediaPipe body segmen-
tation model.

(15) MobileNet: run a deployed MobileNet model for image clas-
sification.

D.4 Output nodes

(16) image viewer node displays an image.

(17) audio player: play a single audio output.

(18) image comparison: qualitatively compare output from mul-
tiple models with zoom-in tools.

(19) audio comparison: qualitatively compare output from mul-
tiple models with automatic track switching.

(20) JSON viewer: read the raw output from a model for debug-
ging.

(21) bar viewer: view the classification results from a model such
as MobileNet.

(22) 3D model viewer: view 3D models from an URL or tensor.

(23) tensor to image: view a tensor as images.

(24) tensor to depthmap: view a tensor as depthmaps with
different transfer functions.

(25) output stream: see remote video streams from the lobby
node input.

D.5 Tensor nodes

(26) preprocess image: converts an input image to a 4D tensor
as an input that is required by most image models.

(27) tensor picker: select a tensor from an array of output ten-
sors.

(28) tensor postprocess: convert a tensor to an image and apply
normalization calculators.

(29) binary op: apply “and”, “or”, “xor”, and “not” operations
between two input tensors.

(30) clip by value: clamp the values of an input tensor.

(31) crop and resize: crop and resize a two-dimensional tensor.

(32) preprocess tensor: normalize a tensor, expand dimensions,
and optionally convert to grayscale image for many genera-
tive models.

(33) postprocess tensor: normalize and resize a tensor for image
output.

(34) tensor picker: select a certain tensor from an array of model
output. Note that most models only have one output so it is
optional.

(35) remap value range: select an input and an output ranges
to remap tensor values.

D.6 Miscellaneous nodes
(36) webpage: append a Google Form or a custom webpage for
filling in surveys.
(37) image size: obtain image size for outputting to some models.

E STUDY PROTOCOLS
E.1 Formative Study Protocol

[Introduction] (Start timing! 60 min max.)

Hello, my name is X.

First, I would like to thank you for your participation. Today,
you will be a participant in a formative study regarding machine

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation

CHI 23, April 23 - 28, 2023, Hamburg, Germany

mage Mobilenet result (v1)
R Eonmiian ca 1
Yl - Egyptian ca 51
A e
ﬂ e ! &3 e bbby ot
> abby, tabby ca

i,

(a) input image (b) MobileNet v1 result

Mobilenet result (v2)

(c) MobileNet v2 result

Du et al.

- “} T e 7t sartener

O—0 Barviewer2

(d) Rapsai pipeline

Figure 20: Rapsai also supports qualitatively comparing image classification models such as MobileNet at the instance level.

Image Comparison

(a) results comparison of GFPGAN

3 O Preprocessimage O
Image Processor ° Remap Value
N S © Trange @

®
& Image Comparison

(b) pipeline of GFPGAN

Figure 21: Rapsai also supports rapidly building augmented reality effects with publicly available models such as GFPGAN.

learning and rapid prototyping. Our goal is to identify the pain
points when identifying key issues of machine learning models,
when comparing performance of different models, and when iter-
ating on models development between training and deploying in
products.

Before we begin the interview, we need you to complete a consent
form. After this, we will begin.

Your data will be kept anonymous. Additionally, as a researcher
I have no position on this topic and ask that you be as open, honest,
and detailed in your answers as possible. Do you have any questions
before we begin?

The interview is broken down into three components: 1) Your
background in deep learning. 2) Your challenges of the current
workflow and TensorBoard. 3) Survey about our envisioned web-
based rapid prototyping platform.

[Background Questions] (5 - 10 min)

(1) What kinds of neural networks projects have you worked

on?

(2) What kinds of challenges have you faced when tuning deep

learning models?

(3) What kinds of online resources have you found useful when

tuning deep learning models?

(4) How long have you spent on examining individual examples

when tuning neural networks?

[Process Questions] (15 - 20 min)

(1) Would you like to describe your current ML debugging pro-
cedure of model quality to me?

(2) What do you like or dislike about the tool you are currently
using (e.g., TensorBoard)?

(3) What information you wished to know about a neural net-
work that is not visualized in the current tool?

(4) Have you ever used MediaPipe Editor? What do you like or
dislike about MediaPipe Editor?

(5) What else editor would you like to use for debugging model
quality?

(6) How do you make high-level design decisions of a neural
network for now?

(7) How do you usually test the robustness of a neural network?

(8) What methods do you use for data augmentation?

(9) How do you infer the generalizability of a neural network?

[

(

(

Envisioned Rapsai Questions] (20 - 30 min)

1) What’s your first impression of the interface?

2) What visualization technique would like to have in this in-
terface?

(3) What features would you like to add to the envisioned rapid
prototyping system?

(4) What suggestions would you like to give to improve the de-
sign of the virtual interfaces of a rapid prototyping platform?

(5) What outcomes would you like to get from this pipeline
editor? For example, a executable demo, a pipeline graph, or
something else.

(6) With a comparison node, what information you might want
to gather from it?

(7) What criteria would you want to use when comparing two
deep learning models?

(8) What information would you like to have to increase confi-
dence in the value of the results?

E.2 Case Study Protocol
[Introduction]
Same as Section E.1.
[Background Questions]

Rapsai

Same as Section E.1.
[Build a Node Graph Pipeline]

(1) To get started, let’s watch a 1-min tutorial to have an overview
of the Rapsai system.

(2) Next, we would like to instruct you to build <a specific
pipeline> to use <specific> ML models.

(3) What’s your impression of the node-graph building proce-
dure?

(4) What’s good and what may be improved?

[Interactive Data Augmentation]

(1) Next, we would like to instruct you to perform interactive
data augmentation to your pipeline.

(2) What can you learn from the interactive data augmentation
procedure?

(3) Have you ever applied similar data augmentation in your
ML workflow?

(4) Do you think it may be useful to your ML workflow?

(5) What’s your impression of the interactive data augmentation
interface?

(6) What’s good and what may be improved?

[Compare the Models]

(1) Next, we would like to instruct you to use the comparison
node and data augmentation nodes to compare two or more
models.

(2) Which model do you think is preferred to be used in produc-
tion and why?

(3) What’s your impression of the interactive data augmentation
interface?

(4) Do you think it may be useful in your ML workflow?

(5) What can you learn from the interactive data augmentation
procedure?

(6) What’s good and what may be improved?

[Discussion]

< Ask the participants to explore freely using Rapsai >

(1) What features would you like to add to Rapsai?

(2) Do you have any suggestions to improve the design of Rap-
sai?

(3) What product questions would you like to answer using
Rapsai?

That’s all for our case study. Thank you for your participation

and we would like to hear more feedback from your experience in
your future workflow!

E.3 Exit Survey

Inspired by Wu et al. [80], we invited participants to fill in an exit
survey after the case studies. We included screenshots and URLs

CHI 23, April 23 - 28, 2023, Hamburg, Germany

for both Rapsai and Colab to assist the participants in complet-
ing the survey. The participants self-rated their experience using
Rapsai and Colab on five aspects in the form of seven-point Likert
scale [42]. Each question was presented twice, once on Colab and
once on Rapsai, randomly in a counter-balanced way. The partic-
ipants explained their reasoning alongside their ratings and also
answered three free-form questions as follows:

Likert-scale questions:

(1) Match goal: I'm satisfied with my final results from [Rap-
sai/Colab]; they met my task goals (e.g., comparing two
model performances and testing model robustness).

(2) Think through: The [Rapsai/Colab] system helped me
think through what kinds of outputs I would want to com-
plete the task goal and how to complete the task.

(3) Transparent: The [Rapsai/Colab] system is transparent
about how it arrives at its final results; I could roughly track
its progress.

(4) Controllable: I felt I had control creating with the [Rap-
sai/Colab] system. I can steer the system towards the task
goal.

(5) Collaborative: In [Rapsai/Colab], I felt I was collaborating
with the system to come up with the outputs.

Free-form questions:

(1) Timing: How long do you estimate it takes you to create an
ML application pipeline using [Rapsai/Colab], and why?

(2) Difference: What were the differences, if any, between the
experience of completing the task using Rapsai and Colab?
How about comparing to other debugging / visualization
systems if you have been using any in the past?

(3) Vision: If you were using machine learning models in your
work, in what situations would you prefer to use Rapsai/Colab?
Can you think of 1-3 concrete examples?

Please note the following limitations of the exit survey:

(1) The survey could have been conducted more effectively by
comparing Rapsai to a sandbox system [80], whose Ul resem-
bles Rapsai’s but lacks the node-graph editor feature. Due to
time constraints, we were unable to create a Sandbox system
that met our requirements without the node-graph editor
for another round of case studies. We expect that a future
long-term case study will capture the merits and drawbacks
of Rapsai in greater detail.

(2) The modest sample size (N=15) of our survey within the
same organization may not be representative of the AI+HCI
community as a whole.

(3) In our case study, participants were obliged to use Rapsai to
complete the tasks, since not all tasks are easily accomplished
in Colab.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Visual Analytics of ML Models
	2.2 Pipeline vs. model interpretability
	2.3 Visual Programming of Machine Learning and Graphics Applications

	3 Formative Study and Findings
	3.1 Formative Study with Semi-structured Interviews and Mock-up
	3.2 Tasks and Challenges
	3.3 Discussion of the Envisioned System

	4 Design Goals
	5 Rapsai: System Architecture
	5.1 Nodes Library
	5.2 Node-graph Editor
	5.3 Preview Panel
	5.4 Node Inspector
	5.5 GPU Pipeline

	6 Case Studies
	6.1 Study Protocol and Demographics
	6.2 CS1: Portrait Depth with Relighting Effects
	6.3 CS2: Scene Depth for Visual Effects
	6.4 CS3: Alpha Matting for Virtual Conferences
	6.5 CS4: Audio Denoising for Communication

	7 Findings and Discussion
	7.1 Rapsai vs. Colab: Less Control but More Transparent and Collaborative
	7.2 Rapsai Accelerates Creating and Mixing Multimedia Pipelines With ML Models
	7.3 Rapsai Can Assist in Identifying Issues with ML Models and Training Sets
	7.4 Rapsai Helps Model Selection, Learning From Pipelines, and Study deployment

	8 Limitations and Future Work
	9 Conclusion
	Acknowledgments
	References
	A Survey of Visual Analytics Systems
	B Extended Examples of Supported Nodes in Rapsai
	B.1 Data Augmentation in the Audio Processor node
	B.2 More Examples of the Shader Effects Node
	B.3 Lobby Node for Streaming Cross-device Videos

	C Additional Applications
	C.1 Bridging Large Language Models and Computer Graphics Applications
	C.2 Augmented Reality Stickers with Real-time Facial Landmarks
	C.3 Compare Image Classification Results
	C.4 Photo Enhancement with GFPGAN

	D Full List of Nodes in Rapsai
	D.1 Input nodes
	D.2 Effect nodes
	D.3 Model nodes
	D.4 Output nodes
	D.5 Tensor nodes
	D.6 Miscellaneous nodes

	E Study Protocols
	E.1 Formative Study Protocol
	E.2 Case Study Protocol
	E.3 Exit Survey

