
From   Plane   Crashes   to   Algorithmic   Harm:   Applicability   of   Safety   
Engineering   Frameworks   for   Responsible   ML   

                      

                              
                          

                            
                          
              
              

              
      

  

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3581407

    
  
  
  

Shalaleh   Rismani∗  
McGill   University   

Montreal,   QC,   Canada   

Renee   Shelby   
Google   Research   

San   Francisco,   CA,   USA   

Andrew   Smart   
Google   Research   

San   Francisco,   CA,   USA   

Edgar   Jatho   
Naval   Postgraduate   School   

Monterey,   CA,   USA   

Josh   A.   Kroll   
Naval   Postgraduate   School   

Monterey,   CA,   USA   

AJung   Moon   
McGill   University   

Montreal,   QC,   Canada   

Negar   Rostamzadeh   
Google   Research   

Montreal,   QC,   Canada   

ABSTRACT   
Inappropriate                        
systems   lead   to   negative   downstream   social   and   ethical   impacts   –   
described   here   as   social   and   ethical   risks   –   for   users,   society,   and   
the   environment.   Despite   the   growing   need   to   regulate   ML   systems,   
current   processes   for   assessing   and   mitigating   risks   are   disjointed   
and   inconsistent.   We   interviewed   30   industry   practitioners   on   their   
current   social   and   ethical   risk   management   practices   and   collected   
their   frst   reactions   on   adapting   safety   engineering   frameworks   
into   their   practice   –   namely,   System   Theoretic   Process   Analysis   
(STPA)   and   Failure   Mode   and   Efects   Analysis   (FMEA).   Our   fndings   
suggest   STPA/FMEA   can   provide   an   appropriate   structure   for   social   
and   ethical   risk   assessment   and   mitigation   processes.   However,   
we   also   fnd   nontrivial   challenges   in   integrating   such   frameworks   
in   the   fast-paced   culture   of   the   ML   industry.   We   call   on   the   CHI   
community   to   strengthen   existing   frameworks   and   assess   their   
efcacy,   ensuring   that   ML   systems   are   safer   for   all   people.   

design and deployment of machine learning (ML)

CCS   CONCEPTS   
•  General   and   reference   →   Evaluation.  
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1   INTRODUCTION   
During   a   panel   at   the   1994   ACM   Conference   on   Human   Factors   in   
Computing   Systems   (CHI),   prominent   scholars   from   diferent   disci-
plines   convened   to   discuss   "what   makes   a   good   computer   system   
good."   Panelists   highlighted   considerations   for   safety,   ethics,   user   
perspectives,   and   societal   structures   as   critical   elements   for   mak-
ing   a   good   system   [40].   Almost   28   years   later,   we   posit   that   these  
epistemological   perspectives   need   to   be   in   a   deeper   conversation   
for   designing   and   assessing   machine   learning   (ML)   systems   that   
challenge   the   conventional   understanding   of   safety   and   harm.   

The   development   and   use   of   ML   systems   can   adversely   impact   
people,   communities,   and   society   at   large   [12,   33,   82,   88,   120,   127],   
including   inequitable   resource   allocation   [3,   21,   107],   perpetuating   
normative   narratives   about   people   and   social   groups   [54,   122],   and   
the   entrenchment   of   social   inequalities   [1,   69,   75].   We   frame   these   
adverse   impacts   broadly   as   social   and   ethical   risks.   To   manage   such  
risks,   quantitative   [38,   65],   qualitative   [43,   70,   81,   98],   and   episte-
mological   frameworks   [32,   45,   82]   have   been   proposed.   Recently,   
scholars   in   the   responsible   ML   community   have   advocated   for   use   
of   safety   engineering   frameworks   for   managing   social   and   ethical   
risks   [30,   98].   Safety   engineering   frameworks   ofer   an   essential   
perspective   for   managing   social   and   ethical   risks   for   ML   systems   
for   two   main   reasons.   Firstly,   these   frameworks   provide   the   nec-
essary   analytical   structure   to   connect   harms   to   potential   failures   
and   hazards   for   existing   design   choices   and   streamline   appropriate   
mitigation   development.   Secondly,   these   frameworks   could   inform   
active   regulatory   and   standards   activities   taking   place   internation-
ally   [4,   36,   44,   61,   90].   Despite   the   growing   body   of   empirical   work   
on   the   operationalization   of   responsible   ML   practices   [24,   73],   there   
is   a   minimal   understanding   of   whether   proposed   safety   engineer-
ing   frameworks   are   adopted   in   industry   and   how/if   practitioners,   
tasked   with   managing   social   and   ethical   risks,   perceive   or   use   these   
methods.   

Recognizing   the   potential   advantages   of   safety   engineering   
frameworks   and   inspired   by   the   1994   panelists,   we   examine   the   
dialogue   between   these   frameworks   and   understandings   of   social   
and   ethical   risks   of   ML   systems.   First,   we   report   on   ethical   and   
social   risk   management   practices   currently   used   in   the   industry.   
Second,   we   take   a   developmental   approach   to   examine   how   safety   
engineering   frameworks   can   improve   existing   practices.   We   chose   

https://doi.org/10.1145/3544548.3581407
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two of the most successful safety engineering frameworks used in 
other sociotechnical domains [17, 93, 119]: Failure Mode and Ef-
fect Analysis (FMEA) [20] and System Theoretic Process Analysis 
(STPA) [66, 92], which we describe in detail in Section 2. 

We conducted 30 semi-structured in-depth interviews with in-
dustry practitioners who shared their current practices used to 
assess and mitigate social and ethical risks. We introduced the two 
safety engineering frameworks, inviting them to envision how they 
might employ them to assess the ethical and social risks of ML 
systems. The results of our study address the following research 
questions: 

• RQ1: Which practices do ML practitioners use to manage 
social and ethical risks today? What challenges do practi
tioners face in their attempts to manage social and ethical 
risks? 

• RQ2: What are ML practitioners’ perspectives towards using 
FMEA and STPA-like processes for social and ethical risk 
management? How could safety engineering frameworks 
such as FMEA and STPA inform and improve current prac
tices? 

We contribute to the emerging research on managing the social 
and ethical risk of ML systems in human-computing scholarship 
and responsible ML communities by ofering: 

• An overview of how practitioners defne, assess, and mitigate 
social and ethical risks; 

• A set of insights on how FMEA and STPA could inform 
existing practices along with their perceived advantages and 
disadvantages; 

• Future research directions and calls to action for HCI and 
responsible ML scholars. 

Our fndings illustrate safety engineering frameworks provide 
valuable structure for investigating how social and ethical risks 
emerge from ML systems’ design and integration in a given con-
text. However, successfully adapting these frameworks requires 
solutions to existing organizational challenges for operationaliz-
ing formal risk management practices. Moreover, the results of 
our work motivate further theoretical and applied research on the 
adaptation of such frameworks. The remainder of this paper is orga-
nized as follows. We start by providing an overview of the current 
discourse in responsible ML development and contextualize the 
relevance of the safety engineering frameworks (Section 2). We 
outline our interview protocol and analysis methods in Section 3 
and highlight key fndings in Section 4. We discuss the value and 
shortcomings of applying safety engineering frameworks in light 
of current practices and call on the research community to further 
examine and strengthen these frameworks for ethical and social 
risk management of ML systems in Section 5. 

-

-

2   BACKGROUND   
Analyzing social and ethical implications of algorithmic systems is 
not new to computing researchers and practitioners [9, 29, 41, 91]. 
In the literature, terms such as harm [120], failure [97], and risk [61, 
127] are often used to describe adverse impacts of ML systems. 
While there is currently no agreed upon defnition of these terms 
and their relationships, we use the phrase social and ethical risk 
to frame broadly the adverse social and ethical implications ML 

systems can have on users, society, and the environment. This 
working defnition provides conceptual consistency in this paper 
and is not meant to be normative. In the remainder of this section, 
we contextualize current discourses on social and ethical risks in ML 
to situate our study design, fndings, and discussion. We highlight 
current epistemological perspectives and tools for responsible ML 
development and detail the safety engineering frameworks (FMEA 
and STPA). 

2.1   Epistemological   perspectives   for   
anticipating   and   mitigating   harms   of   ML   
systems   

Scholars have proposed various methods for anticipating social and 
ethical impacts [24, 37, 109]. Anticipating harm involves thinking 
about the values [87, 112] and afordances of ML systems [15], 
with specifc attention to how social norms and power dynamics 
constitutively shape adverse impacts of ML systems [10, 11]. The 
process of anticipation is aided by critical epistemologies that center 
the needs and standpoints of socially oppressed groups, including 
critical race theory [10, 45, 56, 88], post-colonial theories [82], and 
queer [116], and feminist HCI [7]. 

As social and ethical impacts are co-constituted through the in-
terplay of technical system components, and the social world [51], 
design methodologies attentive to these dynamics support more 
meaningful harm anticipation and mitigation. For instance, Value 
Sensitive Design that examines what value tensions ML systems 
create or resolve [39, 126], supports increased stakeholder coordi-
nation [124] and consideration of technology from diferent social 
standpoints and perspectives [6]. Similarly, participatory design 
methods can center the needs of users, communities, and other 
stakeholders often excluded from the design process [132], or algo-
rithmic governance [63, 64], especially when incorporating feminist 
epistemologies [7, 48]. Speculative design can also help designers 
imagine more socially just and racially equitable technological fu-
tures [46]. 

While these critical epistemological perspectives and design 
methodologies do not explicitly assess risk, they provide theoreti-
cal grounds for examining and mitigating social and ethical risk. 
We examine whether and how such epistemological perspectives 
inform current social and ethical risk management practices and 
discuss the possibilities of formally integrating them with safety 
engineering frameworks based on our fndings. 

2.2   Responsible   ML   tools,   processes,   and   
emerging   regulations   

With increased deployment of ML systems and reported harms 
[12, 88, 127], there is a movement towards formalizing quantita-
tive and qualitative tools for responsible ML development. Tradi-
tionally, ML system evaluations [49, 105] prioritized assessing and 
optimizing for a narrow set of performance metrics, mistakenly 
treating these measurements (e.g., the accuracy of a test set) as a 
target rather than a proxy for certain risks [71]. Recognizing these 
shortcomings [53], ML scholars proposed alternative methods to 
enable more comprehensive evaluation. These methods include 
assessing computational fairness with alternative statistical defni-
tions [19, 23, 25, 26], quantifying model interpretability based on 
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statistical   properties   [83,   95],   evaluating   robustness   to   distribution   
shift   [22,   57,   118]   and   examining   model   performance   when   exposed   
to   adversarial   examples   [35,   106,   130,   131].   In   parallel,   signifcant   
efort   has   also   focused   on   developing   mixed-method   (qualitative   
and   quantitative)   processes   to   increase   accountability   and   assess   
ML   systems   contextually.   Scholars   have   proposed   model   cards   [81],   
datasheets   [43]   and   auditing   tools   [16,   98,   111]   to   improve   the   trans-
parency   and   quality   of   model   and   data   practices.   Human   rights   and   
algorithmic   impact   assessments   aid   the   identifcation   of   potential   
societal   level   harms   by   examining   model   deployment   in   a   given   
context.   As   part   of   this   movement   towards   responsible   ML   de-
velopment,   a   few   scholars   have   also   proposed   the   use   of   safety   
engineering   frameworks   for   assessing   and   mitigating   potential   
risks   of   ML   systems   [30,   98].   Parallel   to   tool   and   process   develop-
ment,   there   is   a   rapidly   emerging   set   of   international   standards   
[90],   policies   [123],   and   regulatory   frameworks   [36]   that   examine   
ML   systems   from   a   risk-based   perspective.   [62,   76,   84].   Considering   
that   existing   responsible   ML   tools   are   not   framed   explicitly   as   risk   
management   frameworks,   we   examine   which   tools   practitioners   
self-report   as   a   component   of   their   social   and   ethical   risk   man-
agement   practice.   Furthermore,   we   investigate   what   pain   points   
remain   as   they   execute   such   practices   and   examine   if   using   safety   
engineering   frameworks   could   address   some   of   these   concerns   and   
ease   the   upcoming   eforts   to   meet   regulations.   

HCI schol-
arship                           
practitioners   has   identifed   key   challenges   [47,   100],   including   lim-
ited   defnitional   consensus   on   key   terms   [58]   and   the   underlying   
need   to   translate   principles   into   actionable   guidance   to   catalyze   
transformative   organizational   change   [28,   74].   Practitioners   often   
work   in   multidisciplinary   environments,   where   technical   and   non-
technical   stakeholders   draw   on   diferent   epistemologies,   and   per-
spectives   [85],   posing   challenges   to   cohesive   anticipation   and   iden-
tifcation   of   harms   and   risks   [129].   In   terms   of   risk   assessment   
specifcally,   Raji   et   al.   [98]   underscore   how   the   often-rapid   pace   
and   piecemeal   implementation   of   risk   assessment   inhibit   holistic   
forecasting   of   potential   risks   and   their   relationships   to   technical   
system   components.   

While   there   is   a   growing   literature   on   practitioner   needs,   limited   
work   has   focused   on   identifying   existing   social   and   ethical   risk   
management   practices   and   ML   practitioners’   perspectives   towards   
safety   engineering   frameworks.   Martelaro   et   al.’s   [77]   study   of   the   
applicability   of   hazard   analysis,   and   the   needs   of   practitioners   is   a   
notable   exception.   From   an   exploratory   interview   study   with   eight   
participants,   Martelaro   et   al.   conclude   existing   hazard   analysis   tools   
from   safety   engineering   cannot   readily   support   ML   systems   and   
highlight   how   lack   of   team   incentives,   the   pace   of   industry   devel-
opment,   and   underestimating   the   efort   needed   to   create   robust   ML   
systems   challenge   the   implementation   of   these   tools.   Nonetheless,   
Martelaro   et   al.   emphasize   frameworks   are   necessary   to   support   
risk   management   for   responsible   ML   practice.   

examining the perceptions and needs of responsible ML

2.3   Introducing   safety   engineering   approaches   
to   failure   and   hazard   analysis   

Safety engineering is a generic term for an assemblage of engi-
neering analyses and management practices designed to control 
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dangerous situations arising in sociotechnical systems [5, 34, 67]. 
These analyses and practices identify potential hazards or system 
failures, understand their impact on users or the public, investi-
gate causes, develop appropriate controls to mitigate the potential 
harms, and monitor systems [114]. Safety engineering crystallized 
as a discipline around WWII when military operators recognized 
losses and accidents were often the result of avoidable design faws 
in technology and human factors [125]. Since then, implementa-
tion of safety engineering in domains such as medical devices and 
aerospace has signifcantly reduced accidents and failures [104]. 

We motivate the use of safety engineering for social and ethical 
risk management given its strength in drawing attention to the 
relationships between risks, system design, and deployment [30, 
98]. As ML systems introduce interdependencies between the ML 
artifact, its operational environments, and society at large [102], 
safety frameworks can provide a strong analytical grounding for 
risk management [34]. Moreover, harms from ML systems are often 
recognized after they have occurred [99] at which point mitigating 
them is signifcantly more challenging and costly [20]. In this study, 
we focus on two safety engineering techniques designed to identify 
and address undesired outcomes early in development [5, 34, 67]: 
a failure analysis technique for improving reliability (FMEA) and 
a hazard analysis technique for identifying unsafe system states 
(STPA). 

2.3.1 Failure Mode and Efects Analysis (FMEA). FMEA, a long-
standing reliability framework, takes an analytic reduction (i.e., 
divide and conquer) approach to identifying and evaluating the 
likelihood of risk for potential failure modes (i.e., the mechanism of 
failure) for a technological system or process [20]. FMEA has been 
used in high consequence projects, such as space shuttle [52] and 
U.S. nuclear power plant safety [72]. The FMEA framework helps 
uncover potential failure modes, identify the likelihood of risk, and 
address higher risk failure modes for a system (i.e., bicycle), com-
ponent (i.e., bicycle’s tire), or process (i.e., bicycle assembly) [20]. 
FMEA is a multi-step framework through which steps are iteratively 
performed by FMEA and system experts over the development life 
cycle [20] (refer to Figure 1): 

(1) List out the functions of a component/system OR steps of 
a process (e.g., everything the system/process needs to per
form). 

(2) Identify potential failure modes, or mechanisms by which 
each function or step can go wrong. 

(3) Identify the efect, or impact of a failure, and score its severity 
on a scale of 1 – 10 (least to most severe). 

(4) Identify the cause, or why the failure mode occurs, and score 
its likelihood of occurrence on a scale of 1 – 10 (least to most 
likely). 

(5) Identify controls, or how a failure mode could be detected, 
and score likelihood of detection on a scale of 1 – 10 (most 
likely to least likely). 

(6) Calculate Risk Priority Number (RPN) by multiplying the 
three scores; a higher RPN indicates a higher risk level and 
develop recommended actions for each failure mode and pri
oritize based on RPN. 

-

-
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Figure 1: Steps for conducting an FMEA [20] 

Figure 2: Steps for conducting an STPA [66] 

2.3.2 System Theoretic Process Analysis (STPA). The hazard anal-
ysis method, STPA, is a relatively new technique taking a system 
theoretic perspective towards safety [67]. It maps elements of a 
system, their interactions, and examines potential hazards (i.e., 
sources of harm). While analytic reduction requires a user of the 
tool to imagine interactions between components, modeling at the 
system level is meant to capture emergent phenomena that are well-
described only by component interactions rather than individual 
component behavior. STPA has been employed in NASA’s space 
program [50], the nuclear power industry [113], and the aviation 
industry [121]. 

In contrast to FMEA, the STPA process does not focus on reliabil-
ity, failures, or risk likelihood. Instead, STPA models the sociotech-
nical system, focusing on the structure between components as 
well as control and feedback loops. Broadly, STPA (as illustrated in 
Figure 2) encompasses the following steps, which are meant to be 
iterative (across the model of a system) and cyclic (across a system’s 
lifecycle): 

(1) Defne the purpose of the analysis by identifying losses via 
outlining stakeholders and their values. System-specifc haz
ards and controls are then highlighted based on the specifed 
loss. 

(2) Model the control structure of the full sociotechnical system 
using control feedback loops, which consists of a controller 

-

which sends control actions to a system that is being con-
trolled while receiving feedback from the same system. 

(3) Identify unsafe control actions (UCA) by going through each 
control action and thinking about unsafe modes of (no) ac
tion, incorrect action, and untimely action. 

(4) Identify potential loss scenarios by outlining potential causal 
scenarios for each UCA. 

-

These steps can be applied to positive efect at any stage in develop-
ment and be used to develop requirements that must be enforced to 
ensure a safe sociotechnical system, such as new design decisions, 
requirements, procedures, operator training, test cases, or even 
periodic audits. 

In sum, FMEA and STPA frameworks pose complementary ana-
lytical perspectives from safety engineering. Prior work suggests 
these techniques could strengthen identifying and mitigating social 
and ethical risks of ML systems [30, 68, 98, 103]. Scholars have dis-
cussed the overall benefts of FMEA for internal ML auditing [98], 
illustrating how it could uncover ML fairness-related failures [68], 
and have used it to propose an analysis of "social failure modes" 
for ML systems [103]. Yet, we could not locate any studies inves-
tigating ML practitioner’s perspectives towards the use of FMEA 
for social and ethical risk management. Similarly, several works 
suggest the value of a system theoretic framework for eliminating 
or mitigating social and ethical risks of ML systems [30, 78]. These 
works illustrate the theoretical application and beneft; however, 
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little work to date explores industry ML practitioners’ perspectives 
towards these techniques and how they could address perceived 
gaps in current risk management practices [77]. 

3   METHODOLOGY   
We conducted 30 semi-structured interviews with ML industry prac-
titioners specializing in assessing and mitigating ML ethics risks, 
from six companies. The research proposal, the interview protocol, 
the recruitment material, and the consent forms were reviewed and 
approved in accordance with the privacy and ethics guidelines of 
the hosting institution. The data was collected, stored, and ana-
lyzed only by the researchers working in this organization. Here, 
we describe the participants, recruiting, data collection, analysis, 
and study limitations. 1 

Table 1: Participant’s roles and reference ID 

Job Title 
Research (i.e. research scientist, 
principal researcher) 

Description 
Primarily conduct interdisciplinary 
research in responsible ML 

n (%) 
11 (37) 

ID 
R3, R4, R5, R12, R18, 
R19, R21, R25, R22, R28, 
R29 

Analyst/advisory (i.e., ethics 
reviewer, ethics and policy advisor, 
sociotechnical analyst, user 
researcher, research associate) 

Advise project teams and 
review ML systems according to 
internal review processes 

9 (30) R6, R7, R8, R13, R14, 
R16, R17, R24, R26 

Management (i.e. product 
manager, technical program 
manager, research manager, chief 
executive ofcer) 

Manage products, programs, 
companies, and research projects 

8 (27) R1, R2, R9. R10, R15, 
R20, R23, R27 

Engineer (i.e. research/software 
engineer) 

Design and develop ML systems 2 (6) R11, R30 

3.1   Participants   and   recruiting   
We used purposive and snowball sampling to recruit participants. 
Recruitment inclusion criteria specifed participants be 18 years old 
or older, and currently work in an industry position conducting, 
managing, or researching social and ethical risks of ML systems. As 
our primary research question is to understand industry adoption of 
reliability engineering tools, we excluded practitioners in academic, 
governmental, or not-for-proft organizations. While we did not 
establish specifc quotas for each professional position, we sought 
a balance of roles and backgrounds. 

Four of the authors brainstormed an initial list of interview can-
didates based on knowledge about their existing work profle (via 
networking and publication or presentation track record at ma-
jor conferences) and sent emails inviting their participation. Once 
a candidate accepted an invitation to participate, the interview 
was scheduled and the interviewer sent the consent form. At the 
conclusion of each interview session, we invited participants to 
recommend other candidates. The lead author conducted all in-
terviews, which lasted approximately 60 minutes except for two 
90-minute interviews. 

In total, 30 practitioners from a diverse range of industry roles 
and educational backgrounds took part in the study (Table1). Par-
ticipants held a range of roles, including management (e.g., product, 
technical program, research, and executive) (n=8), research (n=11), 
analyst/advisory roles (n=9), and software engineers (n=2). All par-
ticipants worked in their current role for at least one year and 
had experience assessing multiple ML systems for social and ethi-
cal risks, including classifers, recommendation systems, large lan-
guage models, and text-to-image models. We conducted interviews 
1We included the interview protocol and material in the supplemental material. 
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between June and August 2022. All participants gave informed con-
sent prior to participating in the study; interviews were recorded 
with permission. Participants were not fnancially compensated for 
their participation. 

3.2   Interview   design   
The interview protocol, as illustrated in Figure 3, consisted of two 
parts: a) current practices and challenges, and b) frst impressions of 
FMEA and STPA applicability for ML systems. Following confrma-
tion of consent, we asked participants to describe their role and the 
type of technologies they focus on. We then asked participants how 
they defne, assess, and mitigate social and ethical risk, broadly con-
ceived. Moreover, we asked participants to discuss the challenges 
they face when assessing and mitigating social and ethical risks in 
their current role. Recognizing that some of the existing empirical 
works have already explored similar topics [73, 79], we ask these 
questions to: 1) understand what practitioners self-report as ethical 
and social risk management practices specifcally, and 2) prime the 
conversation about safety engineering frameworks on their existing 
approaches to risk management. In the second part of the interview, 
we introduced the two processes using non-ML examples: FMEA 
was described with an example of a car tire, STPA was introduced 
using an example of a new surgical technique. The introduction of 
each process (including the example) took approximately 5 minutes. 
We introduced each technique one at a time and then discussed it 
for 10 minutes each. During this discussion, we asked participants 
to share their frst impressions (pros, cons) while considering their 
potential use as a social and ethical risk assessment tool for ML sys-
tems. We invited them to talk through how they would apply such 
a process to an ML system they have assessed previously. To avoid 
order bias, the interviewer alternated between the processes for 
each interview. All interviews were conducted online using a video 
conferencing platform. Participants discussed both techniques in all 
interviews except in two interviews where, due to time restraints, 
one of the techniques was not discussed. This occurred once for 
each of the techniques. 

3.3   Data   analysis   
We used refexive thematic analysis [13, 14] to understand the main 
themes in the interview data. We used automatic transcription 
software for transcribing the interview recordings and then manu-
ally cleaned the transcripts. The primary author removed identify-
ing information (e.g., current employer, specifc products/projects 
mentioned) from the transcripts to protect the anonymity of the 
participants. Four of the authors coded the data, frst taking fa-
miliarization notes to highlight key ideas emerging early in the 
analysis. We then conducted open coding of the interview data 
using the QSR NVivo 12 qualitative analysis software. The lead 
author coded all of the interviews and three other authors col-
lectively coded 15 interviews. The authors responsible for coding 
met iteratively to discuss codes, data interpretations, and progress 
from codes to thematic discussions. During these discussion ses-
sions, researchers resolved disagreements and generated new codes 
as relevant concepts emerged. In the fnal session, these authors 
convened to organize codes thematically and discussed emerging 
themes. The lead author compiled all the coding documents and 



                       

                           
fndings   were   shared   with   the   broader   research   team   for   confrma-
tion   and   collaborative   discussion.   
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Figure   3:   Interview   Protocol   Steps   

synthesized the themes from the group discussions. Next, thematic

3.4   Author   refexivity   
As with all research, our positionality and lived experiences in-
form our approach to designing, conducting, and analyzing this 
research study. All authors are researchers living in Canada and the 
United States. Our collective disciplinary backgrounds informing 
our research perspectives include ML research and engineering, me-
chanical engineering, robotics, human-robot interaction, sociology/ 
science and technology studies, cognitive sciences, and cybersecu-
rity. 

3.5   Study   limitations   
Our study examines how ML practitioners engage in social and 
ethical risk management practices, what challenges they face, and 
how failure and hazard analysis frameworks could inform and 
improve their practice. As an exploratory study, further work is 
needed to deepen understanding and develop an ML model or other 
contextually-specifc insights on the applicability of FMEA and 
STPA. Moreover, the ML practitioners interviewed for the study 
did not have expertise in safety and reliability engineering, and had 
limited time and exposure to the techniques. This study refects 
frst impressions of these frameworks based on their experience. In 
addition, our participants primarily come from larger, multinational 
technology organizations (4 of 6 companies represented) and reside 
in North America. As industry practitioners, there are limitations 
on what some participants could disclose due to confdentiality 
commitments. Thus, further work could examine views from a 
wider range of practitioners, which could provide deeper insights. 

4   FINDINGS   
Our study examines how failure and hazard analysis frameworks 
could inform ML risk management practices. We present our fnd-
ings in two parts to refect our two research questions (Figure3) 
and start by highlighting what practitioners identify as existing 

social and ethical risk management practices and discuss the short-
comings and challenges of these existing practices (Section 4.1). In 
Section 4.2, we build on this understanding of current practices 
and challenges and discuss ML practitioner’s perspectives on using 
FMEA- and STPA-like processes for social and ethical risk manage-
ment. 

4.1   RQ1:   How   are   ML   practitioners   currently   
identifying   and   assessing   social   and   ethical   
risk?   What   are   the   existing   challenges   they   
face?   

Participants described increased formalization of risk management 
practices, yet noted key aspects of their work - including defning 
and assessing for social and ethical risks - were characterized by 
an interpretive fexibility through which practitioners navigate 
with multiple and sometimes conficting understandings of risk 
management. While this fexibility accommodates the wide range 
of ML systems and contexts of deployment these practitioners are 
responsibilized to assess, it also fosters friction in multidisciplinary 
environments. Organizational culture and resource constraints are 
power dynamics infuencing these challenges. 

Defning social and ethical risks 
sets the bounds of which system (mis)behaviors or downstream 
efects are acceptable or concerning. Rather than anchoring to a 
canonical defnition, we fnd participants employ multiple defni-
tions of social and ethical risks, explicitly noting that there is no 
widely-accepted defnition in the ML community. This echoes the 
results described in Kraft et al. [58] where they found limited con-
sensus on key defnitions in AI ethics policy and practice. Similarly, 
the Ethics Owner Report by Metcalf et al. and Constanza-Chock et 
al.’s study investigating auditing practices for ML systems outlines 
the use of inconsistent and custom defnitions by "ethics owners" 
and "auditors" of ML systems poses a challenge for conducting 
consistent and reliable assessments [27, 79]. Despite the lack of 
common defnitions, there were points of convergence, each under-
pinned by concerns with adverse, material impacts on people. 



                          From Plane Crashes to Algorithmic Harm 

Foremost,   participants   described   social   and   ethical   risks   as   user   
and   societal   harms   of   ML   systems.   Here,   participants   described   
“harms"   broadly,   without   specifying   uniform   methods   for   surfacing   
harms   to   whom   or   what.   While   some   participants   noted   a   general   
“user-centric   [harms]   framing   works   well   [...]   for   a   product   and   engi-
neering   organization”   (R15),   others   centered   harms   to   “underrep-
resented”   (R13)   and   “historically   marginalized”   (R4)   communities.   
Participants’   use   of   the   harms   perspective   is   echoed   heavily   in   the   
critical   epistemological   perspectives   [7,   45]   toward   anticipating   
harms   for   ML   systems.   Beyond   harms,   participants   also   described   
how   transgressions   to   a   company’s   public   AI   ethics   principles   ofer   a   
“jumping   of   point”   (R15)   to   identify   social   and   ethical   risks.   While   
these   commitments   provided   a   clear   north   star   for   identifying   risks,   
participants   also   noted   that   the   abstract   nature   of   these   princi-
ples   limit   their   usefulness   in   practice.   For   instance,   they   do   not   
help   in   identifying   which   stakeholder   groups   to   prioritize,   nor   help   
to   grapple   with   the   constitutive   role   that   the   context-of-use   and   
system   afordances   play   (R15)   in   generating   risks.   These   remarks   
echo   similar   limitations   identifed   by   other   scholars   [74,   100,   128].   
Namely,   Whittlestone   et   al.   translated   lessons   from   bioethics   and   
suggested   focusing   on   tensions   between   these   principles   to   as-
sess   an   ML   system   in   practice[128].   Lastly,   participants   described   
social   and   ethical   risks   as   human   rights   violations   that   could   be   
surfaced   through   a   human   rights   impact   assessment.   The   human   
rights   frame   was   less   common   than   other   defnitions,   though   many   
participants   recognized   its   value   in   evaluating   systems   deployed   in   
cross-cultural   domains.   This   emerging   framing   is   echoed   in   recent   
scholarly   conversation   [96].   

Variable   defnitions   foster   frustration,   misunderstanding,   and   
inefciency   in   multidisciplinary   environments   [58,   74,   100].   Sup-
porting   fndings   from   current   scholarly   work,   participants   all   stated   
clear   defnitions   and   "formalized   frameworks"   are   necessary   for   
productive   conversation   about   social   and   ethical   risk   management   
(R1,   R10).   For   instance,   as   (R1),   a   product   manager   described:   “so-
ciologists   come   from   the   harm   perspective,   whereas   engineers   often   
think   of   it   in   the   failure   perspective.”   Without   a   common   language,   
identifcation   and   assessment   of   risks   can   be   slowed.   Despite   the   de-
sire   for   a   standard   defnition,   many   participants   noted   the   value   of   
defnitional   fexibility,   particularly   for   assessing   novel   technologies   
in   which   strict   defnitions   may   not   accommodate   possible   harms.   

                  4.1.2 Multiple methods for assessing social and ethical risks. 
Whereas   defnitions   of   social   and   ethical   risk   constitute   the   bound-
aries   of   (un)acceptable   ML   system   behavior,   assessment   methods   
shape   the   situated   assumptions,   guide   the   questions   asked,   and   
format   how   social   and   ethical   risks   are   communicated.   Participants   
described   employing   various   risk   assessment   methods   including   
qualitative,   quantitative,   and   "refexive   investigatory"   approaches,   
through   which   the   methods   and   motivation   of   fellow   practitioners   
are   probed   for   alignment   with   organization   principles   and   best   
practices.   Participants   from   four   of   the   six   companies   indicated   that   
they   have   formal   ethical   review   teams   or   programs,   through   which   
structured   risk   assessment   occurs.   These   types   of   programs   and   
teams   mostly   exist   in   larger   technology   companies,   and   they   are   
not   an   industry   norm.   

Consistently,   many   of   the   participants   noted   that   they   begin   
social   and   ethical   risk   assessment   by   qualitatively   mapping   
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potential   harms   of   an   ML   system   individually   or   when   pos-
sible,   in   teams   with   interdisciplinary   expertise   (i.e.   product   man-
agers,   AI   ethicists,   software   engineers,   and   researchers   working   
collaboratively).   Mapping   harms   focuses   attention   on   the   adverse   
material   impacts   on   people,   including   how   ML   systems   can   change   
work   practices,   socialization   patterns,   and   other   dimensions   of   
social   life   (R18).   Our   participants’   process   of   mapping   harms   in-
volve   surveying   existing   literature,   with   a   focus   on   known   impacts   
of   “related   technologies”   and   social   contexts   (R25).   Mapping   harms   
also   involve   foresight   exercises   to   hypothesize   potential   worst/best   
case   scenarios   (R16)   through   free-form   brainstorming   and   by   work-
ing   through   structured   questions   created   internally.   Participants   
also   referred   to   using   more   formalized   assessment   process   such   
as   human   rights   and   impact   assessment   processes   [84,   89]   at   this   
stage.   A   third   and   highly   desired   approach   by   participants,   when   re-
sources   permit,   is   participatory   methods,   where   community-based   
stakeholders   are   engaged   to   co-identify   social   and   ethical   risks   
[48,   132].   

Engineers   and   computer   scientists   also   described   quantitatively   
testing   ML   system   properties.   Such   assessments   begin   with   func-
tional   tests,   where   “ML   components   are   treated   much   like   a   piece   of   
software”   (R11)   and   are   subject   to   routine   code   reviews   and   perfor-
mance   tests   measuring   accuracy,   recall,   and   precision.   Functional   
tests   do   not   explicitly   measure   social   and   ethical   risks.   Assessments   
for   such   risks   are   additive   and   “bespoke   for   every   project”   (R11),   
which   may   include   disaggregated   analysis   [2,   8],   counterfactual   
and   causal   analysis   [42],   and   adversarial   testing   [35,   106,   130,   131].   
These   assessments   are   conducted   pre- and   post-launch,   and   aim   to   
identify   allocative,   representational,   and   quality-of-service   harms   
based   on   identity   characteristics.   They   cannot,   as   participants   note,   
capture   non-computational   harms,   particularly   the   difused   and   
long-term   impacts   of   ML   systems   in   the   world   [110].   Moreover,   
participants   described   limitations   in   post-launch   assessment,   as   
there   are   no   rigorous   ways   of   identifying   such   risks   unless   reported   
by   users,   media   outlets,   or   external   auditors   as   echoed   by   scholars   
who   currently   are   working   on   developing   tools   to   enable   large-scale   
auditing   by   everyday   users   [111].   

Lastly,   participants   in   management   roles   described   interrogat-
ing   product   and   research   development   processes.   This   ap-
proach   is   motivated   by   participants’   recognition   that   technologies   
are   infuenced   by   the   norms,   intentions,   and   common   practices   of   re-
searchers   and   developers.   Participants   described   reviewing   product   
team   documentation   and   methodologies   and   making   recommen-
dations   to   improve   practices   to   minimize   harm   to   marginalized   
communities,   such   as   assessing   how   a   product   team   evaluates   ML   
models   and   identifying   whether   they   are   operationalizing   any   re-
sponsible   ML   metrics   [101].   Moreover,   R24,   an   ethicist,   described   
“assess[ing]   the   intentions   of   teams   and   . . .   predict[ing]   . . .   the[ir]   
impacts.”   While   participants   did   not   detail   how   they   conduct   such   
epistemological   assessments   to   maintain   confdentiality,   they   did   
reference   that   scholarly   work   such   as   value   analysis   [39]   informs   
their   current   processes.   

Overall,   practitioners   noted   two   tensions   in   risk   assessment.   
Similar   tensions   have   been   noted   in   empirical   research   investigating   
fairness   tools,   and   auditing   processes   [27,   74].   First,   assessment   is   
most   efective   when   there   is   a   commitment   to   multidisciplinary   
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collaboration   between   product   teams   and   “subject   matter   experts”   
(i.e.,   non-engineering   practitioners,   such   as   ethicists,   sociologists,   
or   people   with   contextual   expertise),   although   such   collaboration   
is   “hard”   given   diferent   epistemological   background   (R19).   Second,   
assessments   are   “very   product   dependent”   and   require   meaningful   
“conversations   with   the   product   team   to   understand”   the   product,   its   
use   case,   and   where   harms   may   arise   (R6).   Overall,   the   participants   
emphasized   the   need   to   better   standardize   current   methods   for   a   
systematic   evaluation   of   social   and   ethical   risks.   

Social   and   ethical   risks   are   often   surfaced   by   ethicists   and   social   
scientists   who   sit   outside   of   research   and   product   teams,   and   are   not   
subject   to   product   launch   incentive   structures.   As   such,   mitigating   
identifed   risks   requires   signifcant   work   to   build   cross-functional   
“partnerships”   (R16)   and   gain   buy-in   from   teams   with   relevant   
technical   expertise   and   control   to   adjust   models   and   product   design.   

Product   managers   may   take   charge   of   mapping   a   mitigation   
strategy,   however,   deciding   on   an   approach   also   requires   collab-
oration,   as   preferred   strategies   vary   by   disciplinary   training.   En-
gineers   often   gravitated   towards   algorithmic   solutions,   such   as   
fne-tuning   model   parameters,   creating   new   training   datasets,   and   
implementing   blocklists   or   flters   [86]   to   prevent   harmful   model   
inputs   or   outputs.   In   contrast,   ethicists,   social   scientists,   and   design-
ers   emphasized   UX   solutions,   policy   development,   explainability   
and   transparency   artifacts   [43,   81],   and   education.   Yet,   practitioners   
all   recognized   need   for   multiple   interventions,   as   one   computer   
scientist   elaborated:   

“...I   tend   to   gravitate   towards   algorithmic   solutions   
[...but   ]   want   to   qualify   this   is   not   the   only   way   to   solve   
things   [and]   there   are   some   things   . . .   not   mitigatable   
by   algorithmic   techniques.   In   which   case,   essentially,   
I   defer   my   expertise   to   somebody   else   because   maybe   
the   solution   in   that   case,   is   more   on   the   policy   side   or   
participatory   design   methods   outside   the   scope   of   what   
I’m   familiar   with.”   (R3)   

Prioritizing   mitigations   is   also   a   challenge,   as   some   recommenda-
tions   may   “take   months,   maybe   even   years   to   fully   fx.”   (R8).   There   are   
no   clear   guidelines   on   what   mitigations   need   to   happen   and   which   
ones   can   be   put   on   hold;   though   some   noted   movement   towards   
formalizing   mitigation   frameworks   (R16).   As   such,   resource   avail-
ability   and   the   product   team’s   priorities   dictate   which   mitigations   
will   be   pursued.   This   approach   to   mitigating   risks   is   well-aligned   
with   the   tendency   for   reactive   decisions   in   prevalent   responsible   
AI   practices   as   described   by   Rakova   et   al   [100].   

We   fnd   that   the   challenges   present   in   existing   social   and   ethical   
risk   assessment   practices   largely   echo   four   issues   that   have   previ-
ously   been   documented   and   particularly   aligned   well   with   fndings   
reported   by   Martelaro   et   al.   [77].   First,   many   of   our   participants   
expressed   that   the   organizational   incentive   structures   counter   the   
mandate   and   the   purpose   of   social   and   ethical   risk   assessments   and   
mitigation   strategies   (R1,   R3,   R17).   R17   articulates   it   as   such:   

"I   think   inherently,   what   we   do   is   not   aligned   with   a   cor-
poration   .   .   .   it’s   not   revenue-generating   work.   It’s   work   
that   can   inhibit   the   bottom   line   and   a   product   launch.   

. . .   it   can   be   hard   to   get   product   teams   to   mitigate   . . .   
because   they   just   want   to   launch   the   product.”   

This   systemic   issue   has   been   expressed   by   other   scholars   who   have   
studied   and   designed   responsible   AI   tools.   For   instance,   Madaio   et   
al.   highlight   practitioner’s   need   for   organizational   support   when   
assessing   the   fairness   of   AI   systems   based   on   their   co-creative   
design   workshops   [73,   74].   Moreover,   Rakova   et   al.   emphasize   this   
point   by   highlighting   how   alignment   between   incentives   and   org-
level   mission   statements   allows   for   the   fourishing   of   responsible   
AI   practices   that   are   anticipatory   as   opposed   to   reactive   [100].   

Second,   participants   also   expressed   frustration   about   the   lim-
ited   time,   capacity,   and   other   resources   (e.g.,   data)   to   meaningfully   
address   ethics   risks   encountered.   A   number   of   examples   of   such   re-
source   constraints   were   expressed,   such   as   the   need   to   rush   and   pro-
duce   a   new   dataset   for   adversarial   product   testing   under   strict   time   
constraints   (R24).   This   challenge   is   in   line   with   the   well-recognized   
tendency   for   rapid   ML   development   cycles   in   the   industry   which   
are   in   tension   with   the   extended   time   needed   to   adequately   as-
sess   and   mitigate   potential   social   and   ethical   issues   as   revealed   by   
Madaio   et   al.’s   investigation   of   developer’s   use   of   fairness   checklists   
and   Costanza-Chock   et   al.’s   study   of   auditors’   practices   [27,   74].   

Relatedly,   R17   and   R25   voiced   concerns   over   the   lack   of   diversity   
in   perspectives   and   forms   of   expertise   involved   in   a   risk   assessment   
process.   They   expressed   that   the   eforts   to   address   the   issue   of   
diversity   can   be   perceived   as   a   resource-demanding   activity   that   
goes   against   the   organization’s   underlying   incentives.   The   concerns   
over   the   need   for   more   diversity   have   been   at   the   heart   of   the   fair-
ness   in   ML   movement,   as   described   in   Sambasivan   et   al.’s   canonical   
work   outlining   the   importance   and   difculty   of   creating   quality   and   
representative   datasets   [107].   Our   fndings   suggest   that   signifcant   
process   improvements   are   yet   to   be   made   to   address   a   similar   issue   
of   diversity   when   it   comes   to   identifying   social   and   ethical   risks.   
Lastly,   as   documented   by   The   Ethics   Owner’s   report   [79]   on   the   
newly   shaping   practice   of   responsible   ML,   the   lack   of   established   
practices   and   knowledge   about   concepts   such   as   social   and   ethical   
risks,   as   well   as   the   opaque   nature   of   some   of   the   complex   ML   
systems   [18]   were   seen   as   a   hindrance   to   efective   assessment   and   
mitigation   of   social   and   ethical   risks   (R7,   R8).   

As   outlined   throughout   Section   4.1,   reported   practices   for   social   
and   ethical   risk   management   refect   a   wide   range   of   epistemological   
perspectives   and   responsible   ML   tools   that   are   applied   inconsis-
tently   and   reactively.   Our   fndings   illustrate   that   current   practices   
do   not   follow   any   well-established   risk   management   processes   and   
the   practitioners   tasked   with   this   work   develop   their   own   methods   
or   use   a   mix   of   the   publicly   available   tools.   The   lack   of   a   systematic   
risk   management   framework   can   exacerbate   existing   challenges   
that   these   practitioners   are   facing.   Specifcally,   identifying   appro-
priate   defnitions,   evaluations,   and   mitigation   strategies,   while   justi-
fying   the   need   to   do   this   type   of   work   requires   a   signifcant   amount   
of   resources   for   every   ML   system.   Furthermore,   an   ad-hoc   approach   
to   risk   management   makes   it   more   challenging   to   deal   with   exist-
ing   uncertainties   and   gaps   in   knowledge   for   ML   systems.   Building   
towards   an   "aspirational   future"   [100]   for   responsible   ML   develop-
ment,   in   Section   4.2   we   discuss   how   safety   engineering   frameworks   
could   provide   the   necessary   systematic   structure   for   social   and   
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ethical risk assessment and help build anticipatory practices by 
streamlining current practices. 

4.2   RQ2:   What   are   ML   practitioners’   
perspectives   towards   using   safety   
engineering   frameworks   for   social   and   
ethical   risk   management?   

Participants’ frst impressions of FMEA and STPA underscored 
how safety engineering could bring greater structure to social and 
ethical risk management practices (Section 4.2.1): such a struc-
tured approach could streamline disjointed defnitions of ethical 
and social risks; it could also provide a coherent structure to the 
myriad assessment and mitigation methods that are currently be-
ing developed and implemented on an ad-hoc basis. Participants 
walked through applying both of the processes to an ML system, 
identifed varying ways of translating these frameworks for an 
ML system and discussed specifc gaps in knowledge. Furthermore, 
practitioners emphasized that understanding the context of use 
and implementation remains a critical aspect of the assessment. 
They raised concerns about the difculty of employing safety engi-
neering frameworks when the context is not yet known (Section 
4.2.3). Others identifed the existing industry norms and limited 
existing capacity within organizations as potential hindrances to 
implementing these frameworks (Section 4.2.4). 

4 Build-
ing on the need for a formalized and structured approach to the 
current social and ethical risk management practices (Section 4.1.4), 
many of our participants strongly agreed that FMEA- and STPA-
like processes could provide such a structure. For instance, one 
researcher describes, “there are defnitely cases where explicitly defn-
ing failure modes (using an FMEA), trying to have a sense of what 
the potential causes are and how to mitigate them is a really useful 
framework for machine learning systems and one that has not been 
terribly well formalized until now.” (R12). On the other hand, an an-
alyst (R17) noted the system theoretic approach is valuable because 
it frames the analysis of an ML system in relation to both co-existing 
ML systems and societal power structures which "provides a really 
sound structure to a process that we need in machine learning 
systems, especially from the ethical analysis perspective”. 

These structured frameworks can streamline current approaches 
to evaluating and mitigating potential social and ethical risks in 
diferent ways. R1 and R14 noted that FMEA links ML system’s func-
tionality to potential failure modes and their corresponding efects, 
causes, and detection methods. They elaborated that this connection 
promotes accountability in the social and ethical risk management 
process. On the other hand, R21, a researcher elaborates that “a 
systems theory approach [as used in STPA] is very useful. It helps 
[an evaluator] understand relations between new pathways of harm 
and allows [them] to think about the multiple points of intervention” 
(R21). Specifcally, when introduced to the example application of 
STPA for new surgical interventions, R10 and R21 appreciated how 
the STPA process started from understanding potential losses and 
then linked them to specifc unsafe control actions by identifying 
how diferent stakeholders interact with each other and medical 
devices. Furthermore, participants noted STPA and FMEA provide 
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complementary and diferent analytical perspectives for examining 
failures and hazards. Particularly, R26 and R28 remarked that the 
two techniques provide two directions of analysis. They envisioned 
that an analyst would perform an FMEA for an ML system when 
they are interested in investigating a particular ML process (i.e., 
training data curation process) or component of a system (i.e. ML 
model). On the other hand, STPA could be used to examine specifc 
losses and hazards by seeing how an ML system "integrates within 
a larger system", such as a product. R2 noted that there would be a 
value in applying both on the same ML system. 

A few of our participants employed in large technology com-
panies found commonalities between their existing practices and 
FMEA/STPA. For instance, R16 stated that "we have already adopted 
components of the FMEA" namely the identifcation of failure modes, 
efect, and cause in our current risk assessment". However, they noted 
that FMEA provides a more comprehensive analysis by incorpo-
rating functional decomposition. R1 and R24, on the other hand, 
indicate that STPA is similar to current practices in that the identif-
cation of losses in STPA is analogous to the process of mapping out 
harms of an ML system. Apart from these elements, the majority of 
participants found the two frameworks novel. (i.e. a product) could 
create these potential hazards. 

When asked to walk through the FMEA or STPA processes as illus-
trated in Figures 1 and 2, participants discussed how they would 
apply each step on an ML system. Overall, many of the participants 
were able to successfully walk through most of the steps for both 
of the processes. However, due to limitations of time, only a few 
participants got to provide detailed feedback on the last step of each 
process. Furthermore, in conducting the walk-through, the partici-
pants ofered varying ways of translating FMEA and STPA steps 
for an ML application which can serve as important considerations 
for future applications of these frameworks. Refecting on the chal-
lenges identifed in Section 4.1.4, participants highlighted specifc 
knowledge gaps and points of uncertainty when conducting each 
step. The following summarizes the key observations the partic-
ipants made about each one of the processes. We illustrate these 
observations using a mock example in the illustrated walk-through 
of the frameworks in Figures 4 and 5. 

                    Observations of the FMEA steps (as illustrated in Figure 4:) 

• List out function or steps: Overall, practitioners expressed 
that it is valuable to explicitly outline functions or steps for 
an ML system when thinking about potential failures. When 
asked to break down functions, participants primarily se-
lected functions based on the intended uses of an ML-based 
feature or product. For instance, R10, a product manager, de-
scribed that a possible breakdown of functions of a nutrition 
tracking feature could be “to log food, to inform users and to 
provide the act of tracking.” Some remarked that it would be 
challenging to break down functions for the ML model itself. 
According to a researcher “key features/functions [of an ML 
system] are often embedded in some distributed representation 
in the model. This is especially true for larger models, and it is 
very hard to assess because the boundaries are not there any-
more” (R3). Alternatively, few participants preferred to focus 
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Figure 4: Perspectives on applying FMEA for ML systems as illustrated by a mock walk-through for a generic predictive ML 
algorithm used as a decision support tool. The illustrated example is analogous to the type of responses provided by participants 
in their own walk-through. Red color-flled boxes highlight the key takeaways. 

on   identifying   steps   for   sub-processes   along   the   ML   devel-
opment   pipeline   when   walking   through   the   FMEA   process.   
For   example,   R25,   a   researcher   described   how   they   would   
break   down   the   steps   for   “dataset   development,   annotation,   
training,   evaluation   or   deployment”   for   an   ML   system   and   
think   about   what   could   go   wrong   in   each   of   those   steps.   

• Identify failure modes: After listing out potential func
tions or steps for an ML system, participants could comfort
ably articulate known and foreseeable failure modes. An 
analyst listed “unfavorable chatbot responses to zip codes that 
are identifed as lower socioeconomic status” as one of the fail
ure modes for the function of "respond to use" for a chatbot 
(R17)). Despite participants’ expertise in identifying potential 
failure modes, many expressed uncertainty about their abil
ity to comprehensively identify all potential failure modes 
due to the emerging nature of ML technologies. A researcher 
frames these "unknown unknowns" as "foundational research 
challenges" that require further investigation. Moreover, an
other product manager (R1) elaborated that ethical and social 
risks often emerge from complex and non-tangible failures 
which are hard to identify and often need in-depth analysis 
of the ML system in the context of use. 

• Identify efect and score severity: Participants empha
sized the importance of identifying the efect of a failure 
mode on whom or what, and expressed this should be in
corporated into the FMEA process. Participants noted that 
failures have varying levels of impact on diferent stake
holders. For example, as seen earlier, R17 identifed that an 
"unfavorable response" from a chatbot could have a diferent 
impact on a user from a "lower socioeconomic status" com
pared to someone with an average socioeconomic status. 
Similarly, R10 noted that it is important to consider how a 
certain product might fail for marginalized groups as op
posed to an "average user". Furthermore, participants noted 
that companies themselves could be afected by potential 
failure modes and raised questions about the extent to which 
practitioners should be responsible for protecting the inter
est of the company deploying/developing an ML system as 
opposed to the interests of directly impacted users or the 
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society at large. Recognizing that current ways of identifying 
and assessing efect are ad-hoc and inconsistent, they sought 
guidance for who should be considered when identifying the 
efect of a potential failure mode. 
When asked to score the severity of an efect on a scale of 
1 to 10, many participants raised questions on the possi-
bility of defning a meaningful scale for social and ethical 
failures. R22, a researcher, describes: “Uncertainty is a really 
big [challenge]. Sometimes [ethical and social] concerns are 
serious. But, it’s not easy to parameterize things in the way a 
risk suggests. So you don’t know if it’s 10% likely, 90% likely. 
You just have deep uncertainty about whether a future risk will 
transpire. Particularly when we talk about [compounding] ef-
fects and complex systems.” This knowledge gap is especially 
salient when conducting assessments that require scoring 
severity or likelihood, which often require forecasting and 
hypothesizing. Many participants called for further work on 
developing validated methods and guidelines for assessing 
the severity of social and ethical failures. Similar challenges 
were noted regarding the scoring of the likelihood of occur-
rence and detection. 

• Identify cause score likelihood of occurrence: When 
asked to identify potential causes, some practitioners men
tioned examples such as "misrepresentation in training 
datasets" (R9, a product manager). However, participants 
noted that identifying causes could be challenging because 
components of an ML system are developed by diferent 
groups. R12, a researcher, notes “One thing from my experi
ence that I found is that it’s very difcult at least in ML systems 
to get people to write down a model of the entire system.” More
over, sometimes ML researchers cannot adequately under
stand the behaviour of an ML system. Identifying potential 
causes is very challenging considering these gaps in knowl
edge. Notably, participants highlighted the importance of 
further research and guidelines for identifying causes of 
potential failures. 

• Identify control and score likelihood of detection: Iden
tifying control was a more novel step for many of the partic
ipants compared to the last two steps. Many noted that they 
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4.2.3 Understanding context is critical for social and ethical risk 
management: FMEA and STPA have limitations. When asked to walk 
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do not explicitly identify controls in their current processes 
and expressed that they see value in the exercise of identify-
ing potential controls for a failure mode. For instance, R12 
and R1 listed conducting disaggregate analysis and moni-
toring system’s performance in early releases as potential 
controls. However, as R21, a researcher, states it is difcult to 
identify a way of detecting some social and ethical failures 
as they have a "secondary impact or their impacts is observed 
after a period of time". R15 also echoes the difculty of "mean-
ingfully monitoring" ML systems as they are deployed in a 
large scale. Overall, participants emphasized that further re-
search on identifying appropriate control would be valuable. 

• Calculate Risk Priority Number (RPN) and develop rec-
ommended actions: Most of the data collected from the 
interviews focused on discussion of the earlier steps. Mainly, 
participants observed that it is useful to have a way of pri-
oritizing diferent failure modes. However, they questioned 
the efcacy of using RPN considering the issues that they 
raised about scoring severity, occurrence and detection. 

As illustrated in the observations from the walk-through, partic-
ipants see a clear need for further development and research on 
ways of identifying and scoring efect, cause, and control methods 
at a large scale for ML systems. Existing assessment and mitigation 
methods described in Section 4.1 could inform and be integrated 
into future FMEA analysis for social and ethical risks of ML sys-
tems. The following section describes the key themes of when 
participants completed an STPA walk-through. 

• Identify the purpose of analysis: Practitioners in diferent 
roles appreciated the start from stakeholder, values, and 
losses. Some examples of losses covered in the walk-throughs 
include "loss of justice" (R9), "loss of dignity" (R10) and "loss of 
reputation for a company" (R3). A product manager explains 
“I like the idea of starting with the negative outcomes, it’s much 
more user-oriented at the beginning, in terms of how it impacts 
them [users]” (R1). They elaborated that identifying losses 
is analogous to current practices of mapping out potential 
harms to a user. However, social scientists and ethicists noted 
that in-depth value analysis and normative guidance are 
required in this step. When it came to mapping out hazards, 
participants found it challenging to distinguish them from 
failure modes. Once a hazard was identifed, it was intuitive 
to think of a constraint. 

• Create control structure: Overall, participants identifed 
two scopes of analysis for drawing a control structure: inter
nal company processes OR human-ML product interactions. 
R19, a researcher, explained that a control structure for inter
nal company processes would include elements such as the 
"model development team" and how they interact with "prod
uct managers" and "policy advisors". On the other hand, a 
control structure for human-ML product interactions would 
include (but is not limited to) controllers such as the users, 
the distributor of the ML product, and the product itself. A 
product manager noted that “control structure would be very 
helpful in terms of limiting rather than constantly overextend
ing where all of the potential problems or risks can come from” 
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(R10). However, participants raised a few challenges in select-
ing a control structure boundary for the social and ethical 
risks of ML systems. An ethicist noted that it is difcult to 
set meaningful boundaries and questioned how one could 
create a control structure for losses such as "ecological harm" 
(R21). Furthermore, a researcher stated it is challenging to 
create a control structure for an ML model. Further research 
and guidance are needed for where the system needs to be 
bounded, and future work can use lessons from current STPA 
literature and practices [66]. 

• Unsafe control actions: An example of a control action 
identifed by a product manager is "provide suggestion" be
tween "a health mobile application" and "a user" (R10). Once 
a control action is identifed, participants appreciate “the 
quadrant logic” (R10, a product manager) for identifying 
how control actions could be unsafe. Some participants re
marked that unsafe control actions could be mapped to “de
sign choices” (R25). Some potential unsafe control actions 
could be that the app provides "the wrong suggestion" or 
that it "gives the suggestion at the wrong time" (R10). Many 
stated that it would be valuable to have this type of analysis 
earlier on in the development process when creators can crit
ically think about unsafe control actions to inform system 
requirements and corresponding design choices. 

• Loss scenarios: Identifying loss scenarios requires in-depth 
details about the control structure including the feedback and 
the process/mental model for each controller. Considering 
the time and design limitations in our interview, participants 
did not have the time to provide adequate feedback on this 
step as it was not possible to create a detailed enough control 
structure in the given time. Further investigation is necessary 
to understand how this step could be operationalized for ML 
systems. 

Many of the participants were less familiar with the language 
around control feedback loops compared to the FMEA terminol-
ogy. Participants asked for clear examples and instructions on how 
control structures should be drawn for diferent ML systems. Suc-
cessful implementation of FMEA and STPA- frameworks faces two 
challenges identifed in the next two sections. 

through an FMEA and STPA for an ML system, participants empha-
sized the need for having a specifc context of use. R7, an analyst, 
attempted to walk through the two processes for a reinforcement 
learning algorithm that did not have a specifc use case and quickly 
ran into challenges with identifying failure modes for FMEA and 
hazards for STPA. This fnding is in line with the fact that both of 
these processes are often applied for well-defned systems and use 
cases [20, 67]. 

Assuming that these frameworks are applied to a specifc use 
case of an ML system, participants noticed FMEA only provides 
a framework for translating functions and steps to failure modes, 
efect, cause, and control. The FMEA does not explicitly facilitate 
structured thinking about social and ethical issues. To address this 
shortcoming, many participants suggested an FMEA analysis needs 
to be accompanied by a deep understanding of social issues relevant 
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Figure   5:   Perspectives   on   applying   STPA   for   ML   systems   as   illustrated   by   a   mock   walk-through   for   a   generic   predictive   ML   
algorithm   used   as   a   decision   support   tool.   The   mock   walk-through   represents   the   type   of   responses   provided   by   participants.   
Red   color-flled   boxes   highlight   key   takeaways.   

to                                 “very   
agnostic   to   the   socio-technical   context   at   frst   glance   and   it   will   be   
important   to   outline   the   use   case   when   thinking   about   each   component   
or   process”   (R21).   Similarly,   a   product   manager   remarked   if   the   
ethics   analysts   understand   the“context   of   deployment”   (i.e.,   where   a   
model   will   be   deployed   in   a   product   or   feature),   they   can   think   of   
failures   that   are   not   just“component   specifc”   (R1).   The   contextual   
understanding   can   allow   for   the   identifcation   of   failure   modes   
that   have   negative   social   and   ethical   efects.   However,   this   would   
still   require   an   analyst   skilled   at   critically   examining   functions   or   
steps   of   an   ML   system/process   for   social   and   ethical   issues.   Once   
appropriate   and   relevant   failure   modes   are   mapped,   participants   
stated   that   thinking   through   the   remainder   of   the   FMEA   process   (i.e.,   
the   efect,   cause,   and   control)   can   help   practitioners   gain   “foresight”   
(R19)   on   social   and   ethical   risks.   

STPA,   on   the   other   hand,   was   perceived   as   a   process   that   struc-
turally   considers   an   ML   system   in   relation   to   stakeholders   and   other   
automated   systems   that   interact   with   it.   A   researcher   noted   that   
STPA   would   be   useful   to   analyze   how   an   ML   system   “fts   into   a   
larger   decision-making   process”   (R12).   Many   participants   appreci-
ated   that   STPA   starts   from   understanding   stakeholders,   values,   and   
losses   and   provides   a   framework   for   mapping   relations   between   
humans   and   the   ML   systems.   A   program   manager   expressed   that   
STPA   “magnifes   the   fact   that   when   you   think   of   harms   you   have   to   
have   both   the   technical   and   then   the   social   and   ethical   lenses”   and   
that   it   is   valuable   that   STPA   provides   a   framework   to   represent   
“all   of   that”   (R2).   Although   STPA   incorporates   an   understanding   of   
context   via   system   theoretic   perspectives,   participants   expressed   
that   mapping   multidimensional   interactions   between   an   ML   system   
and   various   stakeholders   using   bidirectional   control   feedback   loops   
will   at   times   lead   to   an   inaccurate   depiction   of   a   sociotechnical   
system   (R27).   As   R24,   an   ethicist   elaborates   “once   you   start   system   
theoretic   analysis,   you’re   going   to   abstract   away   and   choosing   proxies   
for   social   phenomena   and   they’re   going   to   be   insufcient”   and   noted   

a given ML system. As a researcher explains, FMEA is that   STPA-like   processes   should   “go   hand-in-hand   with   expertise”   of   
understanding   “the   limitations   of   systems   processes   analysis”.   These   
limitations   create   opportunities   for   further   theoretical   development   
of   these   safety   frameworks   for   social   and   ethical   risk   management.   
We   discuss   some   potential   avenues   of   improvement   in   Section   5.2.   

4.2.4   Implementation   of   FMEA- and   STPA-like   processes   require   
ternal   capacity   building   and   organizational   shifs.   Many   of   our   in

participants’   frst   reactions   to   the   FMEA   and   STPA   processes   was   
that   the   current   industry   culture   and   lack   of   internal   capacity   within   
technology   companies   will   be   hindrances   to   their   adoption.   With-
out   a   clear   demonstration   of   their   usefulness,   industry   adoption   
of   similar   processes   will   be   slow.   This   sentiment   is   in   line   with   
the   current   challenges   expressed   about   existing   practices.   R15,   a   
product   manager,   states:   

My   biggest   reaction   is   that   [these   processes]   are   so   far   
from   where   our   engineering   culture   is   at.   It   feels   like   you   
would   need   to   hire   an   entirely   new   type   of   person   into   
these   companies   and   over   time   completely   change   roles   
[...].   If   [we]   want   engineering   teams   to   do   this   themselves   
or   be   directly   involved   in   the   risk   assessment   [we]   need   
to   dramatically   change   the   incentive   structure."   

The   need   for   an   organizational   culture   shift   was   expressed   with   
respect   to   both   FMEA   and   STPA.   However,   a   program   manager   
explains   STPA   “will   require   greater   organization   across   teams   and   
subject   matter   experts”   (R2)   considering   its   focus   on   the   interaction   
between   diferent   systems.   Recognizing   the   challenge   of   creating   
these   organizational   shifts,   participants   were   interested   in   explor-
ing   STPA   only   if   they   could   see   some   concrete   evidence   of   how   it   
worked   and   what   it   delivered.   STPA,   in   particular,   was   seen   to   re-
quire   heavier   internal   capacity   building   to   implement   successfully   
since   many   participants   have   some   familiarity   with   FMEA-like   pro-
cesses   already   while   elements   of   STPA   remain   foreign.   A   researcher   
explains:   
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“People often think very linearly, and there’s a challenge 
of trying a systems approach. [Practitioners] want to 
know X causes Y, causes Z, and they want to mitigate 
right at one of those points [similar to an FMEA] rather 
than thinking about all the connections between X, Y, 
and Z and what pathway is causing the most harm... 
[T]he frst step is to get people to realize there are mul-
tiple relationships between X, Y, and Z.” 

As building capacity requires time and buy-in from teams with 
diferent incentives, participants emphasized it is “important for 
these processes to be simple” (R9) so a diverse group of people can 
engage with them. Practitioners will need to learn new concepts, 
and it will be important to translate terminology used in FMEA and 
STPA for ML applications. 

5   DISCUSSION   
Policymakers and critics have been calling for establishing strong 
accountability practices in the ML industry [24, 60]. Strong account-
ability enables fexibility and experimentation while providing as-
surance and potential recourse to afected people [59]. A common 
requirement to establish a chain of accountability is whether a given 
harm or problem was adequately foreseeable. Although failure is 
often viewed as inevitable [31], or even desirable in ML [94, 108], 
safety engineering frameworks, such as FMEA and STPA, provide 
systematic processes to better anticipate risks [20, 67]. Our fndings 
suggest that the previously documented challenges and limitations 
are still the main hindrances to today’s ethical and social risk man-
agement practices: much of the defnition of these risks remains 
fexible and variable; the organizational incentive to deliver ML 
products quickly conficts with the mandate of the practitioners 
to assess and mitigate risks carefully; and resource limitations do 
not allow certain mitigation action to take place. Within this con-
text, we fnd our participants welcome the systemic and structured 
nature of FMEA and STPA while remaining skeptical about the 
feasibility of implementing such frameworks in the current organi-
zational environment. We discuss challenges and opportunities for 
future work to improve existing social and ethical risk management 
practices for ML systems. 

5.1   Adapting   safety   engineering   frameworks   
for   responsible   ML   development:   benefts   
and   limitations   

Our fndings illustrate that practitioners today use some of the 
existing epistemological perspectives and responsible ML tools in 
identifying, assessing, and mitigating social and ethical risks. For 
example, participants highlighted drawing upon critical theory [45] 
to assess ML systems and their efect on marginalized communities 
and elaborated on using participatory design methodology [132] 
to understand the impact of an ML system on a group of users. 
Moreover, they referred to using various quantitative and qualita-
tive tools such as adversarial testing protocols, transparency tools 
such as model cards [81], and algorithmic impact assessment [84]. 
Despite the increased formalization of social and ethical risk man-
agement, current practices remain disjointed. Without a systematic 
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process, it is difcult for responsible entities to systematically iden-
tify risks [98]. In support of Raji et al. [98], and Dobbe’s [30] pro-
posals, our fndings illustrate that safety engineering frameworks 
could inform and improve current practices in three main ways. 
Firstly, these frameworks provide a structured and well-defned 
way of thinking about key risk management components, includ-
ing failure, hazard, harm, cause, and control. Similar to AI fairness 
checklists [74], FMEA and STPA-like processes could systematize 
ad-hoc social and ethical risk management practices within an or-
ganization. Moreover, these formalized analytic processes can be 
leveraged as a communicative tool and create consistency between 
how diferent practitioners (i.e., social scientists, computer scien-
tists, and product managers) approach responsible ML development. 
This includes co-creating agreed-upon defnitions of failure, haz-
ard, and harm with product, policy, and responsible ML experts 
[58, 85]. Lastly, the lack of guidelines for assessing and mitigating 
social and ethical risk results in risk ownership without strong 
accountability, which creates uncertainty and frustration among 
practitioners [101]. Uncertainty about appropriate risk manage-
ment practices and extant organizational challenges prevent the 
creation of enforcement mechanisms that might foster trust among 
potentially harmed persons and groups [79]. Safety engineering 
frameworks and perspectives can enable the creation of assessments 
and mitigations strategies of risk into organizational decision points 
[30] which can support the implementation of emerging policies 
and regulations [36, 61, 123]. 

FMEA and STPA-like frameworks also have two key limitations 
in their scope of analysis. Firstly, it is critical to recognize that 
safety engineering frameworks have a limited scope of analysis. 
STPA is designed to map out potential hazards of a system to a 
specifc interaction between diferent elements of that system [66]. 
FMEA analyzes functions of a system for potential failures and 
deduces the likelihood of risk for that specifc function failure [20]. 
They can be used to proactively think about identifying potential 
hazards or failures; however, these processes cannot adequately 
answer normative questions such as “is this a good technology for 
society?” For example, applying FMEA or STPA on an ML system 
to automatically classify an individual’s gender could help mitigate 
ethical and social risks stemming from certain design decisions, but 
it will not be able to address the underlying ethical concerns and 
experienced harms related to deploying such a technology [55]. 

Furthermore, traditionally, FMEA and STPA are applied when 
there is a sufcient understanding of the deployment context (i.e., 
geographic location, typical user base, etc.). FMEA- and STPA-like 
analysts make assumptions about the use and development of a 
system, which could be wrong and not hold true in diferent con-
texts. Therefore, the outcome of an FMEA and STPA is not always 
valid across diferent contexts of application [20, 66]. According 
to our fndings, when applying STPA- and FMEA-like frameworks, 
ML practitioners need to carefully outline the specifc use case of 
analysis and recognize that their fndings are valid for the given 
context. This is also true for other responsible ML tools [47, 73]. 
Integrating existing social and ethical risk evaluation and mitiga-
tion techniques with the systematic safety engineering frameworks 
could provide comprehensive methods for social and ethical risk 
management for specifed scopes of our analysis. 
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5.2   Opportunities   for   improvement   and   
challenges   for   adapting   safety   engineering   
frameworks   

Our fndings illustrated that FMEA and STPA processes are limited 
in identifying the social context of use and deployment. We see 
this as an opportunity for the theoretical development of these 
processes. STPA frameworks could be strengthened by deeper the-
oretical development around what stakeholders, values, and losses 
must be considered for a given system. For example, values from 
feminist HCI [7] such as equity, diversity, and social justice, could 
inform what losses need to be prioritized (e.g., the losses dispropor-
tionately experienced by communities traditionally at the margins 
of safety analyses) when conducting a social and ethical risk as-
sessment. Centering feminist values in applying STPA would allow 
the analysts to conduct safety engineering analysis from an equity-
oriented perspective, enabling ML design and implementation that 
better meets the needs of diferent users and communities. Similarly, 
critical, sociotechnical perspectives attentive to how ML systems 
are situated within social systems shaped by intersecting power 
dynamics [56, 88] could further inform which values should be 
prioritized when applying safety engineering for social and ethical 
analysis of a given system. Furthermore, proper identifcation of 
losses and hazards and an appropriate understanding of a control 
structure requires an in-depth understanding of how an ML sys-
tem is used and integrated within a social system. Methodologies 
such as participatory design, value-sensitive design, and specula-
tive design could guide appropriate stakeholder identifcation and 
engagement practices at the beginning of an STPA. 

On the other hand, an FMEA process needs further theoretical 
guidance on how to think about failure modes that have social and 
ethical implications. Currently, failure modes are identifed based 
on how a desired function is not met. However, social and ethical 
failures occur even when a product functions as intended [80]. The-
oretical developments such as the concept of social failure modes 
presented by Millar [80] could inform FMEA processes that are 
more suitable for analyzing social and ethical risks [103]. Similarly, 
some of the feminist and critical epistemological perspectives and 
design methodologies mentioned above could help defne equity-
oriented social and ethical failures for ML systems and identify 
potential efects, causes and controls for marginalized stakeholders. 

However, the desired impacts of safety frameworks are medi-
ated by organizational culture. Even with a stronger theoretical 
grounding and echoing the fndings by Martelaro et al. [77], imple-
mentation of such frameworks could sufer if organizational chal-
lenges, such as insufcient organizational incentives, homogeneous 
standpoints, and perspectives, and lack of resources, persist. The 
successful adoption of safety engineering in medical and automo-
tive industries was accompanied by regulatory and organizational 
transformations [117]. Currently, the ML industry is observing 
some of these regulatory shifts with the newly introduced acts 
and standards [4, 36, 61]. For safety engineering frameworks to 
support emerging regulatory requirements, organizational shifts in 
safety culture and practices will need to follow. Necessary shifts 
may depend on existing organizational dynamics. As illustrated 
by Sloane et al.’s study of start-ups and their operationalization of 

AI ethics practices [115], approaches taken by small and medium-
sized companies might difer signifcantly compared to those of 
larger technology companies as they will not be able to hire in-
house experts for conducting safety engineering analysis. With 
the movement towards standardization and increased regulation 
of the ML industry, addressing organizational challenges will be 
necessary - regardless of the company size. However, practitioners, 
company leaders and government ofcials can learn from the grow-
ing research on operationalizing AI ethics. For example, Rakova 
et al. provide a mapping of "prevalent practices", "emerging prac-
tices" and "aspirational future", describing trends in responsible 
AI perspectives, and this mapping can act as a planning tool for 
leaders who want to identify their organization’s position and goals 
[100]. Safety engineering frameworks are anticipatory practices 
that enable proactive identifcation and mitigation of social and 
ethical risks. According to fndings from Rakova et al.’s study, the 
movement towards implementing such anticipatory practices needs 
to be accompanied by creating data-informed eforts to understand 
the impact, integrating responsible AI processes throughout all 
business processes, and aligning organizational values with the 
individual, team, and responsible AI incentives [100]. 

5.3   Future   work   and   research   challenges   for   the   
CHI   community   

This study is part of a multi-stage research project investigating 
the applicability of safety engineering frameworks for social and 
ethical risk management. We will examine how FMEA and STPA 
frameworks could be applied to ML applications by analyzing mul-
tiple case studies. The fndings from this study will inform the case 
study application and shape the future research direction. 

Industry practices for addressing the social and ethical risks of 
machine learning are rapidly emerging. Recognizing that safety 
frameworks are primarily designed to manage technological fail-
ures and hazards, we call on the CHI community to engage, study, 
critique, and improve the existing social and ethical risk manage-
ment practices. Specifcally, we have identifed three research foci. 
First, there is a need for clarifying existing conceptualization of 
social and ethical risks (i.e. harms to a user, AI ethics principle trans-
gression, and human rights violation), and we posit that developing 
taxonomies of harm, failure, and hazard - distinct concepts in safety 
engineering - for adverse social and ethical impacts of ML systems 
will provide valuable guidance in social and ethical risk manage-
ment. Existing critical epistemological perspectives [7, 45, 82] on 
defning the harms of ML systems should inform such taxonomies. 
Second, theoretical framing and analytical processes for examining 
failures and hazards in safety frameworks such as STPA and FMEA 
can beneft from deeper engagement with critical and feminist 
epistemological perspectives for examining failures and hazards 
considering social and ethical implications. Lastly, many empirical 
studies of responsible ML practices have focused on fairness-related 
methods [74], transparency artifacts [81], and general AI ethics op-
erationalization issues [101]. There is a lack of empirical studies 
on how practitioners are using, adapting, and developing social 
and ethical risk management techniques. More empirical studies 
are required to validate the applicability, usability, and capability 
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for   identifying   and   managing   risks   of   emerging   frameworks   across   
diferent   ML   applications   and   organizational   cultures,   and   use   cases.   

6   CONCLUSION   
Challenges   with   organizational   structure,   resource   constraints,   rep-
resenting   diverse   perspectives,   and   uncertainty   of   assessing   ML   
systems   present   fertile   ground   for   innovating   social   and   ethical   risk   
management   tools.   Quantitative,   qualitative,   and   refexive   investiga-
tive   processes   are   emerging   for   defning,   assessing,   and   mitigating   
social   and   ethical   risks.   We   study   existing   practices   and   explore   how   
tools   from   safety   engineering   could   provide   insights   for   creating   
more   appropriate   social   and   ethical   risk   management   frameworks.   
Our   preliminary   discussions   with   ML   practitioners   about   safety   
engineering   frameworks,   such   as   STPA   and   FMEA,   showed   these   
approaches   could   be   adapted   to   provide   the   necessary   guidance   for   
systematically   conducting   failure   and   hazard   analysis   for   social   and   
ethical   risks   of   ML   systems.   In   this   work,   we   discussed   the   strength   
and   limitations   of   these   two   processes   and   highlighted   the   need   for   
further   research.   
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