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ABSTRACT
Current Spoken Dialogue Systems (SDSs) often serve as passive
listeners that respond only after receiving user speech. To achieve
human-like dialogue, we propose a novel future prediction archi-
tecture that allows an SDS to anticipate future affective reactions
based on its current behaviors before the user speaks. In this work,
we investigate two scenarios: speech and laughter. In speech, we
propose to predict the user’s future emotion based on its tempo-
ral relationship with the system’s current emotion and its causal
relationship with the system’s current Dialogue Act (DA). In laugh-
ter, we propose to predict the occurrence and type of the user’s
laughter using the system’s laughter behaviors in the current turn.
Preliminary analysis of human-robot dialogue demonstrated syn-
chronicity in the emotions and laughter displayed by the human
and robot, as well as DA-emotion causality in their dialogue. This
verifies that our architecture can contribute to the development of
an anticipatory SDS.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).
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1 INTRODUCTION
Spoken dialogue is a common and natural form of communication
in human social interaction. Thus, we are witnessing a growing
interest in advancing Spoken Dialogue Systems (SDSs) capable of
delivering task-specific services, both in research and in commer-
cial applications. For example, voice assistants, such as Amazon
Echo or Google Home, are widely used for information queries in
people’s daily lives. Meanwhile, embodied SDSs, for instance the
humanoid robot Pepper, have been deployed to enhance human
workforce in application scenarios such as hospitality and elderly
care. The majority of these SDSs, however, converse passively and
utter words more as a matter of response than asking questions or
leading the conversation on their own initiative. Furthermore, many
existing SDSs are built on top of natural language processing and
generation models developed with written text data, overlooking
the rich conversational and affective phenomena unique to spoken
dialogue, such as non-verbal vocalizations and affective bursts. As a
consequence, current SDSs are often perceived as stagnant and me-
chanical. To mitigate this issue, researchers have been investigating
various dialogue-specific behaviors, such as turn-taking, backchan-
neling, and laughter, as they have been found to serve important
functions in conversation, including the marking of prominence,
syntactic disambiguation, attitudinal reactions, uncertainty, and
topic shifts [18, 27, 44, 45].

Studies on these dialogue behaviors usually include both detec-
tion and synthesis tasks. The detection task aims at predicting user
behaviors from the received signals, while the synthesis task gener-
ates system behaviors. For the detection task, acoustic features such
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as Mel Frequency Cepstral Coefficients (MFCCs) and prosodic fea-
tures such as pitch, energy, and duration of pause-bounded phrases
are typically used as cues for the detection of these human-like
behaviors [14, 34, 40]. With the recent advance of deep learning
techniques, such detection has started to become more robust and
is being applied in real-world applications [15]. Compared to the
detection task, the synthesis task is more challenging for two major
reasons: 1) It depends on the accuracy of the detection task. If the
user behaviors are classified incorrectly at the very beginning, the
process for system behavior synthesis could become totally mean-
ingless or even harmful to user engagement. For example, if the
system detects turn-yielding cues but the user is actually holding
the turn, then the user’s speech will be interrupted by the system. 2)
Unlike the detection task, where audio alone can achieve reasonable
performance (although lexical cues often help), the synthesis task
requires suitable generation of both acoustic and lexical behaviors.
When synthesizing fillers and backchannels, the meanings largely
depend on their morphological forms [15, 21, 22, 32]. To address
this challenge, the majority of the synthesis task is still performed
following a rule-based method. Take backchanneling as an exam-
ple: First, the user’s speech is converted into a sequence of words
by Automatic Speech Recognition (ASR). Next, the focus word of
the sequence is extracted. If the focus word matches any entries
in the pre-built query-response database, the system generates a
backchannel based on the query-response pair. Otherwise, the sys-
tem generates a short backchannel, such as “Yeah” to indicate it is
listening [21].

Such a detection-rule-synthesis process is a widely adopted op-
eration in SDSs, yet it has several limitations. First, this can lead
to delayed responses due to the time taken (often correlates to the
duration of the input speech) to process the user’s speech and syn-
thesize suitable responses. Such delay can accumulate when there
are several detection components (e.g., dialogue act recognition,
emotion recognition, and turn-taking detection). Second, previous
research in linguistics and communication theories suggests that
human listeners have the ability to anticipate the interlocutor’s
behavior in real time based on the dialogue context and history
[8, 37, 42], and such predictive power is core to human brains
[2, 31, 35]. Furthermore, human listeners can start planning their
responses or even talking before the interlocutor finishes, resulting
in cooperative overlaps or appropriate interruptions that are key
to establishing rapport and sympathy [10, 43]. Current SDSs, how-
ever, are incapable of exhibiting such anticipatory and collaborative
dialogue behaviors.

To alleviate this problem, recent SDS research has started to
investigate the feasibility of enabling the system to actively lead
the conversation instead of behaving as a passive follower. Wu et al.
[46] proposed a knowledge graph that sequentially changed the
discussion topics following a given conversation goal to keep the
dialogue as natural and engaging as possible. Besides, Lala et al.
[17] and Li et al. [23] proposed attentive and proactive listening
systems. These systems have a proactive initiator that can make
the dialogue systems behave somewhat actively to ask a follow-up
question related to the most recent topic or start a new topic. More-
over, proactive behaviors have proven helpful in rendering a more
competent and reliable system that could ultimately lead to a more
trustworthy interaction partner [16]. Nevertheless, these functions

dealt with only the linguistic aspect (e.g., spoken content) without
considering the paralinguistic aspect (e.g., affective expressions).

Therefore, we are motivated to build an anticipatory SDS by en-
dowing it with the ability to predict the future affective reactions of
the user. Inspired by findings in cognitive science that humans can
anticipate certain future events, including affective ones [5, 7, 30],
we propose an architecture that allows the SDS to mimic this hu-
man ability to predict affective reactions in the user’s next turn
based on its current turn. We consider two scenarios: speech and
laughter, which are distinguished as two acoustic events (though
co-occurrence also exists) [39, 43]. In the speech scenario, we look
at the prediction of future emotions (valence and arousal). In the
laughter scenario, we investigate the prediction of future laughter
(occurrence and type). Moreover, we propose a self-correction and
adaptation function that updates the future prediction model using
the outputs of a recognition model on the user’s speech. When
the future prediction model has low confidence in its outputs, the
recognition model generates outputs using the user’s speech col-
lected so far as ground truths to correct the prediction model. We
conducted a preliminary analysis on human-robot dialogue, which
confirms the feasibility of implementing the proposed anticipatory
and adaptive architecture.

2 RELATED WORK
A dialogue is made up of a series of utterances, with the previ-
ous response determined by the history information [39]. Previous
studies have found that the emotions of the interlocutors have a
mapping relationship in human-human conversation. In persuasion
dialogue, Acosta and Ward [1] discovered that the listener’s dimen-
sional emotion (valence, arousal, dominance) can be predicted from
the emotion expressed in the immediately preceding speaker’s ut-
terance. Majumder et al. [26] demonstrated that in dyadic conversa-
tion, the listener’s discrete emotion can be predicted by the context
given by the preceding utterances and the emotion expressed. Such
relationships have been considered when designing SDSs: by hav-
ing a virtual or embodied agent mirror a user’s emotions, i.e., the
“affective mirror” [36].

Furthermore, emotion is affected by other aspects of dialogue,
such as the Dialogue Act (DA), which represents the communicative
function of an utterance. Despite the fact that there is a mutual influ-
ence between emotion and DA in conversations [6], understanding
of such relationships is limited. However, a recent study has found
that there is a clear temporal causal relationship between DAs and
emotions, providing specific emotion-DA and DA-emotion pairs.
For instance,Happiness of the speaker’s utterance has a great chance
of causing the DA of appreciation in the following response. The DA
of signal-non-understanding and backchannel-question-form usually
raise surprise [4]. Apart from emotions expressed through speech,
affective bursts, especially laughter, are paralinguistic events that
occur frequently in spontaneous dialogues [29, 43]. Laughter usu-
ally shows a contagious phenomenon that hearing laughter from
others is known to trigger laughter in ourselves [38]. In dialogues,
such a contagion is called “shared laughter” [9, 33]. A recent work
has developed a shared laughter system that can decide whether to
generate social laughter, mirthful laughter, or not laugh, depending
on the detection of user laughter [12].
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Based on these novel findings and developments, we can expect
to advance SDSs by applying the causal relationships between
emotion and DA, as well as the laughter mapping relationship, i.e.,
predicting the affective reactions of the upcoming user utterance to
prepare its next response towards realizing proactive and affective
behaviors. To the best of our knowledge, this is the first work
to propose such an anticipatory SDS framework, which has the
potential to lead to human-like affective dialogue capabilities in
SDSs.

3 PROPOSED ARCHITECTURE FOR AN
ANTICIPATORY SDS

3.1 The Speech Scenario
In the speech scenario, as shown in Fig. 1a and Algorithm 1, there
are three major components in the proposed architecture: emotion
prediction, emotion recognition, and self-correction. The emotion
prediction model works as a future prediction function by taking
the emotion and DA of the system’s current turn as input and
outputting an emotion as the prediction of the user’s emotion in
the next turn. When the prediction probability is high (i.e., the
system is confident about its prediction), the system will take it
as the user’s future emotion and use it to help plan its next turn
before the user speaks. Otherwise, the emotion recognition model
starts to work by detecting the user’s emotion once they finish
speaking. The recognition result will be taken as ground truth to
fine-tune the emotion prediction model if it has low confidence in
its outputs and update the parameters of the prediction model via
the self-correction function.

The emotion prediction model can be built by drawing on prior
knowledge of emotion-emotion mapping [21] and the DA-emotion
causal relationship [4].We conducted a preliminary analysis demon-
strating that in human-robot dialogue, the users indeed mimic the
robot’s emotion, but the correlations show different patterns in
the arousal and valence dimensions (described in Sec. 4.2). Besides,
there is limited work on the causal relationship between DAs and
emotions. Thus, we aim to expand this research to formulate the
emotion prediction problem as a logistic regression model:

𝐸𝑀𝑝𝑟𝑑 = 𝐿𝑅(𝐸𝑀𝑐𝑢𝑟 , 𝐷𝐴𝑐𝑢𝑟 ) (1)

where the 𝐸𝑀𝑝𝑟𝑑 is the predicted user emotion in the next turn,
and the 𝐸𝑀𝑐𝑢𝑟 and 𝐷𝐴𝑐𝑢𝑟 are the system’s emotion and DA in the
current turn, respectively. The regression model can be pre-trained
on suitable corpora before being incorporated in the proposed
architecture.

Compared to emotion prediction, emotion recognition has been
well studied, but the majority of these works did not take into
consideration the real-life environment (e.g., noise), which is a
long-standing problem for SDSs [19]. Hence, we propose to incor-
porate text as additional information to tackle this problem. The
text features are extracted from transcripts generated by the ASR
component in SDSs, so the emotion recognition model needs to be
robust to ASR errors. In a recent study, we developed a hierarchical
cross-attention fusion model using both audio and text features for
ASR error-robust emotion recognition [20], which can be adopted
in the proposed architecture. When using ASR transcripts, this
model performed similarly to when using ground-truth transcripts.

(a) The Speech Scenario.

(b) The Laughter Scenario.

Figure 1: The proposed architecture for anticipatory dia-
logue.

Algorithm 1: The speech scenario
Input :System’s current emotion 𝐸𝑀𝑐𝑢𝑟 and dialogue act 𝐷𝐴𝑐𝑢𝑟 ;

Predicted user emotion 𝐸𝑀𝑝𝑟𝑑 ; Recognized user emotion
𝐸𝑀𝑟𝑒𝑐 ; Pre-defined probability threshold 𝑃𝑡ℎ𝑟1

1 repeat
2 for system utterance do
3 Generate 𝐸𝑀𝑝𝑟𝑑 from 𝐸𝑀𝑐𝑢𝑟 and 𝐷𝐴𝑐𝑢𝑟

4 if Probability of 𝐸𝑀𝑝𝑟𝑑 ≥ 𝑃𝑡ℎ𝑟1 then
5 Action // E.g., planning the system’s next turn.

6 else
7 Generate 𝐸𝑀𝑟𝑒𝑐

8 Update the emotion prediction model
9 end if

10 end for
11 until no system utterance

The self-correction component follows the rule that when the
confidence (i.e., probability) of the emotion prediction result is low,
it starts to work by updating (i.e., fine-tuning) the prediction model
using the outputs from the emotion recognition model as ground
truths. Such a setting allows the emotion prediction component
to dynamically adapt to the emotional expression habits of the
human participants as the dialogue progresses. Like our human
ability to make predictions, the longer the dialogue goes on, the
more accurate the prediction becomes.
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Algorithm 2: The laughter scenario
Input :System’s current laughter 𝐿𝐴𝑐𝑢𝑟 ; Predicted user laughter

𝐿𝐴𝑝𝑟𝑑 ; Recognized user laughter 𝐿𝐴𝑟𝑒𝑐 ; Pre-defined
probability threshold 𝑃𝑡ℎ𝑟2

1 repeat
2 for system laughter do
3 Generate 𝐿𝐴𝑝𝑟𝑑 from 𝐿𝐴𝑐𝑢𝑟

4 if Probability of 𝐿𝐴𝑝𝑟𝑑 ≥ 𝑃𝑡ℎ𝑟2 then
5 Action // E.g., planning the system’s next turn.

6 else
7 Generate 𝐿𝐴𝑟𝑒𝑐

8 Update the laughter prediction model
9 end if

10 end for
11 until no system laughter

3.2 The Laughter Scenario
Similar to the speech scenario, there are three major components
in the laughter scenario, as shown in Fig. 1b and Algorithm 2:
laughter prediction, laughter detection, and self-correction. Based on
the system’s laughter behavior in the current turn and the shared
laughter relationship [12], the laughter prediction model predicts
the occurrence and type of the user’s laughter in the next turn. If the
prediction probability is low, the laughter detection will work by
detecting the type of laughter from the user’s response and updating
the laughter prediction model via the self-correction function.

The laughter prediction model can be built by drawing on recent
work that detects the occurrence and type of the user’s laughter
to generate the system’s laughter [12]. We can use this finding re-
versely by predicting the occurrence and type of the user’s laughter
based on the system’s laughter, which is easy to manipulate in SDSs.
The laughter detection model takes acoustic features (e.g., MFCCs)
and prosodic features (e.g., pitch and power) as input and feeds
them to a stacked recurrent neural network. The recurrent neural
network will be implemented using the bi-directional gated recur-
rent unit, whose feed-forward processing can work in real time,
which is essential for SDSs. The self-correction follows the same
idea as the speech scenario by updating (fine-tuning) the prediction
model when its prediction probability is low.

4 PRELIMINARY ANALYSIS
4.1 Corpora Description
Although there are existing emotional dialogue corpora, most of
them are not suitable for the purpose of this work. For example,
IEMOCAP [3] contains spontaneous dialogue sessions, yet the im-
provisation is limited to a set of hypothetical scenarios, which is
different from open domain natural dialogue. SEMAINE [28] col-
lected human-agent emotional dialogues, but the human users were
not permitted to ask questions. The persuasive dialogue corpus used
in [1] is not publicly available. Besides, none of the existing corpora
contain sufficient occurrences and variations of laughter.

Therefore, we used two corpora from the JST ERATO ISHIG-
URO Symbiotic Human-Robot Interaction Project1 that contain
spontaneous dialogue and rich laughter. The corpus for the speech
1https://www.jst.go.jp/erato/ishiguro/en/index.html

Figure 2: Valence of the robot’s and human’s speech during
an example dialogue session shows a mimicry pattern.

scenario consists of spontaneous dialogue between human partici-
pants and a teleoperated humanoid robot ERICA [11]. During data
collection, ERICA was teleoperated by a human operator in a Wiz-
ard of Oz (WoZ) manner. The participants were students ranging
from 18 to 22 years old. Each dialogue session contained two phases
and lasted around 15 minutes, and six sessions were conducted. In
the first phase, ERICA introduced herself and talked with the par-
ticipants about their lives, hobbies, and future plans. In the second
phase, they talked about robots, especially about ERICA herself.
During the dialogue, the robot led the dialogue, and the participant
acted as a “follower”, which is the scenario we hope to apply our
proposed architecture to. The emotions are annotated as Valence:
-3 (extremely negative) to +3 (extremely positive), and Arousal: -3
(extremely passive) to +3 (extremely active).

The corpus for the laughter scenario was collected under almost
identical conditions, except that the aim was to get the teleoper-
ators and the participants to know each other quickly [13]. As a
result, they behaved friendly by laughing frequently during such
speed dating. Each dialogue lasts 10 to 15 minutes, and 82 dialogue
sessions were conducted. The laughter was annotated as Social
laughter, Mirthful laughter, and No laughter.

4.2 Exploring the Feasibility of Emotion
Prediction

To explore the relationship between the human participant’s and
the robot’s emotions in dialogue, we analyzed the human-robot
dialogue sessions from the first corpus. Our preliminary analysis
found similar patterns in all six sessions. Because different sessions
have different durations and different numbers of utterances, we
could not average the emotion labels over the six sessions. Thus, we
report one session containing 123 utterance pairs as an illustrative
example to discuss our findings.

The valence patterns of the robot and participant are shown in
Fig. 2. The dialogue can be roughly divided into three phases.We can
see that in the spontaneous dialogue phase, the human participant’s
valence does mimic the robot’s to a large extent, especially when the
robot changes its valence significantly (e.g., from -2 to +2 and from

https://www.jst.go.jp/erato/ishiguro/en/index.html


Predicting Future Affective Reactions in Human-Computer Dialogue CHI EA ’23, April 23–28, 2023, Hamburg, Germany

Table 1: Annotated excerpt for analyzing the influence of dialogue acts on emotions in dialogue.

Speaker Transcript Valence Arousal DA
Robot Where are you from? +1 +1 Wh-question
Participant Tokushima, in Shikoku. +1 +2 Statement
Robot Fukushima? +2 +2 Signal-non-understanding
Participant No, Tokushima. 0 +1 Reject
Robot Oh, Tokushima. I’m sorry. -1 0 Apology

Table 2: How valence is related to dialogue context – the robot

When is the robot positive When is the robot negative
1. In the initial greetings 1. The participant talking excessively
2. Introducing itself 2. Talking about the limitations of robots
3. The participant saying something amusing 3. Hearing about the participant’s limitations
4. The participant feeling positive 4. The participant showing negative feelings
5. Introducing a new topic
6. Praising the participant
7. The participant answering questions correctly
8. Asking a question and expecting a positive answer

Table 3: How valence is related to dialogue context – the participant

When is the participant positive When is the participant negative
1. In the initial greetings 1. Talking about their research
2. Talking about their background 2. Failing to explain something clearly to the robot
3. Starting a new topic 3. Feeling bored with a topic
4. Being praised by the robot 4. Describing vague topics (e.g., the future, job plans)
5. Saying something funny 5. Admitting they don’t understand something technical
6. Explaining something vividly 6. Being asked a difficult question by the robot
7. Knowing a lot about something (e.g., robots) 7. Having to say something negative about the robot
8. Praising the robot 8. Being embarrassed or feeling bad for the robot
9. Being told their answers are correct by the robot 9. Talking about their own limitations

+1 to -3). Also, during the majority of the time in the spontaneous
dialogue phase, the human valence is very close to its previous robot
valence, showing a mimicry relationship. Note that, the human
participant did not express extremely high valence (i.e., +3). This
could be due to individual differences such as cultural background,
personality, or expectation of the robot as a novel stimulus. The
Pearson’s Correlation Coefficient (PCC) of the valence pairs is 0.54
in the spontaneous dialogue phase, i.e., there is a moderate positive
relationship between the human and robot valences. This suggests
that it is possible to implement a mapping function between the
human’s valence and the valence expressed by the SDS. Note that,
what we need to investigate is the correlation between emotions
for a mapping pattern, not the exact values for classification, so we
do not report accuracy or F1 scores. Even if the human participant’s
emotion values are completely different from the robot’s, but highly
correlated, e.g., [-3, -2, 1, 0, 1] and [-2, -1, 0, 1, 2], it still shows that
the participant’s emotion follows the robot, which could be used as
a basis for implementing our proposed anticipatory SDS.

Interestingly, during the ice-breaking and ending phases, the
human’s valence hardly resembles the robot’s valence with a PCC
of 0.09 in the ice-breaking phase and 0.07 in the ending phase.
After examining the video recording, we found that both parties
were performing the greeting and leave-taking dialogue acts that
they consider to be socially appropriate, instead of mimicking their

dialogue partner’s expressions. That is, emotions in the dialogue
were influenced by DAs. Thus, we annotated DAs following the
categorization by Stolcke et al. [41] to understand how they impact
emotion mimicry.

An annotation excerpt from the ice-breaking phase is shown
in Table 1. When the robot asked a “Wh-question” and the par-
ticipant responded with a “statement”, both valence and arousal
display mimicry. However, when the robot expressed “signal-non-
understanding” and the participant responded “reject”, the valence
has an obvious drop, but the arousal barely changes. This shows
that unlike valence, arousal is less influenced by DAs.

In terms of arousal, we found significant mimicry in the partici-
pant’s arousal toward the robot’s (figure omitted for brevity). The
PCC of the arousal pairs is 0.78 over the whole dialogue session,
including the ice-breaking and ending phases. This demonstrates
that the arousal behind the future response may be relatively easy
to predict based on the current utterance.

Our preliminary analysis indicates that it is feasible to predict a
future emotion from the current emotion and DA for implementing
the prediction component of our proposed architecture. We also
found that valence is related to contextual information, such as DAs
and personal factors of the interlocutor. We summarized a set of
observations on the relationship between dialogue context and the
valence of the robot and of the human participant in Table 2 and
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Table 4: Annotation for analyzing the laughter prediction.

Speaker Transcript Laughter acoustics Laughter type

Participant
Although I studied only one night, I passed the
exam. Haha. Flat pitch, moderate power

Robot Hehe. I see Social laughter

Participant
I was told the exam would be held the following
week when I arrived. I had the wrong date. Haha. Long duration, jittery, shimmery

Robot Ufufufu. I see. Mirthful laughter

Participant
I studied hard for the exam but got a zero. I was
very sad. Haha. low pitch and power

Robot That is bad. No laughter

Table 3, respectively. We expect that these observations can con-
tribute to the future implementation of the proposed anticipatory
SDS and to the broader research community.

4.3 Exploring the Feasibility of Laughter
Prediction

We analyzed a publicized dialogue demo that was built upon the
second corpus with the robot’s dialogue system replacing the tele-
operator2. The results are presented in Table 4. As shown here, the
robot generated suitable laughter behaviors based on the acoustic
features of the previous user laughter. When the user’s laughter had
a flat pitch and moderate power, the robot responded with social
laughter. When the user’s laughter had a long duration and was
jittery and shimmery, the robot responded with mirthful laughter.
The robot also “understood” not to laugh when the user laughed
only to relieve embarrassment. Based on previous research on the
contagious phenomenon of laughter [38], we aim to expand on the
shared laughter research by adjusting the acoustic features of the
laughter generated by the SDS, allowing it to predict the future
laughter behaviors of the user in response to the system’s laughter.

5 DISCUSSION
Our preliminary analysis of human-robot dialogue suggests that it is
feasible to implement an anticipatory SDS that predicts the emotion
and laughter of the user in the next turn using the current turn of the
system. However, there remain open challenges in implementing
the proposed architecture, which we will discuss in this section.
Further, we will discuss potential application scenarios for the
proposed architecture.

5.1 Implementation Challenges
The proposed architecture relies on accurate and robust recognition
of emotions from speech, which remains an open challenge due to
the variability in speech and emotion expression. The prediction
component in the proposed architecture may not be applicable
to all user turns, as humans can express emotions and laughter
arbitrarily without considering the system’s expression. In this
case, the architecture can be “downgraded” with only emotion
recognition and laughter detection working and the prediction and
self-correction components frozen. Further, noise in real-world
applications of SDSs can reduce the reliability of both the emotion
recognition and laughter detection models. Therefore, we plan to
2https://www.youtube.com/watch?v=6tMiWog4l00

incorporate other communicative modalities (e.g., text and vision)
to further improve the proposed architecture [24].

5.2 Potential Application Scenarios
In social and open-domain dialogue, an SDS with our proposed
architecture can generate appropriate conversational and affective
behaviors, such as a backchannel “Yeah” or laughter, in real time,
instead of having delayed turn-taking that may interrupt the user’s
next turn. Further, it is especially useful in scenarios where the SDS
is expected to take initiatives and lead the conversation, such as
in healthcare and education. For example, the SDS can adjust its
generated emotions and DAs to support a user’s emotion regulation
process by eliciting certain emotions in people with depression or
autism [25]. In education, the SDS can express emotions during
collaborative problem solving with children to increase their partic-
ipation in the learning activities and resulting learning outcomes, as
Zhou and Tian [47] found that when the robots exhibited emotional
expressions, participants were more likely to collaborate with them
and achieve task success faster.

6 CONCLUSIONS
In this work, we propose an anticipatory SDS architecture that
predicts the affective reactions of the user in a future turn using its
behaviors in the current turn. We investigate its viability in both
speech and laughter scenarios. Based on preliminary analysis of
human-robot dialogue, we demonstrated that: 1) The emotion of
a future turn can be predicted from the current turn. The arousal
dimension has a significant mimicry relationship, in which the
human user’s arousal follows the robot’s arousal during dialogue.
The valence, however, is also related to the previous DA. 2) The
laughter behavior of the human user in a future turn has a mapping
pattern with the laughter behavior of the robot in the current turn.
The preliminary analysis paves the way for our future research. In
particular, we aim to identify the relationship between current DA
and future emotion, as well as current laughter and future laugh-
ter to implement the emotion prediction model and the laughter
prediction model of the proposed architecture. Moreover, we plan
to include history information and dialogue context beyond the
current turn to improve the prediction accuracy. Achieving antici-
patory SDSs requires every individual component to be accurate
and robust, as well as a seamless collaboration between the com-
ponents. Thus, in the future, we plan to implement the complete
architecture and evaluate its outcomes in user studies.

https://www.youtube.com/watch?v=6tMiWog4l00
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