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Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field 

across machine learning disciplines. While it is useful for increasing a model’s generalization capabilities, it can also address many 

other challenges and problems, from overcoming a limited amount of training data, to regularizing the objective, to limiting the amount 

data used to protect privacy. Based on a precise description of the goals and applications of data augmentation and a taxonomy for 

existing works, this survey is concerned with data augmentation methods for textual classification and aims to provide a concise and 

comprehensive overview for researchers and practitioners. Derived from the taxonomy, we divide more than 100 methods into 12 

different groupings and give state-of-the-art references expounding which methods are highly promising by relating them to each 

other. Finally, research perspectives that may constitute a building block for future work are provided. 

• Computing methodologies ~ Machine learning ~ Machine learning algorithms ~ Regularization • Computing methodologies ~ Machine 

learning ~ Machine learning approaches ~ Neural networks • Computing methodologies ~ Artificial intelligence ~ Natural 

language processing 

Additional Keywords and Phrases: Data Augmentation, Low Data Regimes, Small Data Analytics 

1 INTRODUCTION 

An increase in training data does not necessarily result in a solution for the learning problem. Nevertheless, the quantity 

of data remains decisive for the quality of a supervised classifier. Originating from the field of computer vision, many 

different methods to artificially create such data exist, which are referred to as data augmentation. For images, 

transformations such as rotations or changes of the RGB channel are useful, as the resulting model should be invariant 

for these. Similar to computer vision, speech recognition uses procedures that change sound or speed. In contrast, 

research on data augmentation in Natural Language Processing (NLP) faces the difficult task of establishing such 

universal rules for textual data transformations which, when executed automatically, maintain labeling quality [1], [2]. 
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of Higher Education, Research, Science and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE. The 
calculations for this research were conducted on the Lichtenberg high performance computer of the TU Darmstadt. 
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Research in this area was therefore much more limited before 2019, despite existing extensive areas of application [3]. 

Nowadays, this challenge remains, but is being addressed by many scientists from different research fields as more 

possibilities and complex mechanisms open up. Within these fields, researchers strive to meet various goals, e.g., 

generating more data for low-data regimes, balancing imbalanced dataset classes or securing against adversarial 

examples. Thus, textual data augmentation comes in many contrasting forms that will be grouped and explained in this 

survey. We will provide an in-depth analysis and also relate the methods to the state-of-the-art, as they now face another 

challenge due to the advent of transfer learning. For example, Longpre et al. [4] demonstrate that many data 

augmentation methods cannot achieve gains when using large pre-trained language models, as they already are invariant 

to various transformations. They hypothesize that data augmentation methods can only be beneficial, if they create new 

linguistic patterns that have not been seen before. Keeping this in mind, the survey is closed with a meta-perspective on 

the methods. This survey is therefore intended to contribute to data augmentation and general text classification by 

highlighting the following aspects: 

• Goals and applications (C1). We highlight the goals and applications of data augmentation that we derive from 

the comprehensive review. These have only been presented to a limited and incomplete extent in previous 

research papers. 

• Comprehensive survey on data augmentation in text classification (C2). Our survey provides a holistic overview 

of the data augmentation field in text classification. While methods for other NLP disciplines are mentioned, the 

listing is not complete, nor are the methods set in relation to each other as the text classification data augmentation 

methods are. 

• Data-structure-driven taxonomy and method-oriented categorization (C3). The text classification data 

augmentation methods are clustered according to a data-structure-based, high-level taxonomy and then 

subdivided into more fine-grained method groups. This is also present in the surveys from Shorten and 

Khoshgoftaar [5] and Wen et al. [6] and is adapted for the text classification domain. 

• Method-driven overview and in-depth details (C4). The textual data augmentation methods are explained clearly 

and concisely while including necessary details for delimitation and comparison. Contrasting to other works, our 

extensive study contains 12 groups with more than 100 different approaches. 

• State-of-the-art review (C5): Within the literature survey we examine latest state-of-the-art considerations, for 

example, the limited benefit of textual data augmentation methods with large pre-trained models that are often 

neglected in current works. 

• Relating methods (C6). Throughout this survey, the methods are set in relation to conception and performance 

comparisons, while taking the underlying models and application contexts into account.  

• Future research perspectives (C7). We identify future research opportunities that are either necessary for a state-

of-the-art comparison or sensible to look into because of current challenges and promising directions for textual 

data augmentation. 

The survey paper is structured as follows: The paper introduces the foundations of data augmentation in Section 2. 

This section is then broadened by the consideration of the goals and applications. Section 3 is subdivided into the various 

data augmentation groups and contains the explanations, as well as tabular overviews of the methods. In Section 4, an 

analysis of the data augmentation methods from a more global perspective is given and various future research directions 

are discussed. Section 5 outlines the limitations of data augmentation and provides a conclusion for this survey. 
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2 BACKGROUND: FOUNDATIONS, GOALS, AND APPLICATIONS OF DATA AUGMENTATION 

In many machine learning scenarios, not enough data is available to train a high-quality classifier. To address this 

problem, data augmentation can be used. It artificially enlarges the amount of available training data by means of 

transformations [7]. In the well-known LeNet by LeCun et al. [8], early versions of data augmentation have already been 

observed. The notion of data augmentation comprises various research in different sub-areas of machine learning. Many 

scientific works merely relate data augmentation to deep learning, yet it is frequently applied in the entire context of 

machine learning. Therefore, this paper adopts the notion of data augmentation as a broad concept, encompassing any 

method that enables the transformation of training data. However, following common understanding in research, semi-

supervised learning is not regarded as a form of data augmentation and is only thematized if sensible in this survey. 

An important term relating to data augmentation is label preservation, which describes transformations of training 

data that preserve class information [9]. For example, in sentiment analysis, an entity replacement within a sentence is 

often sufficient for label preservation, but randomly adding words may alter the sentiment (e.g., an additional “not” 

could invert the meaning of a sentence). In many research works, label preservation is adapted to also cover 

transformations changing the class information, if the label is adjusted correctly. Additionally, many transformations do 

not maintain the correct class in every case, but with a high probability. Shorten and Khoshgoftaar [5] define this 

probability as the safety of a data augmentation method. When this uncertainty is known, it could be directly integrated 

in the label. Otherwise, methods like label smoothing [10] can model a general uncertainty. 

The goals of data augmentation are manifold and encompass different aspects. As mentioned above, training data is 

essential for the quality of a supervised machine learning process. Banko and Brill [11] show that only the creation of 

additional data can improve the quality of a solution in the confusion set disambiguation problem, while the choice of 

the classifier does not lead to a significant change. The model selection and development will remain a crucial aspect of 

machine learning. Yet, scholars suggest that in some situations, the choice for higher investments in algorithm-choice 

and -development instead of corpus-development should be carefully considered [11]. Closely connected to this is the 

big data wall problem, which Coulombe [9] mentions in his work on data augmentation. It describes that big companies 

benefit from the special advantage of having access to a large amount of training data. Consequently, the already large 

GAFAM-Companies (Google/Alphabet, Amazon, Facebook/Meta, Apple, and Microsoft) expand their predominance over 

smaller businesses due to their data superiority. An ideal data augmentation method could approach these points and 

decrease the dependency of training data even though full elimination is not likely. 

Additionally, creating training data for various classification problems is accompanied by high labeling costs. In many 

instances, assessment and labeling by experts are necessary to prevent incorrect training examples. These aspects can, 

for example, be especially stressed concerning the field of crisis informatics [12], [13]. Creating relevant classifiers for 

emergency services and responders is only possible during crises and requires resources and time from personnel needed 

elsewhere to, e.g., act as first responders, therefore in the worst-case costing lives [14]. Similarly, training data for 

medical image processing is very valuable. Due to the rareness of certain diseases, the privacy of patients, and the 

requirement of medical experts, it is particularly challenging to provide medical datasets [5]. In a related sense, many 

domains, such as cybersecurity, have a time-critical factor that requires training data to be collected as quickly as possible 

so that, in terms of the cybersecurity domain example, threats can be responded to quickly [15], [16]. With regard to 

such classification problems, data augmentation could help minimize the required amount of data needed to be labeled 

and to solve interlinked problems.  

Data augmentation is particularly significant for the field of deep learning. Work such as that by Minaee et al. [17] 

has already extensively investigated the quality of deep learning algorithms in text classification, but there are many 
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application scenarios where there is not enough data to produce high quality classifiers. For example, Srivastava et al. 

[18] have also demonstrated that deep neural networks in general are particularly powerful but encompass a tendency 

to overfit; faced with unseen instances, they might generalize badly. This observation can be illustrated with help of the 

bias variance dilemma. On the one hand, deep learning algorithms are, due to their deep and non-linear layers, very 

strong models with a lower bias-error. On the other hand, they show a high variance for different subsets of training 

data [19]. This problem can be solved by arranging the algorithm to prefer simple solutions or by providing a bigger 

amount of training data. The first option is aimed at methods of regularization, such as dropout or the addition of a L2 

norm via the model’s parameters in the loss-function. The second option is frequently realized by means of data 

augmentation and could, in this context, also be considered as a type of regularization. According to Hernandez-Garcia 

and König [20], data augmentation is a preferred regularization method, as it achieves generalization without degrading 

the models’ representational capacity and without re-tuning other hyperparameters. While other methods reduce the 

bias error, data augmentation’s objective is to keep it constant and is used to solve the problem at the root [5]. 

Nonetheless, data augmentation still depends on the underlying classification problem and can therefore not be 

effectively applied in all circumstances. 

In the context of deep learning models, so called adversarial examples/attacks are generated more and more 

frequently. These small changes in the input data, which are almost unrecognizable to humans, mislead the algorithms 

to make wrong predictions [21]. Table 1 shows two different genuine examples in which the smallest changes in the 

texts alter the classification prediction. Alzantot et al. [22] further present an algorithm that generates semantically and 

syntactically similar instances of training data, successfully outwitting sentiment analysis and entailment models. With 

the help of adversarial training, these automatic adversarial example generators can be used as data augmentation 

methods, as done, for example, in [23], [7], [24], or [25], in order for models to be less susceptible to such easy alterations.  

If the amount of data is taken into consideration, it stands out that certain classification problems are often heavily 

unbalanced, for instance, only a small amount is relevant (positive) while the irrelevant (negative) data is prevalent [26]. 

For example, in an entire corpus for topic classification or crisis identification, only few data actually relate to the topics 

or the crisis in question. Zhong et al. [27] term a dataset as unbalanced, if the distribution of classes within it is not 

approximately equally balanced. Data augmentation may help to enhance the amount of data for a certain class in order 

for balanced class distributions to be present and thus for a classifier to be able to be modelled more robustly [28], [29].  

Data augmentation can also be helpful in sensitive domains. Dealing with confidential or privacy-related data, one 

can decrease the usage of real-world data by crafting artificial data. It is even possible to only train the algorithm on the 

newly created data, in order to prevent drawing any conclusions on non-artificial training data from a deployed model. 

For example, Carlini et al. [30] have demonstrated  a method for extracting training data from large language models 

that could contain private information. For training such a privacy ensuring model, special data augmentation techniques 

that are able to anonymize the data have to be used.  

Table 1. Examples for Adversarial Attacks adapted from Ebrahimi et al. [21]. 

Original text Altered text 

South Africa’s historic Soweto township marks its 100th birthday 
on Tuesday in a mood of optimism. 
57% World 

South Africa’s historic Soweto township marks its 100th birthday 
on Tuesday in a mooP of optimism. 
95% Sci/Tech 

Chancellor Gordon Brown has sought to quell speculation over 
who should run the Labour Party and turned the attack on the 
opposition Conservatives. 
75% World 

Chancellor Gordon Brown has sought to quell speculation over 
who should run the Labour Party and turned the attack on the 
oBposition Conservatives. 
94% Business 
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Data augmentation exists in different types and areas of application. A taxonomy of the types in the textual domain 

can be seen in Figure 1. The augmentation methods can be divided into the transformation of raw data (data space) and 

processed representations of data (feature space) [5]. These representations are transformed types of data, for example, 

activation vectors of a neuronal network, the encoding of an Encoder Decoder Network, or LSTM hidden states, 

respectively embeddings of data. Abstracting from the textual realm, in many cases, data augmentation depends on the 

underlying problem (text classification, image recognition, etc.); and is therefore applied in different ways in different 

areas. Procedures generic enough to be used across different areas are for the most part limited to the feature space.  

The most substantial research on data augmentation exists in the field of computer vision. This is due to the intuitive 

construction of simple label preserving transformations. Data augmentation methods in computer vision are, among 

other, geometric transformations [7], [24], neural style transfers [31]–[33], interpolation of images [34], random partial 

deletions [35], and generative adversarial network (GAN) data generation [21]. Sophisticated techniques can additively 

improve the accuracy baseline for different problems by around 10 to 15 percent [35]. Another area of application for 

data augmentation is speech processing. Researchers have successfully used acoustic transformations of the input data. 

Ko et al. [36] have achieved up to 4.3 points better accuracy values by modifying speed. Furthermore, interfering with 

vocal tract length [35] or adding noise [34] may also enhance the quality of classifiers. The application of data 

augmentation in the textual realm is considered a difficult task, since textual transformations preserving the label are 

difficult to define [1], [2]. Nevertheless, several simple and sophisticated methods have been developed in this and 

adjacent research areas. 

3 TEXTUAL DATA AUGMENTATION METHODS 

In the following, different data augmentation methods for textual data are summarized, explained, and subdivided in 

different groupings. Mainly methods focusing on the application of text classification are included, although 

augmentation methods for other tasks in the textual realm are also mentioned if they fit into the group. In this survey, 

text classification is considered a problem of the field of NLP, where units such as sentences, paragraphs, or documents 

are categorized into class labels [17]. For example, generative or sequence-tagging tasks, where either text has to be 

generated or the words of the units have to be tagged individually, are not regarded as tasks in this sense. This means 

that augmentation methods for tasks such as topic classification, sentiment analysis, or spam identification are focused, 

described, and analyzed in detail. Other tasks, on the other hand, like generative question answering, part of speech 

tagging, or machine translation are only mentioned in a non-comprehensive way. Therefore, in the context of text 

classification, our paper provides a comprehensive overview containing the necessary details for researchers and 

practitioners. For a more general perspective on NLP augmentations (including sequence-tagging, parsing, text 

generation, etc.), we recommend the reader to have a look at the work of Feng et al. [37], which is not as detailed in text 

classification as our work but presents a broader task view. In contrast to this task-driven view by Feng et al. [37], we 

are taking a method-oriented perspective while conducting a data-structure-driven, high-level categorization (see Figure 

1). Contrary to other surveys in the field of data augmentation, we focus on setting the augmentation methods into 

context by comparing the conception and performance, with regard to the underlying models and application context. 

In this way, the listed augmentation groups contain an explanation with details on the differences within the group and 

a comprehensive overview of how the methods differ and which results they produce. This allows the reader to gain 

insights into which data augmentation technique might be most promising for the own use-case and what specifics need 

to be considered, while it is also possible to follow the data-structure based taxonomy. In the end, we discuss important 

future research directions by setting all methods into context, which can help accelerate developments in this field. 
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In the next section, data augmentation methods relevant in textual contexts are summarized and grouped. Generally, 

the methods are described in a sensible order for the specific group. In groups with many similar approaches, we 

summarize the most important information in tabular form. We also extract information regarding improvements. The 

improvement indications are intended to give a quick overview of how well a method may perform but are not in-depth 

informative or comparable on their own. For a more detailed perspective, the models and datasets are also displayed. 

This should provide a more holistic perspective, although in-depth information has to be extracted from the respective 

papers themselves. 

 

Figure 1: Taxonomy and grouping for different data augmentation methods. 

3.1 Data Space 

Augmentation in the data space deals with the transformation of the input data in its raw form, i.e., in the case of this 

survey, into the readable textual form of the data. 

3.1.1  Character Level 

3.1.1.1 Noise Induction 

The addition of noise to the input data is one of the data augmentation methods with the smallest alterations, especially 

when applied on a character level. As explained in more detail further on, the induction of noise can also be used at the 

word level as well as in the feature space.  

In this context, the basic idea of the method of Belinkov and Bisk [38] is to add artificial and natural noise to the 

training data so that, in their case, neural machine translation (NMT) models are less susceptible to adversarial examples. 

As artificial noise, Belinkov and Bisk [38] describe operations like the random switching of single letters (“cheese” → 

“cehese”), the randomization of the mid part of a word (“cheese” → “ceehse”), the complete randomization of a word 

(“cheese” → “eseehc”), and the replacement of one letter with a neighboring letter on the keyboard (“cheeae”). Similarly, 
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Feng et al. [39] randomly delete, swap, and insert characters of texts (the prompt portion) that are used for fine-tuning 

text generators. For this, they moreover ignore the first and last character of a word. To measure the suitability for text 

generators, they intrinsically measure the diversity, fluency, semantic context preservation, and sentiment consistency. 

The applied method is better than the baseline in every respect. These augmentations are also usable in the text 

classification domain. Ebrahimi et al. [21] used an existing model, trained with the initial dataset, to generate adversarial 

examples. They used the direct input data to flip a letter if the change increased the loss of the existing model. If a new 

model is trained with the additional data once again, the error rate is improved and the success of adversarial attacks is 

significantly mitigated. Furthermore, they compared their approach with the adversarial method from the previously 

mentioned work of Belinkov and Bisk [38] and the feature space method from Miyato et al. [40] (see Section 3.2.1). Based 

on a CharCNN-LSTM on the AG News dataset, they achieve the best improvement in accuracy by obtaining an additional 

0.62%. While the method of Miyato et al. [40] improved the score by only 0.24 points, it is interesting to see that the 

method of Belinkov and Bisk [38] even decreased the accuracy by 0.33 points. Coulombe [9] describes the induction of 

weak textual sounds through the aforementioned change, deletion, and addition of letters in words and, in addition, the 

alteration of upper and lower case and the modification of punctuation. The highest absolute accuracy improvement by 

2.5% can be seen in comparison to the best functioning baseline. However, the evaluation was performed with basic 

architectures and no embeddings, wherefore further studies are needed to validate the usefulness in a current setting. 

Natural noise, as defined by Belinkov and Bisk [38], covers spelling mistakes that are common in the respective 

language, using spelling mistake databases. Each word associated with a common mistake is replaced with the misspelled 

word, and if there is more than one, the mistake is randomly sampled. Belinkov and Bisk [38] receive varying BLEU 

scores with their artificial and natural noise methods; most noise operations made the model more robust against attacks 

with similar operations. Most importantly, natural noise almost consistently worsens a translation model regarding the 

baseline. Analogous to the natural noise defined by Belinkov and Bisk [38], Coulombe [9] also adds common spelling 

mistakes in the textual data and achieves good improvements when added to classifiers. The best baseline (XGBoost) 

was improved by an additional 1.5%. With such transformations, learners are better able to deal with spelling mistakes 

in prospective texts, even if mistakes are not present in the original training dataset. This variant of data augmentation 

can for example be of interest when dealing with texts originating from social networks. 

3.1.1.2 Rule-based Transformations 

Coulombe [9] implements rule-based transformations through the use of regular expressions. According to him, such 

rules are not easy to establish, since many surface-level transformations require deeper changes to preserve the 

grammar, and other transformations depend on the language. Valid transformations are, amongst others, the insertion 

of spelling mistakes, data alterations, entity names, and abbreviations. Coulombe concretely implements the 

transformation of verbal short forms to their long forms and vice versa (“I am” ↔ “I’m”). In the English language, this 

is semantically invariant if ambiguities are preserved [9]. With this form of data augmentation Coulombe achieves very 

good results [9]. The best baseline model (XGBoost) additionally gained 0.5% in terms of accuracy.  

3.1.2  Word Level 

3.1.2.1 Noise Induction 

Noise induction can also be applied on the word level. For example, the method of Xie et al. [35] encompasses two noise 

patterns. With “unigram noising”, words in the input data are replaced by another word with a certain probability. By 
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the method of “blank noising”, words get replaced with “_”. By the adoption of both patterns, the authors achieved 

improved results in their experiments.  

Li et al. [41] are using syntactic and semantic methods as well as word dropout for the generation of noise. Syntactic 

noise is realized via the shortening of sentences and methods such as the alteration of adjectives or the relativization of 

modifiers, while semantic noise is generated by the lexical substitution of word synonyms (see 3.1.2.2). In contrast to 

these two methods, word dropout is more clearly comparable to noise. Random input neurons or rather words get 

masked out during the training of the network. According to the authors, their proposed methods achieve an 

improvement. Especially a combination of all methods promises an improvement of up to 1.7 points in terms of accuracy.  

Two of the four sub-methods of the Easy Data Augmentation (EDA) method by Wei and Zou [2], i.e., random swap 

and deletion, should also be mentioned as methods of noise induction. In experiments, a combination of both sub-

methods led to improved performance of the used classifier. EDA is very popular in the research field and was used as a 

method for comparisons in the works of Qiu et al. [42], Huong and Hoang [43], Anaby-Tavor et al. [44], Kumar et al. 

[45], Bayer et al. [46], Feng et al. [39], Luu et al. [47], and Kashefi and Hwa [48]. Wei and Zou [2] report that for a small 

dataset these two sub-methods gain higher improvements than the other two sub-methods that are based on synonym 

replacement and insertion (see Section 3.1.2). Nevertheless, Qiu et al. [42], Anaby-Tavor et al. [44], Bayer et al. [46], and 

Luu et al. [47] also report some cases in which EDA as a whole data augmentation method decreases the classification 

score. This result can be expected, as the methods random swap and deletion are not label preserving, for example, for 

sentiment classification: “I did not like the movie, but the popcorn was good” →random_swap→ “I did like the movie, 

but the popcorn was not good”. While Wu et al. [49] also use random swap and random deletion, they propose random 

span deletion, where consecutive words are deleted. This technique would lead to a worse label preservation, but it is 

only used for language modelling with contrastive learning (see Section 3.4). 

The training instances of one batch must have the same length when being fed into a neural network. For this 

purpose, the sequences are often zero-padded on one side. Rizos et al. [50] propose a specific noise induction method to 

augment the training data by shifting the instances within the confines of their padding so that the padding is not solely 

on one side. Evaluated by means of a hate speech detection dataset, the authors show that this method achieves additive 

performance gains of more than 5.8% (Macro-F1). Sun and He [51] also translate the instances by adding meaningless 

words either at the beginning or at the end. Unfortunately, they do not evaluate the impact of this method in isolation.  

Xie et al. [52] propose a TF-IDF based replacement method in which they are replacing uninformative words of an 

instance with other uninformative words. As the authors are combining this technique with round trip translation (see 

Section 3.1.4) and unsupervised data augmentation, it is not clear to which degree it benefits the task. Similarly, Choi et 

al. [53] replace casual features/words that are a determining factor for the label. In the contrastive learning scheme, they 

mask these words to generate counterfactual examples as well as other non-casual words to generate normal 

augmentations. More details and results of this procedure can be found in Section 3.4. 

More noise data augmentation methods related to other tasks can be found in the works of Cheng et al. [54], Li et al. 

[41], Wang et al. [55], Andreas [56], Guo et al. [57], Kashefi and Hwa [48], Sun and He [43], and Kurata et al. [58]. 

3.1.2.2 Synonym Replacement 

This very popular form of data augmentation describes the paraphrasing transformation of text instances by replacing 

certain words with synonyms. One of the first applications of this substitution in the field of data augmentation was 

introduced by Kolomiyets et al. [59]. They substituted temporal expressions with potential synonyms from WordNet 

[60]. As the authors argue, the replacement of one original token in a sentence will mostly preserve the semantics. Based 
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on the time expression recognition task, the authors propose replacing the headword, since temporal trigger words are 

usually found there. While this application, however, showed no substantial improvements, the authors also proposed a 

language model replacement method that was more suited for the task at hand (see Section 3.1.2.4). 

In later years, many researchers experimented with word replacements based on thesauri. The works of Li et al. [41], 

Mosolova et al. [61], Wang et al. [62], and many more partially or primarily execute synonym substitution in this way. 

Differences between the studies concern the specific words that are substituted, the synonyms that come into question, 

and the utilization of different databases. For example, X. Zhang et al. [63] and Marivate and Sefara [64] choose the 

synonyms for substitution on basis of the geometric distribution by which the insertion of a rather distant synonym 

becomes less probable. Furthermore, several approaches exclude stop words or words with certain POS-tags from the 

set of words considered for replacement. Interesting is also the second sub-method of EDA by Wei and Zou [2], where 

synonyms are not replacing specific words, but are randomly inserted into the instance. The replacement method, 

synonym selection, database, and improvements of the various approaches are listed in Table 2.  

Table 2: Overview of different approaches of the synonym replacement method. 

 Synonym 
Database 

Replacement Method Synonym 
Selection 

Model 
Base 

Dataset Improvements 

[59] WordNet Headword replacement Not stated Logistic 
Regression 

TempEval 
Reuters (12) 
Wikipedia (1) 

-1 (F1) 
-0.6 
-0.1 

[63], 
[65] 

mytheas 
(LibreOffice) 
WordNet-
based 

Randomly chosen number of 
words based on geometric 
distribution. 

Randomly based 
on geometric 
distribution. 

Character 
CNN 

 
AG News 
DBP. 
Yelp P. 
Yelp F. 
Yahoo A. 
Amazon F. 
Amazon P. 

[63] / [65] (Acc.) 
-0.38 / -0.57  
+0.05 / +0.13 
-0.03 /  
+0.36  
+0.22 / 0.65 
+0.1 / 0.1 
-0.17 / -0.17 

[41] WordNet  Substitutable words are 
nouns, verbs, adjectives, or 
adverbs that are not part of a 
named entity. 
Each word is replaced with a 
certain probability. 

The remaining 
probability of 
substitution is 
shared among the 
synonyms based 
on a language 
model score. 

CNN MR 
CR 
Subj 
SST 
MR/CR 
CR/MR 

+0.8 (Acc.) 
+1.2  
+0.5  
+0.1  
0.9  
0.3  

[9] WordNet Only adverbs and adjectives, 
sometimes nouns, more 
rarely verbs. 

Most similar 
companion 
information of the 
synonym with the 
context of the 
chosen word. 

XGBoost  
MLP (2 
hidden 
layer) 

IMDB +0.5 (Acc.) 
+4.92 

[61] WordNet No pronouns, conjunctions, 
prepositions, and articles for 
replacement. 

Choosing uniform 
randomly. 

Uniform random CNN with 
word 
embedding 

Toxic 
Comment 
Classification 

-0.09/-0.21 (AUC) 

[62] 
 

HIT IR-Lab 
Tongyici 

No time words, prepositions, 
and mimetic words. 

Chi-square 
statistics method 

Character 
CNN-SVM 

Hotel R. 
Laptop R. 

~+1 (Acc.) 
~+1  
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cont. 
[62]  

Cilin 
(Extended) 
(Chinese) 

Chi-square statistics method. Book R. ~+0.25 

[64] WordNet Verbs, nouns, and their 
combination. Geometric 
distribution. 

Geometric 
distribution 

DNN AG News 
Sentiment 
Hate Speech 

~+0.4 (Acc.) 
~+0 
~-0.8 

[66] WordNet & 
Thesaurus. 
com 

For Minibatch: 
Augmentation with 
probability, 
POS-tag replacement, 
replacement of one word per 
sentence that maximizes 
loss.  

Synonym that 
maximizes the 
loss. 

Kim CNN TREC +1.2 (Acc.) 

[2] WordNet No stop words.  
Choosing n random words to 
be replaced (SR) or from 
which the synonyms are 
inserted at a random 
position (RI) 

Uniform random CNN  Classification 
tasks (500) 
(2000) 
(5000) 
(full) 

SR / RI (Acc.) 
~+1.9 / ~+2.0  
~+1.2 / ~+0.9 
~+0.7 / ~+0.6 
~+1.0 / ~+0.9 

[1] WordNet Replacement of a word based 
on a certain probability. 

Temperature 
hyperparameter 
learned while 
training. 

CNN  SST-5 
SST-2 
Subj 
MPQA 
RT 
TREC 

-0.6 (Acc.) 
+0.5  
+0 
+0.2 
+0.1 
-0.4  

[42] WordNet Replacement of a word based 
on a certain probability. 

Temperature 
hyperparameter 
learned. 

TextRCNN ICS 
NEWS 

-0.26 (Macro F1) 
+1.63  

[51] Not stated Filtering words according to 
their POS-tag. Fixed or 
variable number of words. 

Specific or 
variable number 
of synonyms. 

LSTM-CNN Tan 
NLPCC 

Results only in 
combination with 
other methods 

[67] WordNet Not stated Not stated BERT SST-5 (40) 
IMDB (40) 
TREC (40) 

-0.87 (Acc.) 
-0.87 
+0.01 

[68] WordNet No stop words. 10% of 
documents randomly 
selected. 

Not stated M-BERT CodiEsp-D 
CodiEsp-P 

+0.6 (F1) 
-0.7 (F1) 

[39]  WordNet Keywords replaced are 
ordered by their RAKE score 
(e.g., the probability of being 
a keyword). 

 

Randomly 
selected. 
Replacement only 
with same POS-
tag. 

No model 
(intrinsic 
evaluation 
with 
different 
metrics) 

Yelp-LR 
(small subset 
of Yelp 
Reviews) 

+0.015 (SBLEU) 
-0.018 (UTR) 
-0.02 (TTR) 
-0.016 (RWords) 
0 (SLOR) 
-0.007 (BPRO) 
+0.001 (SStd) 
0 (SDiff) 

[48] WordNet No stop words.  
Uniform random 
replacement until 20% of the 
words in a sentence are 
changed. 

Uniform random CNN Yelp P. Only against 
other data 
augmentation 
methods 
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Also to be emphasized is the more sophisticated integration into the learning process, as described by Jungiewicz and 

Pohl [66]. The authors replace words with synonyms only if the replacement with the chosen synonym maximizes the 

loss of the current state of the classifier model. Apart from this, there are approaches that adapt the general idea of 

thesauri-based replacements to perform augmentation on specific tasks, for example, in Kashefi and Hwa [48] and Feng 

et al. [39].  

3.1.2.3 Embedding Replacement  

Comparable to synonym substitution, embedding replacement methods search for words that fit as good as possible into 

the textual context and additionally do not alter the basic substance of the text. To achieve this, the words of the instances 

are translated into a latent representation space, where words of similar contexts are closer together. Accordingly, these 

latent spaces are based on the distributional hypothesis of distributional semantics [69], [70], which is currently mostly 

implemented in the form of embedding models. The selection of words that correspond to this hypothesis and are, thus, 

near in the representation space, implies that the newly created instances maintain a grammatic coherence, as displayed 

in Figure 2. Besides this advantage, Rizos et al. [50] argue that the “method encourages the downstream task to place 

lower emphasis on associating single words with a label and instead place higher emphasis on capturing similar 

sequential patterns, i.e., the context of hate speech”. Benefits of this data augmentation technique in comparison to the 

synonym substitution method are that techniques based on the distributional hypothesis are more comprehensive and 

the context of texts is considered. This means that substitutions are not limited by a database, like WordNet, and that 

grammatically more correct sentences can be generated [71]. Furthermore, the general form of this approach can be 

beneficial for languages which have no access to a large thesauri but a lot of general text resources, on the basis of which 

the self-supervised embedding models can be easily trained [9].  

 

 

Figure 2: Example of a sentence with predicted words that can be used to replace a word in the sentence [1]. 
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Wang and Yang [72] use this kind of augmentation to better classify annoying tweets. They utilize k-nearest-neighbor 

to identify the most suitable embeddings as a substitution of the training data words. Compared to the baseline, they 

achieve an additive improvement of up to 2.4 points in the F1-Score with logistic regression. Marivate and Sefara [64], 

Rizos et al. [50], Huong and Hoang [43], and others utilize the embedding replacement in very similar ways. The greatest 

differences in terms of the method exist in the selection of words to be replaced (e.g., POS-tag based) and the selection 

of the replacing words based on the embeddings. An overview of the differences can be found in Table 3. 

Table 3: Overview of different approaches of the embedding replacement method. 

 Replacement 
Selection 

Embedding 
Selection 

Model Base Dataset Embedding Model Improvements 

[72] Not stated K-nearest-
neighbor and 
cosine 
similarity  

Logistic 
regression 

Petpeeve 
dataset 

UrbanDictionary W2V 
Twitter W2V 
GoogleNews W2V 

+0.3 (F1) 
+1.7 
+2.4  

[64] Random Random with 
probability 
proportional to 
cosine 
similarity. 

DNN AG News 
Sentiment 
Hate 
Speech 

Wikipedia W2V 
Wikipedia W2V 
GloVe Twitter 

~0 (Acc.) 
~+0.5 
~-0.3 

[50] Every word Cosine 
similarity 
threshold + 
POS-tag 
matching 

CNN+LSTM/GRU HON 
 
 
 
RSN-1 
RSN-2 

Word2Vec Hate Speech 
FastText Wikipedia 
GoogleNews W2V 
GloVe Common Crawl 
GloVe Common Crawl 
GloVe Common Crawl 

-22.7 (Macro F1) 
+1.0 
-3.3 
+0.3 
-0.2 
0 

[51] 1. Method: 
Filtering words 
according to 
their POS-tag. 
Selecting a fixed 
or variable 
number of 
words. 
2. Method: 
Replacing 
adverbial phrases 
(Chinese 
related). 

Own similarity 
measure and 
specific or 
variable 
number of 
replacements 

LSTM-CNN Tan W2V self-pretrained Results only in 
combination 
with other 
word level 
augmentation 
methods 
 

[41] Substitutable 
words are nouns, 
verbs, adjectives, 
or adverbs that 
are not part of a 
named entity. 
Each word is 
replaced with a 
certain 
probability. 

Embeddings are 
found with 
counter-fitting. 
Candidates are 
replaced with a 
probability. The 
remaining 
probability is 
shared among 
the embeddings 
based on a LM 

CNN MR 
CR 
Subj 
SST 
MR/CR 
CR/MR 

GoogleNews W2V -0.6/-4.2 (Acc) 
+0.1/-3.7 
+0.2/-1.4 
-0.4/-4.2 
+1.9/+0.4 
+0.1/-3.0 
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[43] Not stated Cosine 
similarity 

Random Forest, 
Naïve Bayes, 
SVM 

Vietnamese 
comments 

W2V Vietnamese Results only in 
combination  

[22] Random 
sampling with 
probabilities 
proportional to 
the neighbors 
each word has 
within the 
counter-fitted 
embedding space 
+ exclusion of 
common articles 
and prepositions. 

1. K-nearest-
neighbors with 
Euclidean 
distance + 
counter-fitting 
method.  
2. Google LM to 
filter out 
words. 
3. Selection of 
the word that 
will maximize 
the target label 
prediction 
probability. 

LSTM IMDB GloVe Adversarial 
training: No 
improvements 
but safer model 

[73] Only for multi-
piece words. 
Random 
probability for 
replacement. 

Random 
embedding of 
the k-nearest-
neighbor 

Small transformer 
model 

Various 
GLUE tasks 

GloVe No 
augmentation 
baseline 
comparisons 

[74] No stop words or 
symbolic and 
numerical data 

Cosine 
similarity 
threshold of 
0.97 

Manhattan LSTM 
model 

Thai text 
similarity 
task 

Thai2fit (Thai language) +1.71 

A major factor for poor results is that the embedding replacement does not necessarily guarantee the preservation of 

the contextual meaning of the instances. This, in turn, could lead to distortions of the label; e.g., “the movie was fantastic” 

and “the movie was horrible” are valid transformations but the sentiment is the opposite. A way to address this issue is 

the use of the counter-fitting method of Mrkšić et al. [75] for synonym embedding substitution, as carried out by Li et 

al. [41]. Counter-fitting is an approach that depicts word embeddings on the basis of a target function in a way that 

similarities between synonyms are rewarded and similarities between antonyms are sanctioned [75]. Li et al. [41] extend 

this approach by selecting the most fitting words with a higher possibility for the replacement. This is done by leveraging 

a language model that can give an indication on how well a given word fits into a sequence. However, the authors 

achieve rather mixed results with this method. The counter-fitting method offers considerably less replacement 

possibilities, since embeddings have to be trained on the downstream task, leading to a smaller coverage of their corpora 

words. Alzantot et al. [22] use this method in combination with a language model filtering in their adversarial example 

generator. They extend the approach by only incorporating the words that are maximizing the target label prediction 

probability (label preservation) of an already trained classifier. The authors report no improvements in terms of the task 

testing set, but they show that the model is safer regarding adversarial attacks. Embedding replacement methods are 

moreover used in specific task-dependent ways, such as by Kashefi and Hwa [48]. 

3.1.2.4 Replacement by Language Models 

Language models represent language by predicting subsequent or missing words on the basis of the previous or 

surrounding context (classical and respectively masked language modelling). In this way, the models can, for example, 
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be used to filter unfitting words, as already discussed in Section 3.1.2.3 in relation to the work of Alzantot et al. [22]. The 

authors generate similar words with GloVe embeddings and the counter-fitting method and utilize a language model to 

choose only words with a high probability of fit. In contrast to embedding replacements by word embeddings that take 

into account a global context, language models enable a more localized replacement [64]. Utilizing the subsequent word 

prediction, language models can also be used as the main augmentation method. Kobayashi [1] is, for example, using an 

LSTM language model to identify substitution words. However, language models do not only substitute words with 

similar meaning, but also with words that fit the context in principle [1]. This trait is encompassed with a greater risk 

of label distortion. To prevent the attachment of wrong labels to the new training data due to changed semantics, 

Kobayashi [1] modifies the language model so that it allows the integration of the label in the model for the word 

prediction (label-conditional language model). Inspired by this approach, Wu et al. [76] alter the architecture of the 

language model BERT [77] in a way that it is label conditional (c-BERT). In an evaluation with different tasks the authors 

showed that in comparison to Kobayashi [1] and other approaches they were able to considerably increase the 

performance of a classifier (see Table 4). However, the c-BERT approach also has the disadvantage that the language 

model is fixed when applied, and in the case of low-data regimes, the augmentation might no longer be label preserving 

[67]. For this reason, Hu et al. [67] include the c-BERT method in a reinforcement learning scheme, which learns the 

task in a normal supervised fashion but is also able to simultaneously fine-tune the c-BERT LM. With this adaption, the 

authors significantly outperform the original c-BERT approach in a low-data regime setting. The results can be found in 

Table 4 together with the results of Anaby-Tavor et al. [44], who evaluated c-BERT as comparison, and Qu et al. [78], 

who employed the c-BERT model with supervised consistency training (see 3.4) on the MLNI-m task.  

Table 4: Evaluation results of the state-of-the-art language substitution method c-BERT. 

Publication Method Dataset Improvements (Accuracy) 

[76] 
 
 

c-BERT SST-5 
SST-2 
Subj 
MPQA 
RT 
TREC 

+0.8 (CNN)/+1.3 (RNN) 
+0.2 (CNN)/ +0.5 (RNN) 
+0.5 (CNN)/ +0.4 (RNN) 
+0.5 (CNN)/ +0.7 (RNN) 
+0.8 (CNN)/ +0.6 (RNN) 
+0.8 (CNN)/ +0.2 (RNN) 

[78] c-BERT with consistency training MLNI-m +0.4 (RoBERTa-Base) 

[44] c-BERT ATIS 
TREC 
WVA 

-1.9 (BERT) / -0.8 (SVM) / -5.8 (LSTM) 
+1.1 (BERT) / +1.1 (SVM) / +6.5 (LSTM) 
+0.2 (BERT) / 0.5 (SVM) / +2.4 (LSTM) 

[67] c-BERT integrated in reinforcement 
learning scheme 

SST-5 (42) 
IMDB (45) 
TREC (45) 

+1.17 (BERT) / +2.19 (normal c-BERT) 
+1.97 (BERT) / +1.97 (normal c-BERT) 
+0.73 (BERT) / +0.87 (normal c-BERT) 

[73] c-BERT and embedding substitution for 
multiple-pieces words 

MNLI-m 
MNLI-mm 
MRPC 
CoLA 

+2.3 (TinyBERT) 
+1.9 (TinyBERT) 
+3.4 (TinyBERT) 
+21.0 (TinyBERT) 

Jiao et al. [73] apply the already improved method by Wu et al. [76] and further adjust it in their work on TinyBERT. 

In doing so, the scholars reflect on the fact that the quality of the data generated with BERT is poor if many multiple-

pieces words are included. To mitigate this problem, they propose to perform a embedding substitution on the base of 

GloVe embeddings [79] for such words. Further language model augmentations for different tasks are proposed by Gao 

et al. [80], Ratner et al. [81], Fadaee et al. [82], and Kashefi and Hwa [48]. 
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3.1.3  Phrase and Sentence Level 

3.1.3.1 Structure-based Transformation 

Structure-based approaches of data augmentation may utilize certain features or components of a structure to generate 

modified texts. Such structures can be based on grammatical formalities, for example, dependency and constituent 

grammars or POS-tags. Such approaches are therefore more limited to certain languages or tasks. Şahin and Steedman 

[83] are, for example, concerned with the augmentation of datasets from low resource languages for POS-tagging. By 

the method of “cropping”, sentences are shortened by putting the focus on subjects and objects. With the “rotation” 

technique, flexible fragments are moved. The authors state that this method is dependent on certain grammatical 

sentence structures in different languages and probably only generates noise in the English language. Both methods are 

well suited for a multitude of low resource languages. They were also tested by Vania et al. [84] for the augmentation of 

training data for dependency parsers for low-resource data.  

Feng et al. [85] propose a method for changing the semantics of a text while trying to preserve the fluency and 

sentiment. Given a set of phrases (replacement entities) to every instance, the so-called Semantic Text Exchange method 

first identifies phrases in the original text that can be replaced by a replacement entity based on the constituents. Then 

phrases similar to the identified phrases are replaced by a masked token. Subsequently, this is filled by an attention-

based language model so that the similar words better suit the replacement entity. Feng et al. [39] adapt this approach 

by automatically selecting the 150 of the 200 most frequent nouns from the Semantic Text Exchange training set as 

replacement entity candidates and splitting their Yelp Review dataset into windows, as the method is only suitable for 

short texts. In an analysis with this dataset Feng et al. [39] reported that the Semantic Text Exchange method decreases 

fluency, diversity, and semantic content preservation. 

An important work was proposed by Min et al. [86] who show that inversion (swapping the subject and object part) 

and passivation result in a higher generalization capability in natural language inference. In fact, considering their work 

in comparison with preliminary work [87]–[89] suggests that BERT is able to extract the relevant syntactic information 

from the instances but is unable to use this information in the task, as there are too few examples in the MNLI dataset 

demonstrating the necessity of syntax. Here, even a limited utilization of Min et al.’s [86] data augmentation methods 

already helps to mitigate this problem. 

3.1.3.2 Interpolation 

In numerical analysis, interpolation is a procedure to construct new data points from existing points [90]. While the 

formal interpolation versions are found in the feature space section, a sensible definition of interpolation in the data 

space of text is difficult to construct. However, the substructure substitution (SUB²) method by Shi et al. [91] is considered 

as such in this context due to its resemblance to the feature space methods. SUB² substitutes substructures (dependents, 

constituents, or POS-tag sequences) of the training examples if they have the same tagged label (for example, “a [DT] 

cake [NN]” in an instance can be replaced with “a [DT] dog [NN]” of another instance). The variant adapted for 

classification views all text spans of an instance as structures and is constrained by replacement rules that can be 

combined or completely left out. The replacement rules are only replacing (1) same lengths spans, (2) phrases with 

phrases, (3) phrases of the same constituency label, and (4) spans that come from instances with the same class label. 

The authors show that their methods outperform the baseline when applied to low resource tasks. Their classification 

variant nearly doubles the accuracy on a subsample of the SST-2 and AG News datasets. Furthermore, they achieve 

better results than the language model augmentation c-BERT (Section 3.1.2.4). Similarly, Kim et al. [92] propose a data 

augmentation method based on lexicalized probabilistic context-free grammars that extracts grammar trees from an 
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input sentence and combines/substitutes them internally and with trees from other instances of the same class. Words 

are replaced with other words having the same POS-tag from the other sentences of the same class and WordNet 

synonyms. In this way, they can achieve a considerable performance improvement when applied in a few-shot, semi-

supervised learning environment. 

3.1.4  Document Level 

3.1.4.1 Round-trip Translation  

Round-trip translation3 is an approach to produce paraphrases with the help of translation models. A word, phrase, 

sentence, or document is translated into another language (forward translation) and afterwards translated back into the 

source language (back translation) [93]. The rationale behind this is that translations of texts are often variable due to 

the complexity of natural language [9], which leads to various possibilities in the choice of terms or sentence structure. 

The process is depicted in Figure 3.  

 

 

Figure 3: Round-trip translation process [94]. 

The approach is promising because of its good inherent label preserving and highly valuable paraphrasing 

capabilities. By the translation of text, the content is preserved and only stylistic features based on the traits of the author 

are excluded or altered [95]. Some translation systems can propose several translation options; this is hinted in Figure 2 

(“k^2 paraphrases”). Yu et al. [94], Aroyehun and Gelbukh [71], Coulombe [9], Kruspe et al. [96], and others use this 

technique to generate artificial training data. Their works differ with regard to the used language and the subsequently 

applied filtering methods. These filtering methods are important, as the process of the twofold translation may be faulty 

[71]. Furthermore, Xie et al. [52] as well as Chen et al. [97] change the normal beam search generation strategy to random 

sampling with a temperature parameter to ensure a greater diversity. Details on the different round-trip translation 

applications are presented in Table 5. 

 

 

 
3 Even though Coulombe [9], Yu et al. [94], Xie et al. [52], Qu et al. [68], and others use the term backtranslation for their data augmentation works as 

well, these approaches are assigned to the round-trip translation approaches because they execute forward and back translation.  
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Table 5: Overview of the round-trip translation approaches. 

 Translation 
Model 

Languages Filtering Model Dataset Improvements 

[94] Google’s NMT 
[98] 

en → fr → 
en 

No filtering Convolution 
and self-
attention  

SQuAD +1.5 (EM) / +1.1 
(F1) 

[9] Google 
Translate API 

Not stated Excluding identical 
instances. Similarity 
threshold based on lengths. 

XGBoost  
MLP 2 hidden 
layer  

IMDB +0 (Acc.) 
+5.8 

[71] Google 
Translate API 

en → fr, es, 
de, hi → en 

No filtering NBSVM 
CNN  
LSTM 
BiLSTM 
CNN-LSTM 
LSTM-CNN 
CNN-BiLSTM 
BiLSTM-CNN 

Aggression 
Detection 

+0.19 (Macro F1) 
+5.31 
+7.39 
+5.6 
+5.94 
+19.45 
+14.33 
+6.87 

[96] Google 
Translate 

Randomly 
selected 

No filtering Fusion CNN TREC Incident 
Streams track 

~-1.2 (F1) 

[64] Google 
Translate API 
& Amazon 
translate  

en → fr, 
de → en 

“We ensured that the […] 
texts carry the same 
meaning as the source text” 

DNN AG News 
Hate Speech 

~+0.33 (Acc.) 
~-2.3 

[52] WMT’14 
English-French 
translation 
model 

en → fr → 
en 

No filtering   Randomly 
initialized 
transformer 

Yelp-5 +1.65 (Acc.) 

[78] WMT19 and 
released in 
FairSeq 

en → de → 
en 

No filtering RoBERTa MLNI-m +0.9 (Acc.) 

[99]** Translation 
models from 
Britz et al. 
[100] 

en → de, zh 
→ en  

No filtering BERT MNLI 
QNLI 
QQP 
RTE 
SST-2 
MRPC 
CoLA 
STS-B 

+0 (Acc.) 
+0.2 (Acc.) 
+0.4 (Acc.) 
+3.6 (Acc.) 
+0.7 (Acc.) 
+0 (F1) 
+2.3 (Mcc) 
+0.6 (Corr.) 

[101]* Not stated Not stated No filtering Transformer 
base with 
consistency 
training 

MNLI 
QNLI 
QQP 
RTE 
SST-2 
MRPC 
CoLA 
STS-B 

+0.9 (Acc.) 
+0.6 (Acc.) 
-0.2 (Acc.) 
+5.1 (Acc.) 
+0.7 (Acc.) 
+2.6 (F1) 
+1.4 (Mcc) 
+0.4 (Corr.) 
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[102] MarianMT  en → fr, de, 
es → en 
Chained: 
en → es → 
fr → en 

Word sense 
disambiguation: Retaining 
of those in which the target 
word occurs exactly once 
(in both original and 
augmented instance). 

MT-DNN SemEval-2013 + 
SemEval-2015 + 
Senseval-2 + 
Senseval-3 

No baseline 
comparisons 

* Trained with consistency training 

** Trained with contrastive learning 

3.1.4.2 Generative Methods 

Generative methods are becoming increasingly interesting in recent data augmentation research. As the capabilities 

of language generation increased significantly, the current models are able to create very diverse texts and can thus 

incorporate new information. Here, Qiu et al. [42] introduce a variational autoencoder (VAE) based on a method that is 

used for text generation in their system. VAEs are probabilistic neural network structures that consist of an encoder 

network, which transforms input data into a latent representation, and of a decoder-network, which transforms the 

latent representations back. The authors differentiate between unconditional and conditional VAEs. With unconditional 

VAEs, separate text generation models are trained for all classes, whereas with conditional VAEs, label information is 

fed into the model as an additional input. Furthermore, they distinguish between sampling from the prior distribution, 

which leads to greatly diverse instances, and the posterior distribution, which produces text that is semantically closer 

to the training data. With the unconditional VAE and sampling from the prior distribution, they achieve the highest 

improvements of up to 2 F1-points (see Table 6). Malandrakis et al. [103] make similar efforts by evaluating VAEs for 

augmentation. While their objective is more narrowed, as they are interested in natural language understanding with 

limited resources, they analyze a broader variety of VAE augmentation variants. They also propose augmentation by 

conditional and unconditional VAEs with sampling from the posterior or prior distribution. Furthermore, they test two 

different learning objectives, where in the first the VAEs are used to reconstruct the input and in the second the VAEs 

take an instance of a particular class and try to construct another instance from that class. They also experiment with 

the addition of a discriminator network to the VAE that predicts the respective class from which an output appears to 

be. In intrinsic and extrinsic evaluations, the conditional VAEs with the reconstruction task are best performing. The 

discriminator variant achieves poor results, which stem from the little amount of available training data for the many 

different classes. Contrary to the improvements of Qiu et al. [42], the CVAEs outperform the VAE generation. An excerpt 

of the extrinsic evaluation is given in Table 6. However, it must be considered that the task at hand is very specific. 

VEAs are also a main component of the NeuralEditor proposed by Guu et al. [104] that generates new texts based on 

edition vectors. For the training of the generative model, they take pairs of instances x’ and x in the training data that 

are lexically similar, encode the differences of them and noise into an edition vector z, and try to generate x based on x’ 

and z. It should be noted that the lexical similarity is just a rough approximation of semantic similarity. This represents 

a potential source of error, as, e. g., instances could be negated which in turn weakens the label preservation capabilities. 

However, this suffices the purposes of the authors, as they only use the method for language modeling. Specifically, in 

this domain, they report improvements in terms of generation quality and perplexity. Raille et al. [105] propose Edit-

transformer, which is an adaptation of the NeuralEditor with the additional ability to function cross-domain, so that the 

learned edits of a large dataset can be transferred to a smaller dataset. Besides the improvements in speed and language 

modeling, they also apply their method on three different classification tasks. The results are shown in Table 6. 
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Rizos et al. [50] create an RNN that, depending on a specific class, learns language modelling to generate training 

data thereafter. The class specific RNN for augmentation is primed with a random start word from the class specific 

training data. However, the authors state that this method produces the poorest results compared to embedding 

substitution and noise generation. In a similar sense, Ollagnier and Williams [68] perform text generation using a 

language model (LSTM-CNN). In contrast, they split each document in a minibatch into sentences, then generate new 

sentences for 30% of them and utilize 30% of the beginning of a given sentence as prompt. 

Sun and He [51] use the seqGAN architecture [106] to generate artificial data on basis of a GAN. Comparable to 

computer vision, seqGAN consists of a generator network creating texts and a discriminator network examining the 

authenticity of the generated texts next to the real instances. As the discriminator network can only prove the 

authenticity after a sequence of words and thus gives delayed feedback to the generator, the generator network is trained 

as a reinforcement learning agent. Utilizing the method as a data augmentation technique, the authors only receive 

minor improvements of classification quality. Partially inspired by SeqGAN, Li et al. [107] propose CS-GAN, which 

consists of a GAN, RNN, and reinforcement learning component for sentence generation. The model receives the 

information about the label as a prior for the generator, which is implemented with by the RNN and RL components, 

which is then required by the discriminator to generate meaningful sentences. Subsequently, a classifier forces the output 

of sentences to fit the label. The results are listed in Table 6. 

Wang and Lillis [108], Anaby-Tavor et al. [44], Abonizio and Junior [109], Bayer et al. [46], Claveau et al. [110], and 

Liu et al. [111] use the GPT-2 model of Radford et al. [112], which achieves very good results in text generation, to create 

new complete instances. Concerning the adoption of the method, Wang and Lillis [108] only describe that they use rare 

instances as dependent examples for the generation. Anaby-Tavor et al. [44], on the other hand, develop a method that 

increases the safety with regard to label preservation. In a first step, they further train the GPT-2 model with training 

data of a certain task (fine-tuning). In the process, they concatenate the respective label to every instance in order to 

facilitate the generation of new data for the respective class. Finally, a classifier determines which generated instances 

can actually be assigned to the class stated. The authors manage to achieve significant improvements in the classification 

of sentences. They show that their method outperforms conditional VAEs (unfortunately no sampling technique is 

described) and even EDA (Section 3.1.1.1) and c-BERT (Section 3.1.2.4) when applied to a severe low data regime. The 

results of their LAMBADA approach and CVEA implementation are given in Table 6. Abonizio and Junior [109] try to 

improve this approach by concatenating three random samples as a prompt for the generation. Furthermore, they are 

using DistilGPT2 by Sanh et al. [113], which is substantially faster and smaller. As can be seen in Table 6, the method 

consistently outperforms the baseline. While LAMBADA and PREDATOR are only applicable to short texts as instances, 

Bayer et al. [46] design a GPT-2 based approach to augment short as well as long text tasks. In this way, very high label 

preservation and diversity is to be achieved by fine-tuning the language model on the class specific data, generating data 

prompted with specialized training data tokens, and a filtering method based on document embeddings. They can achieve 

high improvements for constructed and real-world low data regimes. However, they also discuss limitations of their 

method and useful applications in terms of specific datasets and tasks. The results can also be seen in Table 6. Similarly, 

Claveau et al. [110] fine-tune the GPT-2 model using the class-specific data and input a random word from the original 

texts for generation. Afterwards a classifier is applied to filter the generated data instances. They evaluate their approach 

using English and French datasets (see Table 6). Liu et al. [111] use a reinforcement learning component after the softmax 

prediction of the GPT-2 model to predict the tokens depending on the class for which the instance is to be generated. 

The authors tested their method with various model architectures. It consistently improved all of them in all tasks, 

especially the larger pre-trained models, like BERT and XLNet. The results for XLNet are shown in Table 6. Yoo et al. 
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[114] are among the first authors using the much larger GPT-3 model by Brown et al. [115] for data augmentation, which 

has considerably better generation capabilities. Such large language models are expensive and hard to be fine-tuned on 

the training data, which is why their augmentation method GPT3Mix selects some examples from the dataset and 

incorporates them with the label into sensible prompts for the model to be conditioned on. The newly created instances 

are then extracted from the generated text and a pseudo-label probability is calculated with the GPT model. As shown 

in Table 6, the method achieves outstanding performance increases on scarce and one full dataset. The authors further 

demonstrate that their method is superior to other augmentation methods, such as EDA [2], round-trip-translation and 

Tmix [97], and that the performance increases if larger models for the classification are used. Nevertheless, given the 

size of the GPT-3 network and the correspondingly large training dataset, it might even be able to replicate some of the 

training (or even test) instances that were left out in the creation of a scarce dataset. 

In the generative method, proposed by Lee et al. [116], a first step is to subdivide the data into slices (informed by or 

based on the labels). Then, a generative model is trained on these slices to predict an instance in the slice based on a 

subsample of instances in that slice. This model is subsequently used to generate new data for underrepresented slices 

by priming it with instances from it. This way, the authors gain several improvements in text classification, intent 

classification, and relation extraction tasks with state-of-the-art results for the latter two. Furthermore, Ding et al. [117] 

and Chang et al. [118] propose methods using generative models for tasks other than text classification. 

Table 6: Overview of text generation methods.  

Publication Method Model Dataset Improvements 
[42] VAE 

 
CVAE + prior 
sampling 
CVAE + posterior 
sampling 

Ensemble of BiLSTM, TextCNN, 
TextRCNN, and FastText with 
XGBoost as top-level classifier 

ICS (Zh) 
News Category Dataset (EN) 
ICS (Zh) 
News Category Dataset (EN) 
ICS (Zh) 
News Category Dataset (EN) 

+0.04 (F1) 
+2.02 
-0.13 
+1.55 
-0.06 
+1.88 

[103] VAE 
 
CVAE + prior 
sampling 
CVAE + posterior 
sampling 

BiLSTM Movie  
Movie + Live Entertainment 
Movie  
Movie + Live Entertainment 
Movie  
Movie + Live Entertainment 

+4.0 (Macro F1) 
-0.5  
+5.9 
+1.7 
+5.6 
+0.6 

[119] CVAE BERT SNIPS (few shot) 
SNIPS  
FBDialog (few shot) 
FBDialog 

+8.00 
+0.06 (Acc.) 
+7.42 
+0.0 

[105] Transformer-based 
sentence editor 

CNN 
CNN 
CNN 
CNN 
LSTM 
LSTM 

Subj (20%) 
Subj (100%) 
SST-2 (20%) 
SST-2 (100%) 
Amazon Reviews (1%) 
Amazon Reviews (4%) 

+1.71 (Acc.) 
+1.62 
+0.87 
-0.84 
+1.12 
+0.41 

[50] RNN LM with 
random start word 
priming 

CNN+LSTM + GloVe++ HON 
RSN-1 
RSN-2 

-1.8 (Micro-F1) 
+8.2 
-7.4 
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[68] CNN-LSTM LM 
priming with 30% 
of a sentence  

CNN-LSTM CodiEsp-P +3.1 (F1) 

[51]  seqGAN LSTM + pretrained embeddings 
CNN + pretrained embeddings 
LSCNN + pretrained embeddings 

Tan’s task +1.06 (F1) 
+0.9 
+0.8 

[107] CS-GAN (GAN, 
RNN and 
reinforcement 
learning) 

CNN Amazon-5000 
Amazon-30000 
Emotion-15000 
NEWS-15000 

+1.6 (Acc.) 
-0.21 
+0.77 
+2.25 

[108] GPT-2 for rarer 
instances without 
filtering 

Logistic regression/biLSTM/Bi-
attentive classification + ELMo + 
GloVe 

Alerting  
Information Feed 
Prioritization 

No comparative 
results 

[44] CVAE BERT ATIS (5) 
TREC (5) 
WVA (5) 

+7.3 (Acc.) 
+0.8 
-1.8 

[44] GPT-2 generation 
and classifier 
filtering 

BERT ATIS (5) 
ATIS (20) 
ATIS (50) 
ATIS (100) 
TREC (5) 
WVA (5) 

+22.4 (Acc.) 
~0 
~+2.0 
~+0.5 
+4.0 
+1.4 

[109] DistilGPT2 
generation and 
classifier filtering 

BERT 
CNN 
BERT 

AG-NEWS 
CyberTrolls 
SST-2 

+0.61 (Acc.) 
+0.45 
+1.63 

[46] GPT-2 with 
conditional fine-
tuning, special 
prompting, and 
embedding 
filtering 

ULMFit  SST-2 (100) 
SST-2 (700) 
Layoff 
Management Change 
Mergers & Acquisitions 
Flood 
Wildfire 
Boston Bombings 
Bohol Earthquake  
West Texas Explosions 
Dublin 
New York 

+15.53 (Acc.) 
-0.19 (Acc.) 
+4.84 (F1) 
+3.42 (F1) 
+1.42 (F1) 
+0.25 (F1) 
+0.44 (F1) 
+2.44 (F1) 
+2.05 (F1) 
+3.81 (F1) 
–2.54 (F1) 
+0.44 (F1) 

[110] GPT-2 with 
conditional fine-
tuning, special 
prompting, and 
classifier filtering 

RoBERTa 
FlauBERT 
 

MediaEval 
CLS-FR 

+0.55 (micro-F1) 
+0.57 

[111] GPT-2 with a 
reinforcement 
learning 
component for 
class conditional 
generation. 

XLNet  Offense Detection (20%) 
Offense Detection (40%) 
Sentiment Analysis (20%) 
Sentiment Analysis (40%) 
Irony Classification (20%) 
Irony Classification (40%) 

+1.3 (F1) 
+4.3 
+1.2 
+1.4 
+1.0 
+2.3 
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[114] GPT-3 with 
prompt-based 
generation and 
pseudo-labeling 

BERT (base) 
 
 
 
 
 
 
BERT (large) 

COLA (0.1%, 0.3%, 1.0%) 
TREC6 (0.1%, 0.3%, 1.0%) 
CR (0.1%, 0.3%, 1.0%) 
SUBJ (0.1%, 0.3%, 1.0%) 
MPQA (0.1%, 0.3%, 1.0%) 
RT20 (0.1%, 0.3%, 1.0%) 
SST-2 (0.1%, 0.3%, 1%, full) 
SST-2 (0.1%, 0.3%, 1.0%) 

+7.9, 3.2, -2.4 
+15.6, 17.1, -6.5 
+11.0, 17.3, 8.9 
+1.3, -1.8, -1.2 
+12.9, 13.4, 3.8 
+6.2, 13.6, 17.5 
+20.9, 19.3, 5.7, 2.9 
+23.7, 14.6, 3.0 

3.2 Feature Space 

Data augmentation in the feature space is concerned with the transformation of the feature representations of the input. 

3.2.1  Noise Induction 

As in the data space, noise can also be introduced in several variants in the feature space. For example, Kumar et al. [119] 

employ four such techniques for the ultimate goal of intent classification. One of those methods applies random 

multiplicative and additive noise to the feature representations, as shown in [58]. However, in contrast, they are not 

transforming the created representations back into the data space. Another method called Linear Delta calculates the 

difference between two instances and adds it to a third (all from the same class). The third method, which interpolates 

instances, is further elaborated in Section 3.2.2.2 (see Table 8). For their fourth method, the authors are adapting the 

Delta-Encoder by Schwartz et al. [120] for textual data. There, an autoencoder model learns the deltas between instance 

pairs of the same class, which is then utilized to generate instances of a new unseen class. In a normal testing setting, 

the methods only slightly improve the classification results, while in a few-shot setting all methods are highly beneficial. 

Several feature space data augmentation methods stem from the adversarial training research field. As explained in 

the background section, the models are trained with adversarial examples, i.e., little perturbed training data instances 

that would change the prediction or maximize the loss. This can be formally written as follows [121]: 

min
𝛉

 𝔼(𝐙,y) ~ D  [ max
||𝜹||≤ 𝜖

L(f𝛉(𝐗 +  𝛅), y)] , 

where Θ are the model parameters and 𝛿 describes the perturbation noise added to the original instances (within a norm 

ball). Further, 𝐷 is the data distribution, 𝑦 the label, and 𝐿 a loss function. The training of the network (outer 

minimization) can still be solved by stochastic gradient descent (SGD), while the search for the right perturbations (i.e., 

inner maximization) is non-concave [121]. As described by Zhu et al. [121], projected gradient descent (PGD) [122], [123] 

can be used to solve this. Unfortunately, several convergence steps (K) to get a good result make it computationally 

expensive [121]. Shafahi et al. [124] and Zhang et al. [125] propose two methods that calculate the gradient with respect 

to the input (for PGD) on the same backward pass as the gradient calculations regarding the network parameters during 

a training step. This mitigates additional calculation overhead of PGD. In detail, Free adversarial training (FreeAT) by 

Shafahi et al. [124] trains the same batch of training examples K times so that several adversarial updates can be 

performed. You Only Propagate Once (YOPO) by Zhang et al. [125] accumulates the gradients with respect to the 

parameters from the K steps and updates the parameters accordingly. Zhu et al. [121] also propose a method called Free 

Large-Batch (FreeLB), which is similar to YOPO, as it also accumulates the parameter gradients. On several tasks, this 

method consistently exceeds the results of the baseline and the other two methods. The results of the GLUE dataset are 

given in Table 7. Miyato et al. and Miyato et al. [40], [126] change the normal adversarial training rule so that no label 

information is needed and call it virtual adversarial training. Without going into exact details, virtual adversarial training 

regularizes the standard training loss with a KL divergence loss of the distribution of the predictions with and without 
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perturbations, where the perturbations are chosen to maximize the KL divergence. While the virtual adversarial training 

method is suitable for semi-supervised learning, we are particularly interested in the supervised setting. Their method 

improves the supervised DBpedia topic classification task baseline classifier by 0.11 points of accuracy, leading to a + 

0.03 increase in accuracy in comparison to the conventional adversarial training method. Jiang et al. [127] propose the 

adversarial method SMART, which relies on the virtual adversarial training regularization. They introduce the utilization 

of the Bregman proximal point optimization with momentum to solve the virtual adversarial training loss, which 

prevents the model from aggressive updates [40]. The authors show in their experiments that the method significantly 

improves the baseline and is also able to achieve better results than the other methods discussed in this paragraph (for 

an overview, see Table 7). Furthermore, they demonstrate robustness enhancement and domain adaption capabilities in 

several evaluation applications.  

Wang et al. [128] and Liu et al. [129] developed methods for enhancing the pre-training of language models with 

adversarial training. Wang et al. [128] simply generate adversarial examples on the output embeddings in the softmax 

function of the language models. Thereby they manage to reduce the perplexity of the AWD-LSTM and QRNN models 

on different datasets, which leads, for example, to a reduction of 2.29 points with respect to the Penn Treebank dataset 

with the AWD-LSTM model. However, it is not clear how the training of bigger pre-trained language models like BERT 

and RoBERTa would have been influenced by this method. This is addressed in the work of Liu et al. [129] with their 

method called Adversarial training for large neural Language Models (ALUM), which introduces noise to the input 

embeddings. The authors build their system based on the virtual adversarial training by Miyato et al. [40], as they noticed 

that it is superior to conventional adversarial training for self-supervision. Furthermore, they found out that they can 

omit the Bregman proximate point method and the adversarial training proposed by Jiang et al. [127] and Shafahi et al. 

[124] when they are using curriculum learning, where the model is first trained with the standard objective and then 

with virtual adversarial training. They report promising generalization and robustness improvements with the largest 

transformer models. For example, RoBERTa models can be improved with the ALUM continual pretraining by + 0.7 on 

the MNLI task, while standard continual pretraining does not introduce further gains. The results on the GLUE dataset 

are given in Table 7. The authors also tested the robustness of the models with three different adversarial datasets, where 

ALUM achieves significant improvements in all tasks. In another evaluation setting they combine adversarial pretraining 

with adversarial fine-tuning. ALUM improves all evaluation scores of the standard pretrained models. This model 

reaches the best performances and significantly outperforms the other models in all tested tasks, e.g., with an increased 

accuracy of + 0.4 more than without tuning the SNLI dataset. The improvement on the MNLI task is given in Table 7. 

With regard to the generative adversarial training methods of the feature space, it is also of interest to investigate 

how the newly created examples can be transformed into the data space to enable their inspection. This is done in the 

works of Liu et al. and Wan et al. [130], [131]. Wan et al. attempt to improve the classification behavior of a grammatical 

error correction system by training with adversarial examples. Such an example, extracted from the application of loss-

increasing noise in the hidden representation of a transformer encoder, is mapped to the data space by a transformer 

encoder that was trained autoregressively. Then they use a similarity discriminator based on the model to filter instances 

that are not similar to their initial counterparts. Liu et al. [130] also use a transformer autoencoder architecture to 

generate data space instances. In contrast to the work of Wan et al. [131], they generate the noisy instances from the 

input embeddings, subsequently filter instances based on unigram word overlap, and try to improve machine question 

generation and question answering tasks. Both methods significantly improve the baselines and other methods.  

Given the constraint that adversarial training can be computationally expensive, Shen et al. [101] propose three 

simple and efficient data augmentation methods of the feature space (see Figure 4). Token cutoff sets the entire 
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embedding of a single word to 0, while the feature cutoff sets one embedding dimension of each word in the input to 0. 

The third method, span cutoff, employs token cutoff across a coherent span of words. With each method, several 

different, slightly modified instances can be created, which the authors see as different perspectives/views that can be 

integrated in a multi-view learning fashion through consistency training. This means that the model should predict 

similar outputs across different views (details can be found in Section 3.4). The authors evaluate their model on the GLUE 

task and compare it with adversarial training algorithms as well as round-trip translation. In three out of eight tasks, an 

improvement over all other methods could be achieved (see Table 7). They extend the cutoff strategies to work with 

language generation, and thereby significantly outperform the baseline as well as the adversarial training method of 

Wang et al. [128]. 

 

 

Figure 4: Visualization of the different cutoff methods [101]. 

Table 7: Comparison of different noise inducing methods on the GLUE task. 

 Model SST-2 
Acc 

STS-B 
P/S Corr 

MNLI-
m/mm-
Acc 

QQP 
Acc 

RTE Acc QNLI 
Acc 

MRPC 
F1 

CoLA 
Mcc 

Baseline RoBERTa-L 96.4 92.4 90.2 92.2 86.6 94.7 90.9 68.0 

Adversarial 
Training 

PGD  96.4 92.4 90.5 92.5 87.4 94.9 90.9 69.7 

FreeAT 96.1 92.4 90.0 92.5 86.7 94.7 90.7 68.8 

FreeLB 96.7 92.7 90.6 92.6 88.1 95.0 91.4 71.1 
ALUM* 96.6 92.1 90.9 92.2 87.3 95.1 91.1 68.2 

ALUM - - 91.4 - - - - - 

SMART 96.9 92.8 91.1 92.4 92.0 95.6 92.1 70.6 

Cutoff** Token  96.9 92.5 91.0 92.3 90.6 95.3 93.2 70.0 

Feature  97.1 92.4 90.9 92.4 90.9 95.2 93.4 71.1 

Span  96.9 92.8 91.1 92.4 91.0 95.3 93.8 71.5 

*only adversarial pre-training 
**supervised consistency training 

3.2.2  Interpolation Methods 

For textual data, interpolation methods are mostly limited to the feature space since there is no intuitive way for 

combining two different text instances. Nevertheless, the application in the feature space seems reasonable, as the 

interpolation of hidden states of two sentences creates a new one containing the meaning of both original sentences 

[97], [132]. Besides this, from a learning-based perspective, interpolation methods have a high value for machine learning 
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models. Possible explanations for the success of interpolation methods may stem from the balancing of classes, the 

smoothening of the decision border (regularization) [133], and the improvement of the representations [134].  

For example, the Synthetic Minority Over-sampling Technique (SMOTE) approach in its original context was 

developed for the purpose of oversampling the minority class, which, as described in the background section, inherently 

leads to better classification performances. In fact, a balancing of a class can easily be achieved by simply copying the 

minority class. However, Chawla et al. [133] show that simple oversampling leads to more specific decision boundaries 

than applying SMOTE in the balancing of classes. Interpolation methods can smoothen the boundary, as shown in Figure 

5. Smoothened and more general decision borders signify that an algorithm can generalize better and, in relation to 

training data, is accompanied by less overfitting. In this context, when applying interpolation methods to representations 

of the input data, Verma et al. [134] empirically and theoretically prove that representations are flattened with regard to 

the number of directions with significant variance. This is desirable since data representations capture less space, 

meaning that a classifier is more uncertain for randomly sampled representations and a form of compression is achieved 

which leads to generalization [134]–[136]. 

3.2.2.1 SMOTE Interpolation 

SMOTE is an interpolation method of feature space representations of input data. With SMOTE, various neighbors close 

to a specific instance are searched within the feature space in order to be interpolated with the following formula: 
𝑥̃ = 𝑥𝑖 +  𝜆 ∗  𝑑𝑖𝑠𝑡(𝑥𝑖 ,  𝑥𝑗), 

where (𝑥𝑖 , 𝑦𝑖) is the source instance and (𝑥𝑗 , 𝑦𝑖) is a close neighbor with the same class label. 𝑑𝑖𝑠𝑡(𝑎, 𝑏) is a distance 

measure and 𝜆 ∈ [0,1]. Unlike mixup, only instances of the same class get interpolated. The rationale behind the 

calculation of neighbors with the same class labels is that the interpolations tend to be class preserving, leading to a 

higher safety of the technique. However, this leads to a limited novelty and diversity of the created instances.  

SMOTE is rudimentarily illustrated in Figure 5. In the illustration, a binary classification problem is shown, in which 

a learning algorithm has learned the specific decision border. To achieve a balanced class distribution, a new instance is 

added to the blue class by utilizing SMOTE. This addition achieves, apart from a balancing of the dataset, an adjustment 

of the decision boundary. The new boundary is less specific and thus contributes to more general decisions. SMOTE in 

combination with textual data augmentation is applied, for instance, in the work of Wang and Lillis [108]. Unfortunately, 

the authors do not describe how and at which point of the network the method is applied. 

 

 

Figure 5: Illustration of the interpolation method SMOTE. 
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3.2.2.2 Mixup Interpolation 

Mixup by Zhang et al. [137] is an interpolation method similar to SMOTE. In the simplest adoption, the convex 

interpolation is implemented with the following formulas: 
𝑥̃ = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 ,       whereas 𝑥𝑖 , 𝑥𝑗  are input vectors 

 𝑦̃ = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 ,       whereas 𝑦𝑖 , 𝑦𝑗  are one-hot-coded labels 

(𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are sampled from the training data and 𝜆 is either fixed in [0,1] or 𝜆 ∼ Beta(α, α), for α ∈  (0, ∞).  

Mixup is a general technique that can be applied to all kinds of equal dimensional data. However, text cannot trivially 

be represented in equal dimensions [138]. As a very general method, Verma et al. [134] propose the idea of applying 

mixup within a randomly selected hidden layer of a neural network. Despite the fact that the authors only perform the 

tests on image datasets, this approach paves the way for the application of mixup in many textual related tasks. The 

results are very promising, and for textual evaluations we advise the reader to look at the methods described below 

(Table 8), which oftentimes can be seen as specializations of the approach by Verma et al. [134] for textual data. Marivate 

and Sefara [64] state that they use mixup on representations of bag of word models, TF.IDF models, word embeddings, 

and language models. Unfortunately, the authors do not explicitly describe how the interpolation is performed. This 

raises questions about how to interpolate instances of different sizes, when, for example, word embedding vectors are 

used. Marivate and Sefara [64] report about 0.2, 0.4, and 0 points gain for the AG News, Sentiment 140, and Hate Speech 

detection task. In contrast, Qu et al. [78] describe the internal implementation of their interpolation. For the interpolation, 

they draw two instances from a mini-batch and linearly combine their input embedding matrices in the way described 

above. They improve the baseline on the MNLI-m task by an additional 0.6% in terms of accuracy. Guo et al. [139] 

propose two variants, wordMixup and senMixup, where the interpolation is applied in the word embedding space and 

on the final hidden layer of the neural network before it is passed to a softmax layer. For wordMixup the sequences have 

to be zero padded so that the dimensions are the same. For senMixup this is not necessary, as the hidden embeddings 

generated are of the same length each. The improvement results of both methods with regard to the CNN model with 

pretrained GloVe embeddings (trainable), which is the best baseline, is presented in Table 8. Guo [140] further advances 

the wordMixup approach by using a nonlinear interpolation policy. The policy is constructed to mix each dimension of 

the individual word embeddings in a given sentence separately. Furthermore, the labels are also interpolated nonlinearly, 

while they are learned adaptively based on the mixed embeddings. This way, a much larger variety of generated examples 

can be created. While this procedure outperforms the other two variants in most tasks, it can also have a negative effect 

on the classification quality, as shown in Table 8. Similar to the senMixup method, Sun et al. [138] apply mixup to the 

output of transformer models. Furthermore, they only activate mixup in the last half of the training epochs to learn good 

representations first. The improvements on the GLUE benchmark are listed in Table 8. In a very similar way, Chen et al. 

[97] propose TMix, which is also able to interpolate the hidden representations of an encoder. Indeed, TMix is able to 

interpolate at every layer of the encoder, similar to Verma et al. [134]. Based on the work of Jawahar et al. [141], who 

analyzed the types of information learned in different layers of BERT, the authors narrowed down their approach and 

opted for 7, 9, and 12 as interpolation layers as they contain the syntactic and semantic information. The improvements 

of TMix are also shown in Table 8. 

Table 8: Overview of different approaches of the replacement method "mixup interpolation". 

Method Technique for textual application Model Datasets Improvements 
mixup by Marivate 
and Sefara [64] 

Not stated DNN AG News 
Sentiment 140 
Hate Speech 

+0.2 (Acc.) 
+0.4 
+0 
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[119] Interpolation of the BERT CLS output BERT-base-
english-uncased 

SNIPS (few shot) 
SNIPS  
FBDialog (few shot) 
FBDialog 

+8.36 (Acc.) 
+0.0 
+7.92 
+0.08 

[78] Interpolation of the embedding 
matrices 

RoBERTa-base MNLI-m +0.6 (Acc.) 

wordMixup by Guo 
et al. [139] 

Interpolation of zero-padded word 
embeddings 

CNN Trec 
SST-1 
SST-2 
Subj 
MR 

+1.6 (Acc.) 
+1.9  
+0.2 
+0.3 
+1.5 

senMixup by Guo et 
al. [139] 

Interpolation on the final hidden layer CNN Trec 
SST-1 
SST-2 
Subj 
MR 

+1.2 (Acc.) 
+2.3 
+0.3 
+0.5 
+0.8 

Nonlinear Mixup by 
Guo [140] 

Nonlinear interpolation of padded word 
embeddings 

CNN Trec 
SST-1 
SST-2 
Subj 
MR 

+2.6 (Acc.) 
+3.0 
+2.3 
-0.5 
+3.6 

Mixup-Transformer 
by Sun et al. [138] 

Interpolation after last layer of the 
transformer 

BERT-large  CoLA  
SST-2  
MRPC  
STS-B  
QQP  
MNLI-mm  
QNLI  
RTE 

+2.68 (Corr.) 
+0.81 (Acc.) 
+1.72 (Acc.) 
+0.89 (Corr.) 
+0.42 (Acc.) 
-0.01 (Acc.) 
+0.13 (Acc.) 
+0.37(Acc.) 

TMix by Chen et al. 
[97] 

Interpolation of the m-th BERT layer (7, 
9, and 12 randomly chosen per batch) 

BERT-base-
uncased + 
average pooling 
+ two-layer 
MLP 

AG News (10) 
AG News (2500) 
DBPedia (10) 
DBPedia (2500) 
Yahoo! (10) 
Yahoo! (2500) 
IMDB (10) 
IMDB (2500) 

+4.6 (Acc.) 
+0.2 
+1.6 
+0.0 
+2.4 
+0.3 
+1.8 
+0.5 

TMix evaluated by 
[114] 

Interpolation of the m-th BERT layer (7, 
9, and 12 randomly chosen per batch) 

BERT-base SST-2 (0.1, 0.3, 1.0%) 
COLA (0.1, 0.3, 1.0%) 
TREC6 (0.1, 0.3, 1.0%) 
CR (0.1, 0.3, 1.0%) 
SUBJ (0.1, 0.3, 1.0%) 
MPQA (0.1, 0.3, 1.0%) 
RT20 (0.1, 0.3, 1.0%) 

-0.2, -1.5, -2.1 
+0.8, 2.4, -0.7 
-0.2, -1.4, +2.4 
-0.1, -0.5, -3.3 
-0.5, +0.4, -0.1 
+0.2, 2.9, 0.0 
+2.3, 0.6, -1.9 

Intra-LADA [142] Interpolation of an instance with a 
randomly reordered version of itself 

BERT-base-
multilingual-
cased + linear 
layer 

CoNLL (5%) 
CoNLL (100%) 
GermEval (5%) 
GermEval (100%) 

+0.24 (F1) 
+0.03 (*) 
+0.29 
+0.04 (*) 
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Inter-LADA [142] Interpolation of the nearest neighbors 
and sometimes randomly selected 
instances 

BERT-base-
multilingual-
cased + linear 
layer 

CoNLL (5%) 
CoNLL (100%) 
GermEval (5%) 
GermEval (100%) 

+1.32 (F1) 
+0.64 
+0.49 
+0.33 

Intra-Inter-LADA 
[142] 

Combination of Intra- and Inter-LADA BERT-base-
multilingual-
cased + linear 
layer 

CoNLL (5%) 
CoNLL (30%) 
GermEval (5%) 
GermEval (30%) 

+1.57 (F1) 
+0.59 
+0.53 
+0.78 

* Included in the pretraining 

Similarly, Chen et al. [142] propose an interpolation augmentation method in which the hidden layer representations 

of two samples are interpolated. However, they noticed that this method is not suitable for sequence tagging tasks. For 

this reason, they propose Intra- and Inter-LADA. Intra-LADA aims to reduce noise from interpolating unrelated 

sentences by only interpolating an instance with a randomly reordered version of itself. This way, they can increase the 

performance in every tested task (see Table 8). However, Chen et al. [142] also hypothesize that their Intra-LADA 

algorithm is limited in producing diverse examples. This limitation leads to Inter-LADA, which sets a trade-off between 

noise and regularization by interpolating instances that are close together. The closeness is estimated through kNN 

based on sentence-BERT [143] embeddings and extended by occasional sampling of two completely random instances. 

As it can be seen in Table 8, Inter-LADA oftentimes performs better than Intra-LADA. The combination of both can 

further improve the results. 

3.3 Combination of Augmentation Methods 

In augmentation research, a common technique is to combine several data augmentation methods to achieve more 

diversified instances [144]. Here, combination can mean either the application of multiple separate or stacked methods. 

For the first kind, Sun and He [51] propose word-level and phrase-level methods that they apply separately. While the 

results of the word-level and phrase-level methods differ insignificantly, the combination of both groups of methods 

produced very good results. Similarly, Li et al. [41] combined their proposed methods, which led to better results for the 

in-domain evaluations. In the work of Bonthu et al. [145] round-trip translation, random swap, random deletion, and 

random synonym insertion are separately combined, which leads to the best improvement of a LSMT classifier. 

Furthermore, in contrastive learning, it makes sense to use more than one data augmentation strategy since the goal is 

to learn meaningful representations that can be fostered by many different views. For example, Yan et al. [146] and Wu 

et al. [49] use several simple methods of data augmentation for the contrastive learning objective. Details on contrastive 

learning and the results of the works can be found in the next section. The method of stacking data augmentation 

techniques, on the other hand, is not always feasible. It is, for example, in most cases not possible to first apply a feature 

space method and then a data space method. Qu et al. [78] tested this with round-trip translation, cutoff, and adversarial 

examples. Round-trip translation and the training with adversarial examples produced the best results. Marivate and 

Sefara [64] stack round-trip translation, synonym and embedding replacement with mixup. In two out of three 

evaluation settings, this procedure reduces the minimal error.  

For the combination of augmentation methods, the meta-learning augmentation approach by Ratner et al. [81] is also 

of interest. It describes the utilization of a neural network to learn data augmentation transformations [5]. Specifically, 

Ratner et al. use a GAN to generate sensible sequences of transformations that were defined beforehand. This approach 

is usable for image as well as text datasets and the authors show that it can achieve a significant improvement when 

applied to a relation extraction task with augmentations based on language model replacements. 
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3.4 Training Strategies 

While semi-supervision is not considered as data augmentation in this work, it can still be sensibly combined through 

consistency training. In its origin, consistency training is used to make predictions of classifiers invariant to noise [52]. 

This can be enforced by minimizing the divergences between the output distributions of real and noised instances. 

Additionally, as only output distributions are included in the process, this consistency can be trained with unlabeled 

data. Several authors analyze how consistency training behaves when data augmentation methods are used for noise. 

This process can be illustrated by taking an instance whose label is unknown, applying a label-preserving data 

augmentation method, and then learning the model to predict the same label for both instances. In this way, the model 

can learn the invariances and is able to generalize better. Xie et al. [52] show that they achieve very good results by 

employing consistency training with round-trip translation and a TF-IDF-based replacement method, with an absolute 

improvement of 22.79% in accuracy on an artificially created low-data regime based on the Amazon-2 dataset with BERT 

base. They are also able to outperform the state of the art in the IMDb dataset with only 20 supervised instances. Chen 

et al. [97] even extend this approach within their MixText (TMix) system. First, they generate new instances with round-

trip translation. Then, they guess the label of the original and augmented instances by taking a weighted average of the 

predictions of all of them. In the training, they randomly sample two instances and mix them together with TMix. If one 

of the two instances is from the original data, they are using the normal supervised loss, but if both instances are from 

the unlabeled or augmented data, they use the consistency loss, like Xie et al. [52]. Consistency training can also be 

applied in a supervised fashion as an additional term in the training objective to enforce identical predictions. This is, 

for example, used in the cutoff method by Shen et al. [101]. They show in their ablation studies that this consistency 

term improves the accuracy results additively by 0.15%.  

Qu et al. [78] combine supervised consistency training with contrastive learning. The contrastive learning scheme 

should bring the original and augmented instances closer together and the other instances further apart in the 

representation space. Contrastive learning can be applied in the pretraining phase of a language model so that 

meaningful representations are learned directly. Wu et al. [49] show that training a language model from scratch with 

this objective can lead to increased performances for downstream tasks. As augmentation methods the authors use word 

deletion, span deletion, random reordering and synonym substitution, as well as combinations in sets of two. The 

evaluation of several tasks shows that there is no clear best augmentation method. Fang et al. [99] and Yan et al. [146] 

show that contrastive learning can also result in better sentence representations when using an already pretrained model 

and further training the masked language modeling task with contrastive learning. While the work of Fang et al. [99] 

uses round-trip translation, Yan et al. [146] experiment with adversarial training, token mixing, cutoff and dropout. Qu 

et al. [78] and Choi et al. [53] even include contrastive learning into the supervised setting. As augmentation strategies, 

Qu et al. [78] use adversarial training combined with round-trip translation and Choi et al. [53] use counterfactuals based 

on language model substitution. Combined with consistency training, Qu et al. [78] achieve even further improvements. 

A comparing overview can be found in Table 9 of the supplementary material (online). 

Other training strategies in which the order of how the training examples are presented to the learning algorithm is 

altered are for example employed by Liu et al. [129], Yang et al. [147], and Claveau et al. [110]. Liu et al. [129] adopt a 

curriculum learning approach, where the algorithm first learns less difficult instances. Transferred to the data 

augmentation topic, the model is first trained with the original data and then with the augmented data. Yang et al. [147] 

reverse this step and first train the model with the augmented data and then with the original data. This way, the model 

can correct unfavorable behavior that it learned through noisy augmented data. They also tried an importance-weight 

loss in which the weights of the synthetic instances are lower but find that the other training method performs better. 
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3.5 Filtering Mechanisms 

Mechanisms that filter the generated instances are especially important for methods that are not perfectly label-

preserving. A simple mechanism is, for example, employed by Liu et al. [130], who remove generated instances based 

on the overlap of unigram words with their original equivalents. Similarly, other metrics could also be used, e.g., 

Levenshtein distance, Jaccard similarity coefficient, or Hamming distance. Wan et al. [131] use a similarity discriminator, 

initially proposed by Parikh et al. [148], which also measures the similarity of two sentences. 

The generative methods by Anaby-Tavor et al. [44], Abonizio and Junior [109], and Claveau et al. [110] filter instances 

based on a classifier that was trained on the class data. This significantly reduces the diversity of samples, and the 

classifier cannot really be improved as it is already familiar with these instances. Bayer et al. [46] improve this by using 

embeddings to measure the quality of the generated instances with regard to the class and more importantly by 

incorporating the human expert in the loop who needs to determine the correct threshold. However, Yang et al. [147] 

consider another filtering mechanism in their work which does not require human assistance and is very sophisticated 

due to the inclusion of two perspectives. Generally, Yang et al. [147] propose a generative method that is suitable for 

increasing the dataset size for question answering tasks. While they propose to utilize language models for fine-tuning 

and generation of questions and answers, their filtering methods can be adapted for other data augmentation methods 

as well. A first filtering mechanism determines whether a generated instance is detrimental by measuring whether the 

validation loss increases when including the artificial instance. As this would require retraining the model with each 

generated example, the authors propose to use influence functions [149], [150] to approximate the validation loss change. 

Furthermore, they first train on the augmented instances and then on the original training data so that the model can 

adjust itself when unfavorable noise is included in the augmented instances. The other filtering mechanism tries to favor 

diversity by selecting examples that maximize the number of unique unigrams.  

4 DISCUSSION: A RESEARCH AGENDA FOR TEXTUAL DATA AUGMENTATION  

In the previous section, different data augmentation methods were grouped, explained, compared in terms of 

performance and put into context with each other. One has to keep in mind that the results reported by the authors of 

the approaches linked in this survey paper are restricted in their expressiveness and only show one perspective. Many 

results are limited to special kinds of models and datasets. Based on our findings, we identified an agenda for future 

research on data augmentation as follows: 

4.1 Researching the Merits of Data Augmentation in the Light of Large Pre-trained Language Models 

Generally, it is not possible to determine which augmentation method works best for a given dataset, nor predict which 

research direction will be the most appealing in the future. Nevertheless, some patterns in current approaches hint to 

the directions research can follow in order to overcome current obstacles and challenges. One of the most significant 

challenges, as formulated by Longpre et al. [4], concerns the usage of large pre-trained language models, which makes 

the utilization of several data augmentation methods obsolete. Large pre-trained models are currently state of the art, 

nevertheless, we advise taking further advancements and findings in the research landscape into account, as for example 

deep belief networks [151], capsule networks [152], or task-specialized networks e.g. for sentiment analysis [153], [154]. 

Experiments with BERT or other bigger language models are therefore of particular interest. Similarly, several studies 

[44], [46], [67], [111], [130], [114] have shown that methods only slightly transforming instances with random behavior, 

such as with synonym replacement (Section 3.1.2.2), EDA (synonym replacement, random swap, deletion, and insertion 

in one) (Section 3.1.2.1), or by inserting spelling errors (Section 3.1.1.1), tend to be less beneficial in this setting than 
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more elaborate ones. Particularly adversarial training (Section 3.2.1), cutoff (Section 3.2.1), interpolation (Section 3.1.3.2 

and 3.2.2), and some generative methods (Section 3.1.4.2) have shown significant improvements with large pre-trained 

language models. While replacement methods based on embeddings (Section 3.1.2.3) and especially language models (c-

BERT) (Section 3.1.2.4) can also gain improvements in combination with those pre-trained models, several studies [44], 

[64], [78], [111] have shown that the previously mentioned methods can, in most cases, achieve improved results.  

The described performance differences become apparent when approaching the challenge highlighted by Longpre et 

al. [4] from an intuitive perspective. Large language models map data to a latent space with representations nearly 

invariant to some transformations. For example, synonym replacement methods only replace words that are by 

definition very close to the representation space, leading to instances that are almost identical [61]. As Longpre et al. [4] 

hypothesize, data augmentation methods can only be helpful, if they are able to introduce new linguistic patterns. In 

such instances, using the mentioned methods and generative methods, in particular, might be sensible, as they are based 

on other large language models that can introduce a high novelty. However, the challenge proposed by Longpre et al. 

[4] does not have to be universally true. For example, the SUB² method by Shi et al. [91] only interpolates phrases from 

the training data and thus does not include unseen linguistic patterns but achieves high gains with a pre-trained model. 

Another interesting aspect concerns the experiments conducted by Yoo et al. [114], with which they demonstrate that 

their GPT-3-based generative augmentation method actually improves as the size of the pre-trained classifier increases. 

The authors hypothesize that larger classifiers have more capacity to better incorporate the GPT3Mix samples. 

4.2 Improving Existing Data Augmentation Approaches 

In general, most promising data augmentation methods have limits and challenges that may be overcome with further 

research. Generative models or their output needs to be conditional on the specific class. Otherwise, the created 

instances might not preserve the label. This conditioning is oftentimes reached by training a model, which in turn 

requires enough data to be consistent. Bayer et al. [46] have shown that the conditional model can best replicate the data 

class, if the problem definition and task data is relatively narrow. Tasks with a broad variety of topics in the data seem 

less suitable. This problem might be mitigated by adopting new conditioning methods. Currently, most approaches are 

extended by filter mechanisms. Existing mechanisms, as detailed in Section 3.5, have some drawbacks which might be 

reduced in the future. Another obstacle concerns generative models themselves, which can require many resources and 

time to create new instances [46]. Therefore, lightweight alternatives need to be tested in this setting, thus potentially 

preventing a high dependency on resources, which is referred to by Bayer et al. [46] as the high resource wall problem. 

Similarly, methods like round-trip translation are limited by the underlying model. For example, Marivate and Sefara 

[64] hypothesize that round-trip translation might not be appropriate for social media data, where translation errors 

increase. This problem will be addressed in the future, as machine translation models improve their translation 

capabilities for such difficult instances.  

For adversarial examples, Liu et al. [129], hypothesize that good generalizability performance stems from the 

perturbation of the embedding space, rather than the input space. However, data space adversarial training methods 

should not be disregarded too quickly, as Ebrahimi et al. [21] show that their data space method achieves better results 

than the virtual adversarial training by Miyato et al. [40]. A general challenge for adversarial training is that it can 

disturb the true label space in the training data. For example, adversarial example generators often rely on the belief that 

close input data points tend to have the same labels [121]. Concerning the data space methods, this is often not true for 

natural language tasks, where few words or even characters determine the class affiliation (e.g., sentiment classification: 

“I can't believe I like the movie” →small_transformation→ “I can' believe I like the movie”). Whether this applies to the 
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adversarial example generators in the feature space needs to be evaluated. If so, research needs to find a way to exclude 

cases where small transformations disturb labels and at best include cases where stronger transformations still preserve 

the labels.  For this purpose, inspecting feature space methods would be helpful. However, such an inspection is difficult 

to conduct due to their high-dimensional numerical representation. The same applies to the feature space’s 

interpolation methods, where a back transformation to the data space is not trivial. Though, certain approaches, such 

as those from Liu et al. and Wan et al. [130], [131], use techniques such as encoder-decoder architectures capable of 

transforming the newly created instances to the data space. An inspection of interpolated instances could lead to 

interesting insights. This opens another research direction where the interpolation of instances in the data space 

could be further investigated. A method that initially implements this behavior is SUB² (Section 3.1.3.2), which 

interpolates instances of the data space through sub-phrase substitutions. This, however, does not result in a high 

diversity, which is particularly interesting. In this regard, further analysis of the GPT-3 language model by Brown et al. 

[115] could be valuable, as it shows very interesting interpolation capabilities in the data space. 

However, even avoidably inferior methods can achieve better results if they are integrated sensibly. The work of 

Jungiewicz and Pohl [66] can serve as an example. They perform synonym substitution only if it increases the loss of 

the model. This demonstrates that some data augmentation techniques proposed in the different groups are advanced, 

sometimes adopting existing methods and refining them.  

We highlight some advanced works of the different groups in Table 9 to show which research directions can be 

considered in the future. It must be emphasized that these methods are not necessarily the best in their groups. The 

selection is made by the author team on the basis of the information gathered while writing this survey. 

Table 9: Collection of some of the most advanced data augmentation techniques for text classification. 

Space Group Work Method description Improvement 

Data 
Space  

Character 
Level Noise 

[21] Flip a letter if it maximizes the loss +0.62 Acc. (LSTM)  

Synonym 
Replacement 

[66] Only replace words with a synonym if it maximizes 
the loss 

+1.2 Acc. (Kim CNN) 

Embedding 
Replacement 

[22] Choosing embeddings based on the counter-fitting 
method 

-0.6 – +1.9 Acc. (CNN) 

[41] Counter-fitting, language model selection, and 
maximizing the prediction probability 

Safer model (LSTM) 

Language 
Model 
Replacement 

[67] c-BERT integrated in reinforcement learning 
scheme  

+0.73 – +1.97 Acc. (BERT)  

[73] c-BERT and embedding substitution for compound 
words 

+1.9 – +21.0 Acc. (TinyBERT) 

Phrase Level 
Interpolation 

[91] Substitutes substructures +20.6 – +46.2 Acc. (XLM-R)* 

Round-trip 
Translation 

[52] Random sampling with a temperature parameter +1.65 Acc. 

Generative 
Methods 

[46] Conditional GPT-2 with human assisted filtering -2.54 F1 – +15.53 Acc. (ULMFit)*   

[111] GPT-2 with a reinforcement learning component +1.0 – +4.3 F1 (XLNet)* 

Feature 
Space 

Noise 

[127] Virtual adversarial training with special 
optimization 

+0.5 – +5.4 Acc. (RoBERTa-l) 

[129] Virtual adversarial training with curriculum 
learning 

-0.3 Corr. – +1.2 Acc. (RoBERTa-l) 

[101] Embedding noising +0.0 Corr. – +4.4 Acc. (RoBERTa-l) 
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Interpolation 

[138] Interpolation after last layer of the transformer  -0.01 Acc. – +2.68 Corr. (BERT-l) 

[97] Interpolation of a random BERT layer  +0.0 – +4.6 Acc. (BERT-b)* 

[142] Interpolating neighbors and reordered versions +0.53 – +1.57 F1 (BERT-b)* 

*Results contain tests on low data regime datasets 

4.3 Establishing more Comprehensive Evaluation Criteria and Standards for Method Comparison 

A general problem in data augmentation research concerns that mostly only improvements with regard to the prediction 

performance on specific datasets are presented. While this metric is likely the most important one, other metrics, such 

as time and resource usage, language variety, or configurability, are also important for practitioners as well as for 

researchers. For example, the generative approaches based on GPT-2 seem very promising when considering prediction 

performance gain. Nevertheless, language variety is narrowed down, as the model is primarily trained on English data. 

Furthermore, only few authors discuss the time required for the application of their data augmentation methods. The 

GPT-2 based method of Bayer et al. [46] takes up to 30 seconds for generating one example, leading to several computing 

days for a 10-times augmentation of a small dataset. For instance, in the context of crisis informatics this might take too 

long, as classifiers have to be created quickly for immediate incident management [155]. We therefore urge scientists 

developing data augmentation techniques to consistently describe the limitations of their approaches. For further data 

augmentation research, flexible standards should be established in order for methods to be compared more reliably, 

similar to other machine learning research fields, e.g. few-shot learning [156] or natural language generation [157]. It 

seems unrealistic that one or few general datasets can capture all peculiarities of data augmentation methods, especially 

not of those that one tailored to a specific problem. Nevertheless, a small benchmark that can be included in evaluations 

of upcoming data augmentation methods would be desirable. In the best-case, such a benchmark would address different 

data augmentation goals, consisting of two or more datasets, from which one replicates a few-shot learning setting and 

the other a normal learning setting. With the growing usage of generative models, it might also be sensible to consider 

using datasets that are not part of current training datasets for language models, as an incorporation of testing data 

would lead to wrong conclusions. The benchmark should not be too large, in order to ensure specific evaluations can 

still be carried out. Researchers that try to develop such a benchmark, could also consider to specify how much data 

augmentation should be performed and what models should be used. When determining which model should be used, it 

might be useful to create an updatable benchmark, as proposed by Gehrmann et al [157], which can be modified 

according to more recent state-of-the-art models. 

4.4 Enhancing the Understanding of Text Data Augmentation  

Shorten and Khoshgoftaar [5] highlight that while for some image data augmentation techniques it is easy to understand 

how they might improve the dataset and derived classifiers, however, for other techniques this improvement has not 

been explainable yet. This also applies to the text regime, where for example, data augmentation methods that 

paraphrase text without changing the meaning are naturally sensible, while methods applied in the feature space are 

much more complex to capture.  Already the visualization of the data of feature space augmentations created by, for 

example, adversarial examples or interpolation methods, is much more complicated than in the image domain. As 

previously elaborated, existing approaches try to convert representations back into the data space by using encoder-

decoder architectures [130], [131]. Resulting data space representations could then be investigated and used to better 

understand underlying data augmentation methods. Furthermore, a more in-depth understanding of why and when data 

augmentation works needs to be established. With the rise of large language models the question emerges whether data 

augmentation methods paraphrasing input instances without incorporating new patterns may be obsolete [4]. Certain 
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works have challenged this perspective, by demonstrating that even existing patterns can be beneficial for performance 

[91]. In this context, it is interesting to note that the augmentation method of Yoo et al. [114] provides better results 

when the size of the pre-trained language model increases. 

4.5 Fostering the Usability of Data Augmentation Application 

Most data augmentation methods are still research-based in their incremental development progress and therefore not 

suitable for every practitioner. A simple way to improve the usability is to publish code and, in the best-case, develop 

libraries that can be used out of the box for augmenting a text dataset. Dhole et al. [158] propose a first large framework 

to include many text data augmentation methods and filtering mechanisms. The library by Papakipos et al. [159] is not 

as big for textual data augmentation methods, but can be used for multiple modalities (audio, image, text, & video). While 

these are very useful libraries, the amalgamation of many procedures comes with abstraction problems. For example, 

only individual data instances can be transformed and the augmentation procedure does not have access to the entire 

dataset, so that, for example, no interpolation procedures are implemented. In addition to creating libraries, it might be 

useful to explore augmentations with a good learning process integration. This can be considered as a criterion to 

simplify embedding the procedure in the general learning process. Resource utilization, speed, and general continuity in 

the learning process are crucial for this process.  The first two criteria are becoming increasingly relevant as they are 

related to the current trend of data augmentation, i.e. the use of large underlying models that create a high resource and 

time execution overhead. As described above, this might be countered with utilizing more lightweight models. A low 

continuity in the learning process refers to the circumstance that a text data augmentation method is detached from the 

actual training process; or in the worst case, the learning procedure needs to be split into two halves. The former, also 

described as offline data augmentation by [37], means that the original data is augmented independently from the model 

training. A data augmentation technique is called online, if it is embedded into the learning process so that the artificial 

instances are stochastically included by the learning algorithm, which is, e.g., implemented in the work of Bonthu et al. 

[145]. The second form occurs, for example, when a feature space method needs to separate the normal network 

structure, in order to detach the encoder or embedding layer from the rest of the network. This results in a continuity 

problem of learning, so that, e.g., the encoder or embedding level cannot be trained further. 

5 CONCLUSION 

This survey provides an overview over data augmentation approaches suited for the textual domain. Data augmentation 

is helpful to reach many goals, including regularization, minimizing label effort, lowering the usage of real-world data 

particularly in privacy-sensitive domains, balancing unbalanced datasets, and increasing robustness against adversarial 

attacks (see Section 2). On a high level, data augmentation methods are differentiated into methods applied in the feature 

and in the data space. These methods are then subdivided into more fine-grained groups, from noise induction to the 

generation of completely new instances. In addition, we propose several promising research directions that are relevant 

for future work. Especially in this regard, a holistic view on the current state of the art is necessary. For example, the 

increasing usage of transfer learning methods makes some data augmentation methods obsolete, as they follow similar 

goals. Hence, there is a need for more sophisticated approaches that are capable of introducing new linguistic patterns 

not seen during pre-training, as suggested by Longpre et al. [4].  

While data augmentation is increasingly being researched and seems very promising, it also has several limitations. 

For instance, many data augmentation methods can only create high quality augmented data, if the original amount of 

data is large enough. Furthermore, as Shorten and Khoshgoftaar [5] describe, data augmentation is not capable of 
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covering all transformation possibilities and eliminating all kinds of biases in the original data. Adopting the example of 

Shorten and Khoshgoftaar [5], in a news classification task, in which there are no articles containing sports, the standard 

data augmentation methods will most certainly also not create sport articles, even though this would be necessary. In 

contrast, data augmentation might induce new undesirable biases. For instance, language models like GPT can contain 

biases that are then propagated into the dataset [160]. The wide variety of techniques and some very sophisticated 

methods also bring another layer of complexity that needs to be understood. Moreover, data augmentation can be time 

consuming, meaning that not all methods are feasible for time critical machine learning development domains, e.g., in 

some areas of crisis informatics. An increased demand for resources, especially concerning training generative models, 

is inherent to data augmentation.  

In order to mitigate some of the limitations and amplify the strengths of data augmentation, however, we proposed 

our research agenda, which comprises (1) researching the merits of data augmentation in the light of large pre-trained 

language models, (2) improving existing data augmentation approaches, (3) establishing more comprehensive evaluation 

criteria and standards for method comparison, (4) enhancing the understanding of text data augmentation, as well as (5) 

fostering the usability of data augmentation application. 
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