
ar
X

iv
:2

31
0.

09
00

4v
1

 [
cs

.P
L

]
 1

3
O

ct
 2

02
3

Nondeterminism and Guarded Commands
∗

Krzysztof R. Apt†

Ernst-Rüdiger Olderog‡

1 Introduction

The purpose of this chapter is to review Dijkstra’s contribution to nondetermin-
ism by discussing the relevance and impact of his guarded commands language
proposal. To properly appreciate it we explain first the role of nondeterminism
in computer science at the time his original article Dijkstra [1975] appeared.

The notion of computability is central to computer science. It was studied
first in mathematical logic in the thirties of the last century. Several formalisms
that aimed at capturing this notion were then proposed and proved equivalent
in their expressive power: µ-recursive functions, lambda calculus, and Turing
machines, to mention the main ones.

Alan Turing alluded to nondeterminism in his original article on his ma-
chines, writing

For some purposes we might use machines (choice machines or c-
machines) whose motion is only partially determined by the config-
uration. [. . .] When such a machine reaches one of these ambiguous
configurations, it cannot go on until some arbitrary choice has been
made by an external operator.[Turing, 1937, page 232]

However, subsequently he limited his exposition to deterministic machines
and it seems that the above option has not been pursued for quite some time.
As pointed out in Armoni and Ben-Ari [2009], an interesting account of non-
determinism, in the classic book by Martin Davis, Turing machines were used
with a restriction that

no Turing machine will ever be confronted with two different instruc-
tions at the same time [Davis, 1958, page 5].

Another early book by Hermes [1965] introduced the theory of computability
with deterministic Turing machines as equivalent to the µ-recursive functions.

∗This article appeared as Chapter Apt and Olderog [2022] in the book Apt and Hoare
[2022].

†CWI, Amsterdam, The Netherlands and MIMUW, University of Warsaw, Warsaw, Poland
‡University of Oldenburg, Oldenburg, Germany

1

http://arxiv.org/abs/2310.09004v1

Further, as pointed out in Spaan et al. [1989], another helpful study of nonde-
terminism, in a standard comprehensive introduction to the recursion theory by
Hartley Rogers Jr., Turing machines were explicitly assumed to be deterministic:

[. . .] Finally, the device is to be constructed that it behaves according
to a finite list of deterministic rules [. . .] [Rogers Jr., 1987, page 13]

It seems that a systematic study of addition of nondeterminism to formalisms
concerned with computability is due to computer scientists. What follows is a
short exposition of such formalisms. Then we discuss Dijkstra’s contribution
and its relevance. We conclude by providing a brief account of other approaches
to nondeterminism that followed.

Literature on nondeterminism in computer science is really extensive. The
word ‘nondeterminism’ yields 421 hits in the DBLP database, while ‘nondeter-
ministic’ results in 1141 matches. Our intention was not to provide a survey of
the subject but rather to sketch a background against which one can adequately
assess Dijkstra’s contribution to the subject.

When working on our book Apt et al. [2009], written jointly with Frank de
Boer, we found that guarded commands form a natural ‘glue’ that allowed us to
connect the chapters on parallel programs, distributed programs, and fairness
into a coherent whole. This explains the regular references to this book in the
second half of this chapter.

2 Avoiding nondeterminism

We begin with two early formalisms in which nondeterminism is present but the
objective is to use them in such a way that it is not visible in the outcome.

Grammars

Mechanisms that are nondeterministic from the very start are grammars in
the Chomsky hierarchy, Chomsky [1959]. For example, the set of arithmetic
expressions with variables x, y, z, operators + and ∗, and brackets (and) as
terminal symbols can be defined by the following context-free grammar using
the start symbol S as its only nonterminal:

S ::= x | y | z | S + S | S ∗ S | (S). (1)

Here it is natural to postulate that in a derivation step ⊢, the nonterminal S can
be replaced by any of the above right-hand sides. In particular, the arithmetic
expression x + y ∗ z has two different leftmost derivations, where always the
leftmost occurrence of S is replaced:

S ⊢ S + S ⊢ x+ S ⊢ x+ S ∗ S ⊢ x+ y ∗ S ⊢ x+ y ∗ z (2)

S ⊢ S ∗ S ⊢ S + S ∗ S ⊢ x+ S ∗ S ⊢ x+ y ∗ S ⊢ x+ y ∗ z (3)

2

S

�� ❅❅

S + S

�� ❅❅

x S ∗ S

y z

and

S

�� ❅❅

S ∗ S

�� ❅❅

S + S z

x y

Figure 1: Two different parsing trees for x+ y ∗ z using grammar (1).

In a compiler, derivation (2) corresponds to a parsing tree shown on the left-
hand side of Figure 1, giving priority to the operator ∗, while derivation (3)
corresponds to a parsing tree on the right-hand side, giving priority to +.

Thus by definition, the above grammar is ambiguous. When using context-
free grammars to define syntax of a programming language, one is interested in
unambiguous grammars, meaning that each word (here: program) has only one
parsing tree. So in grammars, nondeterminism (in the application of the pro-
duction rules) is allowed, but the objective is that it does not lead to ambiguities
in the above sense.

A context-free grammar that allows nondeterminism but is unambiguous
uses three nonterminals, E (for ‘expression’), T (for ‘term’), and F (for ‘factor’),
where E is the start symbol, and the following production rules:

E ::= T | E + T (4)

T ::= F | T ∗ F

F ::= (E) | x | y | z

This grammar generates the same set of arithmetic expressions as the one above,
but is unambiguous. In particular, the arithmetic expression x+ y ∗ z has now
only one leftmost derivation corresponding to the unique parsing tree shown
in Figure 2. The grammar encodes the fact that the operator ∗ has a higher
priority than + and that expressions with the same operator are evaluated from
left to right. It can be generalized to a pattern dealing with any set of infix
operators with arbitrary priority among them.

Abstract reduction systems

Another simple formalism that allows nondeterminism are abstract reduction
systems. Formally, an abstract reduction system is a pair (A, →) where A is
a set and → is a binary relation on A. If a→ b holds, we say that a can be
replaced by b. In this setting nondeterminism means that an element can be
replaced in various ways.

3

E

�� ❅❅

E + T

�� ❅❅

T T ∗ F

F F z

x y

Figure 2: Unique parsing tree for x+ y ∗ z using grammar (4).

There are several important examples of abstract reduction systems, in par-
ticular term rewriting systems, with combinatory logic and λ-calculus, and some
functional languages as best known examples (see, e.g., Terese [2003]).

Let →∗ denote the reflexive transitive closure of → . An element a ∈ A

is said to be in normal form if for no b ∈ A, a→ b holds. If a→∗ b and b is
in normal form, then b can be viewed as a value of a obtained by means of an
abstract computation consisting of a repeated application of the → relation. In
general one is interested in abstract reduction systems in which each element has
at most one normal form, so that the notion of a value can be unambiguously
defined. One says then that the system has the unique normal form (UN, in
short).

To establish UN it suffices to establish the Church-Rosser property (CR, in
short). It states that for all a, b, c ∈ A

a

∗ւ ց∗
b c

implies that for some d ∈ A

b c

∗ց ւ∗
d.

Indeed, CR implies UN.
Several important term rewriting systems, including combinatory logic and

λ-calculus, have CR, and hence UN, see, e.g., Terese [2003].
In this area the interest in UN means that one is interested in deterministic

outcomes in spite of the nondeterminism that is present, that is, one aims at
showing that the nondeterminism is inessential.

4

3 Angelic nondeterminism

We now proceed with a discussion of formalisms in which addition of nonde-
terminism allowed one to extend their expressiveness. These formalisms share
a characteristic that one identifies successes and failures and only the former
count. This kind of nondeterminism was later termed angelic nondeterminism.

Nondeterministic finite automata and Turing machines

The first definitions of finite-state automata required deterministic transition
functions, as noted in Hopcroft and Ullman [1979]. It took the insight of Rabin
and Scott to introduce nondeterministic finite automata in their seminal paper
Rabin and Scott [1959]. Such an automaton has choices in its moves: at each
transition it may select one of several possible next states. They motivated
their definition as follows: “The main advantage of these machines is the small
number of internal states that they require in many cases and the ease in which
specific machines can be described.” They proved by their famous power set
construction (that uses as the set of states the powerset of the original set of
states) that for each nondeterministic automaton a deterministic one can be
constructed that accepts the same set of finite words, however the determinis-
tic one may have exponentially more states. Crucial is here their definition of
acceptance: a nondeterministic automaton accepts a word if there is some suc-
cessful run of the automaton from an initial to a final state, processing the word
symbol by symbol. Thus only a success counts, while failures do not matter.

This kind of nondeterminism has also been introduced for other types of
machines, in particular pushdown automata and Turing machines, leading to
the definition of various complexity classes discussed at the end of this section.

McCarthy’s ambiguity operator

Probably the first proposal to add nondeterminism to a programming language
is due to John McCarthy who introduced in McCarthy [1963] an ‘ambiguity
operator’ amb(x, y) that, given two expressions x and y, nondeterministically
returns the value of x or of y when both are defined, and otherwise whichever
is defined. (McCarthy did not explain what happens when both x and y are
undefined, but the most natural assumption is that amb(x, y) is then undefined,
as well.) In particular, amb(1, 2) yields 1 or 2.

McCarthy was concerned with the development of a functional language, so
in his formulation programs were expressions, possibly defined by recursion. As
an example of a program that uses the ambiguity operator he introduced the
function less(n) that assigns to each natural number n any nonnegative integer
less than n. The function was defined recursively by:

less(n) = amb(n− 1, less(n− 1)).

McCarthy did not discuss this function in detail, but note that its defini-
tion involves a subtlety because of its use of undefined values. For the small-

5

est value in its domain, namely 1, we get less(1) = amb(0, less(0)) = 0,
since by definition less(0) is undefined. For the next value, so 2, we get
less(2) = amb(1, less(1)) = amb(1, 0), which yields 0 or 1. Next, less(3) =
amb(2, less(2)) = amb(2, amb(1, 0)), which yields 0 or 1 or 2, etc. This may be
the first example of a program that uses nondeterminism.

McCarthy’s used his ambiguity operator to extend computable functions
by nondeterminism to what he called computably ambiguous functions. His
work soon inspired first proposals of systems and programming languages that
incorporated some form of nondeterminism, mainly to express concisely search
problems, see, e.g., Smith and Enea [1973] for an account of some of them.

Sometime later, the authors of Zabih et al. [1987] extended a dialect of Lisp
with McCarthy’s nondeterministic operator denoted by AMB. The addition of
nondeterminism was coupled with a dependency-directed backtracking, trig-
gered by a special expression FAIL that has no value. The resulting language
was called SCHEMER. This addition of nondeterminism to Lisp was later dis-
cussed in the book Abelson and Sussman [1996] that used a dialect of Lisp called
Scheme.

Floyd’s approach to nondeterministic programming

Another approach to programming that corresponds to the type of nondeter-
minism used in the nondeterministic Turing machines was proposed by Robert
Floyd in Floyd [1967]. He began his article by a fitting quotation from a famous
poem ‘The Road Not Taken’ by Robert Frost:

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Floyd’s idea was to add nondeterminism to the conventional flowcharts by

• using a nondeterministic assignment

x := choice(t),

that assigns to the variable x an arbitrary positive integer of at most the
value of the integer expression t,

• labeling all termination points as success or failure.

Thus augmented flowcharts can generate several execution sequences, how-
ever, only those that terminate in a node labeled success are considered as the
computations of the presented algorithm.

Using a couple of examples Floyd showed how these two additions can lead
to simple flowchart programs that search for a solution through exhaustive enu-
meration and which otherwise would have to be programmed using backtracking
combined with appropriate bookkeeping.

6

Jacques Cohen illustrated in Cohen [1979] Floyd’s approach using conven-
tional programs in which one uses the above nondeterministic assignment state-
ment and a fail statement that corresponds to a node labeled failure. Any
computation that reaches the fail statement terminates improperly (it aborts).
The label success is unneeded as it is implicitly modeled by a terminating com-
putation that does not abort. We call such computations successful. In this
approach a program is correct if some successful computation establishes the
assumed postcondition.

We illustrate this approach by means of one of Floyd’s examples, the problem
of eight queens in which one is asked to place 8 queens on the chessboard so
that they do not attack each other. The program looks as follows, where a, b
and c are integer arrays with appropriate bounds, and initialized for all indices
to 0:

for col := 1 to 8 do

row := choice(8);
if a[row] = 1 ∨ b[row + col] = 1 ∨ c[row − col] = 1 then fail fi;
a[row] := 1;
b[row + col] := 1;
c[row − col] := 1

od

Subscripted variables have the following interpretation:
a[i] = 1 means that a queen was placed in the ith row,
b[i] = 1 means that a queen was placed in the ith ց diagonal,
c[i] = 1 means that a queen was placed in the ith ւ diagonal,

where the ց diagonals are the ones for which the sum of the coordinates is the
same and theւ diagonals are the ones for which the difference of the coordinates
is the same. Upon successful termination a solution is produced in the form of
a sequence of 8 values that are successively assigned to the variable row; these
values correspond to the placements of the queens in the columns 1 to 8.

Thanks to the nondeterministic assignment and the fail statement this pro-
gram can generate several computations, including ones that abort. The suc-
cessful computations generate precisely all solutions to the eight queens problem.

Floyd showed that one can convert his augmented flowcharts to conventional
flowcharts by means of a generic transformation that boils down to an imple-
mentation of backtracking. This way one obtains a deterministic algorithm that
generates a solution to the considered problem but it is easy to modify his trans-
formation so that all solutions are generated. Of course, such a transformation
can also be defined for the programs considered here.

Logic programming and Prolog

In the early seventies angelic nondeterminism was embraced in a novel approach
to programming that combined the idea of automatic theorem proving based on
the use of relations, with built-in automatic backtracking. It was realized in the

7

programming language Prolog, conceived and implemented by Alain Colmerauer
and his team (see the historic account in Colmerauer and Roussel [1996]), while
its theoretical underpinnings, called logic programming, were provided by Robert
Kowalski in Kowalski [1974].

A detailed discussion of logic programming and Prolog is out of scope of
this chapter, but to illustrate the nondeterminism present in this approach to
programming consider a simple logic programming program that appends two
lists. It is defined by means of two clauses, the first one unconditional and the
second one conditional:

append([], Xs, Xs).

append([X | Xs], Ys, [X | Zs]) ← append(Xs, Ys, Zs).

Here append is a name of a relation, X, Xs, Ys and Zs are the variables, []
denotes the empty list, and [X | Xs] denotes the list with the head X and the
tail Xs.

The first clause states that the result of appending [] and the list Xs is Xs.
The second clause is a reverse implication stating that if the result of appending
the lists Xs and Ys is Zs, then the result of appending the lists [X | Xs] and
Ys is [X | Zs].

In general, a program is a set of clauses which are built from atomic queries.
In the above program atomic queries are of the form append(s, t, u), where
s, t, u are expressions built out of the variables and the constant [] using
the list formation operation [.|.]. A query is a conjunction of atomic queries.
A program is activated by executing a query, which is a request to evaluate it
w.r.t. the considered program. We do not discuss here the underlying computa-
tion model; it suffices to know that the computation searches for an instance of
the query that logically follows from the program. If such an instance is found,
one says that a query succeeds and otherwise that it fails.

In logic programming nondeterminism arises in two ways, by the fact that
relations can be defined using several clauses, and by the choice of the atomic
query to be evaluated first. At the abstract level this is the same form of
nondeterminism as the one used in Floyd’s approach: a computation succeeds
if at all choice points the right selections are made.

Since a query can succeed in several ways, several solutions can be generated.
Consider for example the query

append(, Zs, [mon, tue, wed, thu, fri]), append(Xs, , Zs),

in which we use Prolog’s convention according to which each occurrence of ‘ ’
stands for a different (anonymous, i.e, irrelevant) variable and the comma is
used (between the atomic queries) instead of the conjunction sign. Intuitively,
this query stipulates that Xs is a prefix of a suffix of the list [mon, tue, wed,

thu, fri]. Successful computations of this query w.r.t. the above program
generate in Xs all possible sublists of this list.

In Prolog nondeterminism present in the computation model of logic pro-
gramming is resolved by stipulating that the first clause and the first atomic
query from the left are selected, and by providing a built-in automatic back-
tracking that allows the computation to recover from a failure.

8

Does angelic nondeterminism add expressive power?

After this discussion of nondeterministic programming let us look at the idea of
angelic nondeterminism through the lens of computing and structural complex-
ity.

We mentioned already in the introduction that nondeterminism was not
considered in the original formalizations of the notion of a computation. But
once one considers restricted models of computability, nondeterminism naturally
arises. An early example is the characterization of formal languages in the
Chomsky hierarchy of formal grammars. It distinguishes four types of grammars
that correspond to four levels of formal languages of increasing complexity:
regular, context-free, context-sensitive, and recursively enumerable languages,
denoted by Type-3, Type-2, Type-1, and Type-0, respectively.

The need for nondeterminism arises in connection with the characterization
of these classes by means of an automaton. Whereas Type-0 languages at the top
of this hierarchy are the ones accepted by the deterministic Turing machines, and
Type-3 languages at the bottom, i.e., regular languages, are the ones accepted
by the deterministic finite automata, the characterization of the remaining two
levels calls for the use of nondeterministic automata or machines.

In particular Type-2 languages, i.e., context-free languages, cannot be ac-
cepted by deterministic pushdown automata. A pushdown automaton extends
a finite automaton by an unbounded stack or pushdown list that is manipulated
in a ‘first in – last out’ fashion while scanning a given input word letter by letter.
Such an automaton is called deterministic if for each control state, each symbol
at the top of the stack, and each input symbol, it has at most one possible move;
it is called nondeterministic if more than one move is allowed.

A standard example is the language of all palindromes over letters a and b,
i.e., words that read the same forward and backward, like abba. This language is
context-free, i.e., it can be generated by a context-free grammar, but it cannot
be accepted by a deterministic pushdown automaton. The intuitive reason is
that while checking an input word letter by letter, one has to ‘guess’ when the
middle of the word has been reached, so that one can test that from now on the
letters occur in the reverse order, by referring to the constructed pushdown list.

However, context-free languages can be characterized by means of nondeter-
ministic pushdown automata. Such a characterization refers to angelic nonde-
terminism because it states that a word is generated by the language iff it can
be accepted by some computation of the automaton.

Similarly, nondeterminism is used to characterize Type-1 languages, i.e.,
context-sensitive languages: they are the ones that can be recognized by linear
bounded nondeterministic Turing machines.

While deterministic and nondeterministic Turing machines accept the same
class of languages, the Type-0 languages, there is a difference when time com-
plexity is considered. Probably the most known are the complexity classes P
and NP of problems that can be solved in polynomial time by deterministic
Turing machines and nondeterministic Turing machines, respectively. The class
NP was introduced by Stephen Cook in Cook [1971] and Leonid Levin in Levin

9

[1973]. The intuition is that a problem is in NP if it can be solved by first
(nondeterministically) guessing a candidate solution and then checking in poly-
nomial time whether it is indeed a solution. Following the paradigm of angelic
nondeterminism, wrong guesses do not count. The famous open problem posed
by Cook is whether P = NP holds.

In contrast, when instead of time, space is considered as the complexity
measure, it is known that there is no difference between the resulting classes
PSPACE and NSPACE of problems that can be solved in polynomial space by
deterministic Turing machines and nondeterministic Turing machines, respec-
tively. This is a consequence of a result by Savitch [1970].

We conclude that the addition of angelic nondeterminism can, but does not
have to, increase expressive power of the considered model of computability.

4 Guarded commands

One of us (KRA) met Edsger Dijkstra for the first time in Spring 1975, while
looking for an academic job in computer science in the Netherlands. During a
meeting at his office at the Technical University of Eindhoven, Dijkstra handed
him a copy of his EWD472 titled Guarded Commands, Nondeterminacy and
Formal Derivation of Programs. It appeared later that year as Dijkstra [1975].
This short, five-pages long, paper introduced two main ideas: a small program-
ming language, now called guarded commands, and its semantics, now called the
weakest precondition semantics. Both were new ideas of great significance.

In this chapter we focus on the guarded commands; Chapters Gries [2022]
and Hähnle [2022] in the book Apt and Hoare [2022] discuss the weakest pre-
condition semantics. The essence of guarded commands boils down to two new
programming constructs:

• alternative command

S ::= if B1→ S1[]. . .[]Bn→ Sn fi,

• repetitive command

S ::= do B1→ S1[]. . .[]Bn→ Sn od.

We sometimes abbreviate these commands to

if []ni=1 Bi→ Si fi and do []ni=1 Bi→ Si od.

A Boolean expression Bi within S is called a guard and the construct Bi→ Si

is called a guarded command.
The symbol [] represents a nondeterministic choice between the guarded com-

mands Bi→ Si. The alternative command

if B1→ S1[]. . .[]Bn→ Sn fi

10

is executed by executing a statement Si for which the corresponding guard Bi

evaluates to true. There is no rule saying which statement among those whose
guard evaluates to true should be selected. If all guards Bi evaluate to false,
the alternative command aborts.

The selection of guarded commands in the context of a repetitive command

do B1→ S1[]. . .[]Bn→ Sn od

is performed in a similar way. The difference is that after termination of a
selected statement Si the whole command is repeated starting with a new eval-
uation of the guards Bi. Moreover, in contrast to the alternative command, the
repetitive command properly terminates when all guards evaluate to false.

Dijkstra did not establish the notation of guarded commands directly. Two
earlier EWDs reveal that he first considered other options, also about their
intended semantics.

In EWD398 Dijkstra [1973a] he first used ‘,’ to separate guarded commands,
but changed it halfway to [], reporting criticism of Don Knuth and stating “this
whole report is an experiment in notation!” Also, he wrote B : S instead of
B → S adopted in Dijkstra [1975] and used by him thereafter. Further, for the
repetitive command he wrote that

In the case of more than one executable command, it is again un-
defined which one will be selected, we postulate, however, that then
they will be selected in “fair random order”, i.e. we disallow the
non-determinacy permanent neglect of a permanently executable
guarded command from the list.

However, a day later, in EWD399 Dijkstra [1973b], he admitted that this
decision

[. . .] was a mistake: for such constructs we prefer now not to exclude
non-termination. It is just too tricky if the termination —and in
particular: the proof of the termination— has to rely on the fair
randomness of the selection and we had better restrict ourselves to
constructs w[h]ere each guarded command, when executed, implies
a further approaching of the terminal state.

We shall return to this problem of fairness shortly. But first let us focus
on the main feature of guarded commands, the nondeterminism they introduce.
However, this nondeterminism is of a different type than the one we discussed
so far: by definition a guarded command program establishes the desired post-
condition if all possible executions establish it. This kind of nondeterminism
was later termed demonic nondeterminism.

This seems at the first sight like a flawed decision: why should one complicate
the matters by adding to the program more possible executions paths, when one
will suffice? But, as we shall soon see, there are good reasons for doing it.

11

https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD398.PDF
https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD399.PDF

An often cited example in favour of the guarded commands language is the
formalization of Euclid’s algorithm that computes the greatest common divisor
(gcd) of two positive integers x and y

do x > y→ x := x− y [] x < y→ y := y − x od

that terminates with the gcd of the initial values of x and y equal to their final,
common, value.

However, this program is not nondeterministic: for any initial value of the
variables x and y there is only one possible program execution. This program
actually illustrates something else: that guarded commands allow one to write
more elegant algorithms. Here the variables x and y are treated symmetrically
which is not the case when a deterministic program is used.

In another simple example from Dijkstra’s paper one is asked to compute
the maximum max of two numbers, x and y:

if x ≥ y→max := x [] y ≥ x→max := y if

It illustrates the nondeterminism in a mildest possible form: when x = y two
executions are possible, but the outcome is still the same.

A slightly more involved example of a nondeterministic program with a de-
terministic outcome is Dijkstra’s solution to the following problem: assign to the
variables x1, x2, x3, and x4 an ordered permutation of the valuesX1, X2, X3, and
X4, i.e., one such that x1 ≤ x2 ≤ x3 ≤ x4 holds. The program uses a parallel
assignment that forms part of the guarded commands language:

x1, x2, x3, x4 := X1, X2, X3, X4;
do x1 > x2→ x1, x2 := x2, x1

[] x2 > x3→ x2, x3 := x3, x2

[] x3 > x4→ x3, x4 := x4, x3

od

Upon exit all guards evaluate to false, i.e., x1 ≤ x2 ≤ x3 ≤ x4 holds,
as desired. The relevant invariant is that x1, x2, x3, x4 is a permutation of
X1, X2, X3, X4,

Finally, the following example of Dijkstra results in a program with a non-
deterministic outcome. The problem is to find for a fixed n > 0 and a fixed
integer-valued function f defined on {0, . . ., n− 1} a maximum point of f , i.e.,
a value k such that

k ∈ {0, . . ., n− 1} ∧ ∀i ∈ {0, . . ., n− 1} : f(k) ≥ f(i).

A simple solution is the following program:

k := 0; j := 1;
do j 6= n → if f(j) ≤ f(k)→ j := j + 1

[] f(j) ≥ f(k)→ k := j; j := j + 1
fi

od

12

It scans the values of f starting with the argument 0, updates the value of k in
case a new maximum is found (when f(j) < f(k)), and optionally updates the
value of k in case another current maximum is found (when f(j) = f(k)). The
relevant invariant is here

k ∈ {0, . . ., j − 1} ∧ j ≤ n ∧ ∀i ∈ {0, . . ., j − 1} : f(k) ≥ f(i).

Indeed, it is established by the initial assignment, maintained by each loop
iteration, and upon termination it implies the desired condition on k. Note that
the program can compute in k any maximum point of f .

All these small examples (and there are no others in Dijkstra’s paper) do
not provide convincing reasons for embracing nondeterminism provided by the
guarded commands language. A year after Dijkstra [1975] appeared, Dijkstra
published his book Dijkstra [1976] in which he derived several elegant guarded
command programs, including a more efficient version of the above program
which avoids the recomputation of f(j) and f(k). But inspecting these programs
we found only a few examples in which guards were not mutually exclusive and
only two programs with a nondeterministic outcome.

So why then has demonic nondeterminism, as present in the guarded com-
mand language, turned out to be so influential? In what follows we discuss
subsequent developments that provide some answers to this question. Many ac-
counts of the guarded command language discuss it, as Dijkstra originally did,
together with its weakest precondition semantics. But to appreciate the nonde-
terminism Dijkstra introduced in our view it is useful to separate the language
from its weakest precondition semantics.

5 Some considerations on guarded commands

Dijkstra’s famous article Go To Statement Considered Harmful Dijkstra [1968a]
shows that he was aware of an ancestor of his alternative command in the
form of a conditional expression (B1 → e1, . . ., Bn → en) introduced by John
McCarthy in McCarthy [1963]. Here Bis are Boolean expressions and eis are
expressions. The Boolean expressions do not need to be mutually exclusive,
but the conditional expressions are deterministic: when executed the (B1 →
e1, . . .Bn → en) yields the value of the first expression ei for which Bi evaluates
to true. When all Bis evaluate to false, the conditional expression is supposed
to be undefined. So (B1 → e1, . . .Bn → en) is a shorthand for a nested if -then-
else statement.

Dijkstra’s explicit introduction of an abort, as opposed to McCarthy’s refer-
ence to ‘undefined’, is useful because it provides a simple way of implementing
an assert B statement that checks whether assertion B holds and causes an
abort when this is not the case.

McCarthy worked within the framework of a functional language, so he was
constrained to use recursion instead of a looping construct. As a result Euclid’s
algorithm is formalized in his notation as follows:

gcd(m,n) = (m > n→ gcd(m− n, n), n > m→ gcd(m,n−m), m = n→ m),

13

which is less elegant than Dijkstra’s solution, due to the need for the final
component of the conditional expression.

In contrast, as already explained, Dijkstra did not prescribe any order in
which the guards are selected and ensured that his repetitive command was
not defined using the alternative command. In Dijkstra [1975] he motivated his
introduction of nondeterminism (called by him nondeterminacy) as follows:

Having workedmainly with hardly self-checking hardware, with which
nonreproducing behavior of user programs is a very strong indica-
tion of a machine malfunctioning, I had to overcome a considerable
mental resistance before I found myself willing to consider nondeter-
ministic programs seriously. [. . .] Whether nondeterminacy is even-
tually removed mechanically—in order not to mislead the mainte-
nance engineer—or (perhaps only partly) by the programmer him-
self because, at second thought, he does care—e.g, for reasons of
efficiency—which alternative is chosen is something I leave entirely
to the circumstances. In any case we can appreciate the nondeter-
ministic program as a helpful stepping stone.

But soon he overcame this resistance and one year later he wrote:

Eventually, I came to regard nondeterminacy as the normal situa-
tion, determinacy being reduced to a —not even very interesting—
special case. [Dijkstra, 1976, page xv]

McCarthy’s semantics of conditional expression can be viewed as an example
of such a ‘mechanical removal’ of nondeterminism. However, keeping nondeter-
minism intact often leads to simpler and more natural programs even if the
outcome is deterministic. In some programs the considered alternatives do not
need to be mutually exclusive as long as all cases are covered.

A beautiful example was provided by David Gries in his book Gries [1981].
Consider the following problem due to Wim Feijen. (We follow here the presen-
tation of Gries.)

Given are three magnetic tapes, each containing a list of different names
in alphabetical order. The first contains the names of people working at IBM
Yorktown Heights, the second the names of students at Columbia University and
the third the names of people on welfare in New York City. It is known that at
least one person is on all three lists. The problem is to locate the alphabetically
first such person.

In Gries [1981] the following elegant program solving this problem was sys-
tematically derived. We assume here that the lists of names are given in the
form of ordered arrays a[0 : M], b[0 : M], and c[0 : M]:

i := 0; j := 0; k := 0;
do a[i] < b[j]→ i := i+ 1
[] b[j] < c[k]→ j := j + 1
[] c[k] < a[i]→ k := k + 1
od

14

Note that upon termination of the loop a[i] = b[j] = c[k] holds. The appro-
priate invariant is

0 ≤ i ≤ i0 ∧ 0 ≤ j ≤ j0 ∧ 0 ≤ k ≤ k0 ∧ r

where r states that the arrays a[0 : M], b[0 : M], and c[0 : M] are ordered,
i0, j0, k0 ≤ M and (i0, j0, k0) is the lexicographically smallest triple such that
a[i0] = b[j0] = c[k0].

This program uses nondeterministic guards, so various computations are
possible. Still, it has a deterministic outcome.

In general, as soon as two or more guards are used in a loop, in the customary,
deterministic, version of the program one is forced to use a, possibly nested, if -
then-else statement, like in McCarthy’s ‘determinisation’ approach. It imposes
an evaluation order of the guards, destroys symmetry between them, and does
not make the resulting programs easier to verify.

6 Modeling parallel programs

Concurrent programs, introduced in Dijkstra’s Cooperating sequential processes
paper Dijkstra [1968b], can share variables, which makes it difficult to reason
about them. Therefore, starting with Ashcroft and Manna [1971] and Flon and Suzuki
[1978, 1981], various authors proposed to analyze them at the level of nonde-
terministic programs, where the nondeterminism reflects existence of various
component programs. Such a reduction is possible if one assumes that no con-
current reading and writing of variables takes place.

Using guarded commands it is possible to make the link between these two
classes of programs explicit by a transformation. The precise transformation is
a bit laborious, see Flon and Suzuki [1978], so we illustrate it by an example
taken from Apt et al. [2009]. Consider the following concurrent program due to
Owicki and Gries [1976] that searches for a positive value in an integer array
ia[0 : N]:

i := 1; j := 2; oddtop := N + 1; eventop := N + 1;
[S1‖S2];
k := min(oddtop, eventop),

where S1 and S2 are deterministic components S1 and S2 scanning the odd and
the even subscripts of ia, respectively:

S1 ≡ a: while i < min(oddtop, eventop) do
b: if ia[i] > 0 then c: oddtop := i else d: i := i+ 2 fi

od

and

S2 ≡ a: while j < min(oddtop, eventop) do
b: if ia[j] > 0 then c: eventop := j else d: j := j + 2 fi

od

15

Upon termination of both components, the minimum of two shared integer
variables oddtop and eventop is checked. The labels a, b, c, d, and e are added
here to clarify the transformation. The parallel composition S ≡ [S1‖S2] is
transformed into the following guarded commands program T (S) with a single
repetitive command that employs the control variables cv1 and cv2 for S1 and
S2 that can assume the values of the labels:

T (S) ≡ cv1 := a; cv2 := a;
do cv1 = a ∧ i < min(oddtop, eventop)→ cv1 := b

[] cv1 = a ∧ ¬(i < min(oddtop, eventop))→ cv1 := e

[] cv1 = b ∧ ia[i] > 0→ cv1 := c

[] cv1 = b ∧ ¬(ia[i] > 0)→ cv1 := d

[] cv1 = c→ oddtop := i; cv1 := a

[] cv1 = d→ i := i+ 2; cv1 := a

[] cv2 = a ∧ j < min(oddtop, eventop)→ cv2 := b

[] cv2 = a ∧ ¬(j < min(oddtop, eventop))→ cv2 := e

[] cv2 = b ∧ ia[j] > 0→ cv2 := c

[] cv2 = b ∧ ¬(ia[j] > 0)→ cv2 := d

[] cv2 = c→ eventop := j; cv2 := a

[] cv2 = d→ j := j + 2; cv2 := a

od;
if cv1 = e ∧ cv2 = e→ skip fi

Note that the repetitive command exhibits nondeterminism. For example, when
cv1 = cv2 = a, two guarded commands can be chosen next. This corresponds to
the interleaving semantics of concurrency that we assume here. When the repet-
itive command has terminated, the final alternative command checks whether
this termination is the one intended by the original concurrent program S. This
is the case when both cv1 and cv2 store the value e. In the current example, this
check is trivially satisfied and thus the alternative command could be omitted.

However, for concurrent programs with synchronization primitives, a termi-
nation of the repetitive command may be due to a deadlock in the concurrent
program. Then the final alternative command is used to transform the deadlock
into a failure, indicating an undesirable state at the level of nondeterministic
programs. For details of this transformation we refer to Chapter 10 of Apt et al.
[2009].

This transformation allows us to clarify that the nondeterminism resulting
from parallelism is the one used in the guarded commands language. However,
this example also reveals a drawback of the transformation: the structure of
the original parallel program gets lost. The resulting nondeterministic program
represents a single loop at the level of an assembly language with atomic actions
explicitly listed. The assignments to the control variables correspond to go

to statements, which explains why reasoning about the resulting program is
difficult. Interestingly, this problem does not arise for the transformation of the
CSP programs that we give in the next section.

16

7 Communicating Sequential Processes and their

relation to guarded commands

Dijkstra’s quoted statement, “In any case we can appreciate the nondetermin-
istic program as a helpful stepping stone” suggests that he envisaged some
extensions of the guarded command language. But in his book Dijkstra [1976]
he only augmented it with local variables by providing an extensive notation for
various uses of local and global variables, and added arrays. In his subsequent
research he only used the resulting language.

However, his discussion of the guarded commands program formalizing Eu-
clid’s algorithm suggests that he also envisaged some connection with concur-
rency. He suggested that the program could be viewed as a synchronization of
two cyclic processes do x := x− y od and do y := y− x od in such a way that
the relation x > 0 ∧ y > 0 is kept invariantly true. Still, he did not pursue this
idea further.

Subsequent research showed that guarded command programs can be viewed
as a natural layer lying between deterministic and concurrent programs. This
was first made clear in 1978 by Tony Hoare who introduced in Hoare [1978] an
elegant language proposal for distributed programming that he called Communi-
cating Sequential Processes (abbreviated to CSP) in clear reference to Dijkstra’s
Cooperating sequential processes paper Dijkstra [1968b].

Hoare stated seven essential aspects of his proposal, mentioning as the first
one Dijkstra’s guarded commands “as the sole means of introducing and control-
ling nondeterminism”. The second one also referred to Dijkstra, namely to his
parallel command, according to which, “All the processes start simultaneously,
and the parallel command ends only when they are all finished.” It is useful to
discuss CSP in some detail to see how each of these two aspects results in the
same type of nondeterminism.

In Dijkstra’s cooperating sequential processes model processes communicate
with each other by updating global variables. By contrast, in CSP processes
communicate solely by means of the input and output commands, which are
atomic statements that are executed in a synchronized fashion. So CSP pro-
cesses do not share variables.

For the purpose of communication CSP processes have names. The input
command has the form P?x, which is a request to process (named) P to provide
a value to the variable x, while the output command has the form Q!t, which
is a granting of the value of the expression t to process (named) Q. When the
types of x and t match and the processes refer to each other, we say that the
considered input and output commands correspond. They are then executed
simultaneously; the effect is that of executing the assignment x := t.1

In CSP a single input command is also allowed to be part of a guard. The
restriction to input commands was dictated by implementation considerations.
But once it was clarified how to implement the use of output commands in

1Note that not all assignments can be modelled this way. For instance, the assignment
x := x+ 1 cannot be reproduced since processes do not share variables.

17

guards, they were admitted as part of a guard, as well. So, in the sequel we
admit both input and output commands in guards. Thus guards are of the form
B;α, where B is a Boolean expression and α is an input or output command,
i/o command for short. We assume that such an extended guard fails when the
Boolean part evaluates to false.2

To illustrate the language consider an example, taken from Apt et al. [2009],
which is a modified version of an example given in Hoare [1978]. In what follows
we refer to the repetitive commands of CSP as do loops.

We wish to transmit a sequence of characters from the process SENDER to
the process RECEIVER with all blank characters (represented by ‘ ’) deleted.
To this end we employ an intermediary process FILTER and consider a dis-
tributed program

[SENDER ‖ FILTER ‖ RECEIVER]

The sequence of characters is initially stored by the process SENDER in the
array a[0 : M − 1] of characters, with ‘∗’ as the last character. The process
FILTER uses an array b[0 : M − 1] of characters as an intermediate store for
processing the character sequence and the process RECEIVER has an array
c[0 : M − 1] of the same type to store the result of the filtering process. For
coordinating its activities the process FILTER uses two integer variables in and
out pointing to elements in the array a[0 : M − 1]. The processes are defined as
follows:

SENDER :: i := 0; do i 6= M ;FILTER ! a[i]→ i := i+ 1 od

FILTER :: in := 0; out := 0; x := ‘ ’;
do x 6= ‘∗’;SENDER ?x→

if x = ‘ ’→ skip

[] x 6= ‘ ’→ b[in] := x; in := in+ 1
fi

[] out 6= in;RECEIVER ! b[out]→ out := out+ 1
od

RECEIVER :: j := 0; y := ‘ ’;
do y 6= ‘∗’;FILTER ? y→ c[j] := y; j := j + 1 od

Note that the processes SENDER and RECEIVER are deterministic, in the
sense that each extended guarded command either has just one guard or the
Boolean parts of the used guards are mutually exclusive (this second case does
not occur here), while FILTER is nondeterministic as it uses a do loop with two
extended guards the Boolean parts of which are not mutually exclusive. They
represent two possible actions for FILTER: to communicate with SENDER or
with RECEIVER.

Hoare presented in his article several elegant examples of CSP programs. In
some of them the processes are deterministic. But even then, if there are four or

2Hoare also allowed an extended guard to fail when its i/o command refers to a process
that terminated. For simplicity do not adopt this assumption here.

18

more processes, the resulting program is nondeterministic, since it admits more
than one computation.

By assumption a CSP program is correct if all of its computations properly
terminate in a state that satisfies the assumed postcondition. So this is exactly
demonic nondeterminism, like in the case of parallel programs.

This makes it possible to translate CSP programs in a simple way to guarded
command programs. In Apt et al. [2009] we provided such a transformation for
a fragment of CSP, in which the above example is written. The CSP programs
in this fragment are of the form

S ≡ [S1‖. . .‖Sn],

where each process Si is of the form

Si ≡ Si,0; do []mi

j=1 Bi,j ;αi,j → Si,j od,

each Si,j is a guarded command program, each Bi,j is a Boolean expression, and
each αi,j is an i/o command. So each process Si has a single do loop in which
i/o commands appear only in the guards. No further i/o commands are allowed
in the initialization part Si,0 or in the bodies Si,j of the guarded commands.

As shown in Apt et al. [1987] and Zöbel [1988] each CSP program can be
transformed into a program in this fragment by introducing some control vari-
ables.

As abbreviation we introduce

Γ = {(i, j, r, s) | αi,j and αr,s correspond and i < r}.

According to the CSP semantics two generalized guards from different pro-
cesses can be passed jointly when their i/o commands correspond and their
Boolean parts evaluate to true. Then the communication between the i/o com-
mands takes place. The effect of a communication between two corresponding
i/o commands α1 ≡ P?x and α2 ≡ Q!t is the assignment x := t. Formally, for
two such commands we define

Eff (α1, α2) ≡ Eff (α2, α1) ≡ x := t.

We transform S into the following guarded commands program T (S):

T (S) ≡ S1,0; . . .; Sn,0;
do [](i,j,r,s)∈Γ Bi,j ∧ Br,s→ Eff (αi,j , αr,s);

Si,j ; Sr,s

od,

where we use of elements of Γ to list all guards in the do loop. In the degenerate
case when Γ = ∅ we drop this loop from T (S).

For example, for SFR ≡ [SENDER ‖FILTER ‖RECEIVER] we obtain the
following guarded commands program:

19

T (SFR) ≡ i := 0; in := 0; out := 0; x := ‘ ’; j := 0; y := ‘ ’;
do i 6= M ∧ x 6= ‘∗’→ x := a[i]; i := i+ 1;

if x = ‘ ’→ skip

[] x 6= ‘ ’→ b[in] := x; in := in+ 1
fi

[] out 6= in ∧ y 6= ‘∗’→ y := b[out]; out := out+ 1; c[j] := y; j := j + 1
od

The semantics of S and T (S) are not identical because their termination
behavior is different. However, the final states of properly terminating compu-
tations of S and the final states of properly terminating computations of T (S)
that satisfy the condition

TERM ≡
n∧

i=1

mi∧

j=1

¬Bi,j

coincide. An interested reader can consult Chapter 11 of Apt et al. [2009].
The above transformation makes precise what we already mentioned when

discussing an example CSP program: the CSP language introduces nondeter-
minism in two ways. The first one comes from allowing guarded commands; in
the transformed program these are the programs Sa,b. The second one results
from synchronous communication, modelled in the transformation by means of
the outer repetitive command. So both ways are instances of demonic nonde-
terminism.

Thanks to the special form of CSP programs the transformed program does
not introduce any new variables. As a result this transformation suggests a
simple way to reason about correctness of CSP programs, by considering the
translated guarded commands program, see Chapter 11 of Apt et al. [2009].

8 Fairness

One of the programs in Dijkstra [1976] with a nondeterministic outcome is the
following one:

goon := true; x := 1;
do goon→ x := x+ 1
[] goon→ goon := false

od

The problem Dijkstra was addressing was that of writing a program that
sets x to any natural number. He concluded using his weakest precondition
semantics that no guarded commands program exists that sets x to any natural
number and always terminates. Note that the above program can set x to an
arbitrary natural number but also can diverge.

As noted in Plotkin [1976], Dijkstra’s conclusion can be obtained in a more
direct way by appealing to any operational semantics that formalizes the no-
tion of a computation, by representing the computations in the form of a tree.

20

Branching models the execution of a guarded command; each branch corre-
sponds to a successful evaluation of a guard. Given an input state of a guarded
command program we have then a finitely branching tree representing all pos-
sible computations. Let us call it a computation tree.

Denote a program that sets x to any natural number by x :=?. Suppose
that it can be represented by a guarded commands program S. Then for any
input state the computations of S form a finitely branching computation tree
with infinitely many leaves, each of them corresponding to a different natural
number assigned to x. We can now appeal to König’s Lemma which states that
any finitely branching infinite tree has an infinite path König [1927]. It implies
that in every computation tree of S an infinite computation exists, i.e., that for
every input state the program S can diverge.

Dijkstra’s proof contained in Chapter 9 of Dijkstra [1976] proceeds differ-
ently. He first showed that his predicate transformer wp is continuous in the
predicate argument and then that the specification of x :=? in terms of wp con-
tradicts continuity. In his terminology, the program x :=? introduces unbounded
nondeterminism, which means that no a priori upper bound for the final value
of x can be given.

The program x :=? occupied his attention a number of times. In EWD673
published as Dijkstra [1982b] he noted that to prove termination of guarded
command programs augmented with the program x :=? it does not suffice to use
integer-valued bound functions and one has to resort to well-founded relations.
In turn, in EWD675 published as Dijkstra [1982c] he noticed that the converse
implication holds, as well: the existence of a program for which wp is not
continuous implies the existence of a program with unbounded nondeterminism.

Soon more in-depth studies of the program x :=? and the consequences of
its addition to deterministic programs followed. In particular, Chandra showed
in Chandra [1978] that the halting problem for programs admitting x :=? is
Π1

1 complete, so of higher complexity than the customary halting problem for
computable functions (see also Spaan et al. [1989] for a further discussion of
this problem), while Back [1980] and Boom [1982] advocated use of x :=? as
a convenient form of program abstraction that deliberately ignores the details
of an implementation. One may note here that Hilbert’s ǫ notation essentially
serves a similar purpose: ǫ x φ picks an x that satisfies the formula φ. We
wish to remain within the realm of guarded commands, so limit ourselves to a
clarification of the relation of the program x :=? with the notion of fairness.

If we assume that the guards are selected in ‘fair random order’, then the
program given at the beginning of this section always terminates and can set x
to any natural number. Here fairness refers to weak fairness, or justice, which
requires that each guard that continuously evaluates to true is eventually cho-
sen. So the assumption of weak fairness for guarded commands allows us to
implement the program x :=?.

As shown in Boom [1982] and independently, though later, in Apt and Olderog
[1983] the converse holds, as well. We follow here a presentation from the latter
paper. We call a guarded commands program deterministic if in each alterna-
tive or repetitive command used in it the guards are mutually exclusive. We

21

call a guarded commands program

S ≡ S0; do []ni=1 Bi→ Si od,

one-level nondeterministic if S0, S1, . . ., Sn are deterministic programs.
Given now such a one-level nondeterministic program we transform it into

the following guarded commands program that uses the x :=? programs:

Twf(S) ≡ S0; z1 :=?; . . .; zn :=?;
do []ni=1 Bi ∧ zi = min {zk | 1 ≤ k ≤ n} →

zi :=?;
for all j ∈ {1, . . . , n} \ {i} do

if Bj then zj := zj − 1 else zj :=? fi

od;
Si

od,

where z1, . . ., zn are integer variables that do not occur in S.
Intuitively, the variables z1, . . ., zn represent priorities assigned to the n

guarded commands in the repetitive command of S. A guarded command i

has higher priority than a command j if zi < zj. Call a guarded command
enabled if its guard evaluates to true.

Initially, the commands are assigned arbitrary priorities. During each it-
eration of the transformed repetitive command an enabled command with the
maximal priority, i.e., with the minimum value of zi, is selected. Subsequently,
its priority gets reset arbitrarily, while the priorities of other commands are ap-
propriately modified: if the command is enabled then its priority gets increased
and otherwise it gets reset arbitrarily. The idea is that by repeatedly increasing
the priority a continuously enabled guarded command we ensure that it will be
eventually selected.

This way the transformation models weak fairness. More precisely, if we
ignore the values of the variables z1, . . ., zn, the computations of Twf(S) are ex-
actly the weakly fair computations of S. A similar transformation can be shown
to model a more demanding form of fairness (called strong fairness or compas-
sion) according to which each guard that infinitely often evaluates to true is
also infinitely often selected. An interested reader can consult Apt and Olderog
[1983] or Chapter 12 of Apt et al. [2009].

But are there some interesting guarded command programs for which the
assumption of fairness is of relevance? The answer is ‘yes’. A nice example was
provided to us some time ago by Patrick Cousot who pointed out that a crucial
algorithm in their landmark paper Cousot and Cousot [1977] which introduced
the idea of abstract interpretation relies on fairness. The authors were interested
in computing a least fixed point of a monotonic operator in an asynchronous
way by means of so-called chaotic iterations.

Recall that a partial order is a pair (A, ⊑) consisting of a set A and a
reflexive, antisymmetric and transitive relation ⊑ on A. Consider the n-fold

22

Cartesian product An of A for some n ≥ 2 and extend the relation ⊑ compo-
nentwise from A to An. Then (An, ⊑) is a partial order.

Next, consider a function

F : An → An,

and the ith component functions Fi : An → A, where i ∈ {1, . . ., n}, each
defined by

Fi(x̄) = yi iff F (x̄) = ȳ.

Suppose now that F is monotonic, that is, whenever x̄ ⊑ ȳ then F (x̄) ⊑ F (ȳ).
Then the functions Fi are monotonic, as well.

Further, assume that An is finite and has the ⊑ -least element that we
denote by ∅. By the Knaster and Tarski Theorem Tarski [1955] F has a ⊑ -
least fixed point µF ∈ An. As in Cousot and Cousot [1977] we wish to compute
µF asynchronously. This is achieved by means the following guarded commands
program:

x̄ := ∅;
do []ni=1 x̄ 6= F (x̄)→ xi := Fi(x̄) od

This program can diverge, but it always terminates under the assumption
of weak fairness. This is a consequence of a more general theorem proved in
Cousot and Cousot [1977]. An assertional proof of correctness of this program
under the fairness assumption is given in Apt et al. [2009].

Dijkstra had an ambiguous attitude to fairness. As noted in Chapter Emerson
[2022] of the book Apt and Hoare [2022] Dijkstra stated in his EWD310, that
appeared as Dijkstra [1971], that sequential processes forming a parallel pro-
gram should “proceed with speed ratios, unknown but for the fact that the
speed ratios would differ from zero” and referred to this property as ‘fairness’.

In EWD391 dating from 1973 and published as Dijkstra [1982a], when in-
troducing self-stabilization he wrote:

In the middle of the ring stands a demon, each time giving, in “fair
random order” one of the machines the command “to adjust itself”.
(In “fair random order” means that in each infinite sequence of suc-
cessive commands issued by the d[a]emon, each machine has received
the command to adjust itself infinitely often.)

In the two-page journal publication Dijkstra [1974] that soon followed the
qualification ‘fair random order’ disappeared, but ‘daemon’ that ensures it re-
mained:

In order to model the undefined speed ratios of the various machines,
we introduce a central daemon [. . .].

However, as we have seen when discussing the origin of guarded commands,
he rejected in EWD399 Dijkstra [1973b] fairness at the level of guarded com-
mands. In EWD798 Dijkstra [1981] one can find the following revealing com-
ment:

23

https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
https://www.cs.utexas.edu/users/EWD/ewd07xx/EWD798.PDF

David Park (Warwick University) spoke as a last minute replace-
ment for Dana Scott on “Fairness”. The talk was well-prepared and
carefully delivered, but I don’t care very much for the topic.

Further, in his EWD1013 Dijkstra [1987], titled Position paper on “fairness”,
he plainly turned against fairness and ended his informal discussion by stating
that “My conclusion [. . .] is that fairness, being an unworkable notion, can be
ignored with impunity.”

It is easy to check that the transformation given in Section 6 translates
fairness for parallel programs assumed in Dijkstra [1971] to weak fairness for
guarded commands. We are bound to conclude that Dijkstra’s opinions on
fairness were not consistent over the years.

At the time Dijkstra wrote his controversial note Dijkstra [1987] fairness
was an accepted and a well-studied concept, see, e.g., Francez [1986]. The note
did not change researchers’ perception. It was soon criticized, in particular by
Leslie Lamport and Fred Schneider who concluded in Lamport and Schneider
[1988] that Dijkstra’s arguments against fairness apply equally well against ter-
mination, or more generally, against any liveness notion.

9 Nondeterminism: further developments

Dijkstra’s guarded commands language was not the last word on nondetermin-
ism in computer science. Subsequent developments, to which he did not con-
tribute, brought new insights, notably by clarifying the consequences of both
angelic and demonic nondeterminism in the context of parallelism. In what
follows we provide a short account of this subject.

Taxonomy of nondeterminism

Among several papers dealing with nondeterminism in the wake of Dijkstra’s
guarded commands we would like to single out two. In Harel and Pratt [1978]
Harel and Pratt investigated nondeterministic programs in the context of Dy-
namic Logic and related their work to the weakest precondition approach of
Dijkstra. In their approach the programs were built up from assignments to sim-
ple variables using a set of basic operators: ∪ for nondeterministic choice and ;
for sequential composition, B? for testing a Boolean condition B, and ∗ for iter-
ation. An alternative command if []ni=1 Bi→ Si fi can be viewed as an abbrevia-
tion for the program∪ni=1(Bi?;Si) and a repetitive command do []ni=1 Bi→ Si od

an abbreviation for the program ((
∨n

i=1 Bi?); (∪ni=1(Bi?;Si)))
∗;¬(

∨n

i=1 Bi?), see,
e.g., de Bakker [1980].

Semantically, each program denotes a binary relation on states, augmented
with the symbols ⊥ representing divergence (nonterminating computations) and
f representing failure, i.e., a test evaluating to false without having any imme-
diate alternative to pursue. Such a relation describes the input-output behavior
of a given program. It is defined by induction on the structure of programs. For

24

https://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1013.PDF

example, the relation associated with the program S1 ∪ S2 is the union of the
relations associated with the programs S1 and S2.

The input/output relation does not describe how it is computed in a step-
by-step manner. When executed in a given state, the program S1 ∪ S2 chooses
either S1 or S2 to compute the successor state. For a given initial state, these
nondeterministic choices can be systematically represented in a computation
tree. Harel and Pratt distinguished four methods how such a computation tree
can be traversed: (1) depth first, (2) depth first with backtracking when a failure
state in encountered, (3) breadth first, (4) breadth first combined with ignoring
failure states. For each method, they showed how to express the notion of total
correctness in dynamic logic.

In the context of algebraic specifications of programming languages, Broy
andWirsing considered different kinds of nondeterminism in their paper Broy and Wirsing
[1981]. They called them: (1) backtrack nondeterminism, (2) choice nondeter-
minism, (3) unbounded nondeterminism, and (4) loose nondeterminism. Op-
tion (1) computes the whole set of possible outcomes, where any possibility
of nontermination must be taken. The choice of the output comes ‘after’
the computation of the set of all possible outputs. Option (2) corresponds
to choices ‘during’ the execution of alternative statements. Option (3) applies
‘prophetic’ choices during the computation to avoid any nonterminating compu-
tations, thereby typically creating unboundedly many good outcomes. Finally,
option (4) corresponds to choices ‘before’ the execution of the program.

Broy and Wirsing were also early users of the terminology of angelic nonde-
terminism, which they identified with (3), demonic nondeterminism, which they
identified with (1), and erratic nondeterminism, which they identified with (2).
We could not trace who first introduced this terminology, though it has been
often attributed to Tony Hoare.

Nondeterminism in a context

In his books on CCS and the Π-calculus Milner [1980, 1999], Robin Milner gave a
simple example of two finite automata, one deterministic and one nondetermin-
istic, that are equivalent when the accepted languages are compared. However,
Milner argued that they are essentially different, when they are considered as
processes interacting with a user or an environment. The essence of the example
is shown in Figure 3, adapted from Milner [1999]. Milner took this observation
as a motivation to develop a new notion of equivalence between processes, called
bisimilarity and based on the following notion of bisimulation, which is sensitive
to nondeterminism.

Processes are like nondeterministic automata, with states and transitions
between states that are labeled by action symbols. We write p

a
−→ q for a

transition from a state p to a state q labeled by a. A process has an initial state
and may have infinitely many states and thus transitions.

A bisimulation between processes P and Q is a binary relation R between
the states of P and Q such that whenever pRq holds, then every transition from
p can be simulated by a transition from q with the same label, such that the

25

successor states are again in the relation R, and vice versa, every transition
from q can be simulated by a transition from p with the same label such that
the successor states are again in the relation R. Processes are called bisimilar
if there exists a bisimulation relating the initial states of the processes.

The processes shown in Figure 3 are not bisimilar. Indeed, suppose that R

is a bisimulation with p1Rq1. Then the transition p1
i
−→ p2 can be simulated

only by q1
i
−→ q2, which implies p2Rq2. However, now the transition p2

c
−→

p4 cannot be simulated from q2 because there is no transition with label c.
Contradiction. This formalizes the intuition that only process P offers both tea
and coffee, whereas Q offers either tea or coffee.

p1

P :

p2

p3

p4

q1

Q : q2

q′2

q3

q4

i

t

c

i

i

t

c

Figure 3: Two automata, P being deterministic and Q being nondeterministic
on input of i, accept the same language consisting of the words i t and i c.
However, when viewed as processes interacting with a user, they are different.
Suppose the process models a vending machine, i corresponds to the user’s
action of inserting a coin into the machine, and t and c to the user’s choice of
tea or coffee. Then, after insertion of the coin, P is in state p2 and offers both
tea and coffee to the user. However, Q makes a tacit choice by moving either
to state q2 or to state q′2 after a coin is inserted. In state q2 it offers only tea,
and in state q′2 only coffee, never both. Thus, from the user’s perspective, the
deterministic automaton is better because when using it, no decision is taken
without consulting her or him.

This new notion of equivalence triggered a copious research activity resulting
in various process equivalences that are sensitive to nondeterminism but differing
in various other aspects, see for example van Glabbeek [2001]. Of particular
interest is the idea of testing processes due to De Nicola and Hennessy [1984,
1988]. In these works, the interaction of a (nondeterministic) process and a user
is explicitly formalized using a synchronous parallel composition. The user is
formalized by a test, which is a process with some states marked as a success.
For an example see Figure 4. The authors distinguish between two options: a
process may or must pass a test. A process P may pass a test T if in some
maximal parallel computation with P , synchronizing on transitions with the
same label, the test T reaches a success state. A process P must pass a test T

26

if in all such computations the test T reaches a success state.
This leads to may and must equivalences. Two processes are may equivalent

if each test that one process may pass the other may pass as well, and anal-
ogously for the must equivalence. So may equivalence corresponds to angelic
nondeterminism, and must equivalence to demonic nondeterminism.

As an example, consider the processes P and Q from Figure 3 and the test T
from Figure 4. Then P both may and must pass the test T , whereas Q only may
pass it because in a synchronous parallel computation it can get stuck in the
state pair (q2, t2), without being able to reach success. So in this simple example,
both bisimilarity and must equivalence reveal the same difference between the
deterministic process P and the nondeterministic process Q. In general, bisim-
ilarity is finer than the testing equivalences, see again van Glabbeek [2001].

t1T : t2 success
i c

Figure 4: This test T checks whether a process can engage in first i and then c.

Also CSP, originally built on Dijkstra’s guarded commands as explained in
Section 7, was developed further into a more algebraically oriented language
that for clarity we call here ‘new CSP’. It is described in Hoare’s book Hoare
[1985]. While guarded commands and the original CSP were notationally close
to programming language constructs, where the nondeterminism appears only
within the alternative command or the do loop, the new CSP introduced sepa-
rate operators for each concept of the language. These can be freely combined to
build up processes. We focus here on two nondeterministic operators introduced
by Hoare.

Internal nondeterminism is denoted by the binary operator ⊓, called nonde-
terministic or in Hoare [1985]. Informally, a process P ⊓ Q “behaves like P or
like Q, where the selection between them is made arbitrary, without knowledge
or control of environment.” In a formal operational semantics in the style of
Plotkin [1980], this is modeled by using different labels of transitions. The spe-

cial label τ appears at internal or hidden transitions, denoted by p
τ
−→ q, which

cannot be controlled or even seen by the environment. Labels a 6= τ appear
at external or visible transitions, denoted by p

a
−→ q, and represent actions in

which the environment can participate. The selection of P ⊓ Q is modeled by
the internal transitions P ⊓ Q

τ
−→ P and P ⊓ Q

τ
−→ Q Roscoe [1998, 2010].

Thus after this first hidden step, P ⊓Q behaves as P or as Q.
External nondeterminism or alternation is denoted by the binary operator [],

called general choice in Hoare [1985]. The idea of a process P []Q is that “the
environment can control which of P and Q will be selected, provided that this
control is exercised on the very first action.” The formal operational semantics
of the operator [] in the style of Plotkin 1980 is more subtle than the one for
⊓, see Olderog and Hoare [1986], Roscoe [1998, 2010]. In applications, P []Q
is performed in the context of a synchronous parallel composition with another

27

process R modeling a user or an environment. Then the first visible transition
with a label a 6= τ of R has to synchronize with a first visible transition P []Q
with the same label a, thereby selecting P or Q of the alternative P []Q. This
formalizes Hoare’s idea stated above.

These two nondeterministic operators have also been studied by De Nicola
and Hennessy in the context of Milner’s CCS De Nicola and Hennessy [1987].
The authors write ⊕ for internal nondeterminism and keep [] for external non-
determinism. When defining the operational semantics of the two operators,
they write −→ instead of

τ
−→ and speak of “CCS without τ ’s” because τ is not

present in this process algebra. Subsequently, they introduce a testing semantics
and provide a complete algebraic characterization of the two operators.

To assess the effect of nondeterminism, the new CSP introduced a new equiv-
alence between processes due to Brookes et al. [1984], called failure equivalence.
A failure of a process is a pair consisting of a trace, i.e., a finite sequence of
symbols that label transitions, and a set of symbols that after performing the
trace the process can refuse. Processes with the same set of failures are called
failure equivalent. Besides an equivalence, new CSP also provides a notion of
refinement among processes. A process P refines a process Q if the set of fail-
ures of P is a subset of the set of failures of Q. Informally, this means that P is
more deterministic than Q. Thus by definition, processes that refine each other
are failure equivalent.

As an example consider again the processes P and Q in Figure 3. They
are not failure equivalent, but P refines Q. This example shows that failure
equivalence is sensitive to nondeterminism. It turns out that failure equiva-
lence coincides with the must equivalence for ‘strongly convergent’ processes,
i.e., those without any divergences De Nicola [1987]. So it represents demonic
nondeterminism.

10 Conclusions

As explained in this chapter, nondeterminism is a natural feature of various for-
malisms used in computer science. The proposals put forward prior to Dijkstra’s
seminal paper Dijkstra [1975] are examples of what is now called angelic non-
determinism. Dijkstra’s novel approach, now called demonic nondeterminism,
was clearly motivated by his prior work on concurrent programs that are inher-
ently nondeterministic in their nature. His guarded command language became
a simplest possible setting allowing one to study demonic nondeterminism, un-
bounded nondeterminism, and fairness.

Its versatility was demonstrated by subsequent works on diverse topics. In
Martin [1986] correct delay-insensitive VLSI circuits were derived by means of
a series of semantics-preserving transformation starting with a distributed pro-
gramming language. In some aspects the language is similar to CSP. In its
sequential part it uses a subset of guarded commands with an appropriately
customized semantics. To study randomized algorithms and their semantics an
extension of the guarded commands language with a probabilistic choice opera-

28

tor was investigated in a number of papers, starting with He et al. [1997]. More
recently, guarded commands emerged in the area of quantum programming, as
a basis for quantum programming languages, see, e.g., Ying [2016].

As explained, the guarded commands language can also be viewed as a step-
ping stone towards a study of concurrent programs. In fact, it can be seen as a
logical layer that lies between deterministic and concurrent programs.

The viability of Dijkstra’s proposal can be best viewed by consulting statis-
tics provided by Google Scholar. They reveal that the original paper, Dijkstra
[1975], has been most often cited in the past decade.

Acknowledgements

We would like to thank Nachum Dershowitz, Peter van Emde Boas, and Reiner
Hähnle for useful comments and Manfred Broy, Rob van Glabbeek, and Leslie
Lamport for suggesting a number of helpful references.

References

H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, second edition, 1996.

K. R. Apt and C. A. R. Hoare, editors. Edsger Wybe Dijkstra: His Life, Work,
and Legacy, volume 45 of ACM Books. ACM/Morgan & Claypool, 2022.

K. R. Apt and E. Olderog. Nondeterminism and guarded commands. In Eds-
ger Wybe Dijkstra: His Life, Work, and Legacy, volume 45 of ACM Books,
chapter 8, pages 169–204. ACM/Morgan & Claypool, 2022.

K. R. Apt and E.-R. Olderog. Proof rules and transformations dealing with
fairness. Sci. Comput. Programming, 3:65–100, 1983.

K. R. Apt, L. Bougé, and P. Clermont. Two normal form theorems for CSP
programs. Inf. Process. Lett., 26:165–171, 1987.

K. R. Apt, F. S. de Boer, and E.-R. Olderog. Verification of Sequential and
Concurrent Programs. Springer, New York, third, extended edition, 2009.

M. Armoni and M. Ben-Ari. The concept of nondeterminism: its development
and implications for teaching. ACM SIGCSE Bull., 41(2):141–160, 2009. doi:
10.1145/1595453.1595495.

E. Ashcroft and Z. Manna. Formalization of properties of parallel programs.
Machine Intelligence, 6:17–41, 1971.

R. Back. Semantics of unbounded nondeterminism. In Proceedings of the 7th
Colloquium Automata, Languages and Programming, volume 85 of Lecture
Notes in Computer Science, pages 51–63. Springer, 1980. doi: 10.1007/
3-540-10003-2 59.

29

H. J. Boom. A weaker precondition for loops. ACM Trans. Program. Lang.
Syst., 4(4):668–677, 1982. doi: 10.1145/69622.357189.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. J. ACM, 31(3):560–599, 1984. doi: 10.1145/828.833.

M. Broy and M. Wirsing. On the algebraic specification of nondeterministic
programming languages. In Proceedings of the 6th Colloquium Trees in Alge-
bra and Programming (CAAP ’81), volume 112 of Lecture Notes in Computer
Science, pages 162–179. Springer, 1981. doi: 10.1007/3-540-10828-9 61.

A. K. Chandra. Computable nondeterministic functions. In 19th Annual Sym-
posium on Foundations of Computer Science, pages 127–131. IEEE Computer
Society, 1978.

N. Chomsky. On certain formal properties of grammars. Information and Con-
trol, 2(2):137–167, June 1959.

J. Cohen. Non-deterministic algorithms. ACM Comput. Surv., 11(2):79–94,
1979. doi: 10.1145/356770.356773.

A. Colmerauer and P. Roussel. The birth of Prolog. In T. J. Bergin and R. G.
Gibson, editors, History of Programming Languages II, pages 331–367. ACM,
1996. doi: 10.1145/234286.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, pages 151–158.
ACM, 1971. doi: 10.1145/800157.805047.

P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
mathematical foundations. In ACM Symposium on Artificial Intelligence and
Programming Languages, pages 1–12. SIGPLAN Notices 12 (8), 1977.

M. D. Davis. Computability and Unsolvability. McGraw-Hill Series in Informa-
tion Processing and Computers. McGraw-Hill, 1958.

J. W. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall
International, Englewood Cliffs, N.J., 1980.

R. De Nicola. Extensional equivalences for transition systems. Acta Informatica,
24(2):211–237, 1987. doi: 10.1007/BF00264365.

R. De Nicola and M. Hennessy. Testing equivalences for processes. Theor.
Comput. Sci., 34:83–133, 1984. doi: 10.1016/0304-3975(84)90113-0.

R. De Nicola and M. Hennessy. CCS without tau’s. In TAPSOFT’87: Proceed-
ings of the International Joint Conference on Theory and Practice of Software
Development, volume 249 of Lecture Notes in Computer Science, pages 138–
152. Springer, 1987. doi: 10.1007/3-540-17660-8 53.

30

E. W. Dijkstra. Go To Statement Considered Harmful. Commun. ACM, 11(3):
147–148, 1968a. doi: 10.1145/362929.362947.

E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Pro-
gramming Languages: NATO Advanced Study Institute, pages 43–112, Lon-
don, 1968b. Academic Press Ltd. Originally published as EWD123 in 1965.

E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica,
1:115–138, 1971. doi: 10.1007/BF00289519.

E. W. Dijkstra. Sequencing primitives revisited. EWD398. Available at
https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD398.PDF, 1973a.

E. W. Dijkstra. An immediate sequel to EWD398: “Se-
quencing primitives revisited.”. EWD399. Available at
https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD399.PDF, 1973b.

E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
mun. ACM, 17(11):643–644, 1974. doi: 10.1145/361179.361202. Originally
published as EWD426 in 1974.

E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18:453–457, 1975. doi: 10.1145/360933.360975.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
N.J., 1976.

E. W. Dijkstra. Trip report E.W. Dijkstra, New-
castle, 19–25 July 1981. EWD398. Available at
http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD798.PDF, July 1981.

E. W. Dijkstra. Self-stabilization in spite of distributed control. In Selected Writ-
ings on Computing: A Personal Perspective, pages 41–46. Springer-Verlag,
1982a. Originally published as EWD391 in 1973.

E. W. Dijkstra. On weak and strong termination. In Selected Writings on
Computing: A Personal Perspective, pages 355–357. Springer-Verlag, 1982b.
Originally published as EWD673 in 1978.

E. W. Dijkstra. The equivalence of bounded nondeterminacy and continuity.
In Selected Writings on Computing: A Personal Perspective, pages 358–359.
Springer-Verlag, 1982c. Originally published as EWD675 in 1978.

E. W. Dijkstra. Position paper on “fairness”. Software En-
gineering Notes, 13(2):18–20, 1987. EWD398. Available at
https://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1013.PDF.

E. A. Emerson. Memories of Edsger W. Dijkstra. In K. R. Apt and C. A. R.
Hoare, editors, Edsger Wybe Dijkstra: His Life, Work, and Legacy, volume 45
of ACM Books, chapter 23, pages 399–404. ACM/Morgan & Claypool, 2022.

31

https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD398.PDF
https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD399.PDF
http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD798.PDF
https://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1013.PDF

L. Flon and N. Suzuki. Nondeterminism and the correctness of parallel pro-
grams. In E. J. Neuhold, editor, Formal Description of Programming Con-
cepts, pages 589–608, Amsterdam, 1978. North-Holland.

L. Flon and N. Suzuki. The total correctness of parallel programs. SIAM J.
Comput., pages 227–246, 1981.

R. W. Floyd. Nondeterministic algorithms. J. ACM, 14(4):636–644, 1967.

N. Francez. Fairness. Springer, New York, 1986.

D. Gries. The Science of Programming. Springer, New York, 1981.

D. Gries. Development of correct programs. In K. R. Apt and C. A. R. Hoare,
editors, Edsger Wybe Dijkstra: His Life, Work, and Legacy, volume 45 of
ACM Books, chapter 7, pages 141–168. ACM/Morgan & Claypool, 2022.

R. Hähnle. Dijkstra’s legacy on program verification. In K. R. Apt and C. A. R.
Hoare, editors, Edsger Wybe Dijkstra: His Life, Work, and Legacy, volume 45
of ACM Books, chapter 6, pages 105–140. ACM/Morgan & Claypool, 2022.

D. Harel and V. R. Pratt. Nondeterminism in logics of programs. In Pro-
ceedings of the Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 203–213, 1978. doi: 10.1145/512760.512782.

J. He, K. Seidel, and A. McIver. Probabilistic models for the guarded command
language. Sci. Comput. Program., 28(2-3):171–192, 1997.

M. Hennessy. Algebraic theory of processes. MIT Press series in the foundations
of computing. MIT Press, 1988.

H. Hermes. Enumerability, decidability, computability - an introduction to the
theory of recursive functions. Springer, 1965.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21:
666–677, 1978.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

D. König. Über eine Schlußweise aus dem Endlichen ins Unendliche. Acta Litt.
Ac. Sci., 3:121–130, 1927.

R. Kowalski. Predicate logic as a programming language. In Proceedings
IFIP’74, pages 569–574. North-Holland, 1974.

L. Lamport and F. Schneider. Another position paper on fairness. Software
Engineering Notes, 13(3):1–2, 1988.

32

L. A. Levin. Universal sequential search problems. Probl.
Peredachi Inf., 9(3):115–116, 1973. In Russian. Available at
http://www.mathnet.ru/links/6fd998c9343e02f4cec2527c2fe1314e/ppi914.pdf.

A. J. Martin. Compiling communicating processes into delay-insensitive VLSI
circuits. Distributed Comput., 1(4):226–234, 1986.

J. McCarthy. A basis for a mathematical theory of computation. In B. Bradfort
and D. Hirschberg, editors, Computer Programming and Formal Systems,
pages 33–70. North-Holland, 1963.

R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer
Science 92, Springer-Verlag, New York, 1980.

R. Milner. Communicating and mobile systems - the Pi-calculus. Cambridge
University Press, 1999.

E.-R. Olderog and C. A. R. Hoare. Specification-oriented semantics for com-
municating processes. Acta Informatica, 23(1):9–66, 1986. doi: 10.1007/
BF00268075.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs.
Acta Inf., 6:319–340, 1976.

G. D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):452–487,
1976.

G. D. Plotkin. Dijkstra’s predicate transformers & Smyth’s power domains.
In Abstract Software Specifications, 1979 Copenhagen Winter School, Pro-
ceedings, volume 86 of Lecture Notes in Computer Science, pages 527–553.
Springer, 1980. doi: 10.1007/3-540-10007-5 48.

M. O. Rabin and D. S. Scott. Finite automata and their decision problems.
IBM J. Res. Dev., 3(2):114–125, 1959. doi: 10.1147/rd.32.0114.

H. Rogers Jr. Theory of recursive functions and effective computability (Reprint
from 1967). MIT Press, 1987.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science.
Springer, 2010. doi: 10.1007/978-1-84882-258-0.

W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970. doi: 10.1016/
S0022-0000(70)80006-X.

D. C. Smith and H. J. Enea. Backtracking in MLISP2: an efficient backtracking
method for LISP. In IJCAI, pages 677–685. William Kaufmann, 1973.

33

http://www.mathnet.ru/links/6fd998c9343e02f4cec2527c2fe1314e/ppi914.pdf

E. Spaan, L. Torenvliet, and P. van Emde Boas. Nondeterminism, fairness and
a fundamental analogy. Bull. EATCS, 37:186–193, 1989.

A. Tarski. A lattice-theoretic fixpoint theorem and its applications. Pacific J.
Math, 5:285–309, 1955.

Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science 55. Cambridge University Press, Cambridge, UK, 2003.

A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):
230–265, 1937. URL https://doi.org/10.1112/plms/s2-42.1.230.

R. J. van Glabbeek. The linear time - branching time spectrum I. In J. A.
Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra,
pages 3–99. North-Holland / Elsevier, 2001. doi: 10.1016/b978-044482830-9/
50019-9.

M. Ying. Foundations of Quantum Programming. Morgan Kaufmann, 2016.

R. Zabih, D. A. McAllester, and D. Chapman. Non-deterministic Lisp with
dependency-directed backtracking. In Proceedings of the 6th National Con-
ference on Artificial Intelligence, pages 59–65. Morgan Kaufmann, 1987.

D. Zöbel. Normalform-Transformationen für CSP-Programme. Informatik:
Forschung und Entwicklung, 3:64–76, 1988.

34

https://doi.org/10.1112/plms/s2-42.1.230

	Introduction
	Avoiding nondeterminism
	Angelic nondeterminism
	Guarded commands
	Some considerations on guarded commands
	Modeling parallel programs
	Communicating Sequential Processes and their relation to guarded commands
	Fairness
	Nondeterminism: further developments
	Conclusions

