
(

STICHTING

2e BOERHAAVESTRAAT 49
AMSTERDAM

on

•

•

•

•

•
•

•

SOME MEDITATIONS ON ADVANCED PROGRAMMING

•

E. W. DIJKSTRA*)

Matl1ematisch Centrum, Amsterdam, Netl1erlands

• •

In case you expect me to give a complete, well- the technical possibilities at the time. Under these
balanced and neutral survey of the advanced pro- circumstances it would have been an undreamt-of in-
gramming activities of the world, I must warn you that decency for programmers to dare to suggest that tl1ose
I feel neitl1er inclined nor entitled to do so. clever designers had not at all built the machines that

My title already indicates that I am going to medi- the programn1ers wanted. Therefore, this thoug11t
tate on the subject, which is something quite different hardly entered the programmers' minds. On the con-
from giving a survey. Perhaps the title of my paper t.rary: faced on the one hand with the new con1puters,
would have been more outspoken if it had been ''My and on the other with l1eaps of problems waiting for
Meditations on Advanced Programn1ing'', for I intend solution, they did their very best to accomplish the
to present a picture in the way l wish to see it; and I task with the equipment that had become available.
should like to do so in all honesty without any claim They have accepted the full challenge. The potentialities
to objectivity. I intend to do so because I have a feel- of the computers have been exhausted to slightly be- ·
ing that I serve you better by giving · you an honest yond their utmost limits, the nearly in1possible jobs
personal conviction than by presenting you with the have yet been done, by using the machines in all kinds
colourless average of conflicting current opinions of of curious ,and tricky ways which were completely un-
other people. intended and not even foreseen by the designers. In

You will observe that I shall fail to give you a gener- this atmosphere of pioneering, programming has arisen
ally acceptable definition of the subject ''Advanced not as a science but as a craft, as an occupation where.
Programming''. I think that, in n1y own appreciation man, under the pressure of circumstances, was guided
of the subject, the description ''Advancing Program- more by opportunism than by sound principles. This
n1ing'' would have been a better qualification. I like -I should like to call it ''unhygienic''-icreativity and
n1any activities which are worthy, I think, of the name shrewdness of the programmers has had a very bad
''Advanced Programming'' but I do not like these influence on machine designers; for after son1e time
activities so much for the sake of their output, the they felt free to include all kinds of curious facilities
programs that have resulted from them, as for what of doubtful usability, re.assuring themselves by their
these activities can teach us. If I am willing to study experience that, no matter how crazy a facility they
them, to meditate upon them, I am willing to do so in provided, an even crazier programmer would always
the hope that this· study or these meditations will give emerge that would manage to turn it into something
me a clearer understanding of the programmer's task, profitable- as if this were sufficient justfication for its
of his ends and his means. Therefore I should like to inclusion.
draw your attention in particular to those efforts and In the mean time, progr•amming established itself
considerations which try to improve ''the state of the as a discipline in which, on the whole, the standards
Art'' of programming, maybe to such an extent that at of quality were extremely crude and primitive. Tl1e
some time in the future we may speak of ''the state of main-and often the only--possible. virtues of a pro-
the Science of Programming''.. gram were its quantitative characteristics, viz. its speed

A look around us will convince us that this im- and its storage requirements. Space and time became
provement is very urgent for, on the whole, the pro- the exclusive aspects of efficiency. In various places
grammers' world is a very dark one with only just the these standards are still in full vigour: not so long ago
first patches of a brighter sky appearing on the hori- I heard of two cases, one where a machine was not
zon. For the present-day darkness in the programmers' bought bec,ause its multiplication speed was too low-
world, the programmers themselves are responsible and this may be a valid argument-and another case
and nobody else. But before \Ve put too much blame where a certain machine was selected because its
on them let us look for a moment at how their world multiplication was so fast. And this last decision was
came .into existence. taken without th.e valiqity of this criterion being

When the first automatic electronic computers start- questioned. . -
ed to work more or less properly, mankind was. faced Apart from the programs that have been p1·oduced,
with a new technical wonder, with a most impres.sive the programmers' contribution to human knowledge
achievement of technical skill, and as a result, every- has been fairly useless. They have concocted thousands
body was highly · impressed, and rightly so.. Under and thousands of ingenious tricks, but they have made
these circumstances it was completely· natural that the this chaotic contribution . without a mech·anism to ap-
structure of the early machines was mainly decided by preciate or evaluate these tricks, or to sort them out.

*) · Since September 1962: Technological Univers,ity, Eindhoven,. Netherlands. ·
•

S3S •
•

•
•

,

•

• •
•

•

536 ADVANCED PROGRAMMING ' rx .. f ,,
• •

As many of these tricks could only be played by virtue
of some special property of some special machine,
tl1eir value \V•as rather volatile. But the tricks were de
fended in the same of the semi-god ''Efficiency," and
for a long time there was hardly an inkling that there
could be anything wrong with tricks. The programmer
was judged by his ability to invent and his willingness
to apply tricks. This opinion is still a wide-spread ·
phenomenon: in advertisements for programmers, and

· in psychological tests for the job, it is often required
that the man should be ''puzzle-minded''; this in strong
contrast to the opinion of the slowly gro\ving group of
people who think it more valuable that the man should
have a c1~ar and systematic mind.

Ho\vever, as I told you, the sky above the pro
gran1mers' world is brightening slowly. Before I go on
to draw your attention to some discoveries that are
responsible for this improvement, I should like to state
as my opinion that it is relatively unimportant whether
these are really new discoveries or whether they are
rediscoveries of things perfectly well known to people
like, say, Turing or von Neumann. For in the latter
case, the important and new thing is that a greater
number of people become aware of such a fact, and
th·at a greater number of people realize that these are
not just theoretical considerations but that they may
have tan,gible, practical results. In this light, one might
feel inclined to summarize the achievements of ad
vanced programming as some purely educational suc
cesses: ''At last programmers have started to educate
one another to at least some extent.'' I shall not protest
ag-ainst this summary provided one agrees with my
opinion that mutual education is one of the major
difficult tasks of mankind.

One important rediscovery is that of the well-known
equivalence of designing a machine and making a pro
gram. At this moment one might well ask oneself why
I call attention to such a well-known fact. I have very
good reasons to do so, for it has a great potential
influence which is often overlooked: it enables the
man who regards himself as a programmer to contrib
ute to the field that is generally regarded as ''machine
design'.,, and this is a very fortunate circumstance.

Some fifteen or ten years ago, the design and con
struction of a new, unique computer was a well
established and respectable occupation for university
laboratories. Many of these ''laboratory machines''
were, each in their own private way, revolutionary
contraptions. From then onwards this custom died out
and design and construction of automatic computers
became more and more an exclt1sively industrial act
ivity. Five years ago most· of us felt this as a perfectly
natural development: construction of new computers
became an extremely costly affair and it \vas generally
felt that the time l1ad come to leave this activity to the
specialized industries. Now, five years later, we can
only regret this development, for the computers on the
market tod,ay are, on the whole, very disappointing.
Certainly, they are faster, they are much more reliable
than the old laboratory machines, but, on the other

. hand, they are often boring, uninspiring and hopelessly
old-fashioned as well. For instance, the commercial
requirement that all the programs n1ade for some older
machine from the same manufacturer should, without
any modification, be acceptable to the new rnacl1ine,
has led to the design of new machines of which tl1e

l" ·~ J
•

?r~er co~es include the order code of the previous on,c
:n 1ts ent1re~y. Such a policy, however, is a ne\·cr fait-
1n~ mechanism fo~ prolonging the lifetin1e of prc\·it'u~
m1stak~,s. Some time ago, \Ve were offered slog~•n,
about the computers of the second generation"'. but
to my taste many of them were as dull as their paicnt,.
Apparently a nice computer has at least Ont.! prc..)n~r ..
ty in common with a gentleman, viz., that it take~, at
least three generations to produce one! Most of tl)t
industries, particularly the bigger ones, prov·ed to bi:
very conservative and reactionary. They se·em to de
sign for the customer who believes the salesman \\ 110
tells him that machine so-and-so is just the n1achine
he wants. But the poor customer who happens to knl'\"
already, all by himself, what he wants is often f or~~J
to accept a machine with vvhich he is already disgusted
before the thing is installed in his establisl1n1~r1t.
Under present circumstances it is, commercially s~al ..
ing, apparently not too attractive to put a nicer con1-
puter on the market. This is a sorry state of afTairs;
many a program1ner suffers regularly fron1 tl1e n1on
strosity of his tool, and we can only hope for a better
future with nicer machines. In the meantin1e he c~1n
program; taking some efficiency considerations for
granted, he can force his machine to beha,,e as he
wishes: when making a programi11ing systen1 he de
signs a machine as it should have be~n. Tl1anks to tl1e
logical equivalence between designing a machine and
making a progr,am, programmers can contribute ll)

future machine design, by exploring on paper, in soft
ware, the possibilities of machines with a n1ore rc,·o
lutionary structure.

The equivalence of making a program and design
ing a machine has •another, maybe far-reaching conse
quence of a much more practical nature. It is not un-

. usual to regard a classical computer as a sequc11ti;1l
computer coupled to a number of communic;.1ti"'n
mechanisms for input and output. Such a con1n1unI
cation mechanism, however, performs in itself :.1 ~

quential process.-usually of a cyclic nature, but L1J.:
feature is of no importance no\v. For this reason, \\'C'

can regard a classical machine, its communication
mechanism included, as a group of loosely connected
sequential n1achines, with interlocks, \vhere necessary'J
to prevent them getting too much out of phase \Vith
one another. The next step is to use the central con1-
puter, not for only one sequential process, but to equip
it \.vith the possibility of dividing its attention bet,veen
an arbitrary nun1ber of such loosely connected se
quential processes. One can do so ,vith complete
preservation of the symmetry between the sequen
tial processes, to which a distinct piece of hard\vare
corresponds on the one hand, and those \vhicl1 are
taken care of by the central computer on the other
l1and, or even by one of the central processors, as the
case may be. The difference between a 1nodest and an
ambitious installation n1ay be that a couple. of sequen
tial processes, that in the n1odest installation are per-
formed by the central con1puter, are perforn1ed b)1

private hardware in the ambitious installation. But the
above-mentioned equivalence between designing a ma
chine and making a program, bet\veen pe1·f arming a
process either by l1ardware or by soft'vvare, should be
exploited to guarantee that -a prog1·,1n1 acceptable for
the one installation is also acceptable for the other.
The above considerations are in1portant because a

'

XI, 1] ADVANCED PROGRAI\1MING 537

n1ac11ine rigorously designed along tl1ese lines \VOt1ld

<"'rcatly facilit,1tc tl1c 111~1n1.1f acturcr"s task of equipping
.his prodt1ct \vith t11c required soft\varc. Tl1c moral of
Gtliis is tl1at, if at the p1·csc11t n1on1en~ n1any n1anu
,, facturcrs l1avc great liiff1cultics in fulfilling tl1cir soft-
\\·arc obligations, an(I if one of tl1c n1ain sources of

· tl1cir troul)lc is tl1at no two installations of the same
01r1cl1inc are idcr1tit--(1 l, their trouble could very well be
a self-inflicted pair1.

In tl1is conncctit1n I sl1ould like to mention that I
ar11 ft1lly a\va1·c of tl1c f ~1ct tl1at n1y previous picture of
the con1mercial con1puter market \Vas somew}1at one
sided. Many of yo11 will realize that at least one of the
con1n1ercial products shows a great number of the
t'nice properties'' jt1st mentioned. In my opinion, this
partic11lar computer should be regarded as one of the
brigl1ter patches in the sky.

No,v I want to turn my attention to one of the most
i111portant happenings in the programmers' world since
the UNESCO Conference in 1959, viz., the publi
cation of the famous ''Report on the Algorithmic
Language ALGOL 60'', edited by Dr. P. Naur. I shall
not discuss here the merits of the language ALGOL
60, nor shall I go into the question whether it has
achieved its original aims or not. I intend to restrict
myself to a discussion of the consequences of this
publication, and of the influence it has had in the
\Vorld of programming; for this influence has been
tremendous. Briefly, I could for111u1ate it as follows:
''Tl1rough its merits ALGOL 60 has inspired a great
number of people to make translators for it, through
its defects it has induced a great number of people to
think about the aims of a ''Progra1nming Language''.''
ALGOL 60, in all probability and in accordance with
the intention of its authors, will be superseded by some

. better language in due time, but for much, much longer
• \\'e shall be able to trace its educational effects.

Programming language, translator and computer,
•· these three together form a tool, and in thinking about

this tool as a whole, new dimensions have been added
to the old concept of ''reliability''. In connection with
the third of the three components, viz. the computer,
concern about its reliability is as old as computers

•. themselves; the acceptance test is a well-known phe
nomenon.

But what is the value of such an acceptance test? It
is certainly no guarantee that the machine is correct-

... that the machine acts according to its specification .. It
only says that in these specific test programs the ma
chine has worked correctly. If the design is based on
some critical assumption, we can only conclude that
in these test programs the corresponding critical situ
ations apparently did not arise. If the design still
contains errors, we can conclude that in these specific
test programs these logical errors apparently did not
matter. But as users, we are not interested in the test
programs, we are interested in our own programs, and
from the successful acceptance test we should like to
conclude, that the machine works correctly in our
programs also! But we cannot draw this conclusion.

The best thing a successful acceptance test can do is
to strengthen our belief in the machine's correctness,
and to increase the plausibility that it will perforn1 any
pro~am in accordance with the specifications. The
basic_ property of the user's program is that it will
certainly require the machine to perform actions it

has never done before. Macl1ine designers have seen
this difficulty quite clearly. They have realized that the
successful acceptance test has only Vi:tlue as far as future
progran1s are concerned, provided the actions per
formed in the test progran1s can be regarded as re
presentative of all its possible opex·ations, and they can
only be representative by virtue of the clean and
systcn1,1tic structure of the machine itself. The above
is co111mon knowledge among machine designers; curi
ously enough, this is not true for translator makers, to
whose activity the same considerations apply.

In order that the tool, consisting of programming
language, translator and machine, be a reliable one,
it is, of course, mandatory that all its components be
reliable. One should expect that the translator maker,
who in contrast to the machine designer has to deal
with logical errors only, should do his job at least as well
as the machine builder. But I am afraid that the con
verse is true. At the Rome Conference early in 1962,
I was surprised to hear that the extensive translators
for symbolic languages constructed in the USA con
tinued to show up errors for years. I was shocked,
however, when I saw the fatalistic mood in which this
sorry state was accepted as the most natural thing in
the wor·ld. This same attitude is reflected in the terms
of reference of an ISO committee which deals with the
standardization of programming languages: there one
finds the recommendation to construct, for any stan
dard language, a set of standard test examples on ·
which any new translator for such a language could be
tried out. But one finds no hint that the correct pro
cessing of these standard test examples is obviously
only a trivial minimum requirement, no trace of the
consideration that our belief in the correctness of a
translator can never be founded on successful tests
alone, but is ultimately derived from the clean and
systematic structure of the translator and from nothing
else. In deciding between reliability of the translation
process on th.e one hand, and the production of an
efficient object program on the other hand, the choice .
often has been decided in favour of the latter. But I
have the in1pression that the pendulum is now swing
ing backwards.

For instance: if one gets a much more powerful
machine in one's establishment than the one one had
before, one can react to this in two different ways. The
classical reaction is that the new machine is so much
more expensive, that it is even more mandatory that
no expensive computing time on the ne,v machine
should be wasted, that the new machine should be used

'

as efficiently as possible, etc., etc. On the other hand
one can also reason as follows: as the new machine is
much faster, time does not matter so very much any
more; as in the new computer the cost per operation
is less than in the previous one, it becomes more real
istic to investigate whether we can invest some of the
machine's speed in other things than sheer production,
say in convenience for the user-what we already do
when we use a convenient programming languagei-or
in elegance and reliability of the translator, thus in
creasing the quality of our output.

Also it is more widely recognized now than a couple
of years ago that the construc_tion of an optimizing
translator is, essentially, a nasty job. Optimizing
means improving the object program, i.e. making a
more efficient object program than the one produced

•

•

•

'

•

•

538 ADVANCED l'ROGRAMMING [XI, 1
•

by straightw_?rward bu~ r~Iia?le anq. tru~;wo:thy trans
lation techniques. Opt1m1zat1on n1eans taking advan
titge of rt special sitt1ation''. lf one optimizes in one
rcipect, it is ·not an impossible burden to verify that
tl1e shortcut introduced in the object program does
not lead to undesired results. If, ho\vever, one opti
mizes in two different respects, the duty of verification
becomes much harder, for one has to verify, not only
that the two methods are correct in themselves, but
one must also check that they do not interfere with one
anotl1er. If one optin1izes in more difffferent respects,
tl1e task of creating confidence in the correctness of the
translator explodes exponentially. As a result it is no
longer possible to recommend a con1puter by pointing
to, say, the size of the translators available for it. On
the contrary, the more extensive and shrewd a trans
lator is, the more doubtful is its quality. Further, for
the necessity of such extensive optimization efforts one
n1ight, finally, blame the computer in question; if one
really needs such an intricate process as an optimizing
translator to load one's programs, one feels inclined to
defend the opinion that, apparently, the computer is
not too well suited for its task. In short, the con
struction of intricate optimizing translators is an act,
the wisdom of which is subject to doubt, and there is
certainly a virtue in efforts to remove the need for
tl1cm, e .. g. the design of computers where th.ese opti
mization tricks do not pay, or at least do not pay so
n1uch.

With regard to the structure of a translator, ALGOL
60 has acted as a great promoter of non-optimizing
translators. The fact is that the language, as it stands,
is certainly not an open· invitation for optimization
efforts. For those who thought that they knew how to
\v1·ite optimizing translators-be it for Jess flexible
languages-this has been one of the reasons for reject
ing ALGOL 60 as a serious tool. In my opinion these
people bet on the \Vrong horse. I do not agree with
them although I can sympathize with them; if one has
solved a problem one tends to •get attached to it, and
if one likes one's solution for it, it is of course a little
bit hard to switch over to an attitude in which the
problem is not considered \Vorth solving any more.
The experience \.vith ·ALGOL 60 translation has taught
us still another thing. Some translator makers could ...
not refrain from optimizing but, finding the task as

•

•

•

•

.

such too difficult to do, they tried to ease matters by
introducing additional restrictions into the language ..
The fact that their translators had only to deal with
a restricted language, however, did not speed up trans
lator construction; the task of exploiting the restric
tions to full advantage· has prevented this.

Thus we have arrived at the third component of our
tool, viz. the language, and the language also should
be reliable. In other words, it should assist the pro
grammer as much as possible in the · most difficult
aspect of his task, viz. to convince himself-and those
others who are really interested-that the program he
has written down defines in fact the process he wants
to define. Obviously the language rules should not
contain traps of the kind of which there are still some
in ALGOL 60, where, for instance, 'real array' may be
abbreviated to 'array', but 'own real array' may not be
abbreviated to 'own array'. The next obvious require
ment is that those rules which define a legal text do
not leave any doubt as to whether a given text is legal
or not, e.g., if there should be a r-estriction with respect
to recursive use of a procedure, it should be clear under
what conditions these restrictions apply, and in par
ticular when the term ''recursive use'' applies. I men
tion this particular example because here it is by no
means obvious. Finally, when faced with an undoubt
edly legal text we want to be quite sure \Vhat it means.
This implies that the semantic definition should be as
rigorous as possible. In short, we need a complete and
unambiguous pragmatic definition of the language,
stating explicitly how to react to any text. So much for
the necessity that the tool be reliable.

As my very last remark, I should like to stress that
the tool as a \Vhole should have still another quality.
This is a much more subtle one and whether we appre
ciate it or not depends much more on our personal
taste and education, and I shall not even try to define
it. The tool should be charming, it should be elegant,
it should be worthy of our love. This is no joke, I am
terribly serious about this. In this respect the pro
grammer does not differ from any other craftsman:
unless he loves his tools it is highly improbable that
he will ever create something of superior quality.
Thus at the same time these considerations tell us the ,
greatest virtues a program can show: Elegance and
Beauty.

•

•

•

