
INFERENCE / Vol. 5, No. 3

1 / 12

Edsger Dijkstra
The Man Who Carried Computer Science on His Shoulders

Krzysztof Apt

As it turned out, the train I had taken from
Nijmegen to Eindhoven arrived late. To make
matters worse, I was then unable to find the right

office in the university building. When I eventually arrived
for my appointment, I was more than half an hour behind
schedule. The professor completely ignored my profuse
apologies and proceeded to take a full hour for the meet-
ing. It was the first time I met Edsger Wybe Dijkstra.

At the time of our meeting in 1975, Dijkstra was 45
years old. The most prestigious award in computer sci-
ence, the ACM Turing Award, had been conferred on
him three years earlier. Almost twenty years his junior, I
knew very little about the field—I had only learned what
a flowchart was a couple of weeks earlier. I was a postdoc
newly arrived from communist Poland with a background
in mathematical logic and a plan to stay in the West. I left
the meeting with two book recommendations and a copy
of a recent research article Dijkstra had written. He also
suggested that I learn the programming language Pascal.

Dijkstra passed away in 2002. During the 1970s and
1980s, at the height of his career, he was probably the most
discussed scientist in his field. He was a pioneer and a
genius whose work and ideas shaped the emerging field of
computer science like few others. It was over the course of
his career that computer science became a respectable and
established discipline.

There is an enduring tension between the engineering
view of computer science, which is focused on building
software systems and hardware components, and the
mathematical and logical view, which aims to provide rig-
orous foundations for areas such as programming. Dijkstra
tried to reconcile both views. As a result, he contributed
to both sides of the divide in a number of fundamental
ways.

Dijkstra was also a most striking and unusual person.
He was admired and criticized, in equal measure, and
commented upon by almost everyone he came into contact
with. Yet, despite his achievements, Dijkstra has always
remained largely unknown outside computer science.
Eighteen years after his death, few people have heard of
him, even in his own country.

Edsger dijkstra was born in Rotterdam in 1930.
He described his father, at one time the President
of the Dutch Chemical Society, as “an excellent

chemist,” and his mother as “a brilliant mathematician
who had no job.”1 In 1948, Dijkstra achieved remarkable
results when he completed secondary school at the famous
Erasmiaans Gymnasium in Rotterdam. His school diploma
shows that he earned the highest possible grade in no less
than six out of thirteen subjects. He then enrolled at the
University of Leiden to study physics.

In September 1951, Dijkstra’s father suggested he attend
a three-week course on programming in Cambridge. It
turned out to be an idea with far-reaching consequences.
It was in Cambridge that Dijkstra met the mathemati-
cian and computer scientist Adriaan van Wijngaarden,
who subsequently offered him a job at the Mathematisch
Centrum (Mathematical Centre) in Amsterdam, which
he joined the following year. Dijkstra became, in his own
words, “the first Dutchman with the qualification ‘pro-
grammer’ on the payroll.”2 In 1956, he finished his studies
in Leiden. Three years later, he defended his PhD thesis,
“Communication with an Automatic Computer.” His
supervisor was van Wijngaarden.

Dijkstra worked at the Mathematisch Centrum until
1962, when he moved to Eindhoven to assume the position
of Professor in the Mathematics Department of the Eind-
hoven University of Technology. In 1973, he reduced his
employment to one day a week and for the remaining four
days worked as a research fellow at the Burroughs Cor-
poration, at that time an innovative American computer
manufacturer. His only duties for Burroughs involved
undertaking research and traveling to the US a few times
each year to visit the company headquarters.

In Dijkstra’s reports, he listed the address Plataanstraat
5, Nuenen 4565, The Netherlands. This led some to assume
that the Burroughs Corporation had opened a new office.
The address was, in fact, that of Dijkstra’s home, a modest
house situated in a village near the outskirts of Eindhoven.
His office consisted of a small room on the second floor,
which was equipped with an “elegant portable Olivetti
typewriter” and “two telephones … one of which he could

2 / 12

BIOGRAPHIES

use to call anywhere in the world, with the bills going
direct to Burroughs.”3

In 1984, disenchanted with a change of direction at the
Burroughs Corporation and a lack of support for computer
science at his university, Dijkstra left the Netherlands and
took up a prestigious chair in computer science at the
University of Texas at Austin. “Whereas Burroughs’s intel-
lectual horizon was shrinking,” he later wrote, “my own
was widening.”4 He retired in 1999.

In early 2002, Dijkstra learned that he was terminally ill
and moved back to Nuenen with his wife, Ria. He passed
away in August, just a few months after returning. Ria died
ten years later. The couple are survived by three children:
Femke, Marcus, and Rutger.

Over the course of his career, Dijkstra wrote around 40
journal publications and 30 conference publications.5 He
is listed as the sole author for almost all of these works.
Several of his journal papers were just a couple of pages
long, while most of his conference publications were
non-refereed manuscripts that he presented during the
Annual International Marktoberdorf Summer School
and published in the school proceedings. He also wrote a
handful of book chapters and a few books.

Viewed from this perspective, Dijkstra’s research
output appears respectable, but otherwise unremarkable
by current standards. In this case, appearances are indeed
deceptive. Judging his body of work in this manner misses
the mark completely. Dijkstra was, in fact, a highly prolific
writer, albeit in an unusual way.

In 1959, dijkstra began writing a series of private re-
ports. Consecutively numbered and with his initials
as a prefix, they became known as EWDs. He contin-

ued writing these reports for more than forty years. The
final EWD, number 1,318, is dated April 14, 2002. In total,
the EWDs amount to over 7,700 pages. Each report was
photocopied by Dijkstra himself and mailed to other com-
puter scientists. The recipients varied depending on the
subject. Around 20 copies of each EWD were distributed
in this manner.

The EWDs were initially written in Dutch using a type-
writer. In 1972, Dijkstra switched to writing exclusively
in English, and in 1979 he began writing them mostly by
hand. The EWDs consisted of research papers, proofs of
new or existing theorems, comments or opinions on the
scientific work of others (usually critical and occasion-
ally titled “A somewhat open letter to…”), position papers,
transcripts of speeches, suggestions on how to conduct
research (“Do only what only you can do”), opinions on
the role of education and universities (“It is not the task
of the University to offer what society asks for, but to give
what society needs”6), and original solutions to puzzles.
Later reports also included occasional accounts of Dijk-
stra’s life and work. A number of EWDs are titled “Trip
Report” and provide detailed descriptions of his travels to

conferences (“I managed to visit Moscow without being
dragged to the Kremlin”7), summer schools, or vacation
destinations. These reports are a rich source of informa-
tion about Dijkstra’s habits, views, thinking, and (hand)
writing. Only a small portion of the EWDs concerned with
research ever appeared in scientific journals or books.

This way of reporting research was, in fact, common
during the eighteenth century. In the twentieth century it
was a disarming anachronism. Nevertheless, it worked. In
EWD1000, dated January 11, 1987, Dijkstra recounts being
told by readers that they possessed a sixth or seventh gen-
eration copy of EWD249.8

Whether written using a fountain pen or typewriter,
Dijkstra’s technical reports were composed at a speed of
around three words per minute. “The rest of the time,” he
remarked, “is taken up by thinking.”9 For Dijkstra, writing
and thinking blended into one activity. When preparing a
new EWD, he always sought to produce the final version
from the outset.

Around 1989, Hamilton Richards, a former colleague of
Dijkstra’s in Austin, created a website to preserve all the
available EWDs and their bibliographic entries.10 The E. W.
Dijkstra Archive, as the site is known, also offers an abun-
dance of additional material about Dijkstra, including links
to scans of his early technical reports, interviews, videos,
obituaries, articles, and a blog.

Despite a worldwide search, a number of EWDs from
the period prior to 1968 have never been found. Other
missing entries in the numbering scheme were, by Dijks-
tra’s own admission, “occupied by documents that I failed
to complete.”11

Dijkstra was a true pioneer in his field. This occa-
sionally caused him problems in everyday life. In
his Turing Award lecture he recalled:

In 1957, I married, and Dutch marriage rites require you to
state your profession and I stated that I was a programmer.
But the municipal authorities of the town of Amsterdam
did not accept it on the grounds that there was no such
profession.12

In the mid-1950s, Dijkstra conceived an elegant short-
est path algorithm. There were very few computer science
journals at the time and finding somewhere to publish his
three-page report proved far from easy. Eventually, three
years later, he settled on the newly established Numerische
Mathematik.13 “A Note on Two Problems in Connexion
with Graphs” remains one of the most highly cited papers
in computer science, while Dijkstra’s algorithm has
become indispensable in GPS navigation systems for com-
puting the shortest route between two locations.

Over a period of eight months beginning in December
1959, Dijkstra wrote an ALGOL 60 compiler with Jaap
Zonneveld.14 Theirs was the first compiler for this new and

INFERENCE / Vol. 5, No. 3

3 / 12

highly innovative programming language. It was a remark-
able achievement. In order to write the compiler, several
challenges had to be overcome. The most obvious prob-
lem the pair faced was that the machine designated to run
the software, the Dutch Electrologica X1 computer, had a
memory of only 4,096 words. By comparison, the memory
of a present-day laptop is larger by a factor of a million.

The programming language itself was not without its
own challenges. ALGOL 60 included a series of novel fea-
tures, such as recursion, which was supported in a much
more complex manner than logicians had ever envisaged.15
One of the ideas suggested by Dijkstra, termed a display,
addressed the implementation of recursive procedures
and has since become a standard technique in compiler
writing.16

ALGOL 60 was designed by an international commit-
tee. Although Dijkstra attended several meetings during
the design process, his name does not appear among the
thirteen editors of the final report.17 Apparently, he dis-
agreed with a number of majority opinions and withdrew
from the committee. This was perhaps the first public sign
of his fiercely held independence.

During his employment at the Eindhoven University
of Technology, Dijkstra and his group wrote an operating
system for the Electrologica X8, the successor to the X1.
The system they created, known as the THE multipro-
gramming system (THE is an abbreviation of Technische
Hogeschool Eindhoven), had an innovative layered func-
tional structure, in which the higher layers depended only
on the lower ones.18

It was during his work on this system that Dijkstra’s
interests began shifting to parallel programs, of which THE
is an early example. These programs consist of a collection
of components, each of which are traditional programs,
executed in parallel. Such programs are notoriously difficult
to write and analyze because they need to work correctly no
matter the execution speeds of their components. Parallel
programs also need to synchronize their actions to ensure
exclusive access to resources. If several print jobs are dis-
patched at the same time by the users of a shared computer
network, this should not lead to pages from the different
print jobs becoming interspersed. Adding to the complex-
ity, the components of parallel programs should not become
deadlocked, waiting indefinitely for one another.

In the early 1960s, these problems had not yet been
properly examined or analyzed, nor had any techniques
been developed to verify potential solutions. Dijkstra iden-
tified a crucial synchronization problem, which he named
the mutual exclusion problem, and published his solu-
tion in a single-page paper.19 This work was taken from
EWD123, an extensive 87-page report titled “Cooperating
Sequential Processes.” In the same report, he introduced
the first known synchronization primitive, which he
termed a semaphore, that led to a much simpler solution
to the mutual exclusion problem.20 He also identified the

deadlock problem, which he named the deadly embrace,
and proposed an elegant solution, the banker’s algorithm.21
The mutual exclusion problem, along with deadlock detec-
tion and prevention, are now mandatory topics in courses
on operating systems and parallel programming.

In 1968, Dijkstra published a two-page letter addressed
to the editor of the Communications of the ACM, in which
he critiqued the goto programming statement.22 Entitled
“Go To Statement Considered Harmful,” the letter was
widely criticized and generated considerable debate. In
the end, Dijkstra’s views prevailed. Every programmer is
now aware that using the goto statement leads to so-called
spaghetti code. Java, currently one of the most widely used
programming languages, was originally released in 1996
and does not have the goto statement. The phrase “consid-
ered harmful” is still used often in computer science and
remains inextricably associated with Dijkstra.

In 1968, Dijkstra suffered a long, deep depression that
persisted for almost half a year. He later made mention
of being hospitalized during this period.23 One reason
for Dijkstra’s torment was that his department did not
consider computer science important and disbanded his
group. He also had to decide what to work on next. Dijks-
tra’s major software projects, the ALGOL 60 compiler and
the THE multiprogramming system, had given him a sense
that programming was an activity with its own rules. He
then attempted to discover those rules and present them
in a meaningful way. Above all, he strove to transform pro-
gramming into a mathematical discipline, an endeavor that
kept him busy for several years to come. At the time, these
were completely uncharted waters. Nobody else seemed
to be devoting their attention to such matters.

A year later, the appearance of the 87-page EWD249,
“Notes on Structured Programming,” marked the end of
Dijkstra’s depression.24 The subject of the EWD was so
novel, the writing so engaging, and the new term “struc-
tured programming” so convincing that the report became
a huge success. But, in Dijkstra’s view, “IBM … stole the
term ‘Structured Programming’ and … trivialized the orig-
inal concept to the abolishment of the goto statement.”25
The claim was unsurprising to those aware of Dijkstra’s
long-held and largely negative views toward IBM com-
puters and software. Nowadays it is not uncommon to see
similar criticisms of large corporations, but in the 1970s
and 1980s few academics were prepared to take a public
stand against computer manufacturers.

In 1972, Dijkstra received the ACM Turing Award,
widely considered the most important prize in computer
science. He was recognized for

fundamental contributions to programming as a high, intel-
lectual challenge; for eloquent insistence and practical
demonstration that programs should be composed correctly,
not just debugged into correctness; for illuminating percep-
tion of problems at the foundations of program design.26

4 / 12

BIOGRAPHIES

Further fundamental contributions were to follow. In
1974, Dijkstra published a two-page article in which he
introduced a new concept: self-stabilization.27 In the paper,
he posed the problem of how a system of communicating
machines might repair itself when a temporary fault arises
in one of the machines. He presented new protocols that
guaranteed correct functioning of the system would even-
tually be restored. “Self-stabilization,” he remarked, “…
could be of relevance on a scale ranging from a worldwide
network [emphasis added] to common bus control.” This is
a striking observation when one considers that the World
Wide Web was developed just 15 years later. As it turned
out, the paper was completely ignored until 1983, when
Leslie Lamport stressed its importance in an invited talk.
In time, the ideas outlined by Dijkstra would lead to the
emergence of a whole new area in distributed computing
with its own annual workshops and conferences. In 2002,
the paper won an award that was posthumously renamed
the Edsger W. Dijkstra Prize in Distributed Computing.

The notion that some events cannot be deterministi-
cally predicted, usually referred to as indeterminism, has
kept philosophers, and later physicists, occupied for cen-
turies. Computer scientists enter the story more recently,
studying the idea under the name nondeterminism—not
a reference, it should be noted, to any probabilistic inter-
pretation of events. In 1963, John McCarthy introduced
nondeterminism in the context of programming languages.
A couple of years later, Robert Floyd showed how this
concept, now known as angelic nondeterminism, can sub-
stantially simplify programming tasks requiring a search.28
When choices arise there is some computation that deliv-
ers the desired result—though it is not certain which one.

Dijkstra’s view of nondeterminism was likely influ-
enced by the inherently nondeterministic behavior of the
real-time interrupt handler he developed in his PhD thesis.
In a 1975 paper, he introduced a small programming lan-
guage that he called guarded commands; it encapsulated
what is now termed demonic nondeterminism.29 This was,
in fact, the paper he handed me the first time I met him.
In contrast to the angelic variant, all computations have to
deliver the desired result. This more demanding view of
nondeterminism—referred to as nondeterminacy by Dijk-
stra—sometimes yields simpler programs, but for reasons
other than angelic nondeterminism. The programmer is
free to leave some decisions unspecified.

The programming notation introduced by Dijkstra
occasionally leads to elegant programs. He illustrated this
point by reconsidering Euclid’s 2,300-year-old algorithm
for computing the greatest common divisor of two natural
numbers. The algorithm can be stated as follows: As long
as the two numbers differ, keep subtracting the smaller
number from the bigger one. In Dijkstra’s language this
algorithm can be written in a simple manner that is not
far removed from its description in English.30 His language
also introduced the crucial notion of a guard, which has

since become a natural concept in various programming
formalisms. Similarly, weakest precondition semantics, a
concept Dijkstra introduced to describe program seman-
tics, marked a late but highly significant entry into the
field of program verification. A couple of years later, the
language was generalized by Tony Hoare to create a highly
influential programming language proposal for distrib-
uted computing that he named CSP.31

Dijkstra’s landmark book A Discipline of Programming
was published in 1976.32 It introduced a novel approach
to programming in which Dijkstra combined weakest
precondition semantics with a number of heuristics to
develop several computer programs, hand in hand with
their correctness proofs. In contrast with EWD249, “Notes
on Structured Programming,” he was now arguing about
program correctness in a formal way. This development
marked a new stage in Dijkstra’s research. He now viewed
the development of a correct program as the develop-
ment of a mathematical proof, something to which he first
alluded in 1973 as part of EWD361, “Programming as a
Discipline of Mathematical Nature.”33 This methodology
was soon employed by Dijkstra and a group of researchers
to systematically derive various, usually small, nontrivial
programs. In contrast to some of his other innovations, it
never really caught on.

In the early 1980s, Dijkstra co-wrote two short but in-
fluential papers in which he applied his methodol-
ogy to the systematic development of distributed

programs.34 He also sought to have this approach to pro-
gramming taught to first-year students, and, with this goal
in mind, put together an elegant introductory textbook
with Wim Feijen.35

Dijkstra’s realization that programming could be viewed
as a mathematical activity led to his interest in analyzing
mathematical reasoning. He attempted to come up with
guidelines and heuristics that facilitated the discovery of
proofs. In a number of cases these principles pointed him
toward interesting generalizations of known results that
had somehow eluded others.

A good example is the Pythagorean theorem, which is
taught at secondary schools. The theorem states that in
a right-angled triangle the square of the hypotenuse, c, is
equal to the sum of the squares of the other two sides, a
and b.

a2 + b2 = c2

INFERENCE / Vol. 5, No. 3

5 / 12

In 1940, Elisha Loomis collected no less than 370 proofs
in The Pythagorean Proposition, starting with the proof
that appeared in Euclid’s Elements, written around 300
BCE.36 New proofs occasionally appear to this day.

In 1986, Dijkstra came up with the following generaliza-
tion to arbitrary triangles, which he included in EWD975:

Consider a triangle with the side lengths a, b and c and the
angles α, β and γ, lying opposite a, b and c. Then the signs
of the expressions a2 + b2 – c2 and α + β – γ are the same
(that is, they are either both positive or both zero or both
negative).

sign(a2 + b2 – c2) = sign(α + β – γ)

A mathematician might observe that this all seems quite
obvious. Yet, apparently, nobody had thought of this gen-
eralization before Dijkstra. He concluded his report by
observing that it was unclear where he might publish this
result. In his view, it should be taught at schools instead of
the original theorem. In 2009, EWD975 was republished
posthumously by Nieuw Archief voor Wiskunde (New
Archive for Mathematics), the magazine of the Royal
Dutch Mathematical Association.37 The five-page report
was reproduced in its original handwritten form.

In a 1985 lecture, “On Anthropomorphism in Science,”
delivered at the University of Texas at Austin’s Philoso-
phy Department, Dijkstra speculated that mathematicians
stuck to the use of implication because they associated it
with cause and effect. “Somehow,” he observed, “in the
implication ‘if A then B,’ the antecedent A is associated
with the cause and the consequent B with the effect.”38 He
claimed that equivalence should be preferred over impli-
cation. This simple principle had led to his generalization
of the Pythagorean theorem.

Dijkstra also attempted to apply his methodology for
developing correct programs to systematically develop
proofs of mathematical theorems. In EWD1016, “A Com-
puting Scientist’s Approach to a Once-Deep Theorem of
Sylvester’s,” he derived an elegant proof of the following
theorem, first conjectured in 1893 and proved 40 years
later: “Consider a finite number of distinct points in the
real Euclidean plane; these points are collinear or there
exists a straight line through exactly 2 of them.”39

Another example from this period is his approach to the
problem of a fair coin. A coin toss is used to determine one
of two outcomes in a fair way. But how can a fair outcome

be achieved when the coin is biased? In 1951, John von
Neumann came up with a simple solution.40 A number of
researchers then tried to figure out how to make it more
efficient. Dijkstra first learned of the problem during a lec-
ture in 1989. He solved it immediately and a little while
later came up with the solution to a related problem that
apparently nobody had thought of before. His solution to
the related problem can be found in EWD1071, “Making a
Fair Roulette from a Possibly Biased Coin.” Dijkstra’s mod-
ification of von Neumann’s solution was not immediately
obvious and relies on a classic result from number theory,
Fermat’s little theorem. For a change, Dijkstra submitted
this article to a journal and it was published the following
year as a one-page note.41

The development of a natural and readable notation
for representing proofs and calculations was almost as
important for Dijkstra as the problems under consider-
ation. The notation he came up with forces the author not
to commit what he described as “any sins of omission”:

A
= { hint why A = B }

B
= { hint why B = C }

C

In his final EWD,42 for example, Dijkstra explains that
for s = (a + b + c)/2 the equality s(s – b)(s – c) + s(s –c)(s – a) =
s(s – c)c holds, by writing out his argument as:

s(s – b)(s – c) + s(s –c)(s – a)
= { algebra }

s(s – c)(2s – a – b)
= { definition of s }

s(s – c)c

He used this notation in his own publications, nota-
bly in a book he wrote with his longstanding friend and
colleague Carel Scholten.43 The notation was adopted
by several of his colleagues but did not spread further.
EWD1300, “The Notational Conventions I Adopted, and
Why,” was republished posthumously and offers a unique
insight into Dijkstra’s extensive work on notation, a sub-
ject that kept him busy throughout his career.44

In the late 1980s, Dijkstra’s research was described
on his departmental homepage as follows: “My area of
interest focuses on the streamlining of the mathematical
argument so as to increase our powers of reasoning, in par-
ticular, by the use of formal techniques.” It was also the
subject of his course for computer science students.

During the period 1987–1990, I was a fellow faculty
member in Austin and followed his course for a semes-
ter. Dijkstra invariably arrived early for class so that he
could write out an unusual quotation on the blackboard.
The lectures themselves were always meticulously pre-

6 / 12

BIOGRAPHIES

pared and usually devoted to presenting proofs of simple
mathematical results. He delivered the lectures without
notes, requiring only a blackboard and a piece of chalk.
At the end of each lecture he would assign an elementary
but nontrivial mathematical problem as homework and
collect all the solutions at the following lecture. A week
later he would return all the solutions with detailed com-
ments, sometimes longer than the actual submissions,
and then present his own solution in detail, stressing the
presentation and use of notation. My own solutions fared
reasonably well by Dijkstra’s standards and were usually
returned with only short comments, such as “Many sins of
omission.” It was, in fact, a course in orderly mathematical
thinking, and nobody seemed at all bothered that it had
nothing to do with computer science.

Dijkstra was a highly engaging lecturer. He knew how
to captivate an audience with dramatic pauses, well-con-
ceived remarks, and striking turns of phrase. The bigger the
audience, the better he performed. While I was working in
Austin I helped organize a departmental event with him as
the main speaker. About two hundred people came along,
some having flown in from Houston and neighboring states
to attend the event. Dijkstra stole the show and delivered a
mesmerizing presentation on Sylvester’s theorem.

In 1990, dijkstra’s sixtieth birthday was celebrated in
Austin with a large banquet featuring a distinguished
group of guests, including numerous important fig-

ures in computer science. A festschrift was published by
Springer-Verlag to mark the occasion. The volume began
on page 0, in deference to the way Dijkstra numbered the
pages of his EWDs. He took the trouble of thanking each of
the 61 contributing authors by a handwritten letter.

The period that followed was marked by a visible
change in Dijkstra’s attitude and approach to his work.
In the remaining twelve years of his life, despite produc-
ing about 250 new EWDs, he published almost nothing.
These reports simply may not have met his standards for
a journal publication. Many of the EWDs were devoted to
systematically deriving proofs of tricky results, such as a
problem from the International Mathematical Olympiad.
He also used his methodology to obtain elegant solutions
for classical puzzles, such as the knight’s tour or the wolf,
goat, and cabbage puzzle.45 Some of the EWDs from this
period contained accounts and assessments of his early
contributions.

Following Dijkstra’s retirement from teaching in the
fall of 1999, a symposium was organized in May 2000 to
honor his seventieth birthday. The event was called “In
Pursuit of Simplicity” and included guest contributors
from both Europe and the US. At this time, I was work-
ing at the Centre for Mathematics and Informatics (CWI)
in Amsterdam and during the symposium I invited Dijk-
stra to give a lecture. CWI was, in fact, the new name for
the Mathematisch Centrum where he had worked at the

beginning of his career. Six months later Dijkstra accepted
the invitation. He had never seen the new and larger build-
ing where the CWI had relocated in the early 1980s, and
was visibly moved.

Prior to the lecture, the CWI’s communication depart-
ment issued a press release. News of the event caught the
attention of a major Dutch newspaper. A journalist was
dispatched and an extensive article with a prominent
photo of Dijkstra was soon published. VPRO, an indepen-
dent Dutch public broadcasting company, subsequently
became interested in Dijkstra and sent a crew to Austin
to make a half-hour-long program about him. “Denken
als discipline” (Thinking as a Discipline) was broadcast
in April 2001 as an episode of the science show Noorder-
licht (Northern Lights).46 The episode received a glowing
review in another prominent Dutch newspaper.

In early 2002, Dijkstra returned to Nuenen, incurably
ill with cancer. The news spread quickly in the computer
science community and was invariably met with deep sad-
ness. The last time I saw Dijkstra was at his home in July
2002. As was usually the case with visitors, he collected me
by car from the nearest train station a couple of kilometers
away from his house. During the visit, we spoke together,
shared lunch, and he told me that he did not have much
time left. He also gave me a copy of EWD1318, “Coxeter’s
Rabbit,” dated April 14, 2002, mentioning that it would be
his final report.47

Dijkstra passed away a month later. His funeral was
attended by a number of his colleagues, including several
from Austin. In his eulogy, Hoare reflected on Dijkstra’s
immense contributions to the development of his field:

He would lay the foundations that would establish com-
puting as a rigorous scientific discipline; and in his
research and in his teaching and in his writing, he would
pursue perfection to the exclusion of all other concerns.
From these commitments he never deviated, and that is
how he has made to his chosen subject of study the great-
est contribution that any one person could make in any one
lifetime.48

J Strother Moore, then chairman of the Computer Science
Department in Austin, also spoke warmly and evocatively of
Dijkstra: “He was like a man with a light in the darkness. He
illuminated virtually every issue he discussed.”49

Obituaries subsequently were published in several
leading newspapers, including The New York Times, The
Washington Post, and The Guardian. Extended commem-
orative pieces and reminiscences appeared during the
months that followed, in which Dijkstra was variously
acclaimed as a pioneer, prophet, sage, and genius.50

Dijkstra’s enduring influence in computer sci-
ence is not confined solely to his research. He
held strong opinions about many aspects of the

INFERENCE / Vol. 5, No. 3

7 / 12

field, most notably about programming languages and the
teaching of programming, but also the purpose of educa-
tion and research.

Dijkstra did not shy away from controversies. He was a
dedicated contrarian who reveled in expressing extreme
and unconventional opinions. I saw this firsthand in 1977
during a large computer science conference in Toronto.
Audiences for plenary lectures at the event numbered
somewhere between several hundred and a thousand
attendees. Each of the lectures concluded with a few
polite audience questions for the speaker, generally a lead-
ing expert in his area. I have a vivid recollection of Dijkstra
standing up at the end of one lecture and delivering a
stinging rebuke to the speaker. Contrary to appearances,
he was hoping to provoke an informative discussion. The
chairman was visibly taken aback by Dijkstra’s interven-
tion and appeared at a loss as to how he should proceed.

Dijkstra was also unafraid to voice harsh critiques at
smaller gatherings. In the late 1970s, I attended a seminar
in Utrecht with about twenty other participants, includ-
ing Dijkstra. He repeatedly interrupted a highly respected
lecturer to query him about his use of terminology and
abbreviations. Halfway through the presentation Dijks-
tra abruptly got up and left. Other stories in a similar vein
were far from uncommon and circulated throughout the
field.

Dijkstra took his work as a reviewer extremely seriously
and his reports were detailed and carefully thought out.
Some of these reviews were undertaken at his own ini-
tiative and appeared as EWDs. These included a positive
review of a 400-page computer science book that had no
obvious connection to his research.51 He also produced
extensive and thoughtful comments on manuscripts sent
to him by his colleagues who had adopted his notation or
methodology, or whose research he deemed important.

In 1977, Dijkstra wrote a vitriolic review of a report,
“Social Processes and Proofs of Theorems and Programs,”
by Richard De Millo, Richard Lipton, and Alan Perlis. The
report later appeared as a journal paper.52 Dijkstra distrib-
uted his review as EWD638, “A Political Pamphlet from
the Middle Ages,” in which he referred to the report as “a
very ugly paper.”53 The authors had argued that “program
verification is bound to fail,” a view Dijkstra vehemently
disagreed with.

Some of these reviews led to further correspondence
with the original authors. In 1978, Dijkstra distributed a
detailed and scathing review of the 1977 Turing Award
Lecture delivered by John Backus. In EWD692 he argued
that the lecture “suffers badly from aggressive oversell-
ing.”54 At the time, Backus was one of the most prominent
working computer scientists. He was the co-inventor of
a standard notation used to describe the syntax of pro-
gramming languages, known as Backus–Naur form, and
had led the team that designed and implemented Fortran,
the first high-level programming language. In his lecture,

Backus had advocated for an alternative style of program-
ming, known as functional programming. Four years ago,
Jiahao Chen discovered an extensive and highly critical
correspondence between Backus and Dijkstra that took
place following the review.55 Dijkstra wisely kept these
exchanges away from the public eye.

In some quarters, Dijkstra was viewed as arrogant and
his opinions considered extreme. When cataloguing their
correspondence in his papers, Backus added the com-
ment: “This guy’s arrogance takes your breath away.”56 For
many, especially those who adopted his notation, Dijks-
tra became a figure akin to a guru. A small group of his
followers even started their own EWD-like reports, all
consecutively numbered and written by hand. Dijkstra
seemed indifferent to such displays. “But he takes himself
so seriously,” a Turing Award winner once confided to me.
Indeed, one sometimes had the impression that he carried
the weight of computer science on his shoulders.

In 1984, I was invited to be a lecturer at the annual
Marktoberdorf School, co-organized by Dijkstra. Although
I regarded this as a great honor, I could not help but feel
anxious about having him assessing my work. His review
appeared in EWD895, “Trip report E. W. Dijkstra, Mark-
toberdorf, 30 July–12 Aug. 1984.” I was greatly relieved to
discover his comments were not only fairly mild, but even
reasonably positive in comparison to his other reviews:
“Apt’s lectures suffered somewhat from this [i.e., talking
‘exclusively about CSP’]. The examples chosen to illustrate
his points were a bit elaborate, but his conscious efforts to
be understood were highly appreciated.”57

Encouraged by this appraisal, I submitted one of the
papers I had presented to a peer-reviewed journal. A
couple of months later, the anonymous referee reports
arrived. One of the reviews was unmistakably the work of
Dijkstra. A detailed criticism of what he regarded as a lack
of sufficiently formal arguments, combined with a long list
of demands and questions, made attempting satisfactory
revisions a hopeless task. Even today, I would not know
how to meet these demands because the right formalism
is still lacking. At the time, it was nonetheless considered a
privilege to have a paper refereed by Dijkstra.

In 1989, Dijkstra presented his views on teaching com-
puter programming in a lecture titled “On the Cruelty
of Really Teaching Computer Science” during an ACM
Computer Science Conference. A transcript was later
circulated as EWD1036.58 After presenting a sweeping
historical survey aimed at illustrating traditional resis-
tance toward new ideas in science, Dijkstra argued that
computer programming should be taught in a radically dif-
ferent way. His proposal was to teach some of the elements
of mathematical logic, select a small but powerful pro-
gramming language, and then concentrate on the task of
constructing provably correct computer programs. In his
view, programs should be considered the same way as for-
mulas, while programming should be taught as a branch of

8 / 12

BIOGRAPHIES

mathematics. There was no place for running programs or
for testing, both of which were considered standard prac-
tice in software engineering.

The lecture and report led to an extensive debate that
still makes for interesting reading. Dijkstra’s report was
published in Communications of the ACM, along with his
polite but unapologetic responses to mostly negative reac-
tions from prominent computer scientists. While he was
praised for initiating a much-needed debate, Dijkstra’s
recommendations were deemed unrealistic and too con-
troversial.59

Dijkstra often expressed his opinions using memorable
turns of phrase or maxims that caught the ears of his col-
leagues and were widely commented upon. Here are some
examples:

•	 Program testing can be used to show the presence
of bugs, but never to show their absence.

•	 Computer science is no more about computers than
astronomy is about telescopes.

•	 The question of whether machines can think is
about as relevant as the question of whether sub-
marines can swim.

•	 A formula is worth a thousand pictures.

In one of his EWDs, Dijkstra collected several jibes
about programming languages, such as: “The use of
COBOL cripples the mind; its teaching should, therefore,
be regarded as a criminal offense.”60 At the time, COBOL
was one of the most widely used programming languages
and these comments were not warmly received.

Some of Dijkstra’s opinions were unavoidably contro-
versial and highlighted his longstanding prejudices. When
I first met him in 1975 he recommended the book Struc-
tured Programming, but suggested that I skip the final
chapter by Hoare and Ole-Johan Dahl,61 as it dealt with
object-oriented programming. Nonetheless, object-ori-
ented programming gradually became a universally
preferred way to structure a large program. But not for
Dijkstra. He was still arguing against it in 1999, pointing
out during a keynote address that, “For those who have
wondered: I don’t think object-oriented programming
is a structuring paradigm that meets my standards of
elegance.”62 By that time, the popular object-oriented pro-
gramming language C++ was routinely taught to first-year
computer science students.

Throughout his professional career, Dijkstra re-
mained remarkably modest. He never had a secre-
tary; he typed or wrote all his publications himself.

Most were entirely his own work and even the few that
listed co-authors were clearly written by Dijkstra, or in
his style. After 1979, he preferred to write by hand using
a Montblanc fountain pen. His writing style became so
recognizable among computer scientists in the 1980s that
a fellow academic, Luca Cardelli, designed a Dijkstra font

for Macintosh computers.63 Not long after it was released,
Dijkstra received a letter typeset in Cardelli’s font and mis-
takenly assumed it was handwritten. He felt tricked by the
letter and was not amused. Some years later, he was able
to appreciate the humor when a colleague in Austin, Bob
Boyer, adopted the font for presentations during depart-
mental meetings.

It seems Dijkstra never applied for any grants—though
he did receive at least one, to employ a PhD student—nor
did he bring any money, in the form of research contracts,
to the institutions he worked for. He also never purchased
a computer. Eventually, in the late 1980s, he was given one
as a gift by a computer company, but never used it for word
processing. Dijkstra did not own a TV, a VCR, or even a
mobile phone. He preferred to avoid the cinema, citing
an oversensitivity to visual input. By contrast, he enjoyed
attending classical music concerts.

When taking part in conferences and summer schools
Dijkstra often felt uncomfortable in large groups. Unac-
customed to small talk, he usually remained awkwardly
silent. Away from the work environment, however, he was
completely different. From his time in Austin, I and others
recall him as friendly, helpful, and eager to drop by with
his wife for a short social visit that often led to engaging
conversations. He and his wife liked to invite guests over,
for whom he occasionally played short pieces of classical
music on his Bösendorfer piano. His favorite composer was
Mozart. A striking feature of Dijkstra’s living room was a
lectern with a large copy of the Oxford English Dictionary,
which he found indispensable in his work. He is, inciden-
tally, mentioned in the same dictionary in connection with
the use of the words vector and stack in computing.

In Austin, Dijkstra stayed away from university politics.
He was highly respected by colleagues, not least because
of his collegial attitude during departmental meetings.
He took his teaching duties very seriously. Exams were
always oral and could last a couple of hours. Upon com-
pletion of the exam, an informal chat followed during
which the student was presented with a signed photo of
Dijkstra and a beer—age permitting.64 He held his weekly
seminars in his office and served coffee to the students in
attendance, often surprising them with his unassuming
behavior.

Throughout his life, Dijkstra was an uncompromising
perfectionist, always focused on tapping his creativity,
unwilling to lower his standards, and indifferent toward
alternative points of view. He also found it difficult to
browse articles in his field to form an idea of their contents
and seemed uninterested in tracking down and studying
the relevant literature. For the most part, he followed the
recommendations of his close colleagues and only stud-
ied the papers they suggested. As a result, his own papers
often had very few, if any, bibliographic entries. The pref-
ace of A Discipline of Programming concludes with a frank
admission: “For the absence of a bibliography I offer nei-
ther explanation nor apology.” This cavalier approach led

INFERENCE / Vol. 5, No. 3

9 / 12

to occasional complaints from colleagues who found that
their work was ignored.

Instead, Dijkstra preferred to study classic texts, such
as Eric Temple Bell’s Men of Mathematics, which he
referred to occasionally during his courses in Austin, and
Linus Pauling’s General Chemistry, a book he praised in
highest terms.65 This attitude served him well during the
1960s and 1970s, but it became increasingly impractical as
computer science matured.

Published in 1990, Dijkstra’s Predicate Calculus and
Program Semantics, co-written with Scholten, was a case
in point. The book not only lacked references, but also
exhibited a complete disregard for the work of logicians.
Egon Börger penned an extensive and devastating review,
claiming the approach outlined by the authors was not in
any way novel, nor did it offer any advantages.66 He also
vigorously criticized the book’s rudimentary history of
predicate logic, in which the authors drew a line from the
work of Gottfried Leibniz to that of George Boole and then
to their own contributions, neglecting to mention anyone
else.

In response to Börger’s review, some colleagues tried
to help by publishing papers that provided a useful logi-
cal assessment and clarification of Dijkstra and Scholten’s
approach based on their so-called calculational proofs.
Dijkstra remained unrepentant. “I never felt obliged to
placate the logicians,” he remarked some years later in
EWD1227. “If however, [logicians] only get infuriated
because I don’t play my game according to their rules,” he
added, referring specifically to Börger’s review, “I cannot
resist the temptation to ignore their fury and to shrug my
shoulders in the most polite manner.”

Dijkstra’s sense of humor was, at turns, wry and terse. I
once asked him how many PhD students he had. “Two,” he
replied, before adding, “Einstein had none.”67 On another
occasion, he wrote to me that “[redacted] strengthened
the Department by leaving it.” In Austin, together with his
wife, he purchased a Volkswagen bus, dubbed the Turing
Machine, which they used to explore national parks.68

Dijkstra was also extremely honest. He was always
insistent, for example, that the first solution to the mutual
exclusion problem was found by his colleague Th. J.
Dekker. In EWD1308, he admitted that F. E. J. Kruseman
Aretz “still found and repaired a number of errors [in the
ALGOL 60 compiler] after I had left the Mathematical
Centre in 1962,” and that the phrase “considered harmful”
was, in fact, invented by an editor of the Communications
of the ACM, Niklaus Wirth. Dijkstra’s contribution was
originally titled “A Case against the GO TO Statement.” In
the same EWD, he also admitted completely missing the
significance of Floyd and Hoare’s initial contributions to
program verification. “I was really slow” he lamented.69

Dijkstra left behind a remarkable array of no-
tions and concepts that have withstood the test of
time: the display, the mutual exclusion problem,

the semaphore, deadly embrace, the banker’s algorithm,
the sleeping barber and the dining philosophers problems,
self-stabilization, weakest precondition, guard, and struc-
tured programming.

His shortest path algorithm is taught to all students of
computer science and operations research and is always
referred to as Dijkstra’s algorithm. Several years ago I saw
it illustrated, under this name, by means of an interactive
gadget with lights and buttons at the Science Centre Sin-
gapore.

Dijkstra and Zonneveld’s ALGOL 60 compiler is rightly
recognized as a milestone in the history of computer sci-
ence—albeit more so in Europe than elsewhere. An entire
PhD thesis was recently devoted to its reconstruction and
a detailed analysis.70 The layered design of the THE multi-
programming system is discussed in several textbooks on
operating systems and influenced the design of some later
operating systems.

Among the concepts invented by Dijkstra, some have
been reflected in book titles. An early example is Struc-
tured Programming, published in 1972.71 There are now
several books called Structured Programming Using Lan-
guage X. In 1986, a book appeared with the title Algorithms
for Mutual Exclusion—others with a similar title eventu-
ally followed—and in 2000 a book titled Self-Stabilization
was published.72

Dijkstra’s approaches to nondeterminism and paral-
lelism are part of standard courses on these subjects. His
proposal for a first synchronization mechanism triggered
research that, in turn, resulted in the development of high-
level synchronization mechanisms that are indispensable
for parallel programming. His classic problems, such as
the sleeping barber and dining philosophers, the latter
named by Hoare, have become standard benchmarks.
When methods were developed to formally verify parallel
programs, the first examples tackled were Dijkstra’s pro-
grams.

Yet Dijkstra’s most enduring contribution may well
be indirect—in software engineering. The challenge of
producing correct software was an ongoing concern
throughout his scientific career. In 1962, he wrote a paper,
“Some Meditations on Advanced Programming,” in which
he raised the issue of program correctness and expressed
the hope that this aspect might someday be referred to
as the science of programming.73 At a major conference
in 1968, it was recognized that the availability of increas-
ingly powerful computers led to increasingly complex and
unreliable software systems, a problem termed “the soft-
ware crisis.” Dijkstra, who was in attendance, could not
have agreed more.

In the years that followed, he produced a number of
engaging and influential essays on software development
in which he explicitly referred to the software crisis as
an urgent problem. He forcefully argued that software
systems should be built on sound design principles, and
that correctness should be a driving principle behind

10 / 12

BIOGRAPHIES

program construction. In particular, he introduced the
often-cited separation-of-concerns design principle,
which, he remarked, “even if not perfectly possible, is
yet the only available technique for effective ordering of
one’s thoughts, that I know of.”74 Following the exam-
ple of Hoare and Wirth, he also advocated for various
forms of abstraction and the use of assertions to annotate
programs. At a later stage, he argued that the program-
ming process itself should be viewed as a mathematical
activity.

Although Dijkstra’s idealized vision that programs
should be constructed together with their correctness
proofs has not been realized, it undoubtedly provided the
impetus for new methods of structuring and developing
programs—including, somewhat paradoxically, the emer-
gence of the object-oriented programming paradigm that
he so vigorously opposed. This vision also helped moti-
vate the design of new programming languages, along
with platforms and systems to facilitate the programming
process. Finally, Dijkstra’s “Notes on Structured Program-
ming” was highly influential in the development of better
designed and more systematic courses on programming,
occasionally with an emphasis on systematic program
construction and correctness.

It is difficult to find another scientist who left such an
impressive mark in the history of computer science.75

Krzysztof Apt is a Fellow at the Center for Mathematics and
Computer Science in Amsterdam and Professor Emeritus at
the University of Amsterdam.

1. Edsger W. Dijkstra, “From My Life” (EWD1166, November
1993).

2. Dijkstra, “From My Life.”
3. Maarten van Emden, “I Remember Edsger Dijkstra (1930–

2002),” A Programmer’s Place (blog), May 6, 2008.
4. Dijkstra, “From My Life.”
5. A near complete list of Dijkstra’s publications can be found

in the dblp Computer Science Bibliography.
6. Edsger W. Dijkstra, “Answers to Questions from Students of

Software Engineering” (EWD1305, November 2000).
7. Dijkstra, “From My Life.”
8. Edsger W. Dijkstra, “Twenty-Eight Years” (EWD1000, Jan-

uary 1987).
9. Edsger W. Dijkstra, “Twenty-Eight Years.”
10. E. W. Dijkstra Archive: The Manuscripts of Edsger W. Dijk-

stra, 1930–2002. The original EWD manuscripts are housed
at the Dolph Briscoe Center for American History at the
University of Texas at Austin.

11. Edsger W. Dijkstra, “A ‘Non Trip Report’ from E.W. Dijkstra,”
in Selected Writings on Computing: A Personal Perspective

(New York: Springer, 1982), 200–204, originally published
in 1976 as EWD561.

12. Edsger W. Dijkstra, “The Humble Programmer,” Commu-
nications of the ACM 15, no. 10 (1972): 859–66, doi:10.1145/
355604.361591.

13. Edsger W. Dijkstra, “A Note on Two Problems in Connex-
ion with Graphs,” Numerische Mathematik 1 (1959): 269–71,
doi:10.1007/bf01386390.

14. A compiler is a computer program that translates a given
source program into a low-level language, so that it can be
executed directly by the used computer.

15. Recursion refers to the property that a function or a proce-
dure is defined in terms of itself. It was first introduced in
programming languages a couple of months earlier by John
McCarthy in the language Lisp. Recursive procedures in
ALGOL 60 are much more complex than in Lisp.

16. Edsger W. Dijkstra, “Recursive Programming,” Numerische
Mathematik 2 (1960): 312– 318, doi:10.1007/bf01386232.

17. John W. Backus et al., “Report on the Algorithmic Language
ALGOL 60,” Communications of the ACM 3, no. 5 (1960):
299–314, doi:10.1145/367236.367262.

18. Edsger W. Dijkstra, “The Structure of the ‘THE’-Multipro-
gramming System,” Communications of the ACM 11, no. 5
(1968): 341–46, doi:10.1145/363095.363143.

19. Edsger W. Dijkstra, “Solution of a Problem in Concurrent
Programming Control,” Communications of the ACM 8, no.
9 (1965): 569, doi:10.1145/365559.365617.

20. The mutual exclusion problem and semaphores were orig-
inally proposed in 1962 in EWD35 “Over de sequentialiteit
van procesbeschrijvingen,” written in Dutch.

21. Edsger W. Dijkstra, “Cooperating Sequential Processes,” in
Programming Languages: NATO Advanced Study Institute,
ed. François Genuys (London: Academic Press Ltd., 1968),
43–112, originally published in 1965 as EWD123. The bank-
er’s algorithm was originally proposed in 1964 in EWD108
“Een algorithme ter voorkoming van de dodelijke omarming,”
written in Dutch.

22. Edsger W. Dijkstra, “Go To Statement Considered Harm-
ful,” Communications of the ACM 11, no. 3 (1968): 147–48,
doi:10.1145/362929.362947. Dijkstra had, in fact, used the goto
statement in an article three years earlier. Dijkstra, “Solution
of a Problem in Concurrent Programming Control.”

23. Dijkstra, “Twenty-Eight Years.”
24. Edsger W. Dijkstra, “Notes on Structured Programming,”

in Structured Programming, ed. Ole-Johan Dahl, Edsger W.
Dijkstra, and Charles A. R. Hoare (London: Academic Press
Ltd., 1972), 1–82, originally published in 1969 as EWD249,
“Notes on Structured Programming.”

25. Edsger W. Dijkstra, “EWD 1308: What Led to ‘Notes on
Structured Programming’,” in Software Pioneers, ed. Man-
fred Broy and Ernst Denert (Berlin: Springer, 2002), 340–46,
originally published in 2001 as EWD1308.

26. “Citation: Edsger Wybe Dijkstra,” ACM A. M. Turing Award.
27. Edsger W. Dijkstra, “Self-Stabilizing Systems in Spite of

Distributed Control,” Communications of the ACM 17, no. 11

http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1166.PDF
http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1166.PDF
https://vanemden.wordpress.com/2008/05/06/i-remember-edsger-dijkstra-1930-2002/
https://vanemden.wordpress.com/2008/05/06/i-remember-edsger-dijkstra-1930-2002/
http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1166.PDF
http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1166.PDF
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1000.PDF
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1000.PDF
https://www.cs.utexas.edu/users/EWD/
https://www.cs.utexas.edu/users/EWD/
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD561.html
https://doi.org/10.1145/355604.361591
https://doi.org/10.1007/bf01386390
https://doi.org/10.1007/bf01386390
https://doi.org/10.1007/bf01386232
https://doi.org/10.1145/367236.367262
https://doi.org/10.1145/367236.367262
https://doi.org/10.1145/363095.363143
https://doi.org/10.1145/363095.363143
https://doi.org/10.1145/365559.365617
https://doi.org/10.1145/365559.365617
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD108.html
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/365559.365617
https://doi.org/10.1145/365559.365617
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1000.PDF
https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
https://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1308.PDF
https://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1308.PDF
https://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/361179.361202

INFERENCE / Vol. 5, No. 3

11 / 12

(1974): 643–44, doi:10.1145/361179.361202, originally pub-
lished in 1974 as EWD426.

28. John McCarthy, “A Basis for a Mathematical Theory of
Computation,” in Computer Programming and Formal Sys-
tems, ed. Paul Braffort and David Hirschberg (Amsterdam:
North-Holland, 1963), 33–70; Robert W. Floyd, “Nondeter-
ministic Algorithms,” Journal of the ACM 14, no. 4 (1967):
636–44, doi:10.1145/321420.321422.

29. Edsger W. Dijkstra, “Guarded Commands, Nondeterminacy
and Formal Derivation of Programs,” Communications of the
ACM 18, no. 8 (1975): 453–57, doi:10.1145/360933.360975.

30. Dijkstra’s solution is the following simple program:
do x > y → x := x – y □ y > x → y := y – x od.

Here the initial values are stored in the variables x and y, □
represents the nondeterministic choice, := should be read as
“becomes,” and the do … od construct represents a repeti-
tion. Further, x > y and y > x are so-called guards, conditions
under which the actions that follow can be carried out.

31. Charles A. R. Hoare, “Communicating Sequential Pro-
cesses,” Communications of the ACM 21, no. 8 (1978): 666–77,
doi:10.1145/359576.359585.

32. Edsger W. Dijkstra, A Discipline of Programming (Engle-
wood Cliffs: Prentice-Hall, 1976).

33. Edsger W. Dijkstra, “Programming as a Discipline of Math-
ematical Nature,” The American Mathematical Monthly 81,
no. 6 (1974): 608–12, doi:10.1080/00029890.1974.11993624,
originally published in 1973 as EWD361.

34. Edsger W. Dijkstra and Carel S. Scholten, “Termina-
tion Detection for Diffusing Computations,” Information
Processing Letters 11, no. 1 (1980): 1–4, doi:10.1016/0020-
0190(80)90021-6, originally published in 1978 as EWD687;
Edsger W. Dijkstra, Wim H. J. Feijen, and Antonetta J. M.
van Gasteren, “Derivation of a Termination Detection
Algorithm for Distributed Computations,” Information
Processing Letters 16, no. 5 (1983): 217–19, doi:10.1016/0020-
0190(83)90092-3, originally published in 1982 as EWD840.

35. Edsger W. Dijkstra and Wim H. J. Feijen, A Method of Pro-
gramming (Wokingham: Addison-Wesley, 1988), originally
published in Dutch as Een methode van programmeren (The
Hague: Academic Service, 1984).

36. Elisha Scott Loomis, The Pythagorean Proposition (Ann Arbor,
MI: Edwards Brothers, 1940). An example of a new proof is
Kaushik Basu, “A New and Very Long Proof of the Pythago-
ras Theorem by Way of a Proposition on Isosceles Triangles,”
MPRA Paper No. 61,125 (University Library of Munich, 2015).

37. Edsger W. Dijkstra, “On the Theorem of Pythagoras,” Nieuw
Archief voor Wiskunde 5, no. 10 (2009): 95–99, originally
published in 1986 as EWD975.

38. Edsger W. Dijkstra, “On Anthropomorphism in Science”
(EWD936, September 1985).

39. Edsger W. Dijkstra, “A Computing Scientist’s Approach to
a Once-Deep Theorem of Sylvester’s” (EWD1016, February
1988).

40. John von Neumann, “Various Techniques Used in Con-
nection with Random Digits,” Journal of Research of the

National Bureau of Standards: Applied Mathematics Series 12
(1951): 36–38.

41. Edsger W. Dijkstra, “Making a Fair Roulette from a Possi-
bly Biased Coin,” Information Processing Letters 36, no. 4
(1990): 193, doi:10.1016/0020-0190(90)90072-6, originally
published in 1989 as EWD1071.

42. Edsger W. Dijkstra, “Coxeter’s Rabbit” (EWD1318, April 1993).
43. Edsger W. Dijkstra and Carel S. Scholten, Predicate Calcu-

lus and Program Semantics (New York: Springer-Verlag,
1990).

44. Edsger W. Dijkstra, “EWD1300: The Notational Conven-
tions I Adopted, and Why,” Formal Aspects of Computing 14,
no. 2 (2002): 99–107, doi:10.1007/s001650200030, originally
published in 2000 as EWD1300.

45. Regrettably, nobody convinced Dijkstra to select some of
these masterful expositions and publish them as a book.
Edsger W. Dijkstra, “Heuristics for a Calculational Proof,”
Information Processing Letters 53, no. 3 (1995): 141–43,
doi:10.1016/0020-0190(94)00196-6, originally published in
1994 as EWD1174a; Edsger W. Dijkstra, “The Knight’s Tour”
(EWD1135, September 1992); Edsger W. Dijkstra, “Pruning
the Search Tree” (EWD1255, January 1997). The knight’s
tour problem involves finding a knight’s path on the chess-
board that visits each square exactly once.

46. The EWD website has a copy of this video with subtitles in
English. It is still worthwhile to watch it today, nineteen years
later. Only then can one better appreciate Dijkstra’s unique
mixture of precision, modesty, charm, and self-assuredness,
with an utmost focus on whatever kept him busy at that
moment.

47. To my surprise Richards did not have it and quickly updated
the EWD website.

48. “In Memoriam Edsger Wybe Dijkstra (1930–2002)” (Memo-
rial Resolution prepared by a committee, including Jayadev
Misra and Hamilton Richards, 2002).

49. “In Memoriam Edsger Wybe Dijkstra (1930–2002).”
50. “In Memoriam Edsger Wybe Dijkstra (1930–2002)”;

Robert S. Boyer et al., “In Memoriam: Edsger W. Dijkstra
1930–2002,” Communications of the ACM 45, no. 10 (2002):
21–22, doi:10.1145/570907.570921; Krzysztof R. Apt, “Edsger
Wybe Dijkstra (1930–2002): A Portrait of a Genius,” Formal
Aspects of Computing 14, no. 2 (2002): 92–98, doi:10.1007/
s001650200029; van Emden, “I Remember Edsger Dijkstra
(1930–2002).”

51. Edsger W. Dijkstra, “A Book Review” (EWD669, no date).
52. Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis,

“Social Processes and Proofs of Theorems and Programs,”
Communications of the ACM 22, no. 5 (1979): 271–80,
doi:10.1145/359104.359106.

53. Edsger W. Dijkstra, “On a Political Pamphlet from the
Middle Ages,” ACM SIGSOFT Software Engineering Notes 3,
no. 2 (1978): 14–16, doi:10.1145/1005888.1005890, originally
published in 1977 as EWD638.

54. Edsger W. Dijkstra, “A Review of the 1977 Turing Award
Lecture by John Backus” (EWD692, 1978).

https://doi.org/10.1145/321420.321422
https://doi.org/10.1145/321420.321422
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1080/00029890.1974.11993624
https://doi.org/10.1080/00029890.1974.11993624
https://doi.org/10.1016/0020-0190%2880%2990021-6
https://doi.org/10.1016/0020-0190%2880%2990021-6
https://doi.org/10.1016/0020-0190%2883%2990092-3
https://doi.org/10.1016/0020-0190%2883%2990092-3
https://mpra.ub.uni-muenchen.de/61125/1/MPRA_paper_61125.pdf
https://mpra.ub.uni-muenchen.de/61125/1/MPRA_paper_61125.pdf
https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD975.PDF
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD936.PDF
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1016.PDF
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1016.PDF
https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf
https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf
https://doi.org/10.1016/0020-0190%2890%2990072-6
https://doi.org/10.1016/0020-0190%2890%2990072-6
https://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1318.PDF
https://doi.org/10.1007/s001650200030
https://doi.org/10.1007/s001650200030
https://doi.org/10.1016/0020-0190%2894%2900196-6
https://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1135.PDF
https://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1255.PDF
https://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1255.PDF
https://www.cs.utexas.edu/users/EWD/MemRes%28A4%29.pdf
https://www.cs.utexas.edu/users/EWD/MemRes%28A4%29.pdf
https://www.cs.utexas.edu/users/EWD/MemRes%28A4%29.pdf
https://doi.org/10.1145/570907.570921
https://doi.org/10.1145/570907.570921
https://doi.org/10.1007/s001650200029
https://doi.org/10.1007/s001650200029
https://vanemden.wordpress.com/2008/05/06/i-remember-edsger-dijkstra-1930-2002/
https://vanemden.wordpress.com/2008/05/06/i-remember-edsger-dijkstra-1930-2002/
https://www.cs.utexas.edu/users/EWD/ewd06xx/EWD669.PDF
https://doi.org/10.1145/359104.359106
https://doi.org/10.1145/1005888.1005890
https://doi.org/10.1145/1005888.1005890
http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF
http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF

12 / 12

BIOGRAPHIES

55. In particular, Backus considered it rude that Dijkstra sent
this EWD to others, but not to him. Jiahao Chen, “This
Guy’s Arrogance Takes Your Breath Away (Letters between
John W. Backus and Edsger W. Dijkstra, 1979),” Medium,
May 29, 2016.

56. Chen, “This Guy’s Arrogance Takes Your Breath Away.”
57. Edsger W. Dijkstra, “Trip Report E.W. Dijkstra, Marktober-

dorf, 30 July–12 Aug. 1984” (EWD895, September 1984).
58. Edsger W. Dijkstra, “On the Cruelty of Really Teaching

Computing Science” (EWD1036, December 1988).
59. Peter J. Denning, “A Debate on Teaching Computing Science,”

Communications of the ACM 32, no. 12 (1989): 1,397–414,
doi:10.1145/76380.76381.

60. Edsger W. Dijkstra, “How Do We Tell Truths that Might
Hurt?” in Selected Writings on Computing, 129–31, originally
published in 1975 as EWD498 in 1975.

61. Ole-Johan Dahl and Charles A. R. Hoare, “Hierarchical Pro-
gram Structures,” in Structured Programming, 175–220.

62. Edsger W. Dijkstra, “Computing Science: Achievements and
Challenges” (EWD1284, 1999).

63. Luca Cardelli, personal website.
64. “In Memoriam Edsger Wybe Dijkstra (1930–2002).”
65. Eric Temple Bell, Men of Mathematics: The Lives and

Achievements of the Great Mathematicians from Zeno to
Poincaré (New York: Simon and Schuster, 1937). Linus Paul-
ing, General Chemistry (Ann Arbor, MI: Edward Brothers
Inc., 1944).

66. Egon Börger, “Book Review: E.W. Dijkstra and C.S. Scholten,
Predicate Calculus and Program Semantics (Springer, Berlin,
1989),” Science of Computer Programming 23, no. 1 (1994):
91–101, doi:10.1016/0167-6423(94)90002-7.

67. Eventually, he had seven, if one counts joint supervisions.
68. A Turing machine, invented by Alan Turing in 1936, is a

mathematical model of a machine that can perform compu-
tations.

69. Edsger W. Dijkstra, “What Led to ‘Notes on Structured Pro-
gramming’” (EWD1308, June 2001).

70. Gauthier van den Hove, “New Insights from Old Programs:
The Structure of the First ALGOL 60 System” (PhD diss.,
University of Amsterdam, 2019).

71. Dahl, Dijkstra, and Hoare, eds., Structured Programming.
72. Michel Raynal, Algorithms for Mutual Exclusion (Cambridge,

MA: MIT Press, 1986); Shlomi Dolev, Self-Stabilization
(Cambridge, MA: MIT Press, 2000).

73. Edsger W. Dijkstra, “Some Meditations on Advanced Pro-
gramming,” in Information Processing, Proceedings of the
2nd IFIP Congress (North-Holland, 1962), 535–38, originally
published in 1962 as EWD32.

74. Edsger W. Dijkstra, “On the Role of Scientific Thought,” in
Selected Writings on Computing, 60–66, originally published
in 1974 as EWD447.

75. Soon after Edsger’s death, his wife, Ria Dijkstra, made me
aware that many of Edsger’s publications appeared much
earlier as EWDs. The E. W. Dijkstra Archive was absolutely
indispensable for writing this article. The memorial reso-
lution “In Memoriam Edsger Wybe Dijkstra (1930–2002)”
posted there was very helpful.
Jan Heering and Jay Misra helped me to understand in the
past that Dijkstra’s contributions to software construction
and to nondeterminism were much more fundamental than
I initially realized. Alma Apt, Maarten van Emden, and Jan
Heering provided detailed comments on the initial version.

Published on September 28, 2020

https://inference-review.com/article/the-man-who-carried-computer-science-on-his-shoulders

https://medium.com/%40acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f
https://medium.com/%40acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f
https://medium.com/%40acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f
https://medium.com/%40acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD895.PDF
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD895.PDF
https://doi.org/10.1145/76380.76381
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html
http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1284.PDF
http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1284.PDF
http://lucacardelli.name/indexArtifacts.html
https://www.cs.utexas.edu/users/EWD/MemRes%28A4%29.pdf
https://doi.org/10.1016/0167-6423%2894%2990002-7
https://doi.org/10.1016/0167-6423%2894%2990002-7
https://doi.org/10.1016/0167-6423%2894%2990002-7
https://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1308.PDF
https://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1308.PDF
https://www.cs.utexas.edu/users/EWD/ewd00xx/EWD32.PDF
https://www.cs.utexas.edu/users/EWD/ewd00xx/EWD32.PDF
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
https://www.cs.utexas.edu/users/EWD/
https://www.cs.utexas.edu/users/EWD/MemRes%28A4%29.pdf
https://inference-review.com/article/the-man-who-carried-computer-science-on-his-shoulders

