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Robust level-3 BLAS Inverse Iteration from the Hessenberg

Matrix

ANGELIKA SCHWARZ, Umeå University, Sweden

Inverse iteration is known to be an effective method for computing eigenvectors corresponding to simple

and well-separated eigenvalues. In the non-symmetric case, the solution of shifted Hessenberg systems is

a central step. Existing inverse iteration solvers approach the solution of the shifted Hessenberg systems

with either RQ or LU factorizations and, once factored, solve the corresponding systems. This approach has

limited level-3 BLAS potential since distinct shifts have distinct factorizations. This paper rearranges the RQ

approach such that data shared between distinct shifts can be exploited. Thereby the backward substitution

with the triangular R factor can be expressed mostly with matrix–matrix multiplications (level-3 BLAS). The

resulting algorithm computes eigenvectors in a tiled, overflow-free, and task-parallel fashion. The numerical

experiments show that the new algorithm outperforms existing inverse iteration solvers for the computation

of both real and complex eigenvectors.
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1 INTRODUCTION

Inverse iteration is an established method for computing eigenvectors. When an approximation λ
to an eigenvalue of a matrix A is known, inverse iteration approximates an eigenvector by solving

(A − λI )z (k ) = ρ (k )z (k−1) k ≥ 1.

Here, z (0) is a unit norm starting vector and ρ (k ) is a scalar that normalizes the iterate z (k ) . A

converging sequence of z (k ) yields a right eigenvector z � 0 that is an exact eigenvector of a
nearby matrix A + E with | |E | | = O (ϵ | |A| |), where ϵ denotes the machine precision, implying a
small residual | |Az − λz | | = O (ϵ | |A| |).

This paper concerns the case when A is non-symmetric and real. A standard approach reduces
A to an upper Hessenberg matrix H = QT

0 AQ0, where Q0 is an orthogonal matrix. Then inverse
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25:2 A. Schwarz

iteration approximates an eigenvector x � 0 of H by

(H − λI )x (k ) = σ (k )x (k−1) k ≥ 1. (1)

The scalar σ (k ) is again chosen so that x (k ) has unit norm. A computed eigenvector x is backtrans-

formed into an eigenvector ofA by z ← Q0x . Varah [1968] showed that the starting vector x (0) can
be chosen such that a single iteration of (1) suffices. Then the task of computing an eigenvector z
necessitates the efficient solution of shifted Hessenberg systems. This will be the topic of this paper.

Inverse iteration (1) hinges on the availability of good approximations λ to the true eigenval-
ues. These approximations can be computed through the QR algorithm without accumulating the
orthogonal transformations [Golub and Van Loan 1996, Section 7.6.1]. This approach is indeed
supported by the LAPACK 3.9.0 inverse iteration routine DHSEIN [Anderson et al. 1999]. If a sub-
diagonal entry of the Hessenberg matrix is zero, the eigenproblem decouples into smaller block-
triangular problems. When the QR algorithm processes the blocks separately, DHSEIN exploits
the known affiliation of the eigenvalue and the block it belongs to and performs inverse itera-
tion only on the relevant block. This paper is therefore based on two assumptions. First, good
approximations to the eigenvalues of H are available. In other words, each approximation λ is an
exact eigenvalue of some matrix H + F , where | |F | | = O (ϵ ). Second, the Hessenberg matrix H is
unreduced, i.e., all subdiagonal entries are non-zeros hj+1, j � 0 for all j = 1, . . . ,n − 1.

This paper proposes a new algorithm for a more efficient computation of (1) if a batch of eigen-
vectors corresponding to distinct eigenvalues is sought. The new algorithm combines two ideas.
The first idea is due to Henry [1994] who addresses the solution of a shifted Hessenberg system
through an RQ factorization. In a single sweep, H is reduced column-by-column to an upper tri-
angular R such that the newly computed column of R is immediately used in the backward substi-
tution. The level-3 BLAS potential in this approach is limited since distinct shifts result in distinct
RQ factorizations. This problem has been addressed by Bosner et al. [2018, Section 3] and gives the
second idea. Level-3 BLAS can be introduced in spite of distinct shifts. A partially computed (tiled)
RQ factorization preserves data that is shared between distinct shifts. The computation can be
arranged such that most of the computation corresponds to matrix–matrix multiplications. Specif-
ically, this paper contributes an inverse iteration algorithm based on solving shifted Hessenberg
systems through the RQ approach with the following highlights.

• The RQ approach is revised such that most of the backward substitution corresponds to
matrix–matrix multiplications (level-3 BLAS [Dongarra et al. 1990]) in spite of distinct
eigenvalues.
• The new algorithm is tiled and can naturally be parallelized with tasks.
• In existing inverse iteration solvers, complex eigenvectors are computationally more expen-

sive than real eigenvectors. The new algorithm supports the computation of real and com-
plex eigenvectors alike, meaning that the computational cost per column is approximately
the same.

The rest of this paper is organized as follows. Section 2 reviews the LU approach realized in
DHSEIN and the RQ approach by Henry [1994] as well as the tiled RQ factorization by Bosner
et al. [2018]. Inspired by these ideas, Section 3 presents the new algorithm for solving shifting
Hessenberg system, which is the core of the inverse iteration routine developed in Section 4.
Section 5 describes the numerical experiments and presents their results.

2 RELATED WORK

This section reviews approaches to the solution of shifted Hessenberg systems. First, the LU ap-
proach implemented in LAPACK and the RQ factorization advocated by Henry [1994] are discussed.
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Robust level-3 BLAS Inverse Iteration from the Hessenberg Matrix 25:3

Then, the tiled RQ factorization by Bosner et al. [2018] delivers key ideas used in the new algorithm
presented in Section 3.

2.1 LU Factorization

LAPACK includes the inverse iteration routine DLAEIN [Anderson et al. 1999] for computing
a single eigenvector. DLAEIN addresses the solution of the first iteration of (1) through an LU
factorization with partial pivoting

P (H − λI ) = LU , Ly = Px (0), Ux (1) = αy, x ← σ (1)x (1) .

Here,U is upper triangular,L is lower unit triangular, and P is a permutation matrix. As the starting
vector can be chosen such that a single iteration suffices [Peters and Wilkinson 1971; Varah 1968],

DLAEIN executes only one half iteration solving Ux (1) = αy. The scalar α ∈ (0, 1] serves the
avoidance of overflow. The vectory is set to a scaled vector of ones e , where the scaling depends on

H . In other words, the starting vector is implicitly selected as x (0) = P−1Le . If the first initial vector
y does not satisfy the convergence criterion in the first half iteration, the initial vector is exchanged
rather than computing more iterations. Distinct shifts yield distinct LU factorizations of H − λI .
Hence, when several eigenvectors corresponding to distinct eigenvalues are sought, a different LU
factorization is computed for each eigenvalue. To not overwrite H , the upper triangular factor U
is computed in a workspace.

2.2 RQ and UL Factorization

Henry [1994; 1995] approaches the solution of (H − λI )x = b through an RQ factorization. By
applying suitable Givens rotations from the right,

(H − λI )GT
nG

T
n−1 . . .G

T
2︸�������������︷︷�������������︸

Q T

G2 . . .Gn︸�����︷︷�����︸
Q

x = b,

the shifted Hessenberg matrix is transformed into an upper triangular matrix R = (H − λI )QT .
The solution x is obtained by solving Ry = b and backtransforming x = QTy. The application of
the Givens rotations successively computes the columns of R from right to left. Specifically, the
Givens rotation GT

k is constructed to annihilate the subdiagonal entry h(k,k − 1) and transforms
the columns k − 1 and k . As soon as a column of R has been computed, it is immediately used in
a column-oriented backward substitution and then discarded. Henry uses an auxiliary column to
compute and store this single column of R. The full procedure is listed in Algorithm 1. The flop
count of Algorithm 1 is 3.5n2 + O (n) for a real shift. By virtue of merging the computation of
the R factor and the backward substitution, the matrix H is accessed only once. Since H is left
untouched, several shifted Hessenberg systems can be solved simultaneously and benefit from
improved temporal locality of accessing columns of H .

When the shift in Algorithm 1 is complex, both the R and the Q factor become complex. The
backward substitution with R then relies fully on complex arithmetic and multiplies complex vec-
tors with complex scalars. To exploit that all entries but the diagonal ofH−λI are real, Henry [1994,
Section 4] employs the RQ approach only for real shifts. Complex shifts, by contrast, are addressed
by an UL factorization. The UL approach can benefit from mixed real-complex arithmetic such that
real vectors are multiplied with complex scalars. Depending on what Gauss transformation is used,
the UL approach requires 3n2 + O (n) or 3.5n2 + O (n) flops.

2.3 Tiled RQ Factorization

Henry’s RQ factorization has been generalized to better support the simultaneous solution of
many Hessenberg systems. The origin of this generalization is in the computation of the complex

ACM Transactions on Mathematical Software, Vol. 48, No. 3, Article 25. Publication date: September 2022.



25:4 A. Schwarz

ALGORITHM 1: Solving (H − λI )x = b with an RQ decomposition (Henry [1994, Algorithm 2])

1 v ← h(1 : n,n); v (n) ← v (n) − λ; x ← b;

2 for k ← n : −1 : 2 do

3 Determine a Givens rotation GT
k
=

[
ck −sk
sk ck

]
such that [h(k,k − 1) v (k )]GT

k
= [0 ϕ];

// Backward substitution

4 x (k ) = x (k )/ϕ;

5 τ1 ← skx (k ); τ2 ← ckx (k );

6 x (1 : k − 2) ← x (1 : k − 2) − τ2v (1 : k − 2) + τ1h(1 : k − 2,k − 1);

7 x (k − 1) ← x (k − 1) − τ2v (k − 1) + τ1 (h(k − 1,k − 1) − λ);

// Compute column of the triangular factor

8 v (1 : k − 2) ← ckh(1 : k − 2,k − 1) + skv (1 : k − 2);

9 v (k − 1) ← ck (h(k − 1,k − 1) − λ) + skv (k − 1);

10 τ1 ← x (1)/v (1);

// Backtransform x ← QT x

11 for k ← 2 : n do

12 τ2 ← x (k );

13 x (k − 1) ← ckτ1 − skτ2;

14 τ1 ← ckτ2 + skτ1;

15 return x ;

frequency response function (transfer function) G (σ� ) = C (A− σ�I )−1B of a linear time-invariant
dynamical system ẋ (t ) = Ax (t ) + Bu (t ), y (t ) = Cx (t ). Here, A ∈ Rn×n is the system matrix,
B ∈ Rn×m is the input, C ∈ Rp×n is the output, the shifts σ� are complex and m,p � n. Beat-
tie, Drmač and Gugercin [2012] and Bosner, Bujanović and Drmač [2013; 2018] target the com-

putation of G (σ� ) through a reduction to the controller-Hessenberg form C̃ (Ã − σ�I )−1B̃. Here,

Ã = QHAQ ∈ Cn×n is m-Hessenberg (Hessenberg with m subdiagonals), C̃ = CQ ∈ Cp×m ,

B̃ = QHB ∈ Cn×m is upper trapezoidal and Q ∈ Cn×n is unitary. A solution can be obtained

by substituting the RQ factorization Ã − σ�I = R�Q� into the controller-Hessenberg form. Then

C̃ (R�Q� )−1B̃ = (C̃QH ) (R−1
� B̃) can be evaluated by solving a triangular system and two matrix–

matrix multiplications.
Next we summarize the idea presented in Bosner et al. [2013, 2018]. The authors devise a tile

column-oriented algorithm that computes RQ factorizations simultaneously for distinct shifts σ�
and with a significant fraction of level-3 BLAS operations. Given a block size nb , the RQ factor-
izations are computed in tile columns of widthm + nb , wherem is the number of subdiagonals of
the m-Hessenberg matrix. For a batch of shifts � = 1, . . . , s , the current tile column is split into a
window on the diagonal and the remaining offdiagonal part. The window is nb-by-(m + nb) and
m-Hessenberg. It is reduced to triangular shape withm leading zero columns by applying unitary
transformations from the right. The unitary transformations are only applied to the window and

are accumulated into a matrix Q� ∈ C(m+nb )×(m+nb ) . It remains to update the offdiagonal part

with QH
� . The offdiagonal part is partitioned [D E�]. The matrix D is shared across shifts. The

matrix E� holds the shift-distinct columns that have been transformed with previous unitary trans-
formations. The unitary matrix QH

� is partitioned conformally as QH
� = [U � V �]H . The update

[D E�][U � V �]H is executed as a block matrix operation. First, Z � ← E�V
H
� is executed as

a batched matrix–matrix multiplication for � = 1, . . . , s . Then, the matrix–matrix multiplication
[Z 1 · · · Z s ]← [Z 1 · · · Z s ] +D[U H

1 · · · U H
s ] with the shared D and copying back the

tile columns complete the update.

ACM Transactions on Mathematical Software, Vol. 48, No. 3, Article 25. Publication date: September 2022.



Robust level-3 BLAS Inverse Iteration from the Hessenberg Matrix 25:5

Fig. 1. Reduction of the rightmost tile column.

The tiled RQ approach delivers two key concepts that are used for the algorithm developed in
the next section. First, the algorithm is designed as a tile column-oriented algorithm such that the
shift-specific orthogonal transformations are only applied to the small window on the diagonal.
Second, working with a partially reduced Hessenberg matrix and rearranging the computation
reveals data that is shared between distinct shift. The next section applies these two concepts to
Henry’s column-oriented backward substitution algorithm to introduce level-3 BLAS potential.

3 SOLUTION OF SHIFTED HESSENBERG SYSTEMS WITH LEVEL-3 BLAS

In this section we devise a tile column-oriented algorithm that solves (H −λ�I )x � = b� simultane-
ously for many distinct shifts λ� . For simplicity, we assume λ� to be real and defer the complex case
to Section 4.3. Using ideas by Bosner et al. [2018], we adapt the RQ approach by Henry [1994] such
that a large part of the data is shared. This way, the backward substitution phases can be merged
for several shifts such that a large fraction of the computation corresponds to matrix–matrix
multiplications.

3.1 Simultaneous Backward Substitution of a Batch of Shifts

The RQ approach requires a different sequence of Givens rotations for every shift λ� , � = 1, . . . ,m.
The Given rotation

GT
k, � = Ik−2 ⊕

[
c (k, �) −s (k, �)
s (k, �) c (k, �)

]
⊕ In−k ∈ Rn×n , (2)

where ⊕ denotes the direct sum, transforms the columns j and j − 1 of H − λ�I . To be available
in the backtransformation, the cosine and sine components of all Givens rotations are recorded in
the matrices C = [c (k, �)] ∈ Rn×m and S = [s (k, �)] ∈ Rn×m .

The RQ approach transforms the Hessenberg matrix (H − λ�I )GT
n, � . . .G

T
2, � = R� . We apply the

Givens rotations in batches and thereby compute a triangular factor R� tile column by tile column
starting from the right.

Rightmost tile column: The first batch of Givens rotationsGT
n, �, . . . ,G

T
k, � transforms the column

rangeN := k : n of H − λ�I into R� (:,N ). Figure 1 illustrates the situation; matrix entries that are
different for every shift are highlighted. The Givens rotation GT

k, � transforms the columns k and

k − 1, where k − 1 is outside of the currently processed tile column. Hence, applying GT
k, � yields a

cross-over column r̃ � .
The diagonal tile has been transformed into a triangular matrix R� (N ,N ). The system

R� (N ,N )x � (N ) = b� (N ) can be solved by backward substitution for every shift (level-2 BLAS).
Let K := 1 : k − 1 be the index range of the remaining row indices. In a tile column-oriented

ACM Transactions on Mathematical Software, Vol. 48, No. 3, Article 25. Publication date: September 2022.



25:6 A. Schwarz

Fig. 2. Reduction of a center tile column.

backward substitution algorithm, the computed solution is used to update b� (K ) ← b� (K ) −
R� (K ,N )x � (N ). If R� (K ,N ) is not generated explicitly, the update reads

b� (K ) ← b� (K )−
[
h(K ,k − 1) − λ�ek−1 H (K ,N )

]
GT

n, � (N +,N +) · · ·GT
k, � (N +,N +)︸����������������������������������������������������������������������������������������︷︷����������������������������������������������������������������������������������������︸[

r̃ � R� (K ,N )
]

[
0

x � (N )

]
,

where N + := k − 1 : n and ek−1 is the vector whose (k − 1)-th entry is one and all other entries
are zero. If the Givens rotations are applied to the right-hand side, the update

b� (K ) ← b� (K ) −
[
h(K ,k − 1) − λ�ek−1 H (K ,N )

]
GT

n, � (N +,N +) · · ·GT
k, � (N +,N +)

[
0

x � (N )

]
︸���������������������������������������������������︷︷���������������������������������������������������︸

z �

can be interpreted as a block matrix multiplication where the second block H (K ,N ) is shared
across distinct shifts. Hence, when several right-hand sides z� are computed simultaneously, the
multiplication with the second block H (K ,N ) corresponds to a matrix–matrix multiplication
(level-3 BLAS). Only the scalar-vector multiplication with the first block h(K ,k − 1) − λ�ek−1

is shift-specific. Note that the computation of z� is cheap since every Givens rotation only trans-
forms two entries of x � .

Center tile columns: In contrast to the rightmost tile column, center tile columns have shift-
dependent cross-over columns and diagonal entries. Figure 2 illustrates the situation. Let J1 := 1 :
j − 1, J2 := j : k − 1 and J +2 := j − 1 : k − 1.

The applications of the batch of Givens rotations GT
k−1, �, . . . ,G

T
j, � yields( [

h(J1, j − 1) H (J1, j : k − 2) r̃ � (J1)
h(J2, j − 1) H (J2, j : k − 2) r̃ � (J2)

]
− λ�

[
e j−1 0

0 I − ek−1e
T
k−1

])
GT

k−1, � (J +2 ,J +2 ) . . .GT
j, � (J +2 ,J +2 ) =

[
s̃� R� (J1,J2)
0 R� (J2,J2)

]
. (3)

The matrix I−ek−1e
T
k−1

differs from the identity matrix in the last diagonal entry, which is zero. The

matrix
[

e j−1

0

			 0

I −ek−1eT
k−1

]
ensures that the shift affects all diagonal entries of H in the current tile

column, but not r̃ � . The application of the Givens rotations yields R� (:,J2) and a new cross-over
column s̃� .

ACM Transactions on Mathematical Software, Vol. 48, No. 3, Article 25. Publication date: September 2022.



Robust level-3 BLAS Inverse Iteration from the Hessenberg Matrix 25:7

The diagonal tile is transformed into a triangular matrix R� (J2,J2). The resulting triangular
system R� (J2,J2)x � (J2) = b� (J2) can be solved with backward substitution for every shift. Its
solution x � (J2) is used in a linear update. Instead of generating R� (J1,J2) explicitly, the Givens
rotations can again be applied to the right-hand side. Then the update

b� (J1) ← b� (J1)−
[
h(J1, j − 1) − λ�e j−1 H (J1, j : k − 2) r̃ � (J1)

]
(4)(

GT
k−1, � (J +2 ,J +2 ) . . .GT

j, � (J +2 ,J +2 )

[
0

x � (J2)

])
reveals the shared data H (J1, j : k − 2). If many right-hand sides are computed simultaneously,
the computation can benefit from level-3 BLAS. Specifically, when interpreted as a block matrix
multiplication, the update comprises a scalar-vector multiplication withh(J1, j−1)−λ�e j−1 (level-
1 BLAS), a matrix–matrix multiplication with H (J1, j : k − 2) (level-3 BLAS) and a shift-specific
column update with r̃ � (J1) (level-1 BLAS).

The column range of the center tile is intentionally left open. It is certainly a possibility to have
several center tile columns. In this case, a realization can iterate over center tile column from right
to left until the leftmost tile column is reached.

Leftmost tile column: It remains to transform the top-left diagonal tile of H to triangular form.
The application of the Givens rotations GT

j−1, � . . .G
T
2, � yields( [

H (J1, 1 : j − 2) s̃�
]
− λ� (I − e j−1e

T
j−1)

)
GT

j−1, � (J1,J1) . . .GT
2, � (J1,J1) = R� (J1,J1).

The solution of the triangular system R� (J1,J1)x � (J1) = b� (J1) with backward substitution fi-
nalizes the backward substitution phase.

Remark. The computational efficiency of (4) hinges on the availability of the cross-over column
r̃ � . If r̃ � is not stored, the right side of (4) is

b� (J1) − F
[

H (J1, j − 1 : n)
H (J2, j − 1 : n) − λ�I

]
GT

n, � (j − 1 : n, j − 1 : n) . . .GT
j, � (j − 1 : n, j − 1 : n)

︸��������������������������������������������������������������������������������������������������︷︷��������������������������������������������������������������������������������������������������︸[
s̃� R� (J1, j : n)

]
⎡⎢⎢⎢⎢⎢⎣

0
x � (J2)
0n−k+1

⎤⎥⎥⎥⎥⎥⎦ ,
where F = [I j−1×j−1 0j−1×n−j+1] extracts the top j − 1 rows and ensures matching dimensions
with b� (J1). If the Givens rotations are applied to the right vector encompassing x � (J2), fill-in is
generated and the vector becomes dense. Hence, no matter if the Givens rotations are applied toH
or to x � , the computation depends on the n-th column of H − λ�I . Storing the cross-over column
r̃ effectively prunes the computation of the triangular factor. If the cross-over columns are stored,
the reduction and the backward substitution phase can be separated.

3.2 A Tiled Algorithm for Solving Shifted Hessenberg Systems

This section uses the ideas presented in the previous section to derive a tiled algorithm for
the simultaneous solution of shifted Hessenberg systems. The Hessenberg matrix H ∈ Rn×n is
partitioned into a grid of N × N tiles. To simplify the presentation of the algorithms, we assume
that all tiles are br ×br and that n = Nbr. The shifts are processed in batches of size bc. We assume
that the total number of shifts m is an integer multiple of bc, i.e., m = Mbc. The two partitionings
induce a partitioning of the right-hand sides B ∈ Rn×m into a grid of N ×M tiles, where every tile is
br × bc.

The algorithm is split into three phases. The reduction phase computes the Givens rotations
that transform the shifted Hessenberg matrix into a triangular factor. Furthermore, it records the

ACM Transactions on Mathematical Software, Vol. 48, No. 3, Article 25. Publication date: September 2022.



25:8 A. Schwarz

ALGORITHM 2: Reduction of a shifted Hessenberg tile to triangular form

Data: H ∈ Rn×n−1 and cross-over columns R̃ = [r̃1, . . . , r̃m] ∈ Rn×m such that [H r̃ �] ∈ Rn×n is

upper Hessenberg, column hleft ∈ Rn , shifts Λ = [λ1, . . . , λm]T ∈ Rm

Result: Components C = [c (j, �)] ∈ Rn×m and S = [c (j, �)] ∈ Rn×m of (n + 1)-by(n + 1) Givens

rotations Ĝ
T
k, � = Ik−1 ⊕

[
c (k, �) −s (k, �)
s (k, �) c (, �)

]
⊕ In−k whose application yields an upper

triangular R� through ([hleft | H r̃ � +λ�en]− [0 | λ�In])Ĝ
T
n, � . . . Ĝ

T
1, � = [0 | R�]. (5)

1 function ReduceDiag(H ,hleft,Λ, R̃)

2 for � ← 1 : m do

3 v ← r̃ � ;

4 for k ← n : −1 : 2 do

5 Determine and record a Givens rotation such that [h(k,k − 1) v (k )]

[
c (k, �) −s (k, �)
s (k, �) c (k, �)

]
=

[0 �];

6 v (1 : k − 2) ← c (k, �)h(1 : k − 2,k − 1) + s (k, �)v (1 : k − 2);

7 v (k − 1) ← c (k, �) (h(k − 1,k − 1) − λ� ) + s (k, �)v (k − 1);

8 if hleft � 0 then

9 Determine and record a Givens rotation such that [hleft (1) v (1)]

[
c (1, �) −s (1, �)
s (1, �) c (1, �)

]
= [0 �];

10 else

11 c (1, �) ← 1; s (1, �) ← 0; // Identity matrix (padding)

12 return C, S ;

cross-over columns that allow computing linear updates in the backward substitution as in (4).
The backward substitution phase solves the triangular systems. The backtransform phase transforms
the computed solutions into solutions to the original shifted Hessenberg systems.

Reduction phase. The reduction phase computes and records the Givens rotations and cross-over
columns required for the backward substitution phase. The computation proceeds tile column by
tile column. The transformation of a tile column is split into ReduceDiag and ReduceOffdiag.
ReduceDiag addresses the second block row of (3); ReduceOffdiag concerns the first block row
of (3).

The kernel ReduceDiag computes the Givens rotations necessary to transform a diagonal tile
to triangular form. Algorithm 2 lists the details. It closely resembles Algorithm 1, but omits the
backward substitution and adds the cross-over columns. Note that in Algorithm 2 (5) the matrix

[hleft H r̃ �] is n-by-(n+ 1) and the Givens rotations are (n+ 1)-by-(n+ 1) due to the cross-over
columns. The case distinction (lines 8–11) aims at supporting the computation of the top-left diag-

onal tile. For a top-left diagonal tile, the column hleft does not physically exist. The driver routine

TiledReduce discussed further down sets hleft to a zero column. In this case the computation of
the Givens rotation (line 11) is meaningless. The first column of the storage matrices C and S of
the Givens rotations is never read and can be viewed as padding. The flop count of Algorithm 2 is
1.5n2 + O (n) per shift.

The kernel ReduceOffdiag concerns the first block row of (3) and is realized in Algorithm 3. It
applies the Givens rotations computed in ReduceDiag to an offdiagonal tile and records the left
cross-over column. Algorithm 3 requires 3nk + O (k ) flops per shift if the tile being processed is
k-by-n.
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ALGORITHM 3: Reduction of an offdiagonal Hessenberg tile

Data: H ∈ Rk×n , cross-over columns R̃
right
= [r̃

right
1 , . . . , r̃

right
m ] ∈ Rk×m , components

C = [c (j, �)] ∈ Rn×m and S = [s (j, �)] ∈ Rn×m of Givens rotations

Ĝ
T
k, � = Ik−1 ⊕

[
c (k, �) −s (k, �)
s (k, �) c (k, �)

]
⊕ In−k as computed by ReduceDiag, shifts

Λ = [λ1, . . . , λm]T ∈ Rm .

Result: Cross-over columns R̃
left
= [r̃ left

1 , . . . , r̃
left
m ] ∈ Rk×m satisfying[

h(1 : k, 1) − λ�ek H (1 : k, 2 : n) r̃
right
�

]
Ĝ

T
n, � . . . Ĝ

T
1, � =

[
r̃ left
� �

]
.

1 function ReduceOffdiag(H , R̃
right
,Λ)

2 for � ← 1 : m do

3 v ← r̃
right
�

; // Start with previously computed cross-over column

4 for j ← n : −1 : 2 do

5 v (1 : k ) ← c (j, �)h(1 : k, j ) + s (j, �)v (1 : k );

// Compute cross-over column

6 r̃ left
� (1 : k − 1) ← c (1, �)h(1 : k − 1, 1) + s (1, �)v (1 : k − 1) ; // Shift-independent part

7 r̃ left
�

(k ) ← c (1, �) (h(k, 1) − λ� ) + s (1, �)v (k ) ; // Last shift-dependent entry

8 return [r̃ left
1 , . . . , r̃

left
m ];

The partitioning of H into tiles and the kernels ReduceDiag and ReduceOffdiag can be com-
bined into a tiled algorithm for the reduction phase. The resulting algorithm TiledReduce is listed
in Algorithm 4. In a tiled algorithm, the row range covered by the first block row of (3) is split into
smaller tile rows. Since only the tiles directly above the diagonal tiles are affected by the shift, a
case distinction is necessary. Line 17 of Algorithm 4 handles the tiles directly above the diagonal
tiles. Line 19, by contrast, handles the remaining far-from-diagonal tiles that are unaffected by the
shift. The shift is disabled by setting the corresponding parameter to zero.

Backward substitution phase. The backward substitution phase solvesR�x � = b� for every �. The
computation follows a standard pattern of tiled backward substitution. It iterates over tiles of the
solution from bottom to top. For each iteration a new tile of the solution is computed with a small
backward substitution. The small backward substitution is realized by Algorithm 5 Solve. Then
the readily computed part of the solution is used in a tile update of above-lying tiles, realized by
Algorithm 6 Update. These two kernels are combined to the tiled backward substitution algorithm
TiledSolve listed in Algorithm 7. In the following, we present the details of the algorithms.

Solve realizes the small backward substitution. Since our algorithm splits the reduction phase
and the backward substitution phase, the relevant part of the triangular factor has to be recom-
puted. Algorithm 5 gives the details. Analogously to Algorithm 2 ReduceDiag, the top-left diago-

nal tile of H − λ�I does not have a physical column hleft to its left. In that case, the driver routine

TiledSolve discussed below sets hleft to a zero column and thereby skips the computation of the
left cross-over column (line 7). The flop count of Algorithm 5 is 3.5n2 + O (n).

Next we focus on the Update kernel. Recall the index ranges J1 := 1 : j − 1, J2 := j : k − 1 and
J +2 := j − 1 : k − 1. Algorithm 6 Update realizes (4). The application of the Givens rotations in (4)
to the right transforms

GT
k−1, � (J +2 ,J +2 ) . . .GT

j, � (J +2 ,J +2 )

[
0

x � (J2)

]
=

[
ρ
z�

]
,
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ALGORITHM 4: Tiled reduction of a shifted Hessenberg matrix to triangular form and recording of the

applied Givens rotations and relevant cross-over columns

Data: Hessenberg matrix H ∈ Rn×n , tile size br with n = Nbr and N ≥ 2, shifts

Λ = [λ1, . . . , λm]T ∈ Rm , tile size bc withm = Mbc

Result: Givens rotations GT
j, �

as in (2) and stored as C = [c (j, �)] ∈ Rn×m and S = [s (j, �)] ∈ Rn×m

such that (H − λ�I )GT
n, �
. . .GT

2, �
= R� , cross-over columns R̃� ∈ Rn×N

1 function TiledReduce(H ,Λ)

2 for � ← 1 : m do

3 r̃ � (:,N ) ← h(:,n); r̃� (n,N ) ← r̃� (n,N ) − λ� ;

4 for � ← 1 : bc : m do

5 Set the tile column index jtile ← N − 1;

6 L ← � : � + bc − 1; // Index range of current batch of shifts

7 for j ← n − br + 1 : −br : br + 1 do

8 J ← j : j + br − 1 ; // Index range of current tile column

9 J− ← j − 1 : j + br − 2 ; // Tile column index range shifted by 1

10 Partition
[
hleft︸︷︷︸
br×1

Hdiag︸︷︷︸
br×(br−1)

]
← H (J ,J−);

11 Pack R̃
right ←

[
r̃ � (J , jtile + 1), r̃ �+1 (J , jtile + 1), . . . , r̃ �+bc−1 (J , jtile + 1)

]
;

12 C (J ,L), S (J ,L) ← ReduceDiag(Hdiag,hleft,Λ(L), R̃
right

);

13 for i ← j − br : −br : 1 do

14 I ← i : i + br − 1 ; // Index range of current tile row

15 Pack R̃
right ←

[
r̃ � (I, jtile + 1), r̃ �+1 (I, jtile + 1), . . . , r̃ �+br−1 (I, jtile + 1)

]
;

16 if i + br = j then

17 [r̃ � (I, jtile), r̃ �+1 (I, jtile), . . . , r̃ �+br−1 (I, jtile)]← ReduceOffdiag(H (I,J−),

R̃
right
,Λ(L));

18 else

19 [r̃ � (I, jtile), r̃ �+1 (I, jtile), . . . , r̃ �+br−1 (I, jtile)]← ReduceOffdiag(H (I,J−),

R̃
right
, 0);

20 jtile ← jtile − 1;

21 J ← 1 : br ; // Index range of top-left corner

22 Pack R̃
right ←

[
r̃ � (J , 1), r̃ �+1 (J , 1), . . . , r̃ �+bc−1 (J , 1)

]
;

23 C (J ,L), S (J ,L) ← ReduceDiag(H (J , 1 : br − 1), 0,Λ(L), R̃
right

);

24 return C, S, (R̃1, . . . , R̃m )

which is computed in lines 3 and 9–13. The block matrix multiplication (4) with the left block
yields the scalar-vector multiplication b� ← b� − ρ (h(J1, j − 1) − λ�e j−1) (lines 4–5). The mul-
tiplication with the center block H (J1, j : k − 2) is executed in line 14. When many vectors z�
are computed simultaneously, this operation corresponds to a matrix–matrix multiplication. Con-
sequently, it can benefit from an efficient implementation of DGEMM available in an optimized
BLAS library [Blackford et al. 2002; Dongarra et al. 1990]. The multiplication with the right block
r̃ � is realized with the vector-scalar multiplication (line 16). The total flop count of Algorithm 6
is 2mnk + O ((m + k )n). When several right-hand sides are computed simultaneously, the matrix–
matrix multiplication in line 14 dominates the computation.
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ALGORITHM 5: Small backward substitution

Data: H ∈ Rn×n−1 and cross-over columns R̃ = [r̃1, . . . , r̃m] ∈ Rn×m such that [H r̃ �] ∈ Rn×n is

upper Hessenberg, column hleft, X ∈ Rn×m , shifts Λ = [λ1, . . . , λm]T ∈ Rm , B ∈ Rn×m , Givens

rotations computed by TiledReduce and stored asC = [c (j, �)] ∈ Rn×m and S = [s (j, �)] ∈ Rn×m .

Result: X ∈ Rn×m satisfying R�x (:, �) = b (:, �) where R� is given by (5).

1 function Solve(H ,hleft,Λ, R̃,C, S,B)

2 X ← B;

3 for � ← 1 : m do

4 v ← r̃ � ;

5 Compute x (2 : n, �) using lines 2–9 of Algorithm 1;

6 if hleft � 0 then

7 v (1) ← v (1)c (1, �) − hleft (1)s (1, �);

8 x (1, �) ← x (1, �)/v (1);

9 return X ;

ALGORITHM 6: Linear tile update

Data: H ∈ Rm×k , X ∈ Rk×n , B ∈ Rm×n , cross-over columns R̃ = [r̃1, . . . , r̃n] ∈ Rm×n ,

Λ = [λ1, . . . , λn]T ∈ Rn , Givens rotations computed by TiledReduce and stored as

C = [c (j, �)] ∈ Rk×n and S = [s (j, �)] ∈ Rk×n

Result: (4) for � = 1, . . . ,n
1 function Update(H , R̃,X ,Λ,C, S,B)

2 for � ← 1 : n do

3 ρ ← s (1, �)x (1, �);

4 b (1 : m, �) ← b (1 : m, �) + ρh(1 : m, 1); // Shift-specific DAXPY

5 b (m, �) ← b (m, �) − λ�ρ;

6 Copy Z ← X ; // Use workspace to apply Givens rotation to the solution

7 for � ← 1 : n do

8 z (1, �) ← c� (1)z (1, �);

9 for j ← 2 : k do

10 τ1 ← z (j − 1, �);

11 τ2 ← z (j, �);

12 z (j − 1, �) ← c (j, �)τ1 − s (j, �)τ2;

13 z (j, �) ← s (j, �)τ1 + c (j, �)τ2;

14 B ← B −H (1 : m, 2 : k )Z (1 : k − 1, 1 : n) ; // DGEMM

15 for � ← 1 : n do

16 b (1 : m, �) ← b (1 : m, �) − r̃ �z (k, �); // Shift-specific DAXPY

17 return B;

The partitioning into tiles and the routines Solve and Update lead to the tiled backward sub-
stitution algorithm TiledSolve listed in Algorithm 7. Offdiagonal tile column updates are split
into smaller tile row updates. Only the tiles directly above diagonal tiles are affected by the shifts
(line 16). Far-from-diagonal tile updates, by contrast, are unaffected by the shifts (line 18). The
computation of z� is repeated for each tile row. Based on numerical experiments, these additional
flops are negligible compared to the gain from task parallelism, which will be introduced in the
next section.
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ALGORITHM 7: Tiled backward substitution and backtransform

Data: Hessenberg matrix H ∈ Rn×n , tile size br with n = Nbr and N ≥ 2, shifts

Λ = [λ1, . . . , λm]T ∈ Rm , B ∈ Rn×m , tile size bc withm = Mbc, Givens rotations GT
j, �

computed

with Algorithm 4 and stored as C ∈ Rn×m and S ∈ Rn×m , cross-over columns R̃� ∈ Rn×N for

� = 1, . . . ,m computed with Algorithm 4.

Result: Solution X ∈ Rn×m to HX = B diag(λ1, . . . , λm )

1 function TiledSolve(H ,Λ,C, S, (R̃1, . . . , R̃m ),B)

2 X ← B;

3 for � ← 1 : bc : m do

4 jtile ← N ; // Index of current tile column

5 L ← � : � + bc − 1; // Index range of current batch of shifts

6 for j ← n − br + 1 : −br : 1 do

7 J ← j : j + br − 1 ; // Index range of current tile column

8 J− ← j − 1 : j + br − 2 ; // Tile column index range shifted by 1

9 Partition
[
hleft︸︷︷︸
br×1

Hdiag︸︷︷︸
br×(br−1)

]
← H (J ,J−);

10 Pack R̃
right ←

[
r̃ � (J , jtile), . . . , r̃ �+bc−1 (J , jtile)

]
;

11 X (J ,L) ← Solve(Hdiag,hleft, R̃
right
,Λ(L),C (J ,L),S (J ,L),X (J ,L));

12 for i ← j − br : −br : 1 do

13 I ← i : i + br − 1 ; // Index range of current tile row

14 Pack R̃
right ←

[
r̃ � (I, jtile), r̃ �+1 (I, jtile), . . . , r̃ �+bc−1 (I, jtile)

]
;

15 if i + br = j then

16 X (I,L) ←
Update(H (I,J−), R̃

right
,X (J ,L),Λ(L),C (J ,L),S (J ,L),X (I,L));

17 else

18 X (I,L) ← Update(H (I,J−), R̃
right
,X (J ,L), 0,C (J ,L),S (J ,L),X (I,L));

19 jtile ← jtile − 1;

20 J ← 1 : br;

21 Pack R̃
right ←

[
r̃ � (J , jtile), . . . , r̃ �+bc−1 (J , jtile)

]
;

22 X (J ,L) ← Solve(H (J , 1 : br − 1), 0,Λ(L), R̃
right
,C (J ,L), S (J ,L),X (J ,L));

23 X (:,L) ← Backtransform(C (:,L), S (:,L),X (:,L));

24 return X ;

Backtransform phase. The solution x � corresponding to a shift λ� is backtransformed

y� ← GT
n, �

(
. . .

(
GT

2, �x �

))
. (5)

The components of the Givens rotations GT
j, � (2) have been recorded as C = [c (j, �)] ∈ Rn×m and

S = [s (j, �)] ∈ Rn×m in the reduction phase. A routine Backtransform realizes (5) for a batch of
vectors. A possible implementation is a column-by-column backtransform with the lines 11–14 of
Algorithm 1. The flop count for the backtransform is O (n) per shift. Line 23 of Algorithm 7 uses
Backtransform to backtransform a batch of vectors.

The successive execution of TiledReduce and TiledSolve yields a tiled solver for the simul-
taneous solution of shifted Hessenberg systems. This solver is listed in Algorithm 8 and can be
viewed as an extension to Algorithm 1. The next section parallelizes Algorithm 8.
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Fig. 3. DAG constructed for a single batch of shifts and a tile column count of n/br = 4 in Algorithm 4

TiledReduce. The task arrangement is based on what tile of H is processed.

ALGORITHM 8: Solving (H − λ�I )x� = b� simultaneously in a tiled fashion

1 C, S, (R̃1, . . . , R̃m ) ← TiledReduce(H ,Λ);

2 X ← TiledSolve(H ,Λ,C, S, (R̃1, . . . , R̃m ),B);

3.3 Parallelization with Tasks

Libraries such as PLASMA [Dongarra et al. 2019] and FLAME [Van Zee et al. 2009] show that the
design of dense linear algebra algorithms as tiled algorithms and the parallelization with tasks is an
effective way of achieving high performance. A task-parallel algorithm expresses the computation
as a Directed Acyclic Graph (DAG). The nodes of the DAG correspond to tasks and represent
tile operations. The edges of the DAG represent data dependencies between the tasks. A runtime
system asynchronously executes the tasks while satisfying all data dependencies.

This section parallelizes Algorithm 8 with tasks. The implementation follows the usual approach
and defines each tile operation as a task. Hence, every function call in Algorithm 4 TiledReduce
and Algorithm 7 TiledSolve is a task. What remains is the definition of the edges of the DAG. To
reduce the amount of edges and the associated overhead, the parallel implementation maintains
two separate DAGs. The first DAG represents the computation executed in TiledReduce; the sec-
ond DAG represents TiledSolve. All tasks related to TiledReduce must have been completed
before any task of TiledSolve is started. The implementation realizes this with a synchronization
point. Next we define the edges of each DAG.

The data dependencies of Algorithm 4 TiledReduce are as follows. A task ReduceDiag process-
ing the tile (j, j ) of H has outgoing dependencies to ReduceOffdiag tasks processing above-lying
tiles (i, j ) in the same tile column of H , i = 1, . . . , j − 1. A ReduceOffdiag task on (i, j ) has an
outgoing dependence to the task processing the left-lying tile (i, j−1). This is either a ReduceDiag
tasks (j − 1 = i) or another ReduceOffdiag task (j − 1 > i). Figure 3 illustrates the task graph for
one batch of shifts, i.e., one iteration of line 4 in Algorithm 4. Batches of shifts are independent of
each other.

Algorithm 7 TiledSolve has three task types whose dependencies are as follows. A Solve task
on (j, j ) has outgoing dependencies to Update tasks (i, j ), i = 1, . . . , j − 1. Before a Solve on the
tile (j, j ) can be executed, all updates (i, j ), j > i must have been completed. Once the backward
substitution is completed, the Backtransform can be executed. Figure 4 shows the DAG for one
iteration of line 3 in Algorithm 7. Analogously to the task-parallel execution of TiledReduce,
batches of shifts do not have any dependencies.

The implementation adds one simplification to the DAG shown in Figure 4. The computation of
the final Solve task and the Backtransform are merged. This step aims at reducing scheduling
overhead.
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Fig. 4. DAG constructed for a single batch of shifts and a tile column count of n/br = 4 in Algorithm 7

TiledSolve. The task arrangement is based on what tile of H is processed.

3.4 Further Improvements

The presentation of the algorithms has focused on the algorithmic aspect, namely the introduction
of level-3 BLAS operations to the backward substitution phase and the phrasing as tiled algorithms
that can be parallelized with tasks. A natural step is to incorporate the ideas proposed for the
original RQ approach. This includes improvements of the cache efficiency and the aggregation of
a small number of orthogonal transformations for a joint application [Henry 1994, p. 8; Beattie et al.
2012, Sec. 5.2.1] to lower the flop count. The impact of these improvements has been investigated
in Schwarz [2020]. The results of the numerical experiments in this work are solely based on the
algorithmic improvements presented in this work.

4 ROBUST COMPUTATION OF EIGENVECTORS BY INVERSE ITERATION

This section extends Algorithm 8 for solving shifted Hessenberg systems to the computation of
eigenvectors. The algorithm relies on the ability to solve triangular systems. The solution of tri-
angular systems is known to be prone to overflow. This is particularly true if shifted Hessenberg
systems are solved as part of an inverse iteration algorithm. In that case H −λI can be expected to
be ill-conditioned if λ is close to a true eigenvalue of H . By adding overflow protection, Section 4.1
renders Algorithm 8 robust while preserving the tiled structure. This yields the robust, tiled shifted
Hessenberg system solver DHSRQ3. Section 4.2 concerns the convergence criterion and the choice
of the starting vector. Together with the robust, tiled shifted Hessenberg solver, this results in a ro-
bust tiled inverse iteration algorithm DHSRQ3IN. Section 4.3 discusses the modifications necessary
to support complex shifts.

4.1 Ill-conditioned Systems and Overflow Protection

Inverse iteration assumes that a good approximation λ to a true eigenvalue of H is available. In
that case λ is an exact eigenvalue of a nearby matrix H +E where ‖E‖ = O (ϵ ) is of the order of the
machine precision. The matrixH +E−λI is exactly singular. Hence,H −λI is close-to-singular and
can be expected a have high condition number. A detailed explanation why the solution of a very
ill-conditioned system does not produce completely erroneous solutions is given by Ipsen [1997,
Section 6.3], and Parlett [1998, Section 4.3]. In fact, inverse iterations turns the ill-conditioning into
an advantage because ‖ (H − λI )−1‖ ≥ 1/‖E‖ = 1/ϵ shows that there is at least one vector whose
norm grows in the order of 1/ϵ . Section 4.2 picks this up for the selection of a starting vector.

While the ill-conditioning is not a problem for the accuracy, the computed solution can be so
large that the representational range is exceeded. A mechanism to avoid such a floating-point over-
flow is necessary. For the RQ approach, once H − λI has been factored, the backward substitution
with the corresponding triangular factor can encounter overflow. To eliminate the possibility of
floating-point overflow, implementations of inverse iteration [Peters and Wilkinson 1971, p. 435]
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and shifted Hessenberg system solvers [Henry 1994, 1995] introduce a scaling factor γ ∈ (0, 1]
and solve the scaled triangular linear system Rx = γb for the scaled solution γ−1x . By virtue of γ ,
the current representation of the solution can be rescaled such that overflow is avoided. This ren-
ders the solution process robust. A robust solver for this scaled triangular system is, for example,
DLATRS [Anderson 1991] available in LAPACK 3.9.0.

An extension to the solution of scaled triangular linear systems withn right-hand sides has been
introduced by Kjelgaard Mikkelsen and Karlsson [2017a] and concerns RX = B diag(γ1, . . . ,γn ).
Each right-hand-side is associated with a scaling factor γk ∈ (0, 1]. If B is overwritten with
the solution X in a standard (non-robust) tiled backward substitution algorithm, tile updates
read X i ← X i − Ri jX j , i < j. These tile updates are rendered robust through segment-wise
scaling factors. There is one scaling factor per column per tile. Then robust tile updates are
X i diag(δ−1

1 , . . . ,δ
−1
n ) ← X i diag(β−1

1 , . . . , β
−1
n ) − Ri j (X j diag(α−1

1 , . . . ,α
−1
n )). Overflow is avoided

by bounding the maximum possible growth in each update, computing suited scaling factors
δ−1

1 , . . . ,δ
−1
n and, if necessary, rescaling the current representation of the solution prior to the

matrix–matrix multiplication. This preserves the level-3 BLAS potential of a tile update. Since
tile updates during the tiled backward substitution can require different scalings, the final tiled
representation of the solution can be inconsistently scaled. A consistent scaling is computed by
reducing the segment-wise scaling factors to the global scaling factor γk for each column. Then
all column segments are rescaled with respect to γk . This approach supports task parallelism as
demonstrated by Kjelgaard Mikkelsen et al. [2019] and is used to render the algorithms presented
in this paper robust.

A robust tiled algorithm for solving shifted Hessenberg systems requires (a) a robust routine for
the solution of small shifted Hessenberg systems, (b) a robust tile update, and (c) a robust back-
transform. The combination of these three robust kernels yields a robust version of TiledReduce.
The robust routines are marked with the prefix R to easily distinguish between the non-robust and
the robust version.

Robust solution of small shifted Hessenberg systems. A robust counterpart of Algorithm 5 Solve
requires a small robust backward substitution routine solving R�x � = γ�b� , γ� ∈ (0, 1]. If the
(small) R� is generated explicitly, a possible realization is a call to the LAPACK routine DLATRS.
This approach is realized by Algorithm 9 RSolve. DLATRS returns x � and γ� representing γ−1

�
x � .

The total scaling of the computed solution is computed in line 13 by multiplying the input scaling
factor β� and γ� . Together, RSolve returns the scaled vector (γ�β� )−1x � .

Robust tile update. The robust version of the tile update (4) is

δ−1
� b� (J1) ← β−1

� b� (J1) −
[
h(J1, j − 1) − λ�e j−1 H (J1, j : k − 2) r̃ � (J1)

]
(
GT

k−1, � (J +2 ,J +2 ) . . .GT
j, � (J +2 ,J +2 )

[
0

α−1
�
x � (J2)

])
, (6)

where δl ∈ (0, 1] is chosen such that b� (J1) does not exceed the overflow threshold. There are
many instantiations of δl and b� (J1) that satisfy (4). Algorithm 10 computes one feasible instanti-
ation. Following Kjelgaard Mikkelsen and Karlsson [2017b], the right-hand side tileX is associated
with a vector of scaling factors α = [α1, . . . ,αn] ∈ (0, 1]n and represents the column-wise scaled
matrix X diag(α−1

1 , . . . ,α
−1
n ). Similarly, the tile B is associated with β = [β1, . . . , βn] ∈ (0, 1]n and

represents B diag(β−1
1 , . . . , β

−1
n ). To compute a tile update robustly, X and B must be consistently

scaled. The consistent scaling factor corresponds to the smaller of the two scaling factors (line 5).
The remaining computation requires the overflow-free realization of three linear updates.

Each of the three linear updates is guarded by ProtectUpdate introduced by Kjelgaard
Mikkelsen and Karlsson [2017b, Section 2.2]. ProtectUpdate receives ‖B‖∞, ‖H ‖∞, ‖X ‖∞ and
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ALGORITHM 9: Small robust backward substitution

Data: H ∈ Rn×n−1 and cross-over columns R̃ = [r̃1, . . . , r̃m] ∈ Rn×m such that
[
H r̃ �

]
∈ Rn×n is

upper Hessenberg, column hleft, B ∈ Rn×m and scaling factors β = [β1, . . . , βm] = (0, 1]m

representing B diag(β1, . . . , βm ), shifts Λ = [λ1, . . . , λm]T ∈ Rm , Givens rotations computed by

TiledReduce and stored as C = [c (j, �)] ∈ Rn×m and S = [s (j, �)] ∈ Rn×m .

Result: X ∈ Rn×m and α = [α1, . . . ,αm] ∈ (0, 1]m satisfying R�x (:, �) = α�b (:, �) where R� is given by

(5).

1 function RSolve(H ,hleft, R̃,Λ,C, S, β,B)

2 X ← B;

3 for � ← 1 : m do

// Recompute the triangular factor

4 R� ← 0n×n ;

5 r � (:,n) ← r̃ � ;

6 for k ← n : −1 : 2 do

7 t � ← h(1 : k,k − 1); t� (k − 1) ← t (k − 1) − λ� ;

8 R� (1 : k,k − 1 : k ) ←
[
t � (1 : k ) r � (1 : k,k )

] [
c (k, �)
s (k, �)

]
;

9 if hleft � 0 then

10 r� (1, �) ← r� (1, �)c (1, �) − hleft (1)s (1, �);

11 γ� ← 1 ; // Initialize routine-local scaling factor

12 Solve robustly R�x (:, �) = γ�b (:, �); // DLATRS

13 α� ← γ�β� ; // Update total scaling

14 return α , X ;

computes a scaling factor ξ ∈ (0, 1] such that the linear update ξB−H (ξX ) cannot overflow. Then
line 6 computes the column-wise scaling factors required for the first linear update (line 8). The
upper bounds are rescaled to account for a consistent scaling of B andX . After rescalingX (line 9),
B and X are consistently scaled. Line 12 computes the column-wise scaling factors required for
the second linear update (line 15). As line 14 applies the computed scaling factors prior to this
linear update, the linear update itself can safely be implemented with a call to DGEMM. Line 17
computes the scaling factors necessary for the third linear update (line 19). The scaling of the final
output B is δ and corresponds to the product of all scaling factors.

The application of the Givens rotations in line 10 is not guarded by overflow protection logic, but
can result in growth that possibly exceeds the overflow threshold. Since the evaluation of overflow
protection logic is expensive compared to the cheap Givens transformations, our software lowers
the true overflow threshold Ω by some safety margin. This safety margin is set to the tile height
br, which overestimates the maximum growth possible by Givens transformations within a tile.
Working with Ω/br is cheap to compute and guarantees that the Givens transformations in line 10
do not trigger overflow.

Robust backtransform. The robust backward substitution returns segment-wise scaled solution
vectors. It remains to compute consistently scaled solutions and backtransform these. Recall that
the partitioning into tile rows divides the vector evenly into N segments of length br and that
n = Nbr. The robust counterpart of (5) is then

y� = G
T
n, �

�����. . .
�����G

T
2, �α

−1
min

⎡⎢⎢⎢⎢⎢⎢⎢⎣
αmin

α1
x � (1 : br)
...

αmin

αN
x � (n − br + 1 : n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�����

����� . (7)
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ALGORITHM 10: Robust linear tile update

Data: H ∈ Rm×k , X ∈ Rk×n , B ∈ Rm×n , cross-over columns R̃ = [r̃1, . . . , r̃n] ∈ Rm×n ,

Λ = [λ1, . . . , λn]T ∈ Rn , Givens rotations computed by TiledReduce and stored as

C = [c (j, �)] ∈ Rk×n and S = [s (j, �)] ∈ Rk×n

Result: (6) for � = 1, . . . ,n
1 function RUpdate(H , R̃,α ,X ,Λ,C, S, β ,B)

2 Allocate δ = [δ1, . . . ,δn] ∈ (0, 1]n ;

3 for � ← 1 : n do

4 t ← h(1 : m, 1); t (m) ← t (m) − λ� ;

5 γ� ← min{α� , β� };
// Compute a scaling factor such that DAXPY in line 8 cannot overflow

6 ξ� ← ProtectUpdate
(���� γ�

β�
b (1 : m, �)

����∞ , ‖t ‖∞ , 			 γ�

α�
s (1, �)x (1, �)			) ;

7 δ� ← ξ�γ� ; // Update global scaling

8 b (1 : m, �) ← δ�

β�
b (1 : m, �) − t

(
δ�

β�
s (1, �)x (1, �)

)
; // Shift-specific DAXPY

9 Copy Z ← X diag
(

δ1
α1
, . . . , δn

αn

)
;

10 Apply Givens rotations to Z as in lines 7–13 of Algorithm 6;

11 for � ← 1 : n do

// Compute a scaling factor such that DGEMM in line 15 cannot overflow

12 ξ� ← ProtectUpdate(‖b (1 : m, �)‖∞, ‖H ‖∞ , ‖z (1 : k − 1, �)‖∞);

13 δ� ← δ�ξ� ; // Update global scaling

14 b (1 : m, �) ← ξ�b (1 : m, �); z (1 : k, �) ← ξ�z (1 : k, �) ; // Apply the scaling factors

15 B ← B −H (1 : m, 2 : k )Z (1 : k − 1, 1 : n) ; // DGEMM

16 for � ← 1 : n do

// Compute a scaling factor such that DAXPY in line 19 cannot overflow

17 ξ� ← ProtectUpdate(‖b (1 : m, �)‖∞, ‖r̃ � ‖∞, |z (k, �) |);
18 δ� ← δ�ξ� ; // Update global scaling

19 b (1 : m, �) ← ξ�b (1 : m, �) − r̃ � (ξ�z (k, �)); // Shift-specific DAXPY

20 return δ , B;

The application of the Givens rotations can exceed the overflow threshold. To avoid overflow,
Henry [1994, Algorithm 4] evaluates the maximum possible growth possible during the back-
transform. If overflow can occur, the entire vector is rescaled prior to the backtransform. If the
computation targets eigenvectors, an alternative strategy is possible. Eigenvectors are commonly
normalized. The backtransform can be executed safely if the vector is normalized with respect to
the Euclidean norm before the backtransform. The consistency scaling, the normalization, and the
backtransform can be computed in two sweeps over the vector. Algorithm 11 RBacktransform
gives the details. The lines 4–12 closely follow the LAPACK 3.9.0 routine DNRM2, which computes
the Euclidean norm with scaling to avoid overflow. The lines 14–18 simultaneously normalize and
backtransform an eigenvector. After the backtransform, the eigenvectors are still normalized.

By replacing all routines with their robust counterparts and adding segment-wise scaling fac-
tors, Algorithm 7 TiledSolve can be rendered robust. The resulting algorithm RobustTiledSolve
is listed in Algorithm 12. This leads to DHSRQ3 listed in Algorithm 13, which solves shifted Hes-
senberg systems in a tiled, robust fashion. Note that the first part TiledReduce is untouched. Only
the second part TiledSolve is replaced with its robust counterpart. Since the structure is identical
to the non-robust version, task parallelism as introduced in Section 3.3 is valid for DHSRQ3 as
well.
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ALGORITHM 11: Consistency scaling, backtransform and normalization of a single eigenvector

Data: Givens rotations GT
j, �

as in (2) computed by TiledReduce and stored asC = [c (j, �)] ∈ Rn×m and

S = [s (j, �)] ∈ Rn×m , matrix of scaling factors α = [α (i, �)] ∈ (0, 1]N×m , segment-wise scaled

X ∈ Rn×m , tile size br with n = Nbr

Result: Normalized (7) for � ← 1, . . . ,m
1 function RBacktransform(C, S,α ,X )

2 for � ← 1 : m do

3 αmin ← min
1≤h≤N

{α (h, �)} ; // Global scaling factor of current column

4 xmax ← 0;

5 t ← 0;

6 for i ← 1 : n do

7 itile ← �i/br� ; // Index of current segment

8 if x (i, �) � 0 then

9 x (i, �) ← αmin

α (itile, � )x (i, �) ; // Consistency scaling

10 if xmax < |x (i, �) | then

11 t ← 1 + t
(

xmax

|x (i, �) |

)2
; xmax ← |x (i, �) |;

12 else

13 t ← t +
(
|x (i, �) |

xmax

)2
;

14 xnrm ← α−1
min

xmax
√
t ; // Euclidean norm of current column

// Simultaneous normalization and backtransform

15 τ1 ← x (1, �)/xnrm;

16 for i ← 2 : n do

17 τ2 ← x (i, �)/xnrm;

18 y (i − 1, �) ← c (i )τ1 − s (i, �)τ2;

19 τ1 ← c (i, �)τ2 + s (i, �)τ1;

20 return Y ; // ‖y (:, �)‖2 = 1

4.2 Starting Vector and Convergence Test

It is well understood that the choice of the starting vector is crucial for both the convergence and
the performance of inverse iteration (1). This is particularly true because the residual can increase
by doing more than one iteration. Ipsen [1997, Sections 2.5, 2.6, 6.2] presents a comprehensive sum-
mary of work by Varah, Wilkinson and Peters on choosing a suited starting vector. Furthermore,
an example demonstrating an increasing residual when more than one iteration is computed can
be found in Section 5.4 in the same reference.

A standard choice for the starting vector is a scaled vector of ones x (0) ← ρ[1, . . . , 1]T ,
ρ > 0 [Ipsen 1997, p. 259]. In LAPACK 3.9.0 the inverse iteration routine DHSEIN chooses
ρ = ‖H ‖∞ϵ assuming ‖H ‖∞ > 0. With this choice a single iteration of (1) most frequently leads
to convergence [Ipsen 1997, p. 264]. If not, LAPACK tries other starting vectors orthogonal to
previous choices rather than computing more iterations of (1). The convergence test is passed if

‖x (1) ‖1 > 0.1/
√
n. LAPACK thereby follows Varah’s [1968, p. 786] stopping criterion ‖x (1) ‖2

‖x (0) ‖2
> 1

cϵ
,

where c is a problem-dependent constant andH is assumed to be normalized ‖H ‖2 = 1. Specifically,

since LAPACK does not assume ‖H ‖2 = 1, we obtain using ‖x (0) ‖1 = n‖H ‖∞ϵ , 1/‖x ‖2 ≥ 1/‖x ‖1
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ALGORITHM 12: Robust tiled backward substitution and backtransform

Data: Hessenberg matrix H ∈ Rn×n , tile size br with n = Nbr, shifts Λ = [λ1, . . . , λm]T ∈ Rm ,

B ∈ Rn×m , tile size bc withm = Mbc, Givens rotations GT
j, �

computed with Algorithm 4 and

stored as C ∈ Rn×m and S ∈ Rn×m , cross-over columns R̃� ∈ Rn×N for each shift � = 1, . . . ,m
computed with Algorithm 4.

Result: Solution X ∈ Rn×m to HX = B diag(λ1, . . . , λm )

1 function RobustTiledSolve(H ,Λ,C, S, (R̃1, . . . , R̃m ),B)

2 α ← ones(N ,m) ; // Initialize all tile-local scaling factors with 1

3 X ← B;

4 for � ← 1 : bc : m do

5 jtile ← N ; // Index of current tile column

6 L ← � : � + bc − 1; // Index range of current batch of shifts

7 for j ← n − br + 1 : −br : 1 do

8 J ← j : j + br − 1 ; // Index range of current tile column

9 J− ← j − 1 : j + br − 2 ; // Tile column index range shifted by 1

10 Partition
[
hleft︸︷︷︸
br×1

Hdiag︸︷︷︸
br×(br−1)

]
← H (J ,J−);

11 Pack R̃
right ←

[
r̃ � (J , jtile), . . . , r̃ �+bc−1 (J , jtile)

]
;

12 α (jtile,L),X (J ,L) ←
RSolve(Hdiag,hleft, R̃

right
,Λ(L),C (J ,L), S (J ,L),α (jtile,L),X (J ,L));

13 for i ← j − br : −br : 1 do

14 I ← i : i + br − 1 ; // Index range of current tile row

15 itile ← (i + br − 1)/br; // Index of current tile row

16 Pack R̃
right ←

[
r̃ � (I, jtile), r̃ �+1 (I, jtile), . . . , r̃ �+bc−1 (I, jtile)

]
;

17 if i + br = j then

18 α (itile,L),X (I,L) ← RUpdate(H (I,J−), R̃
right

,

19 α (jtile,L),X (J ,L),Λ(L),C (J ,L),S (J ,L),α (itile,L),X (I,L));

20 else

21 α (itile,L),X (I,L) ← RUpdate(H (I,J−), R̃
right

,

22 α (jtile,L),X (J ,L), 0,C (J ,L), S (J ,L),α (itile,L),X (I,L));

23 jtile ← jtile − 1;

24 J ← 1 : br;

25 Pack R̃
right ←

[
r̃ � (J , jtile), . . . , r̃ �+bc−1 (J , jtile)

]
;

26 α (1,L),X (J ,L) ← RSolve(H (J , 1 : br − 1), 0,Λ(L), R̃
right

,

C (J ,L), S (J ,L),α (1,L),X (J ,L));

27 X (:,L) ← RBacktransform(C (:,L),S (:,L),α (:,L),X (:,L));

28 return X ;

and ‖x ‖2 ≥ ‖x ‖1/
√
n

‖x (1) ‖2
‖x (0) ‖2

≥ ‖x (1) ‖1√
n‖x (0) ‖1

=
‖x (1) ‖1√
nn‖H ‖∞ϵ

>
1

10n2‖H ‖∞ϵ
.

Our inverse iteration solver chooses ρ = ‖H ‖∞ϵ . Since the norm ‖x (1) ‖2 is readily available after

the backward substitution phase due to the consistency scaling, the check ‖x (1) ‖2 > 0.1/
√
n lends
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ALGORITHM 13: Robust tiled simultaneous solution of shifted Hessenberg systems with real shifts

Data: Hessenberg matrix H ∈ Rn×n , shifts Λ = [λ1, . . . , λm]T ∈ Rm , B ∈ Rn×m

Result: Solution X ∈ Rn×m to HX = B diag(λ1, . . . , λm )
1 function DHSRQ3(H ,Λ,B)

2 C, S, (R̃1, . . . , R̃m ) ← TiledReduce(H ,Λ);

3 X ← RobustTiledSolve(H ,Λ,C, S, (R̃1, . . . , R̃m ),B);

4 return X ;

ALGORITHM 14: Robust tiled inverse iteration for real eigenvalues

Data: Hessenberg matrix H ∈ Rn×n , eigenvalues Λ = [λ1, . . . , λm]T ∈ Rm

Result: X ∈ Rn×m such that HX = X diag(λ1, . . . , λm )
1 function DHSRQ3IN(H ,Λ)

2 Allocate X ∈ Rn×m ;

3 Choose the starting vector x (0) ← 1/(ϵ ‖H ‖∞) [1, . . . , 1]T ;

4 Initialize X (0) withm repeated copies of x (0) ;

5 while not converged do

6 Compute robustly X (1) ← DHSRQ3(H ,Λ,X (0) );

7 Split X (1) into converged eigenvectors X c and non-converged eigenvectors X d ∈ Rn×k ;

8 Append X c to X ;

9 if k = 0 then

10 Go to line 13;

11 Choose a new starting vector x (0) orthogonal to previous choices;

12 Initialize X (0) with k repeated copies of x (0) ;

13 Sort the columns of X such that the order matches Λ;

14 return X ;

itself to a quick convergence test. This convergence test is in line with Varah’s stopping criterion
where c = 10n‖H ‖∞. The information that an eigenvector has not converged can, for example, be
propagated by setting the eigenvector to zero.

The decision on a starting vector and the convergence test combined with the robust backward
substitution leads to the inverse iteration routine HSRQ3IN, a routine for computing individual
eigenvectors simultaneously by inverse iteration. The core of the routine is the robust, tiled solver
for shifted Hessenberg systems introduced as DHSRQ3. Algorithm 14 lists the inverse iteration
solver. Following LAPACK, only a single iteration of (1) is computed for a given starting vector.
After this single iteration, converged eigenvectors are separated from non-converged eigenvectors.
New starting vectors are tried for the non-converged eigenvectors.

4.3 Complex Shifts

The RQ factorization H − λI = RQ has complex factors R and Q if λ is complex. The backward
substitution with R then relies fully on complex arithmetic. Due to costly multiplications of com-
plex scalars with complex vectors, Henry preferred the UL factorization over the RQ factorization
for complex shifts, see Section 2.2. This section presents two techniques which allow extending
the inverse iteration solver DHSRQ3IN to support complex shifts at a reasonable computational
cost. The first technique chooses the complex Givens rotation such that the reduction phase avoids
multiplications of complex scalars with complex vectors. The second technique lowers the cost of
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the backward substitution by exploiting that most entries of H − λI are real in spite of a complex
shift.

The reduction phase requires complex Givens rotations to compute the unitary Q factor. This
paper adopts the Givens rotations applied by Beattie et al. [2012, p. 6]

GH
j, � = I j−2 ⊕

[
c (j, �) −s (j, �)
s (j, �) c̄ (j, �)

]
⊕ In−j ∈ Cn×n , (8)

where c ∈ C and s ∈ R. Thereby most of the reduction phase corresponds to mixed real-complex
multiplications. In view of the analysis of Givens rotations in floating-point arithmetic by Bindel
et al. [2002], our implementation of this Givens rotation is numerically robust and takes care of
underflow and overflow.

Next we discuss the changes to Algorithm 2 ReduceDiag and Algorithm 3 ReduceOffdiag.
The columns of the R factor are complex and so are the cross-over columns. We store a complex
vectorv = vre + iv im as adjacent columns [vre v im]. Using the complex Givens rotation (8), the
complex version of line 5 in Algorithm 3 ReduceOffdiag

v (1 : k )︸���︷︷���︸
Ck

← c (j, �)︸︷︷︸
C

h(1 : k, j )︸�����︷︷�����︸
Rk

+ s (j, �)︸︷︷︸
R

v (1 : k )︸���︷︷���︸
Ck

can be realized as

vre (1 : k ) ← cre (j, �)h(1 : k, j ) + s (j, �)vre (1 : k )

v im (1 : k ) ← c im (j, �)h(1 : k, j ) + s (j, �)v im (1 : k ).

The lines 6–7 in ReduceDiag can be realized in a similar fashion. The flop count for the complex
versions of ReduceDiag and ReduceOffdiag doubles compared to their real counterparts and is
3n2 + O (n) and 6nk + O (n), respectively.

Next we discuss the changes to the backward substitution phase. Systems with a complex shift
yield a complex solution. Aiming for a robust backward substitution, every complex solution vector
is associated with a single scaling factor. In other words, the real and the imaginary part are scaled
alike. Then a robust Solve task addresses R�y� = γ�b� where γ� ∈ (0, 1] and all other quantities
are complex. If the (small) triangular system matrices R� are computed explicitly, a conversion
to a complex datatype allows the robust solution of this system with a call to ZLATRS for every
complex right-hand side. ZLATRS is available in LAPACK 3.9.0. and is the complex counterpart of
DLATRS, see Section 4.1. Thereby Algorithm 9 naturally generalizes to complex arithmetic. The
flop count is 15n2 + O (n) per right-hand side.

An analysis of the complex counterpart of the linear update (6)

δ−1
� b� (J1) ← β−1

� b� (J1) −
[
h(J1, j − 1) − λ�e j−1 H (J1, j : k − 2) r̃ � (J1)

]
(
GH

k−1, � (J +2 ,J +2 ) . . .GH
j, � (J +2 ,J +2 )

[
0

α−1
�
x � (J2)

])
reveals the potential for mixed real-complex arithmetic. Analogously to the real linear update, the
block structure of the system matrix suggests three block operations. The first block h(J1, j − 1) −
λ�e j−1 and the third block r̃ � (J1) issue multiplications of a complex scalar with a complex vector
and can be emulated using real arithmetic. The second blockH (J1, j : k−2) is real and requires the
multiplication of a real matrix with a complex vector. If complex quantities are stored in interleaved
storage, that is, the real and imaginary parts of a complex vector are stored in adjacent columns, the
multiplication of a real matrixH and a complex vectorz = u+iv can be realized asH [u v]. Hence,
the computationally expensive part of the linear update can be realized with a wide DGEMM
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Table 1. Flops Approximations for a Single Shift/Eigenvector

Segment of Length n and Assuming Square Tiles

Routine Real eigenvector Complex eigenvector

ReduceDiag 1.5n2 + O (n) 3n2 + O (n)
ReduceOffdiag 3n2 + O (n) 6n2 + O (n)
Solve 3.5n2 + O (n) 15n2 + O (n)
Update 2n2 + O (n) 4n2 + O (n)
Backtransform 6(n − 1) 20(n − 1)

Flops due to overflow protection (norm computations, overflow protection

logic, numerical scaling) are disregarded.

operation if many right-hand sides are computed simultaneously. The flop count of a linear update
with anm-by-n matrix H is approximately 4mn + O (m + n) per complex right-hand side.

The complex solution x � is backtransformed analogously to (5) using complex arithmetic. The
flop count sums to 20n + O (1). An overview of all flop counts is listed in Table 1. The computa-
tional cost per column is approximately the same for a real eigenvector and a complex eigenvector
comprising two columns.

Coupling the complex routines of all task types results in ZHSRQ3, the complex counterpart of
DHSRQ3. Analogously to LAPACK, the starting vector and the convergence criterion are chosen
identically for real and complex eigenvalues. ZHSRQ3 allows generalizing the inverse iteration
routine DHSRQ3IN to handle any selection of eigenvalues, see Algorithm 15. The selection of
eigenvalues is split into real eigenvalues and complex eigenvalues. This requires additional track-
ing of the affiliation between computed eigenvectors and selected eigenvalues. Recall that complex
eigenvectors occur in complex conjugate pairs. Hence, for each selected complex conjugate pair
of eigenvalues, only one eigenvector has to be computed. The other one can be obtained for free
by complex conjugation. HSRQ3IN assumes that the provided eigenvalues exploit this.

The real/complex eigenvectors are computed by successive calls to the real/complex version
of HSRQ3IN. The successive computation of real/complex eigenvectors is justified because the
storage requirement quickly limits the problem sizes solvable with HSRQ3IN. An analysis of the
storage requirement is given in the next section.

4.4 Storage Requirement Analysis

Algorithm 14 records the Givens rotations and the cross-over columns during the reduction phase.
If the Hessenberg matrix is n-by-n, n Givens rotations including the first padded entry have to
be stored for every eigenvector. The storage requirement of the cross-over columns depends on
the tiling of H . The partitioning of H into an N -by-N grid of br × br tiles requires the storage of
N (potentially complex) cross-over columns. The storage requirement of the cross-over columns
sums to

∑N
i=1 (ibr) = O (nN ) for every eigenvector. If m columns (1 column per real or 2 columns

per complex eigenvector) are computed, the storage of the cross-over columns is O (nNm) and
can quickly exceed the memory available on a compute node. This problem can be addressed by
computing the eigenvectors in groups. Algorithm 15 realizes this. Only workspace necessary for
storing the cross-over columns and the Givens rotations of a single group has to be allocated.
Once a group has been computed, the workspace can be reused for the next group. Since complex
eigenvectors and cross-over column are stored in interleaved storage, the storage requirement is
doubled compared to the real computation. Line 4 calculates the group size for the complex case
requiring two columns per cross-over column. To fully harness the available workspace, the real
computation doubles the group size (lines 6–8).
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ALGORITHM 15: Robust tiled inverse iteration

Data: Hessenberg matrix H ∈ Rn×n , tile size br with n = Nbr, eigenvalues Λ = [λ1, . . . , λm]T ∈ Cm

such that only one complex eigenvalue of a complex conjugate pair is included in Λ
Result: X ∈ Cn×m such that HX = X diag(λ1, . . . , λm )

1 function HSRQ3IN(H ,Λ)

2 Sort Λ into Λsorted = [Λreal Λcomplex] so that the firstm1 eigenvalues are real;

3 Define the maximum workspace size for the cross-over columns as wmax;

4 д ← �wmax/(2nN )�; // Group size

5 Allocate workspaces for the Givens rotations and the cross-over columns;

6 for � ← 1 : 2д : m1 do

7 L ← � : max{� + 2д,m};
8 Task-parallel X (L) ← DHSRQ3IN(H ,Λsorted (L)); // Real eigenvectors

9 for � ←m1 + 1 : д : m do

10 L ← � : max{� + д,m2};
11 Task-parallel X (L) ← ZHSRQ3IN(H ,Λsorted (L)); // Complex eigenvectors

12 Sort the columns of X so that the order matches Λ;

13 return X ;

5 NUMERICAL EXPERIMENTS

This section describes how the numerical experiments were set up and executed and presents the
results.

5.1 Execution Environment

Hardware. The experiments are run on an Intel Xeon Gold 6132 (Skylake) node where dynamic
frequency scaling is enabled. This node has 2 NUMA islands with 14 cores each. In double-precision
arithmetic the theoretical peak performance is 83.2 Gflops per core and 2329.6 Gflops per node. The
L1 data cache and L2 cache are 32 KB and 1 MB, respectively, and the shared L3 cache is 19.25 MB.
The available memory is 192 GB RAM. The memory bandwidth was measured at 12.7 GB/s for one
core and 162 GB/s for a full node using the STREAM triad benchmark.

Software and configuration. The software is built with the Intel compiler 19.0.1.144 where the op-
timization level is set to -O2, AVX-512 instructions are enabled and interprocedural optimizations
-ipo are activated. We link against the MKL 2019.1.144 BLAS implementation. OpenMP threads
are bound to physical processing units by setting KMP_AFFINITY to compact.

In the following we describe the routines and their configuration used in the numerical exper-
iments. The first routine targets shifted Hessenberg systems and solves (H − λ�I )x � = α�e . The
matrix H is real and upper Hessenberg, the shift λ� is real or complex, e is the vector with all ones
and α� ∈ (0, 1] is a scaling factor. The next four routines target the computation of eigenvectors
by inverse iteration. The routines are supplied with ‖H ‖∞ϵe as the starting vector, see Section 4.2.
This starting vector leads to convergence in one iteration in all of our numerical experiments.

• {Z,D}HSRQ3. This robust routine was introduced in this work and solves (H −λ�I )x � = α�e .
It generalizes the RQ approach originally proposed by Henry. The reduction phase records
the Givens rotations necessary to compute the RQ factorizations for all shifts. The backward
substitution phase utilizes level-3 BLAS for the linear updates.
• RQIN (Henry). This routine extends the shifted Hessenberg system solver by Henry [1994,

Algorithm 2] to the computation of eigenvectors. It solves (H − λ�I )x � = ‖H ‖∞ϵe
through an RQ factorization for every eigenvalue and normalizes every eigenvector after the
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backtransform. The core of this routine corresponds to Algorithm 1. While Henry uses the
RQ decomposition only for real shifts, the numerical experiments use the RQ approach both
for real and complex shifts. The matrix H is not overwritten.
• ULIN (Henry). This routine solves (H − λ�I )x � = ‖H ‖∞ϵe through an UL factorization

for every shift and, in a final step, normalizes the computed eigenvectors. Henry [1994, Sec-
tion 4] introduced the UL approach for complex shifts to avoid costly complex-complex mul-
tiplications. Since the UL approach overwritesH , the original matrixH is copied when more
than one system is solved.
• DHSEIN. LAPACK 3.9.0 contains the driver routine DHSEIN for successively computing

selected left and/or right eigenvectors of a real upper Hessenberg matrix. DHSEIN calls
DLAEIN for computing a single eigenvector by inverse iteration. The routine is supplied with
ϵe as the user-defined starting vector (INITV = ‘U’). For each shift, the matrix B = H − λI
is explicitly constructed in a workspace. Then Bx = α (‖H ‖∞ϵe ) is solved through an LU
factorization with partial pivoting. In all numerical experiments conducted here, this initial
guess leads to convergence in the first iteration. In other words, DHSEIN effectively solves
a single shifted Hessenberg system through an LU decomposition with partial pivoting for
each eigenvector.
• HSRQ3IN. This driver routine, listed in Algorithm 15, splits real and complex eigenvalues and

computes the corresponding eigenvectors by successive calls to DHSRQ3IN and ZSRQ3IN.
It solves (H − λ�I )x � = α� (‖H ‖∞ϵe ) and normalizes the eigenvectors with respect to the
Euclidean norm before the backtransform.

5.2 Test Problems

The numerical experiments use two test problems. The first test problem is designed to have
known, well-separated eigenvalues and computes the corresponding eigenvectors. This experi-
ment controls the ratio of real/complex eigenvalues and allows us to examine the cost of complex
arithmetic. For this purpose, a quasi-triangular matrix T ∈ Rn×n is constructed where the eigen-
values are placed as 1-by-1 or 2-by-2 blocks on the diagonal of T . If the k-th eigenvalue is real,
then the 1-by-1 diagonal block is t (k,k ) = k . Complex eigenvalues occur in complex conjugate
pairs and correspond to 2-by-2 blocks. Such a 2-by-2 block is set to

T (k : k + 1,k : k + 1) =

[
k k
−k k

]
∈ R2×2 (9)

and corresponds to the eigenvalues k + ik and k − ik . This choice of diagonal blocks ensures that
all eigenvalues are well-separated. In particular, the case with 100% real eigenvalues yields an
upper triangular matrix with eigenvalues 1, 2, . . . ,n. Assuming that n is even, the case with 100%
complex eigenvalues yields a matrix with only 2-by-2 blocks on the diagonal and eigenvalues
1 ± i, 3(1 ± i ), . . . , (n − 1) (1 ± i ). The remaining superdiagonal entries are random in (0, 1].

The matrix T is then transformed into a Hessenberg matrix through an orthogonal similarity
transformation. For this purpose, two orthogonal transformations are applied. First, a random
Householder matrix is constructed, Q0 = I − 2vvT , where v is a random unit norm vector. By
applying the (symmetric) Householder matrix, a dense matrixA = Q0TQ0 is computed. Second,A
is reduced to Hessenberg form through the LAPACK routine DGEHRD H 1 ← QT

1 AQ1. Together,

H 1 is given by H 1 ← (Q0Q1)TT (Q1Q0). The numerical routines receive the exact eigenvalues as
input parameter.

The second test problem solves shifted Hessenberg systems and aims at quantifying the over-
head from overflow protection. Two systems are constructed: the “bad” system requires frequent
numerical scaling system, whereas the “good” system never requires numerical scaling.
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The bad system constructs the Hessenberg matrix H 2 = R2Q2 + γ I where R2 ∈ Rn×n and
Q2 ∈ Rn×n are given by

r2 (i, j ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n − i + 1 i = j

−n j > i

0 i > j

, q2 (i, j ) =
⎧⎪⎨⎪⎩−1 (i − 1 = j ) or (i = 1 and j = n)

0 otherwise.

As an example, consider how H 2 − γ I is constructed for n = 6 by

H 2 − γ I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 6 6 6 6 −6
−5 6 6 6 6 0

−4 6 6 6 0
−3 6 6 0

−2 6 0
−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= R2Q2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −6 −6 −6 −6 −6
5 −6 −6 −6 −6

4 −6 −6 −6
3 −6 −6

2 −6
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −1
−1 0 0 0 0 0

−1 0 0 0 0
−1 0 0 0

−1 0 0
−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The numerical experiments solve H 2X = EΓ where E is the matrix with all ones and Γ =
diag(2, . . . , 2). Hence, the same shifted system is solved repeatedly without exploiting that the
shift is shared. Kjelgaard Mikkelsen [2020] has shown that the matrix R2 introduces quick growth
to the solution vectors during the backward substitution.

The good system constructs the Hessenberg matrix H 3 = R3Q2 + γ I where R3 ∈ Rn×n is given
by

r3 (i, j ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n + 1 − i i = j
1
2 j > i

0 i > j .

The numerical experiments solve H 3X = EΓ. Following Kjelgaard Mikkelsen [2020], the solution
of R3y = e with backward substitution never requires numerical scaling to avoid overflow.

5.3 Validation

The experiments are validated by comparing the relative normwise backward error with 10−12.

Specifically, the first test problem evaluates ‖H 1x−λx ‖F
‖H 1 ‖F ‖x ‖F+ |λ | ‖x ‖F for each computed eigenvector. The

second test problem solves the same system repeatedly. The evaluation computes
‖Ax−γ e ‖F

‖A ‖F ‖x ‖F+ |γ | ‖e ‖F
only for a single vector, where A corresponds to H 2 or H 3, respectively.

5.4 Results

This section presents the results of four numerical experiments. The first experiment concerns the
sequential runtimes of the inverse iteration solvers and compares the existing approaches DHSEIN
(LAPACK), RQIN/ULIN (Henry) with HSRQ3IN introduced in this paper. The second experiment
aims at identifying bottlenecks in the implementation and analyzes what fraction each computa-
tional phase contributes to the total runtime. The third experiment addresses the parallel scalability
of HSRQ3IN. The fourth experiment quantifies the cost of robustness.
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Fig. 5. Sequential runtimes on H1 computing two columns (left) and 1500 columns (right) for n = 10000.

Serial Comparison. The first experiment compares the sequential runtimes of the inverse itera-
tion routines DHSEIN, RQIN, ULIN and HSRQ3IN on H 1 where n = 10000. Numerical scaling is
never triggered and a single iteration suffices to satisfy the convergence criterion for every eigen-
vector. Figure 5 (left) shows the runtimes for computing two columns, either two real vectors or a
single complex vector (storing the real and the imaginary part in two columns). In the latter case,
the UL approach overwrites the input matrix and, hence, does not require any data copies. For all
solvers the computation of the complex vector is at least as expensive as the computation of two
real vectors.

Figure 5 (right) compares the runtimes for computation of 1,500 columns, either 1,500 real vec-
tors or 750 complex vectors. The timing of the UL approach includes the overhead of 749 copies of
the input matrix. The runtime gap between DHSEIN and the RQ factorization-based solvers widens
with an increasing number of right-hand sides. A large number of right-hand sides allows reusing
data. Since the RQ decomposition-based solvers do not overwrite the input matrix, the compu-
tation may benefit from temporal locality. HSRQ3IN outperforms RQIN, which can be attributed
to the matrix–matrix multiplications (level-3 BLAS) in the backward substitution phase. Complex
eigenvectors are more expensive than real eigenvectors for DHSEIN and RQIN. HSRQ3IN,
by contrast, performs similarly. The next experiment aims at investigating the underlying
cause.

Analysis. This experiment decomposes the computational cost of HSRQ3IN and RQIN and
thereby analyzes the ratio of the three computational phases (reduction, backward substitution,
backtransform). The experiment setup is identical to the one in Figure 5 (right) and uses H 1 with
n = 10000 for the computation of either 1,500 real or 750 complex eigenvectors.

A run of RQIN on 1,500 real eigenvectors spends 46% of the runtime in the reduction phase
(lines 3, 8–9 in Algorithm 1) and 53% of the runtime in the backward substitution phase (lines 4–7
in Algorithm 1). This ratio is approximately in line with the flop distribution of these two phases.
When RQIN computes 750 complex eigenvectors, the reduction phase constitutes 36% and the back-
ward substitution phase 63% of the runtime. Thus, the majority of the time is spent on backward
substitution.

The runtime decompositions of HSRQ3IN are shown in Figure 6. The runtime is split into the
contribution of each task type to the total compute time for a sequential (left) and a parallel (right)
run. Between 53% and 68% of the runtime is spent on Reduce tasks. The runtime difference be-
tween the real and the complex runs is due to the different amount of Givens rotations computed
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Fig. 6. Runtime decomposition of a sequential (left) and parallel (right) run on H1 for n = 10000.

during the run. Since a series of Givens rotation is computed per eigenvector, the complex run com-
putes only half the number of Givens rotations, but requires mixed real-complex multiplications.
The backward substitution phase contributes with Solve and Update tasks. The complex runs
spend approximately double the time on Solve tasks than the real runs. This can be attributed to
the complex-complex multiplications during the small backward substitutions. The runtime differ-
ence of Update tasks is due to the application of the Givens rotations. Analogously to the Reduce
tasks, the complex runs apply only half the number of Givens compared to the real runs. The
backtransform phase makes a negligible contribution to the total runtime. The runtime decompo-
sitions of RQIN and HSRQ3IN suggest that the reduction phase has become the new bottleneck of
the revised RQ approach.

The parallel speedup ranges in 14–18 for all task types. Due to dynamic frequency scaling, the
best possible parallel speedup on the test node is 18.4. Idle cores during the parallel runs contribute
to the overhead/idle time when there are not enough tasks available for being scheduled.

Parallel scalability. The third experiment analyzes the strong scalability of HSRQ3IN. Strong
scaling concerns the speedup for a fixed problem size subject to an increasing number of processing
units. The used test system isH 1 wheren ∈ {10000, 40000}. The eigenvalue selection ratio is chosen
as 5%, 15%, or 25%. Then, for example, the experiment with n = 10000 and 5% selected eigenvalues
computes 500 columns (500 real eigenvectors or 250 complex eigenvectors). The eigenvalues are
either all real or all complex.

Figure 7 extends the sequential experiment shown in Figure 5. It reports the runtime of a strong
scaling experiment with up to 28 cores. The speedup over the sequential run is approximately by
factor or 14. The best attainable speedup is 18.4. Figures 5 and 7 show that the new inverse itera-
tion solver is clearly faster than the existing inverse iteration solvers and has reasonable parallel
scalability.

Figure 8 displays the performance results with respect to the machine capabilities. It includes
the multithreaded implementation of DGEMM as an upper bound. The plot assumes 3.5n2 flops
per column, which is a lower bound of the true flop count. The real and the complex experiments
attain a similar fraction of the theoretical peak performance and achieve a similar parallel
speedup.

Overhead due to numerical scaling. The fourth experiment evaluates the cost of overflow avoid-
ance. For this purpose, a run of DHSRQ3 on the bad system H 2 and the good system H 3 are com-
pared. Recall that the bad system requires frequent numerical scaling, whereas the good system
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Fig. 7. Parallel runtimes on H1 using n = 10000.

Fig. 8. Parallel scalability on H1 using n = 10000 (left column) and n = 40000 (right column). For reference,

DGEMM (MKL) executes the same amount of flops as the 5% real shifts case and writes to an output matrix

of size n-by-n.

never requires numerical scaling. The experiments solve shifted Hessenberg systems rather than
an eigenvector problem because the triangular solve associated with H 2 and H 3 has been shown
as the best and worst case, respectively [Kjelgaard Mikkelsen 2020]. As a consequence, the cost of
overflow protection for inverse iteration is in between the two extremes. Note that both runs in-
clude the cost associated with the evaluation of overflow protection logic. The runtime difference
between the two runs is solely the cost of numerical rescaling.

Figure 9 illustrates the measurements using n = 10000 and 1,500 real right-hand sides. The runs
on the bad system are circa 6% slower than the ones on the good system. Numerical scaling only
affects the backward substitution phase, i.e., Solve and Update tasks. The slowdown of these two
task types is approximately 20% alike. The parallel speedup is comparable for both the good and
the bad system. This suggests that robustness does not affect the parallel scalability.

6 CONCLUSION

This paper revises the RQ approach for solving shifted Hessenberg systems (H − λ�I )x � = α�b�

robustly for a large number of shifts. By rearranging the computation of the partial RQ factor-
ization, matrix–matrix multiplications (level-3 BLAS) are introduced to the backward substitution
phase. Since the solution of shifted Hessenberg systems is the most compute-intensive step in the
computation of eigenvectors by inverse iteration, the revised RQ approach leads to a new inverse
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Fig. 9. Runtime decomposition of a sequential (left) and parallel (right) run computing 1500 real right-hand

sides on H2 (bad system) and H3 (good system) for n = 10000.

iteration solver. The numerical experiments show that the new inverse iteration solver outper-
forms existing inverse iteration solvers.
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