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ABSTRACT
Real-world Data collection and analysis is a significant pain point
in wearable device development, requiring multidisciplinary skills
in: embedded systems, application development, data science, and
domain expert knowledge. In this work, we first build motivation
based on previous experiences in wearable development, then in-
troduce a toolkit for data collection and iterative development to
reduce engineering efforts for free living experimentation of wear-
able devices. This toolkit utilizes Bluetooth Low Energy and an
adaptive mobile application to help researchers quickly test new
hardware, collect meaningful data, and assist in developing em-
bedded algorithms with minimal intermediary code changes. We
demonstrate the utility of our toolkit by collecting data in-the-wild
from multiple sensors using a prototype wearable and a ground
truth heart rate sensor. In addition, we demonstrate the toolkit’s
capabilities with a baseline throughput test. Finally, we show how
this tool has helped in early development of a new custom device.
Our work is released as open source and welcomes contributions
in an effort to broaden the tookit’s utility for the wearable research
community.
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1 INTRODUCTION
Wearable devices that track our everyday lives are becoming com-
monplace. However, collecting sensor data from wearables is chal-
lenging and creates significant engineering overhead [2], evenwhen
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merely reproducing well-established methods. In exploring new
human sensing modalities, using consumer wearable devices is
limiting due to proprietary hardware or software making it difficult
to customize or integrate into custom pipelines. Handling relatively
high-frequency sensor data for developing new algorithms is par-
ticularly challenging. Doing so requires developing new hardware
and the scaffolding for testing that hardware from scratch. This sort
of effort blurs the lines between hardware engineering, embedded
software development, application development, and data science.
Developing sensors and data pipelines for wearable research is
daunting and can lead to long development runways in establishing
new contributions to wearable sensing.

Further complicating the design space, wearables are intended
for free-living environments, requiring robustness and efficiency to
perform long-term and with minimal burden. Devices must be rea-
sonably unobtrusive while accounting for a user’s activity, which
introduces noise to sensing data—without a flexible development
workflow, experimenting in the real-world leads to slow iterations
for development teams. For example, assume a team is developing
a new algorithm for heart-rate detection but is unsure of a specific
threshold parameter for onboard filtering. Detection may work well
while stationary, but moving about the world introduces scenarios
when detection requires additional processing or is not impossible.
When computed results do not align with ground truth compari-
son, raw-sensor data may need to be collected and analyzed before
identifying the issue. Due to size constraints and placement, wear-
ables often have little or no user interface; therefore, alternating
between onboard functionality may require re-flashing the device,
and raw-sensor data collection may not be possible outside the lab.
Generally, this workflow is slow and limits iterative development by
tethering wearable development to overly controlled environments,
which is not ideal given their intended application.

In this work, we present the initial development of a toolkit
which encompasses a communication specification for BLE and
a mobile application to help in this process. We have found that
custom hardware can be worn and tested as part of initial devel-
opment quickly after board bring-up. First, we describe the pain
points specifically in a user scenario. Second, we outline require-
ments compiled from previous projects and collaborations, building
motivation for the tool. Then walk through our implementation,
followed by a demonstration of collecting photoplethysmography
(PPG) and accelerometer data. Finally, we present a throughput
test of our tookit, and exhibit how findings of our tests assist in
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Figure 1: A overview of development workflow using the
toolkit, a prototype wearable device communicates with the
mobile phone application, sending sensor data and manag-
ing parameters defined in a specification file. The mobile
app records the data in experiments and organizes it for
data analysis. Analyzing the sensor data near-device informs
algorithm development for biometrics, which can later be
deployed on-device. This process repeats for iterative devel-
opment, collecting, and experimenting in free-living envi-
ronments.

iterations of our firmware. Our tool kit is released open source on
Github1, and is open to contributions.

2 MOTIVATION AND BACKGROUND
In developing FaceBit [3], the authors of this work faced challenges
in developing algorithms for novel wearable sensing. FaceBit is
a custom-designed wearable device deployed inside a face mask,
motivated by the demand for personal protective equipment for
clinicians early in the COVID-19 pandemic. The device developed
methods for measuring mask state (on/off), heart rate, respiration
rate, and mask fit. However, given the placement of the device
inside a face mask, these metrics required tedious iterations before
they were ready for in-the-wild testing. Furthermore, in addition to
reporting metrics, FaceBit is designed for low-power consumption
to enable multiple uses without recharging or a battery change,
further complicating development cycles.

Throughout the development process, the authors maintained
two firmware versions for the FaceBit device: a version for collect-
ing raw sensor data (development) and a version that computed
metrics onboard (application). The development firmware’s goal
was to collect sensor data to conceptualize new algorithms, which
informed the development of embedded algorithms in the applica-
tion firmware. However, the development firmware consumed far
more energy with continuous BLE streams to a Desktop application.
In contrast, the application firmware maintained low consumption
sending small data packets roughly every two minutes. In addition,
the companion desktop and iOS application had code to handle
the different configurations separately and often required updates
alongside firmware changes. The team developed embedded algo-
rithms by analyzing raw data from in-lab using Python to identify
desired signals, then implementing the prospective algorithm in the
firmware. Development iterations require first collecting metrics
against a ground truth device, comparing, and often switching be-
tween development and application firmware. This process limited

1https://github.com/Flexi-BLE

the flexibility in development and created long road to conducting
evaluations in free-living scenarios.

This experience is the primary motivation for the toolkit pre-
sented in this work. As the authors plan newwearable contributions,
the need to ease the developmental burden became clear. Shrink-
ing the development runway to experimenting with new devices
in the wild and allowing more flexibility for experimentation is a
significant hurdle to contributions in the wearable health commu-
nity. Figure 2 outlines the ideal development workflow with the
assistance of our toolkit.

3 RELATEDWORK
Platforms exist that focus on data collection of human activity data
through wearable and serve as motivation for this work. mCere-
brum [7] is a platform for efficient high-frequency data collection
and analysis to identify human biomarkers. AWARE [5], RADAR-
Base [11], and Raproto [12] focus on data collection from consumer
devices. The Digital Biomarker Discovery Pipeline [1] similarly
focuses on analysis pipelines of various consumer devices. Finally,
SenseCollect [2] motivates the design of platforms for easier Human
Activity Recognition by outlining challenges in research teams col-
lecting data and designing a system for data collection fromAndroid
watches over WiFi. The primary focus of these works is consumer
wearables; we aim to develop custom hardware and form factors
that allow for novel sensing mechanisms not currently available.

Many Software-as-a-Service (SaaS) platforms exist to collect
sensor data from Internet-of-Things (IoT) devices. These include
Particle, Google Cloud IoT, IBM IoT Solutions, and others. These
platforms usually require subscriptions and are geared for large
enterprise deployments, but more importantly, they require inter-
net connectivity and that data passes through a centralized service.
Open source solutions like ThingsBoard and AdaFruit IO are other
options better suited in the "maker" space but still require internet
connectivity. Wearables primarily utilize Bluetooth Low-Energy
(BLE) for low energy consumption and localization. Therefore, these
centralized solutions still need a gateway, like a mobile phone, to
send data to remote services. Utilizing such tools can be helpful, es-
pecially in wide-scale monitoring, but we find using them inefficient
for quick iterations since BLE protocols are still required.

4 REQUIREMENTS
Drawing from small-team, wearable health research and develop-
ment, informed by the development of FaceBit [3], NeckSense [13],
and Amulet [6] our goal is to reduce the data burden of developing
prototypes and decrease the time tethered to in-lab testing and de-
velopment.We claim that the faster testing can occur in the wild, the
more robust wearable systems will be for their intended purposes.
For this context, we define in-the-wild, free-living, and real-world
to refer to the collection of data to aid in prototype development
while performing any activity considered nominal to an intended
wearer. Here we outline the requirements to achieve these goals
from experience, which has motivated our initial development.

4.1 Data Collection
The most crucial component of wearable prototyping is data in-
tegrity. This tool must reliably collect data from multiple devices
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with multiple sensors at frequencies up to 500Hz to support raw
sensor data collection with low resource consumption for analysis
and algorithm development. Managing free-living experiments in
real time requires wireless data collection over Bluetooth, WiFi, or
cellular, often collecting data on mobile devices or gateways. Local
data storage is viable, with an onboard SD card or non-volatile
flash memory. Although, local storage can waste time, space, re-
sources, and participation since functionality and data reliability is
unknown until post-analysis. Additional to raw sensor data, this
tool must allow for the integration of multiple devices and provide
a generalized interface for time-series data collection, allowing for
data of varying types and sizes.

4.2 Flexibility
Embedded devices have limited programming interfaces, especially
when designing for wearable form factors that often lead to ex-
tremely limited or non-existent user interfaces. Updating firmware
on a wearable, for example, to change a parameter or swap function-
ality, requires a connection to a computer, therefore tethering early
testing to in-lab. To limit this, we need applications that adaptively
respond to runtime updates. Updating embedded parameters should
be achievable without code changes or, at most, only require a single
code-base to be updated when in active development. We propose
that the firmware primarily drives the functionality, and anything
upstream adapts to its changes. The firmware must expose config-
urable parameters and provide a medium for structurally defining
these parameters. Examples of such parameters include; toggling
functionality, changing sensor frequency or sensor-specific config-
urations, or even swapping or reconfiguring embedded tasks and
workflows.

4.3 Data Organization, Ownership, and
Analytics

Structured data collected from various devices in a way that is easily
exported and ingested for data analysis is a necessity. All time-
series data should be comparable and indexed based on accurate
timestamps relative to the sensor. This data must be collected locally
(on-person), requiring no internet connectivity to ensure ownership
and privacy, but also be organized in a way for easy exportation
to centralized services. Finally, during data collection, research
requires the functionality to record high-level data about their
experimentations, such as notes about particular points in time
along with detailed logs of sensor state for reproducibility.

5 IMPLEMENTATION
Motivated by our requirements, we outline a guideline for imple-
menting BLE on embedded firmware, a JSON device specification
schema, and a mobile application. The features the core functional-
ity for the toolkit. Except for sensor-specific drivers and identifiable
data, the code for this implementation is available on GitHub.

5.1 Hardware and Firmware Development
We envision this toolkit to be agnostic to hardware and firmware,
with the exception of requiring BLE for communication where the
wearable devices serve as a peripheral role and the mobile appli-
cation the central. System on chip (SoC) microcontrollers have

New firmware and JSON 
specifications are developed 
and flashed to test a 
wearable’s sensors. 
Parameters are added for 
adaptive experimentation.

The wearable along with a 
ground truth device for 
comparison are secured in the 
desired location on the body 
for wear during free-living 
scenarios.

During wear, the user can view 
data and update parameters 
on the mobile app, recording 
multiple experiments to test 
sensor functionality or new 
algorithms.

Multiple experiments are 
exported for analysis, where 
methods are verified for 
desired signals. These findings 
then inform future iterations of 
the firmware.

21 3 4

Figure 2: Overview of the ideal workflow for developing
novel wearables in free-living scenarios. Developers deploy
firmware with adaptable parameters, then adjust them in-
the-wild to perform diverse experiments without the need
for a computer. Data is later analyzed alongside experimen-
tation metadata to inform future firmware iterations.

small footprints with built-in BLE and well-supported APIs. For our
demonstration, we use a Nordic nRF5340 SoC running the Zephyr
real-time operating system (RTOS). Zephyr provides an extensive
embedded C/C++ API for using BLE, and we provide example code
on Github for the off-the-shelf nRF5340 Dev Kit. Bluetooth SIG
strictly manages BLE protocols; therefore, our implementation is
possible on any BLE-supported system. We assume BLE version
4.2 or greater, which allows for PHY 2M and data length extension
enabling higher bandwidth than previous versions. Our implemen-
tation is outlined in figure 1.

Supported firmware requires a series of customGeneric Attribute
(GATT) services and characteristics to enable developers to easily
add new sensors and configurations with arbitrary data. First pro-
grammers are required to define a primary service, referred to as the
Info Service, providing universal characteristics. The Info Service is
included in the BLE advertisement packet, identifying the device
to the mobile application. Currently, the Info Service holds a single
characteristic for a reference epoch time. At the time of connection,
the central (mobile phone) writes the current Unix Epoch time, and
the device stores a system-time reference to central time, ideally
keeping track in an onboard real-time clock (RTC). However, sys-
tem uptime based on the CPU clock can also suffice. The reference
time allows for time synchronization in streaming sensor data and
can be periodically updated by the central as needed. Epoch Time
is referenced in milliseconds as a 64-bit unsigned integer, where
the reference time is 32-bits, technically requiring an update ap-
proximately every 50-days. Data sent to the mobile phone converts
reference times back to UTC. We saw this system as a viable option
in place of the BLE registered Current Time Service, which uses
calendar time.

To manage data collection and parameters configuration, addi-
tional services defined for each sensor, called Data Streams, are
added by firmware developers. Data Streams include two character-
istics; configuration (read/write) and data (notify). The configura-
tion characteristic is a developer-defined byte array that stores any
parameters related to the sensor. The firmware reads from these
configurations at run time to perform or guide operations. The data
characteristic notifies the central of new sensor data. The first 4
bytes of the data array (unsigned 32-bit integer) contains a anchor
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time which is the time in milliseconds since the Info Service refer-
ence time. The remainder of the array includes developer-defined
data packets for batching sensor data, with an appended value
after each point indicating the time elapsed since the last value.
For example a accelerometer’s sensor’s data packet could include
3-values for x, y, and z axes, the bytes size depends on the required
precision. In BLE version 4.2 or greater, the data-length extension
allows for notifying characteristics up to 256 bytes, allowing for
greater throughput due to requiring fewer packets and, therefore,
less overhead.

5.2 Device Specification
The organization of the firmware, including GATT service details
and specifics on data stream organization, is structured into a JSON
file. This JSON file is a hierarchical structure that drives the dynamic
user interface and data storage on the mobile application. The file
also allows the definition of standard BLE devices and services, for
example, heart rate. The primary purpose of the file is to (1) provide
human-readable context about the specifics of the device and (2)
provide a structure to data stream definitions to drive dynamic
database table creation with efficient typing and rendering dynamic
user interfaces. We provide a JSON Schema and samples on GitHub.
The mobile app can reference this file from a public hosted URL, like
GitHub Gist or PasteBin. We realize there is room for automation
in this intermediary step, such as generating from code from the
JSON object. Still, we argue that updating a configuration is an
improvement over requiring mobile app updates when firmware
code is changed. We plan to, at least partly, automate this step with
a finalized schema as the features and specifications.

5.3 Mobile Application
The mobile application operates alongside the wearable. It does not
require code updates between experiments, essentially ingesting
any data sent from the device with the assistance of the specifica-
tion file. We present the app as a Swift package and an iOS appli-
cation. The Swift package parses the device specification file, BLE
connections, and database management with SQLite. Tables for con-
figuration and data characteristics are created dynamically for each
Data Stream, along with supporting tables for storing changes to
specifications, other supported sensor data, and experiment objects.
Besides sensor data, other database tables aid in the development
and debugging, such as storing BLE device connections, BLE data
throughput, and the functionality to support the specification file
changes on the fly without data loss. The intent of separating the
codebases is to allow the development of additional applications
utilizing the internal data structure using only the Swift Package,
for example, a desktop-based command-line interface (CLI) which
we are currently exploring.

The application provides a user interface for the Swift package.
Users can view device information, manage BLE connections, view
and export data (figures: 3b, 3c), edit data stream parameters (figure:
3a), and create experiments (figure: 3d). Timestamps index most
data, mimicking a time-series database, making it easy to query and
expand the UI. Sensors from the phone can also be stored. Currently,
the device supports storing location data from the mobile phone’s
GPS component. In the future, we envision the integration of other

sensors or the ability to perform additional computations, such as
common data analysis or preprocessing techniques.

Experiments are second-order objects in the mobile app’s data-
base, allowing users to timebox sensor data for easy organization,
export, and analysis, for example, running an experiment for a
specific sensor parameterization. Experiments can also include
Time Markers. Time Markers are simple records that hold a single
timestamp worth noting in an experiment, for example, when an
unexpected event occurs. In addition, the SQLite data is exportable,
allowing for easy external analysis. Uploading data to centralized
time-series databases, which can help with monitoring of long-term
studies, is a planned feature.

6 DEMONSTRATION
Wepresent data from real-world experiments using our toolkit in de-
veloping a new hardware device for exploring circadian rhythm cy-
cle detection. In these initial experiments, we collect Photoplethys-
mography (PPG) and accelerometry data on a custom device based
on the Nordic nRF5340 SoC running Zephyr RTOS. We collect PPG
from a custom component containing an array of 9-LEDs of dif-
ferent wavelengths and a photodiode to experiment with blood
volume detection to infer heart rate and pulse transit time, inspired
by Lui et al. [9]. We collect accelerometry data from an onboard
ISM330 inertial measurement unit (IMU). Additionally, we collect
heart rate as a ground truth comparison using a Polar H10 chest
strap and GPS location data, when in the wild, from the phone. We
collect data from in-lab, stationary, and in-the-wild walking outside.
All data is aggregated on the mobile app in a local SQLite database
and is exported for analysis in Python to display our results. Our
main goal is to test the functionality of data collection, although
in the next section, we talk about initial findings. Figure 2 outlines
the general routine we used for conducting experiments with our
toolkit.

6.1 Methodology
We collected data from 4-participants which included authors and
other lab members. In total, we collected 3 hours and 6 minutes of
data (1:26:32 in the lab and 1:40:37 in the wild) in 14 experiments.
For all sessions, participants wore the device on the middle forearm.
In-lab participants were primarily stationary but were allowed to
work at their computers. For in-wild, participants walked around
campus or in a city neighborhood. Participants traveled 7.66 KM
measured from location data gathered where GPS accuracy was
within 10m. The main goal of developing the wearable is to test
different wavelengths for heart rate indications. Therefore we ex-
perimented with two different configurations of the PPG sensor,
one measuring the green and blue LEDs and the second measuring
green, orange, and infrared. In addition, we altered the accelerome-
try sensor frequency simply for demonstration purposes, although
in analysis uncovered a sensing issue in the firmware. We recorded
two experiments in-lab and in-wild: first with PPG blue (460nm)
and green (525nm) wavelengths, accelerometer frequency of 20Hz,
and second with PPG green (525nm), orange (590nm), and infrared
(940nm), and accelerometer frequency of 40Hz. 50Hz is the desired
frequency for all PPG data. These parameters define the BLE speci-
fication outlined in the previous section and are updated using the
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mobile application while lab members wear the device. An example
segment of the data collected is shown in figure 4.

During experiments, the mobile application informs the wearer
in real-time of operation, including the current state of the con-
nected device(s) and values of current parameters. In addition, users
can view sensor data or any table in the SQLite database at-a-glance
to ensure the wearable is working correctly. Unfortunately, the
graph displayed in figure 3c was unavailable during our experi-
ments as it required, at the time, a beta version of iOS. Finally, we
kept the iOS application active during experimentation (app in the
foreground and with the screen on) to ensure the OS did not kill the
process in the background, which happens periodically. We are cur-
rently exploring methods of handling BLE background processing
and app termination.

6.2 Findings
This demonstration intends to show our toolkit’s data collection
capability in free-living situations and how it can assist in develop-
ing novel wearable devices. The benefit to the development team
was the feasibility and initial testing of the PPG sensor and general
device functionality. Our data revealed useful findings, confirming
the successful implementation of device drivers and where further
improvement is needed. Regarding usability and parameter updates,
we encountered no issues during these initial trails, although we po-
tentially attribute a few BLE device disconnections to the antenna
size. The software in future versions will manage reconnection
attempts.

Figure 4 shows an example 25-second in-wild sample of data
collected from the wearable. Presented is PPG data with a bandpass
filter (0.2Hz to 20Hz) and a rolling mean with a 5-second window.
Also shown is accelerometer data with individual axes z-score nor-
malized and an additional plot with L2 normalization. Visually,
the findings are promising in confirming the functionality of the
sensors. We see an expected oscillation of the accelerometry L2
normalization, presumably indicating arm swinging while walk-
ing. The filtered PPG signal for orange and green wavelengths are
nearly aligned and show potential indications of heart rate with
pulse onset (floor), systolic peak (first, highest peak), and diastolic
peak (lower second peak). However, confirmation of the ground
truth requires further analysis. We also report data reliability, which
compares the expected number of records at a given sensor fre-
quency versus the actual number recorded. The reliability of the
PPG (98.72%) and especially the accelerometer (90.79%) hint at is-
sue in the collection. Additionally, the infrared signal is weak of
non-existent which requires further exploration. Although these
findings highlighted in the presented 25-second sample were con-
sistent across all experiments, accelerometer reliability is higher in
experiments sensing at 20Hz, 105% versus 93% for 40Hz. PPG relia-
bility averaged 98.4% for all collected data. With further analysis of
the infrared signal, we attributed the weak signal to overpowering
the LED. Since LED brightness is a configurable value for each
LED in the sensor’s GATT service, we were able to test this easily,
confirming the issue. In previous projects, these types of issues can
take significant time to identify. Similarly, we were able to identify
issues with reliability in the sensor drivers.

6.3 Baseline Throughput and Reliability Test
To understand the data reliability in our experiments, we conducted
a baseline test to isolate the cause and test the higher throughput.
This test uses a mock service on our wearable that sends randomly
generated numbers to simulate a sensor and separates any potential
time loss in sensor drivers. We experimented with approximately
one million records with a frequency of 500Hz; this took 37 minutes
and 53 seconds. In addition, the mobile application collected data
in the background while the phone was used for other processes or
with the screen off for segments of the experiment. The results are
shown in figure 5, indicating a near-perfect data collection. This
baseline proves that our toolkit is working as expected for data
collection, and the reliability issues we saw in our worn experi-
ments are related to sensor collection or task management. The
tested throughput of >10KB/s is far higher than what we needed
for our testing, although well below the capabilities of BLE. Testing
higher frequencies would benefit from higher timestamp preci-
sion—currently, we record with millisecond precision, which is
adequate for our tests. However, some use cases may require mi-
cro or nano-second precision at the expense of larger overhead
in the BLE packets. These results focus on data collection and the
functionality of our toolkit.

7 LIMITATIONS AND FUTUREWORK
This demonstration is a small step towards better data collection for
wearable devices. We continue active development of this toolkit as
part of ongoing research in wearable health, and we hope to gain
community support for other research efforts in similar spaces. We
present our tool as a proof-of-concept with many opportunities
for improvement. First, we realize iOS and the Apple ecosystems
are not particular supportive of open source or accessibility (high
cost of products), although we have not written our tool with any
requirements on iOS we hope to develop other mobile applications,
like Android, and gateways for other, lower cost configurations.
Second, the JSON specification file is currently a manual process,
we hope to automate this in the future. Finally, we have evaluated
data collection on only a set of researchers who are familiar with
the tool or involved it its development, in the future we hope to use
our toolkit in evaluation and usability studies for the contributions
of new wearable devices and onboard data processing methods.
Our team is actively developing new features for the toolkit, but
are welcoming new collaboration to broaden utility in the wearable
community. Road maps and contribution guidelines can be found
on the Github organization.

Efficient and flexible data collection from the custom sensors,
such as PPG, enables us to exploremany applications. In Esmaelpoor
et al. [4], using PPG signals, a multistage deep neural network is
proposed to estimate systolic and diastolic Blood Pressures. This
approach achieves decent results in feature extraction and estima-
tion consistency. Huang et al. [8] propose MLP-BP, a deep neural
network based on MLP-Mixer is proposed to estimate blood pres-
sure (BP) from plethysmography (PPG) and electrocardiograph
(ECG). In this work, processed PPG and ECG signals pass through a
multi-filter to multi-channel (MFMC), then the multi-channel data
is fed into the model to estimate the blood pressure. Apart from
blood pressure estimation, heart rate has indications for monitoring
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(a) Edit Sensor Parameters (b) Data Stream Tabular View

(c) Data Stream Graph View (d) Completed Experiment

Figure 3: The toolkit’smobile application. (a): A user interface
generated from the JSON specification file shows PPG-sensor
parameters to be updated. Users can alter these parameters
to test different configurations without interacting with the
device. (b): A view of time-series records stored in the local
SQLite database for PPG data. (c): A live view of Accelerome-
ter data using iOS’s Chart API; this gives the ability to check
data on-the-fly quickly. (d): A completed experiment show-
ing high-level details, a map of the distance traveled during
data collection, and time markers recorded during the exper-
iment.

PPG (50Hz, Reliability: 98.72%, Avg Ground Truth Heart Rate: 70.92 bpm)

Accelerometry (40Hz, Reliability: 90.79%)
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Figure 4: A 25-second example of data collected while walk-
ing. Top: PPG data with a bandpass filter (0.2Hz - 20Hz) and
a 5-second rolling average from three wavelengths collected
from a custom wearable. Orange and green frequencies show
good alignment, but the infrared signal requires further ex-
ploration. Bottom: Accelerometer data with z-score normal-
ization on respective axis and L2-Normalization aggregation.
We report a lower than expected data reliability indicating
an issue with sensor drivers. All data is exported from the
mobile app and prepared using Python.
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Total Time: 00:37:53.862
Total Records: 1,133,273
Total Data Points: 11,332,730

Raw Data Collected: 23.58 MB
Average Freq: 500.0 Hz
Reliability: 100.0%

Figure 5: A demonstration data throughput test. Over 1-
million records collected by a mock sensor on a nRF5240
based wearable. Displayed is a slight ( 3 byte) oscillation in
bandwidth, which we attribute to timestamp precision, but
the record count remains constant due to time-management
from the wearable device. This test is well below the lim-
its of BLE on mobile devices, and we expect we can achieve
higher throughput, but would require tracking timestamps
at higher precision. Data is exported from the mobile app
and prepared using Python.

sleep. Radha et al. [10] propose a long short-term memory (LSTM)
network to model long-term cardiac sleep architecture based on
heart rate variability. This approach achieves a state-of-the-art sleep
stage classification. We plan to extend our functionality to enable
pipelines that support data collection and inference evaluation of
real-time health metric machine learning pipelines.

8 CONCLUSION
We present the initial development of a toolkit for developing cus-
tom wearable devices in free-living scenarios. Efficient data collec-
tion of wearable devices is an engineering effort that takes time
from research contributions. The toolkit’s goal is to reduce the ap-
plication development burden and untether early experimentation
from the lab by providing a BLE guideline, a mobile application
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supporting flexible bidirectional communication and adaptable data
storage for wearables. We demonstrate the the toolkit’s effective-
ness in an active wearable project showing it’s usefulness in early
development cycles of new wearable hardware and presenting base-
line results of data reliability. The toolkit is released open source
on GitHub and is open for contributions.
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