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ABSTRACT
Sensing the surface properties through touch, as the most natural
perceptual way of humans, has become an important and practical
method for human-machine interactions (HMI) and robot manipu-
lations. In this paper, we design a fingertip hybrid flexible tactile
sensor for multimodal surface sensing, based on the triboelectric
and piezoresistive mechanisms. A real-time tactile sensing system
is implemented on a 3D-printed robot finger together with a wire-
less data acquisition board. A virtual data generation method is
proposed to expand the model adaptability under different compres-
sion force levels. Moreover, considering the characteristics of data
generated by our sensors, a novel deep learning model with a resid-
ual structure is developed, named parallel residual convolutional
neural network (PR-CNN). Our model outperforms the state-of-
the-art models, i.e., Res-CNN, LSTM-FCN and InceptionTime, with
over 96% accuracy, on three classification tasks, including textures
(13 types), materials (10 types), and combinations of textures and
materials (18 types). The proposed system has broad applications
in service robots, industrial sorting robots, and HMI.
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1 INTRODUCTION
Inferring the surface properties of the target objects and realiz-
ing recognition through touch are of both practical meaning and
irreplaceable importance for human-machine interactions (HMI)
and precise robot manipulations [3]. Especially, in the last decade,
the realization of the emerging electronic-skin concept has called
for the advances of flexible tactile sensors towards better sensing
capabilities and complex surface sensing tasks [2].

To this end, different types of flexible tactile sensors have been
developed for surface property sensing, including pressure, strain,
texture, materials and so on [15]. Usually, the sensors that detect the
forces could be utilized for pressure, strain, and texture perception,
such as the piezoelectric sensor for roughness sensing [11], the
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piezoresistive sensor for texture recognition [13], the capacitive [1]
or optical [19] sensor for strain detection, etc. Besides, by deploy-
ing the sensors in an array, the sensing capabilities including the
range and resolution could be dramatically enhanced [18]. Never-
theless, the material recognition task still remains a challenge for
such force-oriented tactile sensors due to its nature. The emerging
triboelectric sensor has shown its potential for material recognition
thanks to its unique working mechanism [8]. Recently, we also
proposed a wavelet based signal decoupling method to make the
single triboelctric sensor sense more than one surface property
simultaneously [14]. Unfortunately, it only works well at a single
compression force level which limits its applications.

Considering the sensing limitations of the single-mode sensor
as well as the nature of human perception, the multimodal sensor-
based tactile sensing systems have demonstrated superiority in
complicated tasks such as object recognition as well as material
and texture classifications with high accuracy and efficiency [5]. In
Komeno’s work, a vibration and tactile sensor were adopted for ob-
ject surface classification by injecting mechanical vibrations during
contact [10]. Pastor et al. proposed an object recognition pipeline
fed with haptic images and angle values under the Bayesian fu-
sion framework, which outperforms the approach based on neural
networks [12]. There are already some great works either on the
multimodal device fabrication [6] or on the data fusion algorithm
development [20]. It is worth noting that designing the multimodal
tactile sensor together with the customized algorithms in a quanti-
tative and systematic way is still of great interest and significance.

In this paper, we propose a low-cost and easily-assembled tactile
sensing system for multimodal surface sensing tasks. The sensing
system consists of a novel fingertip flexible hybrid tactile receptor
based on triboelectric and piezoresistive mechanisms and a wireless
signal acquisition board collecting sensors’ output. For the time-
series data generated by the sensors, we develop the customized
deep learning (DL) algorithm and complete three classification tasks,
including textures (13 types), materials (10 types), and combinations
of textures and materials (18 types), with over 96% accuracy. The
contributions of this work can be trifold as follows:
• We incorporate the piezoresistive thin film into the grating-
structured triboelectric sensor and form a sandwich like
flexible tactile sensor for multimodal surface sensing. A real-
time system is implemented on a robot manipulator.
• A virtual data generation method is proposed to expand
the adaptability of the DL model and the robustness of the
system under different compression force levels.
• In addition, we develop a DL model with a residual structure
named parallel residual convolutional neural network (PR-
CNN), which has fewer model parameters and outperforms
the state-of-the-art (SOTA) models.

2 SYSTEM DESIGN
2.1 Working Mechanism
In this paper, we develop a multimodal tactile sensor mainly based
on two working mechanisms, i.e., the triboelectric and piezoresis-
tive working mechanisms, briefly introduced as follows.

The triboelectric sensor is formed by the emerging triboelec-
tric nanogenerator (TENG), of which the electric output relies on

the coupling effect of contact electrification and electrostatic in-
duction [17]. It can distinguish materials from the difference in
electronegativity. The triboelectric sensor can distinguish materials
under a small compression force range [14]. However, when apply-
ing multiple levels of compression force, it’s not easy to distinguish
materials of similar electronegativity with only triboelectric sensing
data. Due to its low-cost and flexibility as well as the broad availabil-
ity of materials, the TENG based tactile sensor has demonstrated
great potential in realizing robot sensing and HMI [4].

The piezoresistive sensor is based on the piezoresistive effect
which is the change in electrical resistance of materials caused by
stretching or compression.

(b)

(a)

(c)
Silicone Cushion

Copper (Cu)

Kapton (PI)

Piezoresistive
Thin Film

20 mm

Figure 1: (a) Prototype of the multimodal tactile sensing sys-
tem; (b) Layered illustration of the proposed fingertip hybrid
sensor; (c) Schematic diagram of the wireless data acquisition
board.

2.2 Multimodal Tactile Sensor
As shown in Fig. 1a, our multimodal tactile sensing system consists
of two modules, i.e., the fingertip flexible tactile sensor and the
wireless data acquisition board, which are equipped on a 3D printed
finger attached to the robot arm.

The proposed flexible tactile sensor has a sandwich-like structure
of four layers with a size of 20 mm by 23 mm and a thickness of 3
mm, as depicted in Fig. 1b. The top layer is a soft silicone cushion
as the compression force buffer. The second layer is a commercial
piezoresistive thin film (FSR402) which can detect the compression
force. The third layer is the six interdigitated (comb-like) copper
electrodes connected to two bared pads fabricated via the flexible
printed circuit board process. The bottom layer is Kapton (PI) film
and works as both the triboelectric layer and the protective en-
capsulation for the whole sensor. The comb-like copper electrodes
together with the Kapton triboelectric layer formed a freestanding
mode triboelectric tactile sensor. The electrode parameters have
been properly chosen to enhance the signal-to-noise ratio of the
output signal as well as the texture resolution.

In this context, by introducing the piezoresistive layer, the pres-
sure could be sensed and monitored independently, which over-
comes the limitation of controlling a single compression force level
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when only applying free-standing triboelectric sensor and improves
the sensing robustness of the system.

2.3 Wireless Data Acquisition Board
The schematic diagram of the wireless data acquisition board is
illustrated in Fig. 1c. The signal acquisition circuit is designed to
convert the current signal of the triboelectric sensor and the resis-
tance value of the piezoresistive sensor to analog voltages (0–3.3
V). It includes a trans-impedance amplifier and a non-inverting
proportional amplifier corresponding to the two sensors’ detection
circuits. Considering that the current signal generated by the tri-
boelectric sensor is weak and the output impedance is large, we
select ADA4505 with high impedance and low bias current (typical
value 0.5 pA) in our design. In the resistance variation detecting
circuit, we choose a high-precision operational amplifier RS8524
and place a 1 kΩ charging resistor in the inverting input to have a
quick response to the changing resistance.

To convert two channels of analog voltages from the signal ac-
quisition circuit into digital form and send real-time signals with
corresponding timestamps to the server, the microcontroller unit
(ESP32-D0WD) is selected, which has an internal 12-bit successive
approximation analog-to-digital converter peripherals and com-
munication ability via Bluetooth. Besides, the signals from the
triboelectric and piezoresistive sensors are filtered through both
hardware and software methods.

3 METHODS
In this section, we introduce three features from the signal of our
multimodal tactile sensor and propose virtual data gerneration as an
efficient data argumentation method based on the physical meaning
of the features as well as a DL model of our system on textures and
materials recognition.

3.1 Multimodal Feature Selection
In Wei’s work, they select four features from hybrid e-skin’s sens-
ing data including voltage amplitude, polarity, signal duration of
triboelectric sensor and current amplitude of piezoresistive sen-
sor [16]. Considering our tasks and system design, we choose three
representative features (𝑓1, 𝑓2, 𝑓3) among the output of our tactile
sensors. These features of the sample represent the current inten-
sity, the quantity of transferred charge and the compression force in
the fingertip sliding process, respectively. For every sliding process
movement, the proposed system generates a sample of length𝑚.

Every sample can be described as a multivariate time-series
X =<XTE,XPR >, where XTE ∈ R𝑚 and XPR ∈ R𝑚 represent
the triboelectric and piezoresistive sensing data, respectively. Each
sample has a label 𝑌 which can represent the object’s material or
texture. The three interested features of sample X are calculated as:

𝑓1 (X) =
1
𝑚
·
𝑚∑︁
𝑡=1
|XTE (𝑡) |, (1)

𝑓2 (X) = max
𝑡
(

𝑡∑︁
𝑖=1

XTE (𝑖)) −min
𝑡
(

𝑡∑︁
𝑖=1

XTE (𝑖)), (2)

𝑓3 (X) = max
𝑡
(XPR (𝑡)). (3)

3.2 Virtual Data Generation Method
To enhance the robustness of the system, we implement a virtual
data generation method in the data pre-processing. Our method
is aimed to improve the generalization ability of the DL model by
generating the datasets of unknown compression force levels from
the datasets of known force levels. We collect data of compression
force levels ∆real={1 N, 10 N, 15 N, 25 N} and generate data of target
compression force levels ∆tar = {5 N, 20 N}. The elements of ∆real
and ∆tar are denoted as 𝛿real and 𝛿tar, respectively. The dataset
with 𝑛 samples of specific compression force level is defined as
𝐷𝑌,𝛿 = {X1,X2, . . . ,X𝑛}, where 𝛿 ∈ ∆real

⋃
∆tar. The interval of

sliding on the surface is positively correlated to the compression
force levels. Thus, every target compression force level needs two
adjacent compression force levels 𝛿𝑖 , 𝛿 𝑗 as:

𝛿𝑖 = max({𝛿 | 𝛿 ∈ ∆real ∩ 𝛿 < 𝛿𝑡𝑎𝑟 }) (4)
𝛿 𝑗 = min({𝛿 | 𝛿 ∈ ∆real ∩ 𝛿 > 𝛿𝑡𝑎𝑟 }) (5)

𝐷𝑌,∆adj , two datasets of ∆adj = {𝛿𝑖 , 𝛿 𝑗 }, contribute to 𝐷𝑌,𝛿tar
equally. Therefore, 𝐷𝑌,𝛿tar is generated from 𝐷𝑌,𝛿𝑖 and 𝐷𝑌,𝛿 𝑗

with
the same amounts of samples.

Algorithm 1 Virtual Data Generation Method
Input: Target force levels ∆𝑡𝑎𝑟 , known datasets 𝐷𝑌,∆real ;
Output: Generated dataset 𝐷𝑌,∆tar ;
1: for all 𝛿tar ∈ ∆tar do
2: ∆adj ← get_adjacent(𝛿tar, ∆real) by Eqn. (4) and (5);
3: for all 𝛿adj ∈ ∆adj do
4: for all X𝛿adj ⊂ 𝐷𝑌,𝛿adj do
5: • Calculate 𝑓1 (X𝛿adj ) and 𝑓3 (X𝛿adj ) from X𝛿adj based on

Eqn. (1) and (3);
6: end for
7: • Fit 𝐹 to satisfy 𝑓1 = 𝐹 (𝑓3);
8: for all X𝛿adj ⊂ 𝐷𝑌,𝛿adj do
9: • Calculate two scaling ratio as

[TE (𝑌, 𝛿adj, 𝛿tar) = 𝐹 (𝛿tar)/𝑓1 (X𝛿adj ), (6)

[PR (𝑌, 𝛿adj, 𝛿tar) = 𝛿tar/𝑓3 (X𝛿adj ); (7)

10: • Calculate X𝛿tar =< X𝛿tar
TE ,X

𝛿tar
PR > with

X𝛿tar
TE = X

𝛿adj
TE · [TE (𝑌, 𝛿adj, 𝛿tar), (8)

X𝛿tar
PR = X

𝛿adj
PR · [PR (𝑌, 𝛿adj, 𝛿tar); (9)

11: • 𝐷𝑌,𝛿tar ← append(X𝛿tar );
12: end for
13: end for
14: 𝐷𝑌,∆tar ← append(𝐷𝑌,𝛿tar );
15: end for

Algorithm 1 describes the virtual data generation process. The
known datasets 𝐷𝑌,∆real and ∆tar are the input, and the output is
𝐷𝑌,∆tar , the generated datasets of ∆tar.

For each 𝛿tar, we have ∆adj which is calculated by equation (4)
and (5). To every sample X𝛿adj from different compression force
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levels among ∆adj, we get 𝑓1 and 𝑓3, which are two representa-
tive features of X𝛿adj , using Eqn. (1) and (3). The next step is to fit
the relationship between 𝑓1 (X𝛿adj ) and 𝑓3 (X𝛿adj ) by a cubic func-
tion 𝐹 . Afterwards, we calculate the scaling ratios of triboelectric
and piezoresistive sensing data denoted as [TE (𝑌, 𝛿adj, 𝛿tar) and
[PR (𝑌, 𝛿adj, 𝛿tar). Every generated sample X𝛿tar equals to the sam-
ple from 𝐷𝑌,𝛿adj multiplied by two scaling ratios and is collected
as an element of virtual dataset 𝐷𝑌,𝛿tar . It is worth noting that the
interval between target compression force level and its adjacent
compression force level should be higher than the resolution of
piezoresistive thin film.

3.3 Parallel Residual CNN Model
DL, which provides an efficient solution to automatically learn
the temporal dependencies in time-series data, has successfully
been applied to address time series data processing and forecasting
problems. There are some SOTA DL models for time-series data
processing, such as LSTM-FCN [9], InceptionTime [7], and Res-
CNN [21]. Considering the dataset feature of our multimodal sensor,
we propose the PR-CNN model, which has a smaller model size but
higher accuracy than the SOTA models.
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Pizeoresistive
sensing data
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Figure 2:Multimodal sensing signals and customized residual
network based recognition model for extracting and classi-
fying materials and textures. (n: number of classes)

The input end of the PR-CNN consists of two parallel residual
blocks fed with the triboelectric signal and the piezoresistive signal
respectively. Two one-dimensional convolutional layers serve as
the data fusion block to fuse the features from the two residual
blocks. The output layer following the data fusion block consists of
a global pooling layer and a softmax. The schematic illustration of
the PR-CNN is depicted in Fig. 2. Since the electrostatic interference
from the external environment can cause sufficient noise to our
sensors, the residual structure is necessary to suppress noise in
the sensing signal and enhance the gradient propagation. The two
parallel residual blocks extract features independently to avoid
mutual interference between the two modalities, which improves
training efficiency.

4 EXPERIMENTS AND RESULTS
4.1 Calibration for the Piezoresistive Thin Film
A commercial integrated pressing sensor (DS2-50N-XD) is selected
as the ground truth to calibrate the piezoresistive thin-film sensor.
We set our multimodal tactile sensor in the vertical direction of

the pressing sensor and collect 20 sets of piezoresistive thin-film
sensing voltage data corresponding to precise compression force
levels by slowly adjusting the height of the fine-tuning platform.

4.2 Experimental Setup
Fig. 3a shows the whole data collecting system. A 6-axis manipula-
tor, a 3D-printing finger and a two-degree-of-freedom fine-tuning
platform are adopted to perform the data collection in the tactile
sensing system by mimicking the sliding process of human inter-
actions. The fine-tuning platform works as fixing experimental
boards as well as setting six different compression force levels
∆={1 N, 5 N, 10 N, 15 N, 20 N, 25 N}. With the help of the robot arm,
the fingertip can slide on the board surface along a trapezoidal track.
The base angle is set to 30 degrees to extend the contact-separation
phase. The wireless acquisition board is used to synchronously ac-
quire the signals of the triboelectric and piezoresistive sensors at the
sampling frequency of 250 Hz. The sliding movement is repeated
𝑛 = 15 times for every compression force level.

X

y

z(a)

Triangle - 4~7 mm Circle - 4~7 mm Trapezoid - 4~7 mmFlat

100 mm

(b)

50 mm

(c)

Figure 3: Data collecting system and experiment setup. (a)
Experimental platform for data collection. (b) 13 experiment
specimens of different textures. (c) 10 experimental speci-
mens made of different materials.

In this paper, we validate the performance of our fingertip multi-
modal tactile sensing system, our model with multi-channel resid-
ual structure and virtual data generation method through three
classification tasks as follows.

4.2.1 Texture Classification. As the Fig. 3b shows, we design 13
different texture specimens with four different types of shapes and
four different periodic lengths (4, 5, 6, 7 mm). All the texture boards
are in the size of 10 cm by 10 cm, made from resin and manufactured
by stereo lithography appearance technique in WeNext Technology
Co., Ltd. They are named Flat, Cir4∼7, Tri4∼7, Tra4∼7, respectively.

4.2.2 Material Classification. As Fig. 3c shows, we select 10 dif-
ferent materials in the size of 10 cm by 10 cm, including Acrylic,
Bakelite, Carbon fiber, Epoxy plate, Marble, Leather, Nylon, Glass,
Resin and Wood, which are commonly seen in our daily life.

4.2.3 Texture and Material Classification. We prepare 18 boards
with 10 materials (Silk, Paper, Acrylic, Bakelite, Marble, Leather,
Nylon, Glass, Resin, Wood) and 5 textures (Flat, Tri4, Tri6, Cir4,
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Cir6). The 18 boards are named Silk-flat, Silk-cir4, Silk-cir6, Silk-
tri4, Silk-tri6, Paper-flat, Paper-cir4, Paper-cir6, Paper-tri4, Paper-
tri6, Acrylic-flat, Bakelite-flat, Marble-flat, Leather-flat, Nylon-flat,
Glass-flat, Resin-flat, Wood-flat.

4.3 Data Preprocessing & Training Process
After finishing tactile sensing data collection, we follow these three
procedures to complete data splitting and augmentation: (1) Discard
redundant data points at the beginning and end of every time
sequence data file. (2) Generate samples through a sliding window
with a length of𝑚 = 1400 data points and a step of 10 data points.
(3) Select the qualified samples by comparing their variance with a
preset threshold. In the experiment, every time sequence data file
can generate around 150 samples. Fig. 4 shows the waveforms of
samples and compares them horizontally by controlling different
textures, materials and compression force levels.

Vo
lta

ge
(V

)

Time(s)

Tra5-15 N

Glass-flat-15 N

Glass-flat-5 N Glass-flat-15 N

Bakelite-flat-15 N

Tra6-15 N Tra7-15 N

Glass-flat-25 N

Wood-flat-15 N

Figure 4: Multimodal tactile sensing waveforms of sliding
on different materials and textures under three compression
force levels.

After finishing the data preprocessing, we separate our samples
into training set and validation set according to the compression
force levels. The training set includes samples of compression force
levels ∆real . And the rest belong to the validation set. We generate
target dataset 𝐷𝑌,∆tar of compression force levels ∆tar from 𝐷𝑌,∆real
through virtual data generation method, and combine them with
the training set as the final training set.

In the training process, we select cross-entropy as the loss func-
tion, and keep the same batch size, epoch, and initial learning rate in
the experiment. The specific parameters are 128, 40, 0.05, separately.
To speed up convergence, the learning rate decreases to a tenth
in the epochs of 5, 15, 25. This can help model with more delicate
training performance and overcome the local optimum situation.
The code is based on the Pytorch library, and models are trained
on a GeForce RTX 3090 GPU.

4.4 Validation Results
To prove the advancement of multi-channel residual structure, we
select Res-CNN [21], InceptionTime [7], LSTM-FCN [9], three SOTA
models, as the baseline model in the training process and make a

performance comparison between our model and the other three
models. Table. 1 shows the performance of three DL methods in
material classification task. Four models can distinguish ten mate-
rials with high accuracy. Our model shows excellent classification
ability which has the highest validation accuracy, smallest model
size as well as lowest validation loss among the four models.

Table 1: Performance Comparison in Material Classification.

Method Model Size Val Loss Val Acc
Our model 266,251 0.047 99.06%
InceptionTime [7] 456,074 0.060 98.14%
Res-CNN [21] 257,803 0.141 96.30%
LSTM-FCN [9] 786,276 0.253 91.79%

In addition, we validate our virtual data generation method by
comparing the training process with and without the method. With-
out the virtual data generation method, the training accuracy is
close to 1, when the validation accuracy is around 10% which is
the same as the random probability among 10 materials. It seems
that the virtual data generation method enhances the adaptability
of the DL model under compression force levels ∆tar and helps the
model alleviate the overfitting phenomenon.

Finally, we deploy the proposed model for three classification
tasks. Fig. 5 shows the results in the form of confusion matrices.
And the average recognition accuracies of the three tasks reach
96.47%, 99.52% and 97.57%, respectively. The lowest recognition
accuracy of all classes based on the combined dataset of materials
and textures is 90.90% which appears on the classification of silk
board with triangle texture and 6 mm periodic length.

5 CONCLUSIONS AND DISCUSSIONS
In this work, we design a multimodal tactile sensing system for
texture and material classification. A fingertip flexible tactile sensor
based on a sandwich-like four-layered structure that couples the
triboelectric and piezoresistive effects is proposed. We also propose
a virtual data generation method to enhance model generalization
ability and increase the data availability. Furthermore, the PR-CNN
model with a multi-channel residual structure is developed and
outperforms the SOTA models on three texture and material classi-
fication tasks with over 96% accuracy. A real-time system is also
implemented on the robot manipulator, indicating the potential
applications in service robots and HMI.
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