
A flat reachability-based measure for CakeML’s cost semantics
Alejandro Gomez-Londoño
alejandro.gomez@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Magnus O. Myreen
myreen@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

ABSTRACT
The CakeML project has recently developed a verified cost seman-
tics that allows reasoning about the space safety of CakeML pro-
grams. With this space cost semantics, compiled machine code
can be proven to have tight memory bounds ensuring no out-of-
memory errors occur during execution. This paper proposes a new
cost semantics which is designed to make proofs about space safety
significantly simpler than they were with the original version. The
work described here has been developed in the HOL4 theorem
prover.

CCS CONCEPTS
• Software and its engineering → Formal software verifica-
tion; Compilers.

KEYWORDS
compiler verification, cost semantics, space usage
ACM Reference Format:
Alejandro Gomez-Londoño andMagnus O. Myreen. 2021. A flat reachability-
based measure for CakeML’s cost semantics. In 33rd Symposium on Im-
plementation and Application of Functional Languages (IFL ’21), Septem-
ber 1–3, 2021, Nijmegen, Netherlands. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3544885.3544887

1 INTRODUCTION
Functional languages aid the development of complex programs
by providing programmers with many abstractions (e.g., polymor-
phism, garbage collection, ADTs, among others). However, these
abstractions often come at the cost of increased memory usage and
compiler complexity. These drawbacks make it difficult to judge
space safety, i.e., how much memory a program will need in order
to run without encountering out-of-memory errors.

To avoid out-of-memory errors, the CakeML project has recently
developed a verified cost semantics [8] that makes it possible to
prove the space safety of programs generated by the CakeML com-
piler. CakeML’s cost semantics predicts when a program runs out of
memory using a space measuring function, size_of. The size_of
function is used at all allocation sites to check if the memory usage
has surpassed a given limit. To prove that a program does not run
out of memory, it is enough to show that size_of, as used by the
formal semantics, stays within the limits.

This work is licensed under a Creative Commons Attribution International
4.0 License.

IFL ’21, September 1–3, 2021, Nijmegen, Netherlands
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8644-9/21/09.
https://doi.org/10.1145/3544885.3544887

At its core, the measuring function size_of uses a single recur-
sive descent to discover reachable nodes in the heap and compute
their sum (while taking aliasing into account in order to avoid
gross over-approximations). Space safety proofs must then care-
fully use the definition and properties of size_of to reach Q.E.D.
Unfortunately, the current formulation of size_of is not naturally
compositional, making its definition tricky to use, and forcing re-
lated properties to require complicated assumptions to hold.

The non-compositionality of size_of makes reasoning about
space safety a cumbersome endeavor. The majority of a space safety
proof is dedicated to tedious by-hand accounting of arguments and
establishing complicated assumptions. Overall, while space safety
can be established using CakeML’s cost semantics, its utility is
severely limited by the amount of effort necessary to complete
these size_of proofs.

This paper makes it easier to reason about CakeML’s cost se-
mantics by defining (and proving soundness of) an alternative
space measuring function, called flat_size_of. The new function
flat_size_of is defined in two steps: first, it computes the set of
reachable nodes, and then computes the sum of the size of the data
at those nodes. The new formulation is compositional and, thus,
one can express properties and conduct proofs more naturally than
with size_of. Our initial experiments suggest that flat_size_of
makes space safety proofs less cumbersome (i.e., require less as-
sumptions) and more manageable (i.e., shorter theory files) than
size_of equivalents.

This paper makes the following contributions:

• Defines flat_size_of (in Section 3) as a new reachability-
based measuring function, which is significantly simpler to
work with than the original size_of (Section 2.3).

• Demonstrates (in Section 4) how flat_size_of overcomes
some of the most significant problems of size_of.

• Discusses (in Section 5) how flat_size_of was proved
sound, and how future space safety proofs can use it.

All the work presented in this paper is machined-checked using
the HOL4 theorem prover in the context of the CakeML compiler
verification project; artifacts and example proofs can be found here.

2 A VERIFIED COST SEMANTICS
The cost semantics for the CakeML compiler [8] is expressed at the
level of its DataLang intermediate language.

DataLang is an intermediate language approximately in the
middle of the CakeML compiler. It is an imperative intermediate
language with nested tuple-like values and reference pointers, but
no function values. It appears right before memory becomes finite
and the garbage collector is introduced. The semantics ofDataLang
is expressed in the form of a (functional) big-step semantics.

1

https://doi.org/10.1145/3544885.3544887
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544885.3544887
https://github.com/CakeML/cakeml/tree/78c0ebb2c87a30f0d64d58c651017147ac334818
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544885.3544887&domain=pdf&date_stamp=2022-11-10

IFL ’21, September 1–3, 2021, Nijmegen, Netherlands Alejandro Gomez-Londoño and Magnus O. Myreen

The semantics forDataLang acts as a cost semantics for CakeML
by maintaining a boolean-valued safe_for_space field in the se-
mantic state of the operational semantics. This field is set to false
whenever a semantic space-cost measurement predicts that the
current use of space might exceed the configured space limits for
heap or stack space.

This paper focuses on the measurement of heap space. At each
allocation of new memory, the semantics for DataLang computes
the size of the currently live data using a measuring function called
size_of. This size_of function computes the space consumption
of all values that are reachable from the root values obtained from
the stack and global variables. This size_of function is defined to
carefully track aliasing by keeping track of pointer-equal values,
and is unchanged by garbage collection as it only consider live
(reachable) data.

To prove the space safety of a CakeML program, one must show
that for some (concrete or abstract) limit that the semantics of its
DataLang representation never sets safe_for_space to false.
Once space safety is established, it can be extended all the way to
the level of machine code, thanks to the soundness proof for the
cost semantics w.r.t. to the CakeML compiler.

The rest of this section introduces: the DataLang semantics,
the space semantics, and the definition of the original heap space
measure, i.e. size_of. More details on the original DataLang’s
operational and costs semantics can be found in prior work [8, 15].

2.1 DataLang at a glance
DataLang is an imperative language with abstract values, stateful
storage of local variables, and a call stack. In the compiler-stack,
it sits between the more abstract functional languages and the
low-level languages with word-based value representations.

To give a sense of how CakeML programs look when compiled
into DataLang, consider the following CakeML function expressed
in CakeML source syntax (which is very similar to SML syntax).

fun app123 x = let a = [1,2,3] in a ++ x end

This function appends its input to the list [1,2,3]. The result of
compiling this function to DataLang is shown in Figure 1.

line 0 : app123 [0] evaluates as
line 1 : MakeSpace 9
line 2 : 1 B Cons nil_tag []

line 3 : 2 B Const 3
line 4 : 3 B Cons cons_tag [2; 1]
line 5 : 4 B Const 2
line 6 : 5 B Cons cons_tag [4; 3]
line 7 : 6 B Const 1
line 8 : 7 B Cons cons_tag [6; 5]
line 9 : 8 B ListAppend [7; 0]
line 10 : return 8

Figure 1: DataLang code for a function that appends its ar-
gument to [1,2,3]

At first, the DataLang presentation of the code might seem
significantly different. However, on closer inspection, we hope the

reader will see the similarity. In DataLang, the result of a primitive
operation is always assigned (B) to a local variable, which is repre-
sented as a natural number. On line 0, argument 0 corresponds to
the source code binding x. Line 1 allocates 9 slots of space, since
for each of the three Cons space for the constructor, head, and tail
is required. Line 2 creates a value representing an empty list using
the primitive operation Cons and a number tag (nil_tag) denoting
the nil constructor for lists. On line 3, a Const operation creates
the number literal 3. Line 4 combines local variables 1 ([]) and 2
(3) into the singleton list [3] using Cons and the corresponding list
constructor tag (cons_tag); using the same process, lines 5 through
8 create the DataLang representation of the list [1,2,3]. Then,
Line 9 applies ListAppend—which appends the two lists-shaped
values—variables 0 (the argument) and 7 ([1,2,3]).

v = Number int
| Word64 word64
| CodePtr num
| RefPtr num
| Block timestamp tag (v list)

Figure 2: DataLang’s abstract values

Primitive values in DataLang are modeled by the data type
presented in Figure 2. Here Number is an arbitrarily large integer;
Word64 is a 64-bit machine word; CodePtr is a code pointer; and
RefPtr is a pointer to mutable state (such as arrays). The Block
constructor represents contiguous values in memory, and encodes
datatype constructors, tuples and vectors.

An example of a DataLang value is shown in Figure 3 which
shows the DataLang representation of the CakeML list [1,2,3].
This is the value resulting from a call to app123 with the empty
list as the argument. Block values, with cons_tag and nil_tag
indicate the source-level constructor that each Block represents.
Furthermore, timestamp values 8, 7, and 6 uniquely identify each
block.

app123_nil
def
= Block 8 cons_tag [Number 1;

Block 7 cons_tag [Number 2;
Block 6 cons_tag [Number 3;

Block 0 nil_tag []]]]

Figure 3: Block representation of CakeML list [1,2,3]

The semantics state is defined as the record type shown in Fig-
ure 4. The fields locals and refs represent the finite maps of
local variables (v num_map) and references ((v ref) num_map) re-
spectively. The stack is a list of stack frames, each frame containing
only the relevant variables that should be restored after a call is
completed. The global field contains an optional reference to an
array of global variables. Space limits are kept in a record with
fields for heap and stack limits. The boolean flag safe_for_space
is set to false when space limits have been exceeded. The remaining
fields are not of relevance for the presentation here.

2

A flat reachability-based measure for CakeML’s cost semantics IFL ’21, September 1–3, 2021, Nijmegen, Netherlands

α state = <|
locals : v num_map;
refs : v ref num_map;
stack : stack list;
global : num option;
limits : limits;
safe_for_space : bool;
clock : num;
. . .

|>

ref = ValueArray (v list) | Bytes bool (word8 list)

limits = <|
heap_limit : num;
stack_limit : num;
. . .

|>

Figure 4: The definition of the DataLang state.

The semantics of DataLang is defined as a functional big-step
semantics [14]. In this style of semantics, a clocked big-step eval-
uation function, evaluate, takes a (program, state) pair as input,
and returns a (result, state) pair as output. As an example, consider
the evaluation of app123 with the empty list as argument, which
results in value app123_nil. Note that the program is given to
evaluate as a DataLang AST (app123_prog) and arguments are
local variables in the state.

evaluate (app123_prog,
s with locals := { 0 7→ Block 0 nil_tag [] })

= (app123_nil, s′)

To better visualize intermediate steps of evaluation, the Data-
Lang semantics can also be expressed as a shallowly embedded
state-exception monad. This is the representation used in app123
and by partially evaluating the first three operations we can inspect
its intermediate state:

app123 (s with locals := { 0 7→ Block 0 nil_tag [] })

= (4 B Const 2
5 B Cons cons_tag [4; 3]
6 B Const 1
7 B Cons cons_tag [6; 5]
8 B ListAppend [7; 0]
return 8)
s with <| locals := { 0 7→ Block 0 nil_tag []

1 7→ Block 0 nil_tag []

2 7→ Number 3
3 7→ Block 3 cons_tag

[Number 3;
Block 0 nil_tag []] };

. . .

|>

2.2 Embedded cost semantics
As previously stated, DataLang’s costs semantics is embedded
into its operational semantics. Therefore, proving space safety of
app123 is a matter of proving the following statement:

⊢ s.limits.heap_limit = mh ∧

s.limits.stack_limit = ms ∧
s.safe_for_space ∧
evaluate (app123_prog, s) = (res, s′) ⇒

s′.safe_for_space

This is, given stack space mh and heap space ms; the evaluation
of app123_prog preserves safe_for_space, thus signalling that the
program’s memory consumption falls within the given bounds.

Internally, the safe_for_space flag is updated at every space-
consuming operation, for example, at function calls and whenever
new values are created. Auxiliary functions size_of_heap and
size_of_stack are used to update safe_for_space in one of two
ways. If k slots of new heap space are to be used (e.g. as part of
MakeSpace), then safe_for_space is updated as follows:

s with
safe_for_space :=
(s.safe_for_space ∧

size_of_heap s + k ≤ s.limits.heap_limit)

Similarly, if k slots of new stack space are to be comsumed (e.g. as
part of a function call), then safe_for_space is updated as follows:

s with
safe_for_space :=
(s.safe_for_space ∧

size_of_stack s + k ≤ s.limits.stack_limit)

The important work is performed by the size_of_heap and
size_of_stack functions. This paper focuses on improving the
formulation of the heap space measure and thus size_of_heap.

The original formulation of size_of_heap is shown below. Here
stack_to_vs is a function that computes a list of root values
from local variables (s.locals), the call-stack (extract_stack), and
global references (global_to_vs). The root values are given to
the measuring function size_of, which computes the size of heap
elements reachable from these initial elements.

size_of_heap s def
=

let (n, _, _) =
size_of (stack_to_vs s) s.refs ∅ in

n

stack_to_vs s def
=

toList s.locals + +
extract_stack s.stack + +
global_to_vs s.global

The main workhorse of this definition is the size_of function,
which is the topic of the next section.

3

IFL ’21, September 1–3, 2021, Nijmegen, Netherlands Alejandro Gomez-Londoño and Magnus O. Myreen

2.3 The original heap measure: size_of
At the core of DataLang’s cost semantics is the heap space measur-
ing function size_of. This function is responsible for computing
the space consumed by all values reachable from the initial list
of root values. Figure 5 shows its definition with seen (a set of
timestamps), and refs as additional arguments.

size_of [] refs seen def
= (0, refs, seen)

size_of (x :: xs) refs seen def
=

let (n1, refs1, seen1) = size_of xs refs seen ;
(n2, refs2, seen2) = size_of [x] refs1 seen1 in

(n1 + n2, refs2, seen2)
size_of [Word64 v0] refs seen

def
= (3, refs, seen)

size_of [Number i] refs seen def
=

(if is_smallnum i then 0 else bignum_size i, refs, seen)
size_of [CodePtr v1] refs seen

def
= (0, refs, seen)

size_of [RefPtr r] refs seen def
=

case lookup r refs of
None ⇒ (0, refs, seen)

| Some (ValueArray vs) ⇒

(let (n, refs′, seen′) = size_of vs (delete r refs) seen in
(n + |vs | + 1, refs′, seen′))

| Some (ByteArray v2 bs) ⇒

(|bs | div (arch_size lims div 8) + 2, delete r refs, seen)
size_of [Block ts tag vs] refs seen def

=

if vs = [] ∨ isSome (lookup ts seen) then (0, refs, seen)
else
let (n, refs′, seen′) = size_of vs refs (insert ts () seen) in
(n + |vs | + 1, refs′, seen′)

Figure 5: Definition of size_of.
Themeasurement of most values (CodePtr, Word64, and Number)

is straightforward, as it is either constant, already accounted for
within another structure (e.g. stack frames), or measured by a func-
tion without considering other values. By contrast, the handling
of Block and RefPtr requires additional bookkeeping to avoid
counting the same value twice (aliasing), and as such, is where
most of the complexity of size_of lies. In the case of Block val-
ues, a set of already-measured (seen) timestamps is kept to avoid
counting identical blocks multiple times; this mechanisms relies
on a bijection between timestamps and the blocks in memory. For
RefPtr, pointers are removed from references map (refs) once they
are counted, this is to only follow a reference once.

To illustrate how size_of handles aliasing consider the follow-
ing examples:

With x equal to Block ts tag [Number 1] throughout:

(B1) ts < seen ⇒

size_of [x] refs seen = (2, refs, {ts} ∪ seen)

(B2) ts ∈ seen ⇒

size_of [x] refs seen = (0, refs, seen)

(B3) ts < seen ∧ ts ∈ seen′ ∧
size_of xs refs seen = (n, refs′, seen′) ⇒
size_of (x :: xs) refs seen = (n, refs′, seen′)

Intuitively, blocks whose timestamps have not been “seen” (i.e.,
ts < seen) are always counted (B1). Moreover, blocks with already
“seen” timestamps are ignored (B2), as this hints at the block be-
ing present in previous values (B3) at the back of the list — since
size_of operates from the back.

The definition of size_of succeeds at providing tight bounds,
mitigating the effects of aliasing, and traversing only live data;
however, perhaps due to its precise and concrete nature, it can be
challenging to reason about. The main hurdle with size_of is the
linearity of its traversal, where initial measurements at the back of
the argument list directly affect subsequent ones through pointers
or timestamps — as in example (B3). Thus, conceptually simple
properties (e.g., the reordering of values) are hard to prove and
apply. The shortcomings of size_of are explained in more detail
in Section 4.

3 A NEW FLAT REACHABILITY-BASED
MEASUREMENT

This section shows the definition of our new heap cost measuring
function, flat_size_of, which improves on the original size_of.
In a nutshell, flat_size_of takes a set of root addresses, computes
the set of all addresses reachable from that initial set (Section 3.1),
and then sums the sizes of all heap elements at those addresses
(Section 3.2). We refer to this new formulation as “flat” because
operations occur mostly over sets and avoid recursing into the
structure of values. The rest of this section goes into the details of
the definition of flat_size_of.

3.1 The set of all reachable addresses
DataLang has no immediate notion of heap address. For the pur-
poses of the definition of flat_size_of, we define a type forData-
Lang addresses. Intuitively, an address is meant to represent any
value that might contain or reference other values. Therefore, we
represent an address as either the timestamp (TStamp) of a Block
(remember each block has a unique timestamp) or the pointer to a
reference (RStamp).

addr = TStamp num | RStamp num

From a list ofDataLang values, we can compute, using to_addrs,
a set of corresponding addresses. Note that to_addrs does not re-
curse into Block values, because it only wants to collect the imme-
diately reachable addresses of the given values.

to_addrs []
def
= ∅

to_addrs (Block ts tag [] :: xs) def
= to_addrs xs

to_addrs (Block ts tag (v :: vs) :: xs) def
=

{ BlockAddr ts } ∪ to_addrs xs
to_addrs (RefPtr ref :: xs) def

=

{ RefAddr ref } ∪ to_addrs xs

Omitted value kinds in the definition of to_addrs do not have
addresses in this representation; in those cases, recursion directly
continues through the list.

As a precursor to reachability, we define the next relation which
consider pairs of addresses that are one-step reachable. When

4

A flat reachability-based measure for CakeML’s cost semantics IFL ’21, September 1–3, 2021, Nijmegen, Netherlands

provided with value mappings for pointers (refs) and timestamps
(blocks), the relation next refs blocks a b holds only if b is immedi-
ately reachable from a using one of such mappings.

next refs blocks (TStamp ts) r def
=

r ∈ block_to_addrs blocks ts
next refs blocks (RStamp ref) r def

=

r ∈ ptr_to_addrs refs ref

block_to_addrs blocks ts def
=

case lookup ts blocks of
| Some (Block _ _ vs) ⇒ to_addr vs
| _ ⇒ ∅

ptr_to_addrs refs p def
=

case lookup p refs of
| Some (ValueArray vs) ⇒ to_addr vs
| _ ⇒ ∅

Therefore, from an initial set of addresses we can neatly describe
all reachable addresses using the reflexive transitive closure (∗)
of next. Note that this approach implicitly handles aliasing by
declaratively defining the set of reachable addresses; avoiding non-
termination concerns and ruling out duplicated values.

reachable_v refs blocks roots def
=

{ y | ∃ x . x ∈ roots ∧ (next refs blocks)∗ x y }

With these functions we can state the set of all reachable ad-
dresses from a list of root values as follows.

reachable_v refs blocks (to_addrs roots)

Crucially, the result of reachable_v is only finite if the initial
set of roots is finite; a requirement to iterate on the resulting set
in subsequent functions. Fortunately, the result of to_addrs roots
is know to be finite as it only turns the finitely many elements of
roots into addresses. Thus, one can prove the following.

⊢ FINITE (reachable_v refs blocks (to_addrs roots))

3.2 Adding it all up
In order to sum the sizes of all the reachable values, we need a
function that can compute the heap space consumed by a heap
element at a specific address. For this purpose, we define a function
size_of_addrwhich given an address returns the size of that heap
element.

flat_measure lims (Word64 v0)
def
= 3

flat_measure lims (Number i) def
=

if small_num lims.arch_64_bit i then 0
else bignum_size lims.arch_64_bit i

flat_measure lims (Block v5 v6 v7)
def
= 0

flat_measure lims (CodePtr v8)
def
= 0

flat_measure lims (RefPtr v9)
def
= 0

Figure 6: The definition of flat_measure

size_of_addr lims refs blocks (TStamp ts) def
=

case lookup ts blocks of
Some (Block _ _ vs) ⇒

1 + |vs | + sum(map (flat_measure lims) vs)
| _ ⇒ 0

size_of_addr lims refs blocks (RStamp p) def
=

case lookup p refs of
None ⇒ 0

| Some (ValueArray vs) ⇒

1 + |vs | + sum(map (flat_measure lims) vs)
| Some (ByteArray _ bs) ⇒

|bs | div (arch_size lims div 8) + 2

In the definition above, we see that an address of a Block t n vs
has size 1 + |vs | + sum (map (flat_measure lims) vs). Here 1 is
the space for the header of the heap element; |vs | is for the length of
the payload of the heap element; and flat_measure lims vs is to
account for the heap elements that are immediately reachable from
this block, but have no address. The definition of flat_measure,
shown in Figure 6, counts Block and RefPtr values as having zero
size, because they are already counted elsewhere.

Now we have a way to compute the set of reachable addresses
and a way to compute the size of a heap element at each address.
Our final definition makes use of

∑
which sums the application of

a given function f to all elements of a finite set s.∑
f s def
= fold_set (λ e acc. f e + acc) s 0

The top-level definition of the new heap measure is the follow-
ing. This definition sums the size of all Word64 and large Number
values in the roots using flat_measure. This is added to

∑
of

size_of_addr applied to every reachable address in the heap.

flat_size_of lims refs blocks roots def
=

sum (map (flat_measure lims) roots) +∑
(size_of_addr lims refs blocks)

(reachable_v refs blocks (to_addrs roots))

Even though this definition is very different in formulation from
the original size_of, shown in Figure 5, it computes the same
number while providing various advantages. Aliasing is implicitly
handled and there is no need for book-keeping of pointers and
timestamps. Moreover, the clear separation between the gathering
(reachable_v) and measuring (size_of_addr,flat_measure) of

5

IFL ’21, September 1–3, 2021, Nijmegen, Netherlands Alejandro Gomez-Londoño and Magnus O. Myreen

heap elements makes for a more concise definition than combining
both operations in a single recursive descent. More generally, the
main advantage of the flat_size_of approach is that it abstracts
the structure of the heap into a model (the set of all reachable
addresses) that is considerably easier to operate over; this is in stark
contrast of size_of, which operates directly on the structure of
the heap and therefore must deal with its associated complexity.

3.3 Requirements
In order for flat_size_of to be a viable replacement of size_of,
some support in DataLang’s semantics is required. Specifically,
the semantic state must provide suitable values for the auxiliary
arguments lims, refs, and blocks. However, in the current semantics,
only s.limits (lims) and s.refs (refs) are available.

To add support for flat_size_of to the semantics, we extended
the semantic state to include a mapping from timestamps to blocks:
s.all_blocks. This field is updated every time a block is created,
adding a mapping between the block’s timestamp and the block
itself (i.e., ts 7→ Block ts tag l). Since timestamps uniquely iden-
tify blocks, the mapping in s.all_blocks is always consistent with
all blocks in the heap, and by extension, all addresses derived by
reachable_v.

Given this set up, one can define the top-level cost measuring
function flat_size_of_heap in a way similar to size_of_heap.

flat_size_of_heap s def
=

flat_size_of s.limits s.refs s.all_blocks (stack_to_vs s)

4 FLAT_SIZE_OF IS BETTER THAN SIZE_OF
To illustrate the challenges of reasoning about size_of, consider
the following reordering property:

size_of [x, y] refs ∅ = size_of [y, x] refs ∅
Intuitively, this property must hold for a measuring function as

the values considered are the same. However, with size_of both
sides of the equality might perform completely different traversals:

size_of [y] refs ∅ = (ny1, refsy1, seeny1) ∧

size_of [x] refs ∅ = (nx1, refsx1, seenx1) ∧

size_of [y] refsx1 seenx1 = (ny2 , refsy2 , seeny2) ∧

size_of [x] refsy1 seeny1 = (nx2 , refsx2 , seenx2) ⇒

(ny1 + nx2 , refsx2 , seenx2) = (nx1 + ny2 , refsy2 , seeny2)

This mismatch exposes the following problems:
• There is no straightforward relation between the two mea-
surements of [x] (or those of [y]) as size_of is applied to
different arguments.

• All blocks in [x] and [y]with the same timestampsmust have
the same contents; otherwise, the order in which blocks are
counted will affect the result due to aliasing mitigation.

These issues can be overcome by introducing well-formedness
conditions on [x] and [y], and by generalizing the property state-
ment to one more suited for induction (e.g. list permutations). How-
ever, these kinds of hurdles appear more often than one might want
for such a crucial function.

In stark contrast, reordering can be trivially proved for the new
flat_size_of function. First, a call to flat_measure traverses a
list to add non-root values, and is thus unaffected by permutations.
Similarly, the initial root set computed by to_addr is the union of all
addresses in the list of values and is again unaffected by reordering.
Therefore, the remaining application of

∑
is being applied to the

same arguments.
This ease of reasoning is whatmakes flat_size_of better suited

for proofs of space safety as shown in the rest of this section.

4.1 A layout for space safety proofs
As mentioned before, to prove the space safety of a DataLang pro-
gram one must show the preservation of safe_for_space through
its evaluation (Section 2.2). As most DataLang programs are com-
posed of multiple recursive functions, it is often necessary to sepa-
rately prove space safety for some of them. To prove a function is
space safe, one generally needs three kinds of assumptions:

(A1) The space consumption before the function call is below the
limits or roughly size_of_heap s + M ≤ heap_limit, where
M is any extra space the function body needs.

(A2) A description of the arguments to the function, e.g., a list-
shaped block, a number within 0 and 255, among others.

(A3) That the function is defined in s.code and its body corre-
sponds with the code being evaluated

Resulting in the following layout:

⊢ A1 ∧ A2 ∧ A3 ∧

s.safe_for_space ∧
evaluate (fun_body, s) = (res, s′) ⇒

s′.safe_for_space

Proofs are by complete induction on the semantic clock and
symbolic evaluation of the function body. Assumption (A2) should
allow the evaluation of most of the function body. Moreover, inter-
mediate updates to safe_for_space can be resolved using (A1). Once
the recursive call is reached, assumption (A3) replaces the function
call with the function’s body such that the inductive hypothesis
can be applied. At this point in the proof, assumptions must be
established again for the state at the function call. (A3) is trivial as
s.code does not change. (A2) might require work, but well-formed
function code correctly operates on its values and thus provides
good arguments. The proof of (A1) shown below is where things
are most likely to become tricky:

⊢ . . .

size_of_heap s + M s ≤ s.limits.heap_limit ⇒

size_of_heap s′ + M s′ ≤ s′.limits.heap_limit

Here, we must show that the space required at the recursive call
(size_of_heap s′ + M s′) is still less than heap_limit, assuming
the space was enough in the original call. This amounts to proving
that the required space decreases as the function recurses:

⊢ . . . ⇒

size_of_heap s′ + M s′ ≤ size_of_heap s + M s

6

A flat reachability-based measure for CakeML’s cost semantics IFL ’21, September 1–3, 2021, Nijmegen, Netherlands

This follows the intuition that function calls should take either
progressively less space, or require an extra amount of memory
bounded by M .

4.2 A hypothetical tail-recursive example
Consider a hypothetical tail-recursive function ftail with the
following features:

• Takes a list of numbers as argument.
• Operates over the head of the list consuming constant space.
• Makes a tail-recursive call with the tail of the list.

Now assume we want to prove ftail space safe for concrete ar-
gument [1,2,3]. Instantiating the proof layout from the previous
section, we arrive at the proof goal shown below:

⊢ size_of_heap s + C ≤ s.limits.heap_limit ∧

lookup ′′ftail′′s.code = Some ftail_body ∧

s.locals =
{ 0 7→ Block 8 cons_tag [Number 1,

Block 7 cons_tag [Number 2, . . .]]} ∧

s.safe_for_space ∧
evaluate (ftail_body, s) = (res, s′) ⇒

s′.safe_for_space

Above, C is the (constant) space the function uses to operate.
Using assumptions (A1), (A2), and (A3), most of the proof can pro-

ceed by evaluation; until the tail recursive call to ftail is reached
and we must establish assumption (A1) again, leading to an inequal-
ity of the form:

size_of_heap s′ ≤ size_of_heap s

Which by definition of size_of_heap and the abbreviation of
extract_stack s.stack ++ global_to_vs s.global as rest simpli-
fies to:

size_of ([Block 7 cons_tag [Number 2, . . .]]] + + rest)
s.refs ∅

≤

size_of ([Block 8 cons_tag [Number 1,
Block 7 cons_tag [Number 2, . . .]]] + + rest)

s.refs ∅

Moreover, since size_of operates from the back of the list, we
can abstract away the common measurement of rest at both sides
as size_of rest s.refs ∅ = (n,refs,seen), and rewritten to:

size_of [Block 7 cons_tag . . .] refs seen ≤

size_of [Block 8 cons_tag . . .] refs seen
At this point, it would appear that the proof is almost done, as

we are essentially testing if the space occupied by a list ([1,2,3]) is
greater than that of its tail ([2,3]), a rather intuitive claim. However,
due to size_of’s handling of timestamps and the fact that seen
is symbolic, one can not show this inequality without additional
assumptions. Concretely, one can think of a scenario where only 8
is in seen and no other timestamps in the block is in seen. Such a
situation will result in the measurement being 0 at the right of the
inequality and 4 on the left, a clear falsehood.

8 ∈ seen ∧ 7 < seen ∧ . . . ∧
size_of [Block 7 . . .] refs seen = (4, refs′, seen′) ∧

size_of [Block 8 . . .] refs seen = (0, refs′′, seen′′) ⇒

4 ≤ 0

Therefore, the proof goal must be extended with a predicate
ensuring that if timestamps 8 is in seen it must be the case that 7
and all other subsequent timestamps in the block are also in seen.

Proving such results and all their associated lemmas takes con-
siderable work, to the point that, similar mechanisms in existing
space safety proofs take around 25% of the proof script. The issue
is further aggravated by the fact that these kinds of results can not
be easily generalized for all types of values and must be re-written
every time a new type is used.

By switching our reasoning to flat_size_of, our proof goal is
greatly simplified:

flat_size_of s.refs s.all_blocks ([Block 7 . . .] + + rest)
≤

flat_size_of s.refs s.all_blocks ([Block 8 . . .] + + rest)

While we can no longer “drop” rest from the roots, flat_size_-
of more than makes up for this with its use of sets and relations
to represent the reachable memory. To showcase this, consider the
following lemma, which states that if the reachable set of addresses
from two roots x and y are subsets, and flat_measure then the
space measurement of x done by flat_size_of must be less than
that of y.

flat_measure lims x ≤ flat_measure lims y ∧

reachable_v refs blocks (to_addrs x) ⊆
reachable_v refs blocks (to_addrs y) ⇒

flat_size_of lims refs blocks x ≤

flat_size_of lims refs blocks y

Using this lemma the proof goal becomes trivial:

{TStamp 7, . . .} ∪ reachable_v . . . (to_addrs rest)
⊆ {TStamp 8, TStamp 7, . . .} ∪

reachable_v . . . (to_addrs rest)

One can then conclude the proof using basic set reasoning.
It is this ease of reasoning in the presence of (possibly) aliased

values that makes flat_size_of a suitable measuring function for
a cost semantics. In particular, the reachability-based approach to
gathering live data aids the function, and its reasoning, to not be
concerned with where in the heap structure a value is located, and
focus solely on its effect on the space measurement. In contrast,
reasoning about size_of constantly requires additional safeguards
and guarantees on the heap structure to be able to relate two mea-
surements, as seen in our previous example.

4.3 A concrete tail-recursive example
Consider the CakeML function sum defined below:

fun sum xs = foldl (+) 0 xs

7

IFL ’21, September 1–3, 2021, Nijmegen, Netherlands Alejandro Gomez-Londoño and Magnus O. Myreen

Where xs is a list of (unbounded) integers and (+) is integer
addition with support for bignum arithmetic. As expected, a call to
sum computes the addition of all the elements of xs.

The space safety of sum follows from a similar intuition as the one
presented for ftail (Section 4.2) even after considering the space
consumption of bignum arithmetic (+) and accumulator arguments
(foldl). This relation is made evident by the space safety proof
of sum currently available in the CakeML project, which shares
ftail’s proof structure, and thus, its issues regarding the use of
size_of. Specifically, the proof requires additional assumptions
and theorems to enforce the timestamps in xs’s representation are
correctly traversed — i.e., it is never the case that a timestamp at
the head of the list has been “seen” and one in the tail has not.

Fortunately, as with ftailm the space safety proof of sum can
also be improved by switching to flat_size_of. As an experiment
we updated the proof of the sum example to use flat_size_of and
the following quantitative improvements (in LOC) where archived:

• Assumptions outside of the scope of (A1), (A2), and (A3)
were removed.

• 14 auxiliary lemmas and definitions were removed.
• The section of the proof dedicated to re-establishing (A1)
shrunk by 32%.

• The proof of space safety shrunk by 13%.
• The entire file for this proof and all auxiliary lemmas shrunk
by 28%.

Furthermore, the new proof text for flat_size_of only utilized
definitions and standard set reasoning leading to a nicer proof.

In summary, this updated space safety proof demonstrates the
advantages of flat_size_of over size_of.

5 SOUNDNESS
We have proved flat_size_of_heap sound. More specifically, we
have proved that, under reasonable assumptions size_inv s, the
number computed by flat_size_of_heap is equal to the number
computed by size_of_heap.

⊢ size_inv s ⇒ size_of_heap s = flat_size_of_heap s

The size_inv assumption ensures that the values in s.all_blocks
are consistent with those in the heap (i.e,. s.refs and stack_to_vs).
Specifically, that for any Block ts tag l reachable in the heap, there
is an entry ts 7→ Block ts tag l in s.all_blocks. Our proof of sound-
ness requires size_inv because flat_size_of, unlike size_of,
does not recurse over block values and instead must rely on an
accurate block mapping to obtain the same results.

Using the equality that we have proved between size_of_heap
and flat_size_of_heap one can rephrase any space safety proof,
previously involving size_of, to be in terms of flat_size_of.

5.1 Updates to CakeML’s cost semantics
The CakeML’s cost semantics was updated to facilitate the usage
of flat_size_of in space safety proofs.

The main hurdle when switching to flat_size_of is establish-
ing size_inv (so the soundness theorem can apply). To address
this, we extended (at the DataLang level) how s.safe_for_space is
updated to include size_inv as an antecedent.

s with
safe_for_space :=
(s.safe_for_space ∧

(size_inv s ⇒
size_of_heap s + k ≤ s.limits.heap_limit))

With this change, if one starts a typical space safety proof (Sec-
tion 4.1) and uses flat_size_of_heap, instead of size_of_heap,
for the (A1) assumption (i.e., heap measurement are within the
limits), then, whenever s.safe_for_space needs to be re-established
size_inv will be available as an assumption.

The addition of size_inv to the cost semantics was proven
soundw.r.t. the rest of the compiler, as an update to size_of_heap’s
original soundness proof. Informally, if size_inv holds for the ini-
tial semantic state and is preserved by the semantic as an invariant,
then, its addition as an antecedent in s.safe_for_space does not
affect the field’s value. Therefore, the addition of size_inv makes
proofs more convenient while keeping the semantics essentially
unchanged.

6 RELATEDWORK
Verified cost semantics are available for the CompCert [12] and
CakeML [11] verified compilers. Carbonneaux et al. [5] develop
a source level logic for stack space reasoning that translates to
the CompCert compiler output. Besson et al. extends CompCert’s
memory model with finite memory and integer pointers in Com-
pCertS [2–4], which allows for memory usage estimates of C func-
tions that are proven to be bounds of the compiled code.

In recent work, Madiot and Pottier [13] develop a separation
logic for conveniently reasoning about heap space usage in the
presence of garbage collection. However, their cost semantics is
not proved correct w.r.t. a concrete compiler.

There have been many other approaches to source-level analy-
sis of space cost. For example, resource-aware type systems based
on refinement types [6, 7, 10] can be used to obtain bounds for
source programs. Moreover, a program’s resource usage can be
directly encoded as a refinement type in compilers with support for
such type systems [9]. Time-complexity annotations and indexes
in types [16] can also be used to express costs. Another approach
is for proof-carrying code to be equipped with a resource usage
proof w.r.t. a resource-aware program logic [1]. In general, theses
approaches provide formal estimates of costs for source-level pro-
grams, however, they forgo the effects compilation and program
transformation can have on resource consumption. Source-level
cost analysis techniques could be used on DataLang programs to
facilitate reasoning further, however, we have not yet investigated
this approach.

7 CONCLUSION
In this paper we have proposed a new reachability-based measure
for CakeML’s verified cost semantics. The examples explored here
suggest that the new formulation is better suited for space safety
proofs. We found that the need for extra assumptions and auxiliary
lemmas has been greatly reduced and, as a consequence, proof
scripts are more concise and easy to read, making the whole proving
process more scalable. Overall, we hope that by making space safety

8

A flat reachability-based measure for CakeML’s cost semantics IFL ’21, September 1–3, 2021, Nijmegen, Netherlands

reasoning easier, more ambitious verification projects that prevent
out-of-memory errors can be undertaken.

REFERENCES
[1] David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and

Alberto Momigliano. 2007. A program logic for resources. Theor. Comput. Sci.
389, 3 (2007), 411–445. https://doi.org/10.1016/j.tcs.2007.09.003

[2] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2014. A Precise and Abstract
Memory Model for C Using Symbolic Values. In Programming Languages and
Systems, Jacques Garrigue (Ed.). Springer International Publishing, Cham, 449–
468.

[3] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2015. A Concrete Memory
Model for CompCert. In Interactive Theorem Proving. Springer International
Publishing, Cham, 67–83.

[4] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2019. CompCertS: A Memory-
Aware Verified C Compiler Using a Pointer as Integer Semantics. Journal of
Automated Reasoning 63, 2 (01 Aug 2019), 369–392.

[5] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao.
2014. End-to-end Verification of Stack-space Bounds for C Programs. SIGPLAN
Not. 49, 6 (June 2014), 270–281.

[6] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017.
Relational cost analysis. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 316–329. https:
//doi.org/10.1145/3009837.3009858

[7] Ezgi Çiçek, Deepak Garg, and Umut A. Acar. 2015. Refinement Types for Incre-
mental Computational Complexity. In Programming Languages and Systems - 24th
European Symposium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9032), Jan
Vitek (Ed.). Springer, 406–431. https://doi.org/10.1007/978-3-662-46669-8_17

[8] Alejandro Gómez-Londoño, Johannes Åman Pohjola, Hira Taqdees Syeda, Mag-
nus O. Myreen, and Yong Kiam Tan. 2020. Do you have space for dessert? a
verified space cost semantics for CakeML programs. Proc. ACM Program. Lang. 4,
OOPSLA (2020), 204:1–204:29. https://doi.org/10.1145/3428272

[9] Martin A. T. Handley, Niki Vazou, and Graham Hutton. 2020. Liquidate your
assets: reasoning about resource usage in liquid Haskell. Proc. ACM Program.
Lang. 4, POPL (2020), 24:1–24:27. https://doi.org/10.1145/3371092

[10] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012. Resource Aware ML. In
Computer Aided Verification - 24th International Conference, CAV 2012, Berkeley,
CA, USA, July 7-13, 2012 Proceedings (Lecture Notes in Computer Science, Vol. 7358),
P. Madhusudan and Sanjit A. Seshia (Eds.). Springer, 781–786. https://doi.org/10.
1007/978-3-642-31424-7_64

[11] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014.
CakeML: a verified implementation of ML. In The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego,
CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM,
179–192. https://doi.org/10.1145/2535838.2535841

[12] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Communications
of the ACM 52, 7 (2009). https://doi.org/10.1145/1538788.1538814

[13] Jean-Marie Madiot and François Pottier. 2022. A Separation Logic for Heap Space
under Garbage Collection. Proceedings of the ACM on Programming Languages
6, POPL (Jan. 2022). http://cambium.inria.fr/~fpottier/publis/madiot-pottier-
diamonds-2022.pdf to appear.

[14] Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. 2016.
Functional Big-Step Semantics. In European Symposium on Programming (ESOP)
(Lecture Notes in Computer Science), Peter Thiemann (Ed.). Springer, 589–615.

[15] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J. Fox, Scott
Owens, and Michael Norrish. 2019. The Verified CakeML Compiler Backend. J.
Funct. Program. 29 (2019), e2. https://doi.org/10.1017/S0956796818000229

[16] Peng Wang, Di Wang, and Adam Chlipala. 2017. TiML: a functional language
for practical complexity analysis with invariants. Proc. ACM Program. Lang. 1,
OOPSLA (2017), 79:1–79:26. https://doi.org/10.1145/3133903

9

https://doi.org/10.1016/j.tcs.2007.09.003
https://doi.org/10.1145/3009837.3009858
https://doi.org/10.1145/3009837.3009858
https://doi.org/10.1007/978-3-662-46669-8_17
https://doi.org/10.1145/3428272
https://doi.org/10.1145/3371092
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1538788.1538814
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1145/3133903

	Abstract
	1 Introduction
	2 A verified cost semantics
	2.1 DataLang at a glance
	2.2 Embedded cost semantics
	2.3 The original heap measure: size_of

	3 A new flat reachability-based measurement
	3.1 The set of all reachable addresses
	3.2 Adding it all up
	3.3 Requirements

	4 flat_size_of is better than size_of
	4.1 A layout for space safety proofs
	4.2 A hypothetical tail-recursive example
	4.3 A concrete tail-recursive example

	5 Soundness
	5.1 Updates to CakeML's cost semantics

	6 Related Work
	7 Conclusion
	References

