
Refining the Delta Debugging of Type Errors
Joanna Sharrad
jo@sharrad.co.uk
University of Kent

Canterbury, Kent, UK

Olaf Chitil
oc@kent.ac.uk

University of Kent
Canterbury, Kent, UK

ABSTRACT
Understanding the cause of a type error can be challenging; for
over 30 years, researchers have proposed many sophisticated solu-
tions that hardly made it into practice. Previously we presented a
simple method for locating the cause of a type error in a functional
program. Our method applies Zeller’s isolating delta debugging
algorithm, using the compiler as a black box: Simple line-based pro-
gram slicing searches for a type error location. To improve speed,
we incorporated a pre-processing stage for handling parse errors.
In this paper, we note that the method needs refining. We introduce
a new algorithm that replaces the previous pre-processing of parse
errors with on-request handling. We implemented the algorithm
and evaluated it for Haskell and OCaml programs to demonstrate
that it is language agnostic.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Theory of computation→ Program analysis.
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1 INTRODUCTION
All programmers want to easily identify and quickly fix the bugs
they have. However, the cause of a type error in a statically typed
functional language such as Haskell is notoriously awkward to
locate. The compiler message provides little help when it reports
the type error far from its actual cause. For example, for a Haskell
program given by Chen and Erwig in their benchmark suite [2]
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cause. For example, for a Haskell program given by Chen
and Erwig in their benchmark suite [2]

1 f x = case x of
2 0 -> [0]
3 1 -> 1.

the Glasgow Haskell Compiler (version 8.4.3 ) gives line 1 as
the error location. However, Chen and Erwig, as the oracle,
a programmer with knowledge of what the programmer
intended, tell us that the error is actually in line 2: [0] should
be 0.
For over 30 years, researchers have proposed many so-

phisticated solutions. Hardly any made it into practice, we
believe, because it is too much work to scale these solutions
to full programming languages such as Haskell and maintain
them with every change to the language. Hence we devel-
oped a simple tool that uses the compiler as a black box, not
duplicating any type checking or even parsing.
Andreas Zeller’s delta debugging [26–28] formalises the

method that many programmers use to locate the cause of a
bug in a program: they systematically remove or comment
out parts of the program and test each such slice of the
program, called configuration by him, whether it has the bug
or not. Eventually, a small part of the original program is
identified as the location of the cause.
Delta debugging has been the backbone of our approach

from the beginning [19]. We chose a configuration to be a
subset of lines of the original ill-typed program. This line-
based approach avoids the need for parsing. In type error
debugging the test of a configuration is a call to the compiler:
a configuration may pass (type check and compile), fail (yield
a type error) or be unresolved (yield any other compiler error,
e.g. parse error or unknown identifier).
The more unresolved configurations delta debugging en-

counters, the more configurations it needs to test and thus
the slower it becomes. We found that parse errors cause
most unresolved configurations. Hence we developed an al-
gorithm termed moiety that initially processes the ill-typed
program to create information that the subsequently applied
delta debugging algorithm uses to create only configurations
that do not cause parse errors [18]. Although the sequential
composition of both algorithms speeds up locating a type er-
ror substantially, it is still too slow in practice. Moiety sends
each line of the original ill-typed program separately to the
black box compiler and for a typical module of 400 lines that
can take 13 minutes [18].
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the Glasgow Haskell Compiler (version 8.4.3 ) gives line 1 as the
error location. However, Chen and Erwig, as the oracle, a program-
mer with knowledge of what the programmer intended, tell us that
the error is actually in line 2: [0] should be 0.

For over 30 years, researchers have proposed many sophisticated
solutions. Hardly any made it into practice, we believe, because
it is too much work to scale these solutions to full programming
languages such as Haskell and maintain them with every change
to the language. Hence we developed a simple tool that uses the
compiler as a black box, not duplicating any type checking or even
parsing.

Andreas Zeller’s delta debugging [26–28] formalises the method
that many programmers use to locate the cause of a bug in a pro-
gram: they systematically remove or comment out parts of the
program and test each such slice of the program, called configura-
tion by him, whether it has the bug or not. Eventually, a small part
of the original program is identified as the location of the cause.

Delta debugging has been the backbone of our approach from the
beginning [19]. We chose a configuration to be a subset of lines of
the original ill-typed program. This line-based approach avoids the
need for parsing. In type error debugging the test of a configuration
is a call to the compiler: a configuration may pass (type check and
compile), fail (yield a type error) or be unresolved (yield any other
compiler error, e.g. parse error or unknown identifier).

The more unresolved configurations delta debugging encoun-
ters, the more configurations it needs to test and thus the slower it
becomes. We found that parse errors cause most unresolved con-
figurations. Hence we developed an algorithm termed moiety that
initially processes the ill-typed program to create information that
the subsequently applied delta debugging algorithm uses to create
only configurations that do not cause parse errors [18]. Although
the sequential composition of both algorithms speeds up locating a
type error substantially, it is still too slow in practice. Moiety sends
each line of the original ill-typed program separately to the black
box compiler and for a typical module of 400 lines that can take 13
minutes [18].

In this paper, we introduce a new algorithm, good-omens, which
is based on our original moiety algorithm but tests only a couple of
lines. Our new delta debugging algorithm calls good-omens when
needed. We make the following contributions:

• We present a new variant of the delta debugging algorithm
for locating type errors and the good-omens algorithm (Sec-
tion 3).
• We implement our new algorithms in a new type error de-
bugger named Eclectic and evaluate against our previous de-
bugger Elucidate for run-time and result quality (Section 5).
• We show that our debugger is truely language- and compiler-
agnostic by evaluating its application to two functional pro-
gramming languages, Haskell and OCaml (Sections 4 and 5).
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2 ILLUSTRATING BY EXAMPLE
Our debugger requires an ill-typed program as input; so let us
consider an extended variant of our example from the Introduction.
This program has a single type error caused by line 2:
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• We present a new variant of the delta debugging al-
gorithm for locating type errors and the good-omens
algorithm (Section 3).
• We implement our new algorithms in a new type er-
ror debugger named Eclectic and evaluate against our
previous debugger Elucidate for run-time and result
quality (Section 5).
• We show that our debugger is truely language- and
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(Sections 4 and 5).

2 Illustrating by example
Our debugger requires an ill-typed program as input; so let
us consider an extended variant of our example from the
Introduction. This program has a single type error caused
by line 2:

1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) `plus` fib (n-2)

Our delta debugging algorithm works on two configu-
rations, a well-typed one and an ill-typed one. Our initial
well-typed configuration is the empty program, shown on
the left; the algorithm will add lines from our ill-typed pro-
gram, thus maximising the well-typed configuration. Our
initial ill-typed configuration is the complete original ill-
typed program; the algorithm will remove lines, minimising
the ill-typed configuration. Trivially the well-typed configu-
ration is a subset of the ill-typed configuration.

initial well-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) ‘plus‘

fib (n-2)

initial ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) `plus`

fib (n-2)

Next, the delta debugging algorithm splits the difference
between the configurations in half. We remove the second
half of the difference from our ill-typed configuration and
add it to our well-typed configuration:
Iter. 1: modified well-typed

1

2

3

4

5

6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1)

`plus` fib (n-2)

Iter. 1: modified ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) ‘plus‘

fib (n-2)

We send both configurations to a black box compiler. We
use only the message returned by the compiler, which tells
us whether a configuration has a type error (fail), compiles
successfully (pass), contains a ‘Parse Error on Input’ (noparse)
or causes any other error (unresolved). Our modified well-
typed configuration on the left is unresolved and ourmodified
ill-typed configuration on the right fails. Hence the modified
ill-typed configuration becomes the new, smaller, ill-typed
configuration, while the (empty) well-typed configuration
remains unchanged.

Iter. 1 result: well-typed
1

2

3

4

5

Iter. 1 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

The next iteration of delta debugging again creates two
modified configurations:

Iter. 2: modified well-typed
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2: modified ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4

5

The left program passes and the right one fails.Delta debug-
ging prioritises passing, and hence the modified well-typed
configuration becomes the new, larger, well-typed configu-
ration while the ill-typed configuration remains unchanged.

Iter. 2 result: well-typed
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

Our delta debugging algorithm works on two configurations, a
well-typed one and an ill-typed one. Our initial well-typed config-
uration is the empty program, shown on the left; the algorithm
will add lines from our ill-typed program, thus maximising the
well-typed configuration. Our initial ill-typed configuration is the
complete original ill-typed program; the algorithm will remove
lines, minimising the ill-typed configuration. Trivially the well-
typed configuration is a subset of the ill-typed configuration.
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Iter. 1 result: ill-typed
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Iter. 2 result: well-typed
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4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
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5 plus = (+)

Next, the delta debugging algorithm splits the difference between
the configurations in half. We remove the second half of the differ-
ence from our ill-typed configuration and add it to our well-typed
configuration:
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5

6 fib x = case x of
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8 1 -> f x
9 n -> fib (n-1)

`plus` fib (n-2)

Iter. 1: modified ill-typed
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2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
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7 0 -> f x
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We send both configurations to a black box compiler. We
use only the message returned by the compiler, which tells
us whether a configuration has a type error (fail), compiles
successfully (pass), contains a ‘Parse Error on Input’ (noparse)
or causes any other error (unresolved). Our modified well-
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Iter. 1 result: well-typed
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Iter. 1 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

The next iteration of delta debugging again creates two
modified configurations:

Iter. 2: modified well-typed
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2: modified ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4

5

The left program passes and the right one fails.Delta debug-
ging prioritises passing, and hence the modified well-typed
configuration becomes the new, larger, well-typed configu-
ration while the ill-typed configuration remains unchanged.

Iter. 2 result: well-typed
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

We send both configurations to a black box compiler. We use
only the message returned by the compiler, which tells us whether
a configuration has a type error (fail), compiles successfully (pass),

contains a ‘Parse Error on Input’ (noparse) or causes any other
error (unresolved). Our modified well-typed configuration on the
left is unresolved and our modified ill-typed configuration on the
right fails. Hence the modified ill-typed configuration becomes the
new, smaller, ill-typed configuration, while the (empty) well-typed
configuration remains unchanged.
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configurations:
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In this paper, we introduce a new algorithm, good-omens,
which is based on our original moiety algorithm but tests
only a couple of lines. Our new delta debugging algorithm
calls good-omens when needed. We make the following con-
tributions:

• We present a new variant of the delta debugging al-
gorithm for locating type errors and the good-omens
algorithm (Section 3).
• We implement our new algorithms in a new type er-
ror debugger named Eclectic and evaluate against our
previous debugger Elucidate for run-time and result
quality (Section 5).
• We show that our debugger is truely language- and
compiler-agnostic by evaluating its application to two
functional programming languages, Haskell andOCaml
(Sections 4 and 5).

2 Illustrating by example
Our debugger requires an ill-typed program as input; so let
us consider an extended variant of our example from the
Introduction. This program has a single type error caused
by line 2:

1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) `plus` fib (n-2)

Our delta debugging algorithm works on two configu-
rations, a well-typed one and an ill-typed one. Our initial
well-typed configuration is the empty program, shown on
the left; the algorithm will add lines from our ill-typed pro-
gram, thus maximising the well-typed configuration. Our
initial ill-typed configuration is the complete original ill-
typed program; the algorithm will remove lines, minimising
the ill-typed configuration. Trivially the well-typed configu-
ration is a subset of the ill-typed configuration.

initial well-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) ‘plus‘

fib (n-2)

initial ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) `plus`

fib (n-2)

Next, the delta debugging algorithm splits the difference
between the configurations in half. We remove the second
half of the difference from our ill-typed configuration and
add it to our well-typed configuration:
Iter. 1: modified well-typed

1

2

3

4

5

6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1)

`plus` fib (n-2)

Iter. 1: modified ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) ‘plus‘

fib (n-2)

We send both configurations to a black box compiler. We
use only the message returned by the compiler, which tells
us whether a configuration has a type error (fail), compiles
successfully (pass), contains a ‘Parse Error on Input’ (noparse)
or causes any other error (unresolved). Our modified well-
typed configuration on the left is unresolved and ourmodified
ill-typed configuration on the right fails. Hence the modified
ill-typed configuration becomes the new, smaller, ill-typed
configuration, while the (empty) well-typed configuration
remains unchanged.

Iter. 1 result: well-typed
1

2

3

4

5

Iter. 1 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

The next iteration of delta debugging again creates two
modified configurations:

Iter. 2: modified well-typed
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2: modified ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4

5

The left program passes and the right one fails.Delta debug-
ging prioritises passing, and hence the modified well-typed
configuration becomes the new, larger, well-typed configu-
ration while the ill-typed configuration remains unchanged.

Iter. 2 result: well-typed
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

The left program passes and the right one fails. Delta debugging
prioritises passing, and hence the modified well-typed configuration
becomes the new, larger, well-typed configuration while the ill-
typed configuration remains unchanged.
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In this paper, we introduce a new algorithm, good-omens,
which is based on our original moiety algorithm but tests
only a couple of lines. Our new delta debugging algorithm
calls good-omens when needed. We make the following con-
tributions:

• We present a new variant of the delta debugging al-
gorithm for locating type errors and the good-omens
algorithm (Section 3).
• We implement our new algorithms in a new type er-
ror debugger named Eclectic and evaluate against our
previous debugger Elucidate for run-time and result
quality (Section 5).
• We show that our debugger is truely language- and
compiler-agnostic by evaluating its application to two
functional programming languages, Haskell andOCaml
(Sections 4 and 5).

2 Illustrating by example
Our debugger requires an ill-typed program as input; so let
us consider an extended variant of our example from the
Introduction. This program has a single type error caused
by line 2:

1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) `plus` fib (n-2)

Our delta debugging algorithm works on two configu-
rations, a well-typed one and an ill-typed one. Our initial
well-typed configuration is the empty program, shown on
the left; the algorithm will add lines from our ill-typed pro-
gram, thus maximising the well-typed configuration. Our
initial ill-typed configuration is the complete original ill-
typed program; the algorithm will remove lines, minimising
the ill-typed configuration. Trivially the well-typed configu-
ration is a subset of the ill-typed configuration.

initial well-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) ‘plus‘

fib (n-2)

initial ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) `plus`

fib (n-2)

Next, the delta debugging algorithm splits the difference
between the configurations in half. We remove the second
half of the difference from our ill-typed configuration and
add it to our well-typed configuration:
Iter. 1: modified well-typed

1

2

3

4

5

6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1)

`plus` fib (n-2)

Iter. 1: modified ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) ‘plus‘

fib (n-2)

We send both configurations to a black box compiler. We
use only the message returned by the compiler, which tells
us whether a configuration has a type error (fail), compiles
successfully (pass), contains a ‘Parse Error on Input’ (noparse)
or causes any other error (unresolved). Our modified well-
typed configuration on the left is unresolved and ourmodified
ill-typed configuration on the right fails. Hence the modified
ill-typed configuration becomes the new, smaller, ill-typed
configuration, while the (empty) well-typed configuration
remains unchanged.

Iter. 1 result: well-typed
1

2

3

4

5

Iter. 1 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

The next iteration of delta debugging again creates two
modified configurations:

Iter. 2: modified well-typed
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2: modified ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4

5

The left program passes and the right one fails.Delta debug-
ging prioritises passing, and hence the modified well-typed
configuration becomes the new, larger, well-typed configu-
ration while the ill-typed configuration remains unchanged.

Iter. 2 result: well-typed
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

The next iteration of delta debugging again splits the difference
between the well- and ill-typed configuration and modifies both
configurations:
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The next iteration of delta debugging again splits the dif-
ference between the well- and ill-typed configuration and
modifies both configurations:

Iter. 3: modified well-typed
1

2

3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 3: modified ill-typed
1 f x = case x of
2 0 -> [0]
3

4

5

This time we get a ‘Parse Error on Input’ for the left config-
uration. Hence the debugger calls the good-omens algorithm.
The good-omens algorithm is told that line 3 caused the parse
error, and the algorithm will check lines just before it. So
the first iteration of good-omens sends line 2 to the black box
compiler.

Good-omens iteration 1
2 0 -> [0]

Again we receive a ‘Parse Error on Input’. So the next
iteration checks line 1:

Good-omens iteration 2
1 f x = case x of

That line on its own does not parse either, but the parse er-
ror is not in line 1, and it is not a ‘Parse Error on Input’-error.
Hence the good-omens algorithm terminates and returns the
information that lines 1 to 3 form a moiety.
A moiety is a set of consecutive line numbers that shall

not be split by delta debugging, because splitting would just
cause a parse error. Delta debugging started with the assump-
tion that lines can be split anywhere in the configuration,
that is, each line is a separate moiety ({{1}, {2}, . . . , {9}}). A
call to the good-omens algorithm refines that information for
future splittings by the isolating delta algorithm; here good-
omens updates the moieties to {{1, 2, 3}, {4}, {5}, . . . , {9}}.
The good-omens algorithm returns to the delta debug-

ging algorithm. Delta debugging continues with the updated
moieties. At the end of iteration 2 delta debugging already
produced two configurations which differ only by lines 1 to
3. Because these three lines form a moiety, delta debugging
cannot reduce the difference between the two configurations
any further. So delta debugging terminates with the result
that the type error location is within the difference of the
two configurations, that is, within lines 1 to 3.

3 The Algorithms
Developing delta debugging of type errors was a journey. In
our first paper [19] we adapted and evaluated the isolating
delta debugging algorithm for type error debugging. In our
second paper [18] we improved the speed of delta debugging
for larger ill-typed programs through pre-processing with a

novel moiety algorithm. Finally, in this paper we improve the
overall speed of the type error debugging process through a
tight integration of moieties and delta debugging.

3.1 Delta Debugging of Type Errors
We chose delta debugging as basis for our work on locating
type errors, because it is a simple method that uses a black
box test with few assumptions on it. Delta debugging has
been used to locate the causes of many types of run-time
errors; to apply it to type error debugging we use a compiler
for the black box test and interpret its result appropriately
as pass, fail and unresolved.
Delta debugging is a search through configurations; for

type error debugging a configuration is a slice of the ill-typed
program. At the start of our research we chose a configura-
tion to be any subset of lines of the ill-typed program. Thus
development and continued maintenance of a parser are not
required, meeting our original aim. Also a character-based
approach would give too many configurations to search and
a line is a sufficiently precise error location.
Zeller first defined the simplifying delta debugging algo-

rithm [26–28] for shrinking a buggy program. We could use
this algorithm for type error debugging to obtain a minimal
ill-typed program. Minimal means that removing any fur-
ther line would yield a well-typed or unresolved program.
However, even a minimal ill-typed program is often large,
because ill-typed definitions use many variables whose well-
typed definitions the program needs to include. Therefore
we use Zeller’s later isolating delta debugging algorithm.

3.2 Isolating Delta Debugging
The isolating delta debugging algorithm [5, 27, 29] isolates
the cause of a type error by computing two configurations: a
well-typed configuration and an ill-typed configuration; the
former is a subset of the latter. The small difference between
the two configurations is a cause of the type error.
The isolating delta debugging algorithm starts with the

empty, trivially well-typed program and the original ill-typed
program; the algorithm then iteratively grows the first con-
figuration and shrinks the second, so that the difference
between these two configurations shrinks.

In every iteration the difference between the two configu-
rations is halved. A half is added to the well-typed configu-
ration and removed from the ill-typed one. Doing the same
with the other half, another two configurations are obtained.
The black-box compiler checks the new configurations. If
one of them is well-typed, it becomes the new, bigger, well-
typed configuration; if one of them is ill-typed, it becomes
the new, smaller ill-typed configuration.
Besides well-typed and ill-typed, the black box compiler

may also report a different error for a configuration, e.g. a
parse error or an error for using an unknown identifier. In
all these cases, delta debugging calls the configuration un-
resolved. If in an iteration all modified configurations are

This timewe get a ‘Parse Error on Input’ for the left configuration.
Hence the debugger calls the good-omens algorithm. The good-
omens algorithm is told that line 3 caused the parse error, and the
algorithm will check lines just before it. So the first iteration of
good-omens sends line 2 to the black box compiler.
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The next iteration of delta debugging again splits the dif-
ference between the well- and ill-typed configuration and
modifies both configurations:

Iter. 3: modified well-typed
1

2

3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 3: modified ill-typed
1 f x = case x of
2 0 -> [0]
3

4

5

This time we get a ‘Parse Error on Input’ for the left config-
uration. Hence the debugger calls the good-omens algorithm.
The good-omens algorithm is told that line 3 caused the parse
error, and the algorithm will check lines just before it. So
the first iteration of good-omens sends line 2 to the black box
compiler.

Good-omens iteration 1
2 0 -> [0]

Again we receive a ‘Parse Error on Input’. So the next
iteration checks line 1:

Good-omens iteration 2
1 f x = case x of

That line on its own does not parse either, but the parse er-
ror is not in line 1, and it is not a ‘Parse Error on Input’-error.
Hence the good-omens algorithm terminates and returns the
information that lines 1 to 3 form a moiety.
A moiety is a set of consecutive line numbers that shall

not be split by delta debugging, because splitting would just
cause a parse error. Delta debugging started with the assump-
tion that lines can be split anywhere in the configuration,
that is, each line is a separate moiety ({{1}, {2}, . . . , {9}}). A
call to the good-omens algorithm refines that information for
future splittings by the isolating delta algorithm; here good-
omens updates the moieties to {{1, 2, 3}, {4}, {5}, . . . , {9}}.
The good-omens algorithm returns to the delta debug-

ging algorithm. Delta debugging continues with the updated
moieties. At the end of iteration 2 delta debugging already
produced two configurations which differ only by lines 1 to
3. Because these three lines form a moiety, delta debugging
cannot reduce the difference between the two configurations
any further. So delta debugging terminates with the result
that the type error location is within the difference of the
two configurations, that is, within lines 1 to 3.

3 The Algorithms
Developing delta debugging of type errors was a journey. In
our first paper [19] we adapted and evaluated the isolating
delta debugging algorithm for type error debugging. In our
second paper [18] we improved the speed of delta debugging
for larger ill-typed programs through pre-processing with a

novel moiety algorithm. Finally, in this paper we improve the
overall speed of the type error debugging process through a
tight integration of moieties and delta debugging.

3.1 Delta Debugging of Type Errors
We chose delta debugging as basis for our work on locating
type errors, because it is a simple method that uses a black
box test with few assumptions on it. Delta debugging has
been used to locate the causes of many types of run-time
errors; to apply it to type error debugging we use a compiler
for the black box test and interpret its result appropriately
as pass, fail and unresolved.
Delta debugging is a search through configurations; for

type error debugging a configuration is a slice of the ill-typed
program. At the start of our research we chose a configura-
tion to be any subset of lines of the ill-typed program. Thus
development and continued maintenance of a parser are not
required, meeting our original aim. Also a character-based
approach would give too many configurations to search and
a line is a sufficiently precise error location.
Zeller first defined the simplifying delta debugging algo-

rithm [26–28] for shrinking a buggy program. We could use
this algorithm for type error debugging to obtain a minimal
ill-typed program. Minimal means that removing any fur-
ther line would yield a well-typed or unresolved program.
However, even a minimal ill-typed program is often large,
because ill-typed definitions use many variables whose well-
typed definitions the program needs to include. Therefore
we use Zeller’s later isolating delta debugging algorithm.

3.2 Isolating Delta Debugging
The isolating delta debugging algorithm [5, 27, 29] isolates
the cause of a type error by computing two configurations: a
well-typed configuration and an ill-typed configuration; the
former is a subset of the latter. The small difference between
the two configurations is a cause of the type error.
The isolating delta debugging algorithm starts with the

empty, trivially well-typed program and the original ill-typed
program; the algorithm then iteratively grows the first con-
figuration and shrinks the second, so that the difference
between these two configurations shrinks.

In every iteration the difference between the two configu-
rations is halved. A half is added to the well-typed configu-
ration and removed from the ill-typed one. Doing the same
with the other half, another two configurations are obtained.
The black-box compiler checks the new configurations. If
one of them is well-typed, it becomes the new, bigger, well-
typed configuration; if one of them is ill-typed, it becomes
the new, smaller ill-typed configuration.
Besides well-typed and ill-typed, the black box compiler

may also report a different error for a configuration, e.g. a
parse error or an error for using an unknown identifier. In
all these cases, delta debugging calls the configuration un-
resolved. If in an iteration all modified configurations are
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Again we receive a ‘Parse Error on Input’. So the next iteration
checks line 1:
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The next iteration of delta debugging again splits the dif-
ference between the well- and ill-typed configuration and
modifies both configurations:

Iter. 3: modified well-typed
1

2

3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 3: modified ill-typed
1 f x = case x of
2 0 -> [0]
3

4

5

This time we get a ‘Parse Error on Input’ for the left config-
uration. Hence the debugger calls the good-omens algorithm.
The good-omens algorithm is told that line 3 caused the parse
error, and the algorithm will check lines just before it. So
the first iteration of good-omens sends line 2 to the black box
compiler.

Good-omens iteration 1
2 0 -> [0]

Again we receive a ‘Parse Error on Input’. So the next
iteration checks line 1:

Good-omens iteration 2
1 f x = case x of

That line on its own does not parse either, but the parse er-
ror is not in line 1, and it is not a ‘Parse Error on Input’-error.
Hence the good-omens algorithm terminates and returns the
information that lines 1 to 3 form a moiety.
A moiety is a set of consecutive line numbers that shall

not be split by delta debugging, because splitting would just
cause a parse error. Delta debugging started with the assump-
tion that lines can be split anywhere in the configuration,
that is, each line is a separate moiety ({{1}, {2}, . . . , {9}}). A
call to the good-omens algorithm refines that information for
future splittings by the isolating delta algorithm; here good-
omens updates the moieties to {{1, 2, 3}, {4}, {5}, . . . , {9}}.
The good-omens algorithm returns to the delta debug-

ging algorithm. Delta debugging continues with the updated
moieties. At the end of iteration 2 delta debugging already
produced two configurations which differ only by lines 1 to
3. Because these three lines form a moiety, delta debugging
cannot reduce the difference between the two configurations
any further. So delta debugging terminates with the result
that the type error location is within the difference of the
two configurations, that is, within lines 1 to 3.

3 The Algorithms
Developing delta debugging of type errors was a journey. In
our first paper [19] we adapted and evaluated the isolating
delta debugging algorithm for type error debugging. In our
second paper [18] we improved the speed of delta debugging
for larger ill-typed programs through pre-processing with a

novel moiety algorithm. Finally, in this paper we improve the
overall speed of the type error debugging process through a
tight integration of moieties and delta debugging.

3.1 Delta Debugging of Type Errors
We chose delta debugging as basis for our work on locating
type errors, because it is a simple method that uses a black
box test with few assumptions on it. Delta debugging has
been used to locate the causes of many types of run-time
errors; to apply it to type error debugging we use a compiler
for the black box test and interpret its result appropriately
as pass, fail and unresolved.
Delta debugging is a search through configurations; for

type error debugging a configuration is a slice of the ill-typed
program. At the start of our research we chose a configura-
tion to be any subset of lines of the ill-typed program. Thus
development and continued maintenance of a parser are not
required, meeting our original aim. Also a character-based
approach would give too many configurations to search and
a line is a sufficiently precise error location.
Zeller first defined the simplifying delta debugging algo-

rithm [26–28] for shrinking a buggy program. We could use
this algorithm for type error debugging to obtain a minimal
ill-typed program. Minimal means that removing any fur-
ther line would yield a well-typed or unresolved program.
However, even a minimal ill-typed program is often large,
because ill-typed definitions use many variables whose well-
typed definitions the program needs to include. Therefore
we use Zeller’s later isolating delta debugging algorithm.

3.2 Isolating Delta Debugging
The isolating delta debugging algorithm [5, 27, 29] isolates
the cause of a type error by computing two configurations: a
well-typed configuration and an ill-typed configuration; the
former is a subset of the latter. The small difference between
the two configurations is a cause of the type error.
The isolating delta debugging algorithm starts with the

empty, trivially well-typed program and the original ill-typed
program; the algorithm then iteratively grows the first con-
figuration and shrinks the second, so that the difference
between these two configurations shrinks.

In every iteration the difference between the two configu-
rations is halved. A half is added to the well-typed configu-
ration and removed from the ill-typed one. Doing the same
with the other half, another two configurations are obtained.
The black-box compiler checks the new configurations. If
one of them is well-typed, it becomes the new, bigger, well-
typed configuration; if one of them is ill-typed, it becomes
the new, smaller ill-typed configuration.
Besides well-typed and ill-typed, the black box compiler

may also report a different error for a configuration, e.g. a
parse error or an error for using an unknown identifier. In
all these cases, delta debugging calls the configuration un-
resolved. If in an iteration all modified configurations are

That line on its own does not parse either, but the parse error
is not in line 1, and it is not a ‘Parse Error on Input’-error. Hence
the good-omens algorithm terminates and returns the information
that lines 1 to 3 form a moiety.

A moiety is a set of consecutive line numbers that shall not
be split by delta debugging, because splitting would just cause a
parse error. Delta debugging started with the assumption that lines
can be split anywhere in the configuration, that is, each line is
a separate moiety ({{1}, {2}, . . . , {9}}). A call to the good-omens
algorithm refines that information for future splittings by the iso-
lating delta algorithm; here good-omens updates the moieties to
{{1, 2, 3}, {4}, {5}, . . . , {9}}.

The good-omens algorithm returns to the delta debugging algo-
rithm. Delta debugging continues with the updated moieties. At
the end of iteration 2 delta debugging already produced two con-
figurations which differ only by lines 1 to 3. Because these three
lines form a moiety, delta debugging cannot reduce the difference
between the two configurations any further. So delta debugging
terminates with the result that the type error location is within the
difference of the two configurations, that is, within lines 1 to 3.

3 THE ALGORITHMS
Developing delta debugging of type errors was a journey. In our first
paper [19] we adapted and evaluated the isolating delta debugging
algorithm for type error debugging. In our second paper [18] we
improved the speed of delta debugging for larger ill-typed programs
through pre-processing with a novel moiety algorithm. Finally, in
this paper we improve the overall speed of the type error debugging
process through a tight integration of moieties and delta debugging.

3.1 Delta Debugging of Type Errors
We chose delta debugging as basis for our work on locating type
errors, because it is a simple method that uses a black box test with
few assumptions on it. Delta debugging has been used to locate the
causes of many types of run-time errors; to apply it to type error
debugging we use a compiler for the black box test and interpret
its result appropriately as pass, fail and unresolved.

Delta debugging is a search through configurations; for type
error debugging a configuration is a slice of the ill-typed program.
At the start of our research we chose a configuration to be any
subset of lines of the ill-typed program. Thus development and
continued maintenance of a parser are not required, meeting our
original aim. Also a character-based approach would give too many
configurations to search and a line is a sufficiently precise error
location.

Zeller first defined the simplifying delta debugging algorithm [26–
28] for shrinking a buggy program. We could use this algorithm
for type error debugging to obtain a minimal ill-typed program.
Minimal means that removing any further line would yield a well-
typed or unresolved program. However, even a minimal ill-typed

program is often large, because ill-typed definitions use many vari-
ables whose well-typed definitions the program needs to include.
Therefore we use Zeller’s later isolating delta debugging algorithm.

3.2 Isolating Delta Debugging
The isolating delta debugging algorithm [5, 27, 29] isolates the cause
of a type error by computing two configurations: a well-typed
configuration and an ill-typed configuration; the former is a subset
of the latter. The small difference between the two configurations
is a cause of the type error.

The isolating delta debugging algorithm starts with the empty,
trivially well-typed program and the original ill-typed program; the
algorithm then iteratively grows the first configuration and shrinks
the second, so that the difference between these two configurations
shrinks.

In every iteration the difference between the two configurations
is halved. A half is added to the well-typed configuration and re-
moved from the ill-typed one. Doing the same with the other half,
another two configurations are obtained. The black-box compiler
checks the new configurations. If one of them is well-typed, it be-
comes the new, bigger, well-typed configuration; if one of them is
ill-typed, it becomes the new, smaller ill-typed configuration.

Besides well-typed and ill-typed, the black box compiler may
also report a different error for a configuration, e.g. a parse error
or an error for using an unknown identifier. In all these cases, delta
debugging calls the configuration unresolved. If in an iteration all
modified configurations are unresolved, then the algorithm tries
further configurations by dividing the difference between the two
original configurations by 4, 8, etc. This divisor is called granularity.
Delta debugging terminates when it cannot reduce the difference
between the two configurations any further.

3.3 Moieties Determine Configurations
It is well known that isolating delta debugging takes time loga-
rithmic in the size of the input if no configuration is unresolved,
because the granularity remains 2 throughout and the algorithm is
basically a binary search [27]. However, if many unresolved con-
figurations are met, then isolating delta debugging can require up
to quadratic time [27]. Our implementation proved to be slow for
larger ill-typed programs, because most tested configurations are
unresolved, nearly always because of parse errors.

We found a way to avoid most unparseable configurations while
keeping to our aim. We observed that the Glasgow Haskell compiler
can produce different parse error messages, but by far the most
commonly occurring one in our experiments was ‘Parse Error on
Input’. That error means that unexpectedly the given line is not the
start of a top-level declaration (equation defining a function, type
signature declaration, type definition, etc.). A parseable program
module is a sequence of top-level declarations (including an optional
module declaration at the beginning). Including some but not all
lines of a top-level declaration in a configuration is highly likely to
yield an unparseable, unresolved configuration.

We allowed the black box compiler to return a new fourth cate-
gory noparse for the ‘Parse Error on Input’ of the Glasgow Haskell
compiler1.
1Other sorts of parse errors occur rarely and are still classified as unresolved
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Figure 1: Informal overview of the control-flow of the algorithms in the Eclectic debugger

On the side of the type error debugger, we introduced the con-
cept of amoiety, a set of consecutive lines that shall not be separated
when forming a configuration. We created the moiety algorithm,
which given an (ill-typed) program as input, produces a list of moi-
eties. The subsequently run isolating delta debugging algorithm
creates only configurations that obey the moiety list. No config-
uration ever yields noparse. Some configurations may still not be
parseable and hence unresolved, but experiments showed that far
fewer configurations are unresolved, and hence the isolating delta
debugging algorithm is much faster. Unfortunately, the moiety al-
gorithm proved to take substantial time to initially process the
ill-typed program [18].

3.4 Delta Debugging with Good-Omens
In this paper, we present a new variant of isolating delta debugging
that, whenever it comes across a configuration with a parse error,
calls an algorithm we call good-omens that determines a single
moiety around the parse error location. So moieties are determined
on-request, and the set of configurations that are searched by the
isolating delta debugging algorithm continuously reduces based on
the current knowledge of moieties.

Figure 1 gives an informal overview of the control-flow of the
isolating delta debugging and the good-omens algorithms working
together.

3.5 Our Isolating Delta Debugging Algorithm
Algorithm 1 is the new isolating delta debugging algorithm. Our
description of the algorithm keeps close to Zeller’s Python im-
plementation [27]. For simplicity, we removed the original offset
variable, and we follow his later implementation [28] in using a
Boolean variable unres to check whether the while loop is left via a
break statement. We focus on explaining the differences to Zeller’s
implementation.

For us, a configuration is just a set of line numbers; the actual
line content of each line number is in the variable cont. Hence
the isolating delta debugging function dd has three parameters. It
returns a tuple of two configurations.

In line 2, the list of moieties, moieties, is initialised such that
every line is a separate moiety. Line 3 sets the granularity n to
2. If testing all modified configurations in the while loop returns
unresolved, then the granularity is doubled in line 44.

In line 5, the difference delta between the two current configura-
tions is determined. If given the constraints of the current moiety
list that delta cannot be split into n (the granularity) parts, then the
algorithm terminates in line 7; otherwise, the result of the split is
assigned to the array deltas in line 8.

Each iteration of the while loop tests a modification of the pass
and fail configuration. Lines 16 to 24 are our main addition to
Zeller’s algorithm. If one of the two modified configurations does
not parse, then our good-omens algorithm is called with the number
of the line in which parsing failed. Isolating delta debugging will
afterwards continue with an updated moiety list.
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Algorithm 1: Delta Debugging of a type error
1 define dd (cPass, cFail, cont)
2 moieties ← initialMoieties(cont)
3 n ← 2
4 loop
5 delta ← cMinus(cFail , cPass)
6 if n > numOfMoieties (delta, moieties) then
7 return (cPass, cFail)
8 deltas ← cSplit(delta,moities,n)
9 unres ← True

10 j ← 0
11 while j < n do
12 nextCPass = cPlus(cPass,deltas[j])
13 nextCFail = cMinus(cFail ,deltas[j])
14 resNextCFail ← test(nextCFail , cont)
15 resNextCPass ← test(nextCPass, cont)
16 if resNextCFail == NOPARSE then
17 moieties ←

go(line(resNextCFail),moieties, cont)
18 unres ← False

19 break
20 resNextCPass ← test(nextCPass, cont)
21 if resNextCPass == NOPARSE then
22 moieties ←

go(line(resNextCPass),moieties, cont)
23 unres ← False

24 break
25 else if resNextCFail == PASS then
26 cPass ← nextCFail
27 n ← 2;unres ← False; break
28 else if resNextCPass == FAIL then
29 cFail← nextCPass

30 n ← 2;unres ← False; break
31 else if resNextCFail == FAIL then
32 cFail← nextCFail
33 n ←max(n − 1, 2);unres ← False; break
34 else if resNextCPass == PASS then
35 cPass ← nextCPass

36 n ←max(n − 1, 2);unres ← False; break
37 else - - try next part of delta
38 j ← j + 1
39 end while
40 if unres then - - all configurations are unresolved
41 if n >= numOfMoieties (delta, moieties) then
42 return (cPass, cFail)
43 else - - increase granularity
44 n ← min(n ∗ 2, numOfMoieties(delta,moieties))
45 end loop
46 end define

Algorithm 2: Good-Omens determines one moiety
1 define go (l, moieties, cont)
2 moiety ← mkMoiety(l)
3 l ← l − 1
4 while test (cLine (cont,l)) == NOPARSE do
5 addLine(l ,moiety)
6 l ← l − 1
7 end while
8 return updateMoiety (moiety, moieties)
9 end define

3.6 The Good-Omens Algorithm
The good-omens algorithm is an on-request variant of our moiety
algorithm. The good-omens algorithm go is shown as Algorithm 2.
Besides the number of a line which yields a noparse error, it also
takes the current list of moieties and the content of the original
ill-typed program as parameters.

The algorithm creates a new moiety that consists only of the line
specified by the first parameter. Subsequently a while loop checks
each preceding line whether the black box compiler yields noparse.
All such lines are added to the moiety until a line is found that does
not yield noparse; in extremis that will be the first line2. Finally
the newly created moiety is integrated with the old list of moieties,
which in practice means combining several moieties of the old list
into one new moiety in the new list. That list is the result of the
algorithm.

4 AGNOSTIC DEBUGGING
For our type error debugger the compiler is a black box, because the
debugger does not need any knowledge of the compiler’s internal
workings; the debugger only produces the compiler’s input and
uses its output. The compiler is a test of a configuration that either
succeeds (pass) or the (first) error message categorises the test as
fail, noparse or otherwise unresolved.

The debugger needs a small amount of language- and compiler-
specific information to produce the compiler’s input and categorise
its output. Our past debuggers included code towork onHaskell pro-
grams with the Glasgow Haskell compiler (GHC) or the build tool
Cabal. Now we build a language- and compiler-agnostic type error
debugger, that is, the debugger contains no language- or compiler-
specific code. This one debugger can be used for many program-
ming languages and compilers. In Section 5.3 we will evaluate it
also for OCaml programs using the OCamlc compiler. We provide
the agnostic debugger with external settings files that contain nec-
essary programming languages’ and compilers’ nuances. Thus also
new language features or an updated compiler do not require any
changes to the debugger.

To select the correct settings file, the debugger uses one argu-
ment, that of the command for compiling (or building) a program
in the user’s chosen programming language. For instance:

2Algorithm dd starts with an ill-typed program that does parse.
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Algorithm 2: Good-Omens determines one moiety
1 define go (l, moieties, cont)
2 𝑚𝑜𝑖𝑒𝑡𝑦 ← mkMoiety(𝑙)
3 𝑙 ← 𝑙 − 1
4 while test (cLine (cont,l)) == NOPARSE do
5 addLine(𝑙,𝑚𝑜𝑖𝑒𝑡𝑦)
6 𝑙 ← 𝑙 − 1
7 end while
8 return updateMoiety (moiety, moieties)
9 end define

into one new moiety in the new list. That list is the result of
the algorithm.

4 Agnostic Debugging
For our type error debugger the compiler is a black box,
because the debugger does not need any knowledge of the
compiler’s internal workings; the debugger only produces
the compiler’s input and uses its output. The compiler is
a test of a configuration that either succeeds (pass) or the
(first) error message categorises the test as fail, noparse or
otherwise unresolved.
The debugger needs a small amount of language- and

compiler-specific information to produce the compiler’s in-
put and categorise its output. Our past debuggers included
code to work on Haskell programs with the Glasgow Haskell
compiler (GHC) or the build tool Cabal. Now we build a
language- and compiler-agnostic type error debugger, that
is, the debugger contains no language- or compiler-specific
code. This one debugger can be used for many programming
languages and compilers. In Section 5.3 we will evaluate it
also for OCaml programs using the OCamlc compiler. We
provide the agnostic debugger with external settings files
that contain necessary programming languages’ and compil-
ers’ nuances. Thus also new language features or an updated
compiler do not require any changes to the debugger.
To select the correct settings file, the debugger uses one

argument, that of the command for compiling (or building)
a program in the user’s chosen programming language. For
instance:

agnosticDebugger ghc -o myProgram myProgram.hs
agnosticDebugger cabal build myProgram.hs
agnosticDebugger ocamlc -o myProgram myProgram.ml

The first line runs the debugger agnosticDebugger with the
settings file for the Glasgow Haskell Compiler, the second
line with the settings file for the Cabal build tool used by
many Haskell projects and the final one with the settings
file for OCamlc. The first argument for the agnostic debug-
ger determines (the name of) the settings file, whilst all the

arguments after the first are passed to every call of the com-
piler, meaning the programmer can use any flags or program
names they wish.

In Figure 2 the full settings file for GHC is presented.

###FILE_TYPE### -
hs

###TYPE_ERRORS### -
type, type , type:, type-variable

###TYPE_IGNORE### -
parse error, type signature, type constructor

###PARSE_ERRORS### -
parse error on input

###PARSE_IGNORE### -

###EXCEPTIONS### -
--,import

###MULTI_EXCEPTIONS### -
({-;-})

Figure 2. GHC Settings

If compilation fails, then the type error debugger uses key
phrases in the (first) error message to categorise the con-
figuration. In the settings file ###TYPE_ERRORS### heads
the phrases for fail and ###PARSE_ERRORS### heads the
phrases for noparse. The headings ###TYPE_IGNORE### and
###PARSE_IGNORE### contain phrases that would trigger
a fail or noparse but should not. If compilation of a con-
figuration fails, but it is neither fail nor noparse, then it is
unresolved.
In principle no language-specific information is required

to produce a configuration, as it is just a subset of lines of the
original program. However, to reduce the number of black
box compiler calls, the type error debugger should never
remove any comments from the source. Similarly, import
declarations should never be removed, because imported
modules are always well-typed but removing the declara-
tions is likely to yield an unresolved configuration because of
undefined identifiers. Hence the phrases indicating any such
exceptions need to be listed in the settings file. In Figure 2
heading ###EXCEPTIONS### is for singular lines and heading
###MULTI_EXCEPTIONS### for multi-lines. For multi-line ex-
ceptions the phrases are paired in parentheses, so the type
error debugger knows when such an exception begins and
ends.

The first line runs the debugger agnosticDebugger with the settings
file for the Glasgow Haskell Compiler, the second line with the set-
tings file for the Cabal build tool used by many Haskell projects and
the final one with the settings file for OCamlc. The first argument
for the agnostic debugger determines (the name of) the settings file,
whilst all the arguments after the first are passed to every call of the
compiler, meaning the programmer can use any flags or program
names they wish.

In Figure 2 the full settings file for GHC is presented.
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Algorithm 2: Good-Omens determines one moiety
1 define go (l, moieties, cont)
2 𝑚𝑜𝑖𝑒𝑡𝑦 ← mkMoiety(𝑙)
3 𝑙 ← 𝑙 − 1
4 while test (cLine (cont,l)) == NOPARSE do
5 addLine(𝑙,𝑚𝑜𝑖𝑒𝑡𝑦)
6 𝑙 ← 𝑙 − 1
7 end while
8 return updateMoiety (moiety, moieties)
9 end define
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If compilation fails, then the type error debugger uses key
phrases in the (first) error message to categorise the configura-
tion. In the settings file ###TYPE_ERRORS### heads the phrases for
fail and ###PARSE_ERRORS### heads the phrases for noparse. The
headings ###TYPE_IGNORE### and ###PARSE_IGNORE### contain
phrases that would trigger a fail or noparse but should not. If com-
pilation of a configuration fails, but it is neither fail nor noparse,
then it is unresolved.

In principle no language-specific information is required to pro-
duce a configuration, as it is just a subset of lines of the original
program. However, to reduce the number of black box compiler
calls, the type error debugger should never remove any comments
from the source. Similarly, import declarations should never be
removed, because imported modules are always well-typed but
removing the declarations is likely to yield an unresolved config-
uration because of undefined identifiers. Hence the phrases indi-
cating any such exceptions need to be listed in the settings file.
In Figure 2 heading ###EXCEPTIONS### is for singular lines and
heading ###MULTI_EXCEPTIONS### for multi-lines. For multi-line

exceptions the phrases are paired in parentheses, so the type error
debugger knows when such an exception begins and ends.

5 EVALUATION
Our new type error debugger is called Eclectic. It supports the
same features as our previous type error debuggers [19], but it
implements three core elements:

(1) the modified isolating delta debugging algorithm
(2) the good-omens algorithm
(3) the agnostic behaviour
Our previous type error debugger using the moiety algorithm as

a pre-processor is called Elucidate.
We hypothesise that compared to Elucidate, Eclectic reduces

the time taken to locate type errors. To show that our hypothesis
is correct, we need to evaluate our method on a large data set
of ill-typed programs. In a previous paper, we designed one such
data set based on the real-world program Pandoc3 [17, 18]. This
scalability data set contains 80 modules of Pandoc, each with a
manually inserted singular type error. The modules range in size
from 32 to 2305 lines of code, giving us a good overview of how
our tool affects programs of different sizes. We compare the results
of this evaluation against our previous debugger, Elucidate, whose
results have also been re-captured on a PC running Ubuntu Linux
20.04 with an AMD Ryzen 7 3800X, 32GB RAM and a Samsung 850
SSD.

5.1 Reduction of Time
Question: Can integrating the moiety algorithm into the isolating
delta debugging speed up the time taken to locate type errors?

Let us look at Figure 3. Along the x-axis are our 80 modules from
the scalability data set, and the y-axis represents the time taken in
seconds. To make the graph easier to read, we have omitted two
tests and have placed them in the separate Figure 4: Elucidate takes
2532 seconds (42 minutes and 12 seconds) for test 79 and takes 2496
seconds (41 minutes and 36 seconds) for test 80.

Overall our new combined algorithms have significantly reduced
the time taken to locate type errors. On average, we reduced the run-
time by 1 minute 37 seconds. However, the most drastic differences
are in our modules with over 200 lines. The most impressive were
modules 79 and 80, which took over 40 minutes to return their
results using our old method; both reduced by over 38 minutes
(2310 seconds).

Unfortunately, not all of the tests successfully reduced the time
taken. One such exception is module 38, shown in more detail in
Figure 5, which had the worst time increase at 482 seconds (8 min-
utes 2 seconds) over Elucidate. These increases on only some of
the results are understandable. It is easy to assume that a reduction
of time occurs because the debugger is no longer pre-processing
entire programs linearly. However, this assumption excludes that
applying the pre-processing algorithm, moiety, compared to the on
request algorithm, good-omens, can cause isolating delta debugging
to generate the configurations differently. Having the isolating delta
debugging algorithm traverse different paths can increase the over-
all number of the results, particularly unresolved outcomes. Each

3Pandoc is a popular Haskell library for markup conversion.
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Figure 3: Elucidate and Eclectic - Run Time

Figure 4: Run Time — Programs 79&80

Figure 5: Run Time — Program 38

extra result is an additional call to the black box compiler, which
raises the run-time. Figure 6 shows this increase in run-time and
calls to the black box compiler, the category of the compiler results
is on the x-axis, and the number of times each result is received on
the y-axis. Here, Eclectic, on all result categories, has increased calls.
This increase in compiler calls matches the 21 out of 80 modules
that increased the debugger’s run-time.

As mentioned, we see that the increase of unresolved and noparse
outcomes increases the time taken for the debugger. We currently
have no way of predicting those outcomes before the debugger
runs, especially agnostically.

5.2 The Quality of the Debugger
In the previous section, we showed that our method successfully
reduced the time taken to locate type errors. However, it is essential
to show that a type error debugger has overall quality. In a previous
paper, we introduced a framework to quantify the quality of a
debugger, and here we apply that framework to our tool [18]. The
framework consists of the four qualities accuracy, recall, precision
and the F1 score. Commonly, type error debugging evaluations use
only recall, the percentage of successful tests. However, it is also
helpful to apply the other three qualities, to give a more rounded
evaluation. Accuracy shows us the number of type error locations
that the debugger correctly returned compared to those incorrectly
returned. Precision tells us how many of the lines the debugger
returned are correct, and the F1 score is the harmonic means of
recall and precision.

Table 1 and Figure 7 show the results of applying the framework
to the old Elucidate and the new Eclectic, using our 80 modules.
Recall increases from 59% to 79% ; more precisely, Eclectic located
63 out of 80 errors compared to Elucidate at 47. If the evaluation
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more detail in Figure 5, which had the worst time increase
at 482 seconds (8 minutes 2 seconds) over Elucidate. These
increases on only some of the results are understandable. It
is easy to assume that a reduction of time occurs because
the debugger is no longer pre-processing entire programs
linearly. However, this assumption excludes that applying
the pre-processing algorithm, moiety, compared to the on
request algorithm, good-omens, can cause isolating delta de-
bugging to generate the configurations differently. Having
the isolating delta debugging algorithm traverse different
paths can increase the overall number of the results, particu-
larly unresolved outcomes. Each extra result is an additional
call to the black box compiler, which raises the run-time. Fig-
ure 6 shows this increase in run-time and calls to the black
box compiler, the category of the compiler results is on the
x-axis, and the number of times each result is received on the
y-axis. Here, Eclectic, on all result categories, has increased
calls. This increase in compiler calls matches the 21 out of
80 modules that increased the debugger’s run-time.

As mentioned, we see that the increase of unresolved and
noparse outcomes increases the time taken for the debugger.
We currently have no way of predicting those outcomes
before the debugger runs, especially agnostically.

5.2 The Quality of the Debugger
In the previous section, we showed that our method success-
fully reduced the time taken to locate type errors. However,
it is essential to show that a type error debugger has over-
all quality. In a previous paper, we introduced a framework
to quantify the quality of a debugger, and here we apply
that framework to our tool [18]. The framework consists of
the four qualities accuracy, recall, precision and the 𝐹1 score.
Commonly, type error debugging evaluations use only recall,
the percentage of successful tests. However, it is also helpful
to apply the other three qualities, to give a more rounded
evaluation. Accuracy shows us the number of type error lo-
cations that the debugger correctly returned compared to
those incorrectly returned. Precision tells us how many of

Figure 6. An increase of compiler calls leads to an increase
of run-time

the lines the debugger returned are correct, and the 𝐹1 score
is the harmonic means of recall and precision.

Metric Elucidate Eclectic
Accuracy 88% 83%
Recall 59% 79%

Precision 14% 11%
𝐹1 Score 19% 18%

Table 1. Framework Results - Average for the 80 modules

Table 1 and Figure 7 show the results of applying the
framework to the old Elucidate and the new Eclectic, using
our 80 modules. Recall increases from 59% to 79% ; more
precisely, Eclectic located 63 out of 80 errors compared to
Elucidate at 47. If the evaluation just used this quality, the
new debugger would look significantly better on quality and
time reduction.

However, we want to provide a more authentic depiction
of the debuggers. Unfortunately, that does not put Eclectic
in a good light. Accuracy, precision, and 𝐹1 score are lower
than for the previous debugger. The lower than expected
results are due to an increase in the number of returned lines:
in 35 out of the 80 tests Eclectic returned a larger number of
incorrect results than Elucidate. Module 70 is an example of:
Elucidate returns the correct answer in one line, while Eclec-
tic does so in four lines. The reason for this discrepancy is
the implementation of the good-omens algorithm. Currently,
when calling the algorithm, an additional branch is gener-
ated. This branch is useful as it allows for more than one
type error to be discovered, as seen in module 70’s results.
Elucidate returns only line 265, which is a one-line function.
However, Eclectic returns a three-line function {49,50,51}

Figure 6: An increase of compiler calls leads to an increase
of run-time

Metric Elucidate Eclectic
Accuracy 88% 83%
Recall 59% 79%

Precision 14% 11%
F1 Score 19% 18%

Table 1: Framework Results - Average for the 80 modules

just used this quality, the new debugger would look significantly
better on quality and time reduction.

However, we want to provide a more authentic depiction of the
debuggers. Unfortunately, that does not put Eclectic in a good light.
Accuracy, precision, and F1 score are lower than for the previous
debugger. The lower than expected results are due to an increase
in the number of returned lines: in 35 out of the 80 tests Eclectic
returned a larger number of incorrect results than Elucidate. Module
70 is an example of: Elucidate returns the correct answer in one line,
while Eclectic does so in four lines. The reason for this discrepancy
is the implementation of the good-omens algorithm. Currently,
when calling the algorithm, an additional branch is generated. This
branch is useful as it allows for more than one type error to be
discovered, as seen in module 70’s results. Elucidate returns only
line 265, which is a one-line function. However, Eclectic returns
a three-line function {49,50,51} and the single line function at
{265}. The need to discover more than one type error is subject
to opinion and future work will see if this feature is more of a
hindrance than a help. However, in some cases we get the opposite
effect. When looking at module 77, Elucidate returns 28 results,
each a different line number, and all 28 are incorrect. On the same
module, Eclectic returns just two lines and these includes the correct
location of the type error.

Though these extra line results do not affect the core goal of
reducing the time taken by the debugger, it reduces the debugger’s
quality. Further investigation is needed to iron out this problem.

5.3 Agnostic Debugging
As mentioned in Section 4, the Eclectic debugger and its algorithms
are agnostic; its application can span multiple programming lan-
guages. To show that this agnostic behaviour works, we have eval-
uated our debugger on an additional statically typed language:
OCaml.

We converted 11 ill-typed Haskell programs from a set collated
by Chen and Erwig [2] to OCaml. We used these benchmarks to see
if we could successfully apply our debugger to another language. A
successful application would show promising results for type error
discovery in the new language.

Table 2 shows the debugger’s results for both Haskell and OCaml
for all 11 benchmark programs. For Haskell we used the Glasgow
Haskell Compiler as our black box, and for OCaml the black box is
OCamlc.

Metric Haskell OCaml
Accuracy 37% 49%
Recall 73% 73%

Precision 34% 64%
F1 Score 44% 68%

Table 2: Framework - Average for the agnostic evaluation

The debugger actually produces identical results for 8 out of the
11 benchmarks. Recall, the number of times the debugger correctly
reports the line the error occurs on, is identical for both languages.
However, this is where the similarities stop. For accuracy, precision,
and F1 Score the results are better for OCaml than for Haskell.
This outcome is due to the debugger not calling the good-omens
algorithm. The lack of calls to the algorithm with OCaml happens
because it does not have an equivalent to Haskell’s ‘Parse Error on
Input’4. Unfortunately, as shown in our previous paper, the absence
of an algorithm to remove these parse errors stunts the debugger’s
ability to scale to longer programs [18, 19]. More research is needed
to see if OCaml’s lack of a ‘Parse Error on Input’ category would
hinder the agnostic debugger’s scalability when applied to other
programming languages. However, the results do not affect the
outcome that the debugger is proven to be wholly agnostic.

5.4 Summary
The evaluation proved that our new algorithms successfully locate
type errors within our tool in a timely fashion on average. In the
most favourable result, Eclectic reduced the time taken by over
38 minutes. We also managed to discover more correct locations
of type errors with Eclectic than with Elucidate, as seen with our
recall metric. However, when we gathered a more detailed look at
our tool, it was clear to see that we struggled with a lower F1 Score.
Our short evaluation of agnostic debugging was a success, with
evidence that there is a possibility of type error debuggers being
agnostic in the future. Altogether, we have succeeded in reducing
the tools time on average to locate type errors and shown that
agnosticism works. However, we have also encountered further
challenges within accuracy and precision, proving the necessity of
a type error debugging tool framework.
4To the best of the author’s knowledge.
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Figure 7: Recall data shows that the new debugger, Eclectic, correctly
locates 16 type errors more than the previous debugger, Elucidate

6 RELATEDWORK
Type error debugging research has a vast history which covers
a variety of solutions over a span of thirty-plus years [1, 3, 4, 6,
10, 13, 15, 16, 20, 21, 23–25, 30]. However, these solutions tended
to need either a modified compiler or patch. All of our tools, on
which we have based this current work, use agnostic algorithms
and a black box compiler and so bucked this trend [18, 19]. The
core agnostic algorithm we have continued to use is delta debug-
ging [5, 26, 27, 29]. The delta debugging algorithm automates the
way programmers debug their software. The algorithm initially
worked on a single configuration, the faulty program; this version
is called the simplifying delta debugging algorithm. However, it was
not long until Zeller, the designer of delta debugging, released an
improved version that worked on two configurations, the isolating
delta debugging algorithm. Our work uses this isolating delta de-
bugging algorithm. A core part of delta debugging is the need for
a test function. This test function can be anything that produces
results that can guide the algorithm’s path. In our case, we use
a black box compiler, specifically the Glasgow Haskell Compiler
(GHC). For us, a black box compiler is a compiler used the same
way as a programmer does for accessing error messages. Unlike
other solutions that suggest using a compiler as a black box, we do
not need to apply any modifications, allowing our debugger to be a
completely separate entity [8, 9, 12, 22]. Though we successfully
combined the isolating delta debugging algorithm and a black box
compiler to locate type errors with a rate of 27 percentage points
over GHC, we found that our debugger would have issues scaling to
larger programs [18]. Our answer was to look at the input given to
the isolating delta debugging algorithm, as a configuration, before
running. Though we were not the first to look in this direction, we

were the first to do so with a pre-processing algorithm for delta
debugging type errors [7, 11, 14].

7 CONCLUSION AND FUTUREWORK
We presented our method of integrating our moiety algorithm into
a modified isolating delta debugging algorithm locate type errors.
Though successful in locating type errors, our previous tool had too
long run-times [18]. Our new debugger Eclectic addresses this prob-
lem of speed and additionally is language- and compiler-agnostic.
Taking the strengths of both the isolating delta debugging and the
moiety algorithms we united them through our new good-omens
algorithm. Previously the self-contained moiety algorithm acted
as a pre-processor for isolating delta debugging. Moiety generated
noparse-free configurations for the isolating delta debugging algo-
rithm. These configurations allowed isolating delta debugging to
know valid splitting points, locations that are available to be split
without introducing an error. However, pre-processing came with
a price: each line had to be compiled separately, leading to linear
run-time. In contrast, Eclectic allows the isolating delta debugging al-
gorithm to request valid splitting points only when it comes across
a noparse configuration. This change gives us an average reduction
in run-time of 1 minute 37 seconds.

Unfortunately, using a previously presented framework to quan-
tify the quality of a type error debugger, the changes that made this
significant difference in time slightly reduced the debugger quality
overall compared to our previous implementation [18]. In recall,
the most commonly used metric in type error debugging, we gain a
positive 20 percentage points in accurate locating of type errors on
our previous debugger. However, the overall outcome of the tool
shown by the F1 Score is 1 percentage point lower. The explanation
for this discrepancy is that the type error locations contain more
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lines of code than previously. Thirty-five of the eighty tests yielded
larger locations, averaging ten lines more than Elucidate due to the
algorithm’s implementation. The current implementation allows
for the algorithm to find more than one type error in the code;
however, we need to investigate if this is a beneficial aspect.

Along with the successful reduction of time, we also provide a
short evaluation of the debugger’s agnostic behaviour. This evalua-
tion showed that we could apply our debugger and its algorithms
to more than one programming language. However, though we
received good results, we would like to complete a more in-depth
investigation of agnostic debugging, with more extensive evalua-
tions and a more comprehensive range of languages tested.

Concerning future work, we will first be looking into reducing
these larger locations. We will not be able to reduce many to one
location due to the moieties job of not allowing non-valid split-
ting points. However, we can investigate how the isolating delta
debugging algorithm’s differing chosen path causes this disparity
and removes the ability to discover more than one type error at a
time. Also, the tool works best for larger programs, with those at
the shorter end not benefiting in reducing time. For this, we will be
looking at heuristics to decide if to call the pre-processing or the
on-request algorithm. One such solution would resort back to the
pre-processing moiety algorithm if the program’s source code was
under a specific size.

Lastly, we would like to implement an empirical study using real
programmers on the debugger’s ability to locate type errors and its
agnostic features.

REFERENCES
[1] Karen L Bernstein and Eugene W Stark. 1995. Debugging type errors. Technical

Report.
[2] Sheng Chen and Martin Erwig. 2014. Counter-factual typing for debugging type

errors. In POPL 2014. ACM, 583–594.
[3] Sheng Chen and Martin Erwig. 2014. Guided Type Debugging. In Functional and

Logic Programming - 12th International Symposium. 35–51.
[4] Olaf Chitil. 2001. Compositional Explanation of Types and Algorithmic Debug-

ging of Type Errors. In ICFP 2001. 193–204.
[5] Holger Cleve and Andreas Zeller. 2005. Locating causes of program failures. In

27th International Conference on Software Engineering. 342–351.
[6] Christian Haack and Joe B. Wells. 2004. Type error slicing in implicitly typed

higher-order languages. Sci. Comput. Program. 50, 1-3 (2004), 189–224.
[7] Christian Gram Kalhauge and Jens Palsberg. 2019. Binary Reduction of Depen-

dency Graphs. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 556–566.

[8] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers. 2007.
Searching for type-error messages. In Proceedings of the ACM SIGPLAN 2007

Conference on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007. 425–434. https://doi.org/10.1145/1250734.
1250783

[9] Benjamin S. Lerner, DanGrossman, andCraig Chambers. 2006. Seminal: searching
for ML type-error messages. In Proceedings of the ACM Workshop on ML. 63–73.

[10] Bruce J McAdam. 1999. On the unification of substitutions in type inference.
Lecture notes in computer science 1595 (1999), 137–152.

[11] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.
In ICSE ’06. ACM, 142–151.

[12] Zvonimir Pavlinovic. 2014. General Type Error Diagnostics UsingMaxSMT. https:
//pdfs.semanticscholar.org/1c14/7bc9f51cc950596dbc3e7cc5121202d160da.pdf

[13] Vincent Rahli, Joe B. Wells, John Pirie, and Fairouz Kamareddine. 2015. Skalpel:
A Type Error Slicer for Standard ML. Electr. Notes Theor. Comput. Sci. 312 (2015),
197–213.

[14] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case Reduction for C Compiler Bugs. In PLDI 2012 (Beijing,
China). ACM, 335–346.

[15] Thomas Schilling. 2011. Constraint-Free Type Error Slicing. In Trends in Func-
tional Programming, 12th International Symposium. 1–16.

[16] Eric L. Seidel, Ranjit Jhala, and Westley Weimer. 2016. Dynamic witnesses for
static type errors (or, ill-typed programs usually go wrong). In ICFP 2016. ACM,
228–242.

[17] Joanna Sharrad. 2021. Pandoc for evaluation of type error debug-
gers. Retrieved March 1, 2021 from https://github.com/JoannaSharrad/
TypeErrorDebuggingScalabilityDataSet

[18] Joanna Sharrad and Olaf Chitil. 2020. Scaling Up Delta Debugging of Type Errors.
In Trends in Functional Programming: 21st International Symposium, TFP 2020,
Krakow, Poland,. Springer.

[19] Joanna Sharrad, Olaf Chitil, and Meng Wang. 2018. Delta Debugging Type Errors
with a Blackbox Compiler. In IFL 2018 (Lowell, MA, USA). ACM, 13–24.

[20] Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. 2003. Interactive type
debugging in Haskell. In Proceedings of the ACM SIGPLAN Workshop on Haskell.
72–83.

[21] Frank Tip and T. B. Dinesh. 2001. A slicing-based approach for locating type
errors. ACM Trans. Softw. Eng. Methodol. 10, 1 (2001), 5–55.

[22] Kanae Tsushima and Kenichi Asai. 2012. An Embedded Type Debugger. In IFL
2012. 190–206.

[23] Kanae Tsushima and Olaf Chitil. 2014. Enumerating Counter-Factual Type Error
Messages with an Existing Type Checker. In PPL2014.

[24] Kanae Tsushima, Olaf Chitil, and Joanna Sharrad. 2020. Type Debugging with
Counter-Factual Type Error Messages Using an Existing Type Checker. In IFL
2019: Proceedings of the 31st Symposium on Implementation and Application of
Functional Languages. ACM.

[25] Mitchell Wand. 1986. Finding the Source of Type Errors. In POPL 1986. ACM,
38–43.

[26] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In Software Engineering - ESEC/FSE’99, 7th European Software Engineering Confer-
ence. 253–267.

[27] Andreas Zeller. 2009. Why Programs Fail: A Guide to Systematic Debugging, 2nd
Edition. Academic Press.

[28] Andreas Zeller. 2021. Reducing Failure-Inducing Inputs. In The Debugging Book.
CISPA Helmholtz Center for Information Security. https://www.debuggingbook.
org/html/DeltaDebugger.html Retrieved 2021-09-03 14:44:52+02:00.

[29] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200.

[30] Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon L. Peyton
Jones. 2015. Diagnosing type errors with class. In PLDI 2015. ACM, 12–21.

https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1250734.1250783
https://pdfs.semanticscholar.org/1c14/7bc9f51cc950596dbc3e7cc5121202d160da.pdf
https://pdfs.semanticscholar.org/1c14/7bc9f51cc950596dbc3e7cc5121202d160da.pdf
https://github.com/JoannaSharrad/TypeErrorDebuggingScalabilityDataSet
https://github.com/JoannaSharrad/TypeErrorDebuggingScalabilityDataSet
https://www.debuggingbook.org/html/DeltaDebugger.html
https://www.debuggingbook.org/html/DeltaDebugger.html

	Abstract
	1 Introduction
	2 Illustrating by example
	3 The Algorithms
	3.1 Delta Debugging of Type Errors
	3.2 Isolating Delta Debugging
	3.3 Moieties Determine Configurations
	3.4 Delta Debugging with Good-Omens
	3.5 Our Isolating Delta Debugging Algorithm
	3.6 The Good-Omens Algorithm

	4 Agnostic Debugging
	5 Evaluation
	5.1 Reduction of Time
	5.2 The Quality of the Debugger
	5.3 Agnostic Debugging
	5.4 Summary

	6 Related Work
	7 Conclusion and Future Work
	References

