
Does Collaborative Editing Help Mitigate Security
Vulnerabilities in Crowd-Shared IoT Code Examples?

Madhu Selvaraj
University of Calgary

Canada
madhumitha.selvaraj@ucalgary.ca

Gias Uddin
University of Calgary

Canada
gias.uddin@ucalgary.ca

ABSTRACT
Background: With the proliferation of crowd-sourced developer
forums, Software developers are increasingly sharing more coding
solutions to programming problems with others in forums. The
decentralized nature of knowledge sharing on sites has raised the
concern of sharing security vulnerable code, which then can be
reused into mission critical software systems - making those sys-
tems vulnerable in the process. Collaborative editing has been intro-
duced in forums like Stack Overflow to improve the quality of the
shared contents. Aim: In this paper, we investigate whether code
editing can mitigate shared vulnerable code examples by analyzing
IoT code snippets and their revisions in three Stack Exchange sites:
Stack Overflow, Arduino, and Raspberry Pi. Method:We analyze
the vulnerabilities present in shared IoT C/C++ code snippets, as
C/C++ is one of the most widely used languages in mission-critical
devices and low-powered IoT devices. We further analyse the revi-
sions made to these code snippets, and their effects. Results: We
find several vulnerabilities such as CWE 788 - Access of Memory
Location After End of Buffer, in 740 code snippets . However, we
find the vast majority of posts are not revised, or revisions are not
made to the code snippets themselves (598 out of 740). We also find
that revisions are most likely to result in no change to the number
of vulnerabilities in a code snippet rather than deteriorating or
improving the snippet. Conclusions: We conclude that the current
collaborative editing system in the forums may be insufficient to
help mitigate vulnerabilities in the shared code.

CCS CONCEPTS
• Software and its engineering; • Security and privacy→ Sys-
tems security; • Human Centered Computing → Collaborative
and Social Computing;

ACM Reference Format:
Madhu Selvaraj and Gias Uddin. 2022. Does Collaborative Editing Help
Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples?. In
ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM) (ESEM ’22), September 19–23, 2022, Helsinki, Finland.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3544902.3546235

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM ’22, September 19–23, 2022, Helsinki, Finland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9427-7/22/09. . . $15.00
https://doi.org/10.1145/3544902.3546235

1 INTRODUCTION
Crowd-sourced developer forums like Stack Overflow (SO) are pop-
ular among developers. The Stack Exchange network of sites that
host Stack Overflow had 9+ billion page views from 100+ million
users in 2019 alone. Stack Overflow now hosts more than 50 million
posts and is visited by 11 million users per day. Questions related to
coding challenges often receive code examples as solutions. Stack
Overflow contains code snippets in 75% of their answers [41]. The
quality of these examples and their direct reuse without modifica-
tions is a concern. Previous studies have found that 9.8% of 7,444
Stack Overflow accepted answers contained at least one instance
of a poor coding practice [28], and Android code examples shared
in SO are reused in millions of popular Android app [11].

Collaborative editing is introduced in forums like SO to allow
users to suggest ways to improve the shared content. Previous
studies offer valuable insight on the security of SO C/C++ code
examples and the effect of post revisions [40–42]. However, what
happens when a vulnerable code example is revised?

In this paper, we attempt to answer this question by analyz-
ing vulnerable crowd-shared C/C++ IoT code examples. C/C++ is
widely used in mission-critical systems and resource-constrained
IoT devices. The Internet of Things (IoT) is an internet connected
system of physical objects ("things") [17]. Rapid developments in
IoT have made it so that an estimated 27.1 billion IoT devices will
be connected by 2025 [30]. Increased demand for IoT in various use
cases consequently increases the importance of understanding the
unique challenges of IoT security [15].

The prevalence of IoT devices in our everyday life and the ease
of access to such computing resources make development using
IoT devices widespread. As such, recent research reports a growing
number of IoT related posts in forums like SO [33, 39]. In addition,
certain Stack Exchange sites are more specialized to certain fields
or technologies. For example, the Arduino and Raspberry Pi sites
are designed for discussion regarding development using these two
tools, which are popular in the field of IoT.

We study all IoT C/C++ code snippets shared in the SO, Arduino,
and Raspberry Pi Stack Exchange sites. We apply a static code vul-
nerability analysis tool (cppcheck) to check each code example for
vulnerabilities. For each identified vulnerable code example, we col-
lect its revision history from the three sites. We then check whether
the vulnerability was introduced pre or post-revision of a code ex-
ample, and whether certain revision types (e.g., code improvement)
introduced or fixed vulnerabilities.

We find several severe vulnerabilities in the shared code snippets
like CWE 788 - Access of Memory Location After End of Buffer.
We also find that most snippets are not revised, and the majority of
vulnerabilities are introduced pre code revisions. When revisions

ar
X

iv
:2

20
9.

15
01

1v
1

 [
cs

.S
E

]
 2

8
Se

p
20

22

https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html
https://doi.org/10.1145/3544902.3546235
https://doi.org/10.1145/3544902.3546235
https://cwe.mitre.org/data/definitions/788.html

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

are made, we observe that they are more likely intended to improve
the functionality of the code than to make simple changes. However,
these revisions often have little effect on reducing the number of
vulnerabilities in a code snippet. We conclude that the current
editing system in the forums may be insufficient to help mitigate
vulnerabilities in the shared code snippets.
Replication Package.
https://github.com/disa-lab/esem2022-crowdeditcodevulnerable

2 MOTIVATING EXAMPLES
Our study was motivated by our observations of vulnerable C/C++
IoT code examples in the Stack Exchange forums. Below, we show
three examples of vulnerable C/C++ IoT code snippets that were
modified during revisions.

Listing 1 is an example of a SO code snippet that had vulner-
abilities introduced in the original version (CWE 788 - Access of
Memory Location After End of Buffer at lines 14 and 23), and then
gained more vulnerabilities after it was revised, which introduced
the same vulnerability (CWE 788) in line 32. Common Weakness
Enumeration (CWE) is a community based list of software weak-
nesses maintained by the Mitre Corporation ir order to help catalog
software vulnerabilities [25]. As of July 2021, there are a total of 924
weaknesses in CWEVersion 4.6 with 92 related to C/C++ [23, 24, 26].
In Figure 1, we show a screenshot of the official entry of CWE 788
in the CWE online database. The information contains the title of
the weakness type, which is access of memory location after end of
buffer. The information also contains a description with common
consequences and it’s relationship to other CWE types. Each entry
also contains examples of the vulnerability with explanations as
to why it is harmful. In Figure 2, we see an example code snippet
of CWE 788 as provided in the online CWE database. This vulner-
ability can be exploited when the C method memcpy is provided
to copy a source memory location with a buffer. In Listing 1, the
revision in line 32 to the code example calls the memcpy method
without checking the buffer size. Therefore, instead of fixing the
previous similar vulnerability in line 14, the revision has in fact
made it worse.

Some code snippets did not have any weaknesses in the original
version posted by the user, but then gained some as the user revised.
The ARD code snippet in Listing 2 shows that an instance of CWE
788 was introduced in line 10 because the user revised to explain
how to print the hexadecimal values of the array, but misused the
sprintf function. Finally, some code snippets were also improved
by revisions. For example, in a SO code snippet shown in Listing
3, the user removed an instance of CWE 788 - Access of Memory
Location Before Start of Buffer in line 6 by changing the way data
is stored in the data array. Therefore, revisions to code examples
in online developer forums can lead to improvements, leave the
code unchanged, or even make it worse by introducing further
weaknesses. Our study aims to understand the proportion and
types of vulnerable code examples that are mitigated through the
revisions.

3 STUDY SETUP
We collect all IoT code snippets shared in three Stack Exchange
sites and preprocess those to identify and record their revisions.

CWE-788: Access of Memory Location After End of Buffer

Weakness ID: 788

Abstraction: Base
Structure: Simple

Presentation Filter: l
-.;
C
;.;.
o

;..;;
m

.i;.;

pl
.;;.
et

.;;.
e ___ v

_,
I

v Description

Status: Incomplete

The software reads or writes to a buffer using an index or pointer that references a memory
location after the end of the buffer.

v Extended Descri tion

This typically occurs when a pointer or its index is decremented to a position before the
buffer; when pointer arithmetic results in a position before the buffer; or when a negative
index is used, which generates a position before the buffer.

v Relationships

Ov Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Narne
ChildOf (9 119 ImQroQer Restriction of 01:2erations within the Bounds of a

ParentOf
ParentOf
ParentOf

121
122
126

Memory Buffer
Stack-based Buffer Overflow
Hea1:2-based Buffer Overflow
Buffer Over-read

0 v Relevant to the view "Software Developn1ent" (CWE-699)

Nature Type ID Narne
MemberOf Iii 1218 Memory Buffer Errors

Figure 1: Screenshot of CWE 788 in the CWE Database

3.1 Data Collection
We study IoT code examples shared in the following three Stack
Exchange sites: SO, Arduino, Raspberry Pi. SO is the most popular
Q&A site for software developers of all kinds. The other two sites
are specifically setup to foster IoT-based discussions. We download
the January 2022 data dump of each site, and then obtain all code
examples present in answers from Arduino and Raspberry Pi. For
SO, we obtain code examples from answers that belong to questions
labeled as the 75 IoT-related tags from Uddin et al. [39].

https://github.com/disa-lab/esem2022-crowdeditcodevulnerable
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

Figure 2: An example vulnerable code pattern in online
CWE database that shows a CWE 788 vulnerability

For SO, the question tags were checked to see if they contained
the keywords C or C++, and if they contained IoT related keywords.

Table 1: Statistics of each studied site

Site Name #Code Snippets #Post Versions

Stack Overflow (SO) 5,086 7,073
Arduino 6,906 9,393
Raspberry Pi 1,178 2,549
Total 13,170 19,015

We observed however that Arduino and Raspberry Pi questions did
not have programming languages present in their tags in most cases.
In order to determine the language of the code examples on these
sites, we instead used the language detection tool Guesslang which
has an accuracy of 90% according to it’s documentation [14]. Then,
we used a similar approach used in previous studies to reject code
snippets that only contained pseudo code by ignoring snippets that
contained less than the median SO line count of 5 lines [5, 18, 42].
We also collected the entire version history of each of these code
snippets. In total, we obtain 13,170 code snippets from 10,248 posts
with 19,018 post versions. A breakdown of the collected snippets
as well as their versions is shown in Table 1.

3.2 Data Preprocessing
The collected snippets were analyzed for weakness on the CWE
(Common Weakness Enumeration) List. To do this we used cp-
pcheck version 2.4.1 released in March 2021, which is a static code
analyzer that supports various types of code checks in C and C++
code. It also allows for specific weaknesses to be suppressed. Ac-
cording to Zhang et al, cppcheck is able to identify 59 out of the
90 code weaknesses that are related to C and C++ [42]. Previous
studies have found that cppcheck had just a 0.78 false positive rate
against a test suite of 650 common C/C++ bugs [3]. Zhang et al.
found that 85 out of 100 CWE instances detected by cppcheck were
labelled as accurate with a strong agreement among the study’s
authors (Cohen’s Kappa of 0.68) [42].

While we analyzed the initial results of running the obtained
code snippets through cppcheck, we observed many instances of
syntax errors. These errors are likely to be automatically detected
by code editors and removed by the programmer, so we proceeded
to ignore such errors in our analysis, similarly to Zhang et al., who
ignored 129,395 instances of syntax errors in their initial observa-
tion of 154,198 CWE instances. Other reported errors we noticed to
be unfair to deem as a weakness are CWE types such as CWE 563 -
Assignment to Variable without Use. Such errors are not important
as users of Q/A sites often intend to answer specific questions in
code examples with direct answers, not to provide complete so-
lutions. We therefore suppress errors in cppcheck of this nature,
which are summarized in Table 2.

4 STUDY RESULTS
Our empirical study answers for research questions (RQ) to offer
insights into the relationship between the vulnerability of IoT code
snippets and their revisions in three Stack Exchange sites:

(1) Were the vulnerabilities introduced through post revisions?
(Section 4.1)

https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

Table 2: Errors supressed in cppcheck

Criteria Name Criteria Description

Syntax Error Errors in the syntax of the code
Unread Variable Variable is assigned a value but never

used
Unused variable or un-
used stuct member

Variable or struct member is not as-
signed a value and then never used

Unused private function Private function is not called

(2) What are the different types of vulnerabilities found during
the revisions? (Section 4.2)

(3) Does the type of vulnerability differ depending on revision
types? (Section 4.3)

(4) Were the vulnerabilities introduced pre-edit mitigated via
post revisions? (Section 4.4)

4.1 RQ1 Were the vulnerabilities introduced
through post revisions?

4.1.1 Motivation. Answers on Stack Exchange websites can be
modified in order to improve it’s quality or to add further informa-
tion. The goal of collaborative editing in the online forums is to
foster content quality, which can also include improving the quality
of the shared code examples. However, through these modifications,
it is possible that new security vulnerabilities are introduced. An
understanding of when these vulnerabilities are introduced could
help us determine tools and guidelines by focusing on the timeline.
For example, if most vulnerabilities are left unchanged post-edit,
the collaborative editing systems needs to change.

4.1.2 Approach. To determine the stage in which a a user may in-
troduce a vulnerability in a code example, we first collect the entire
version history of each post. This version history was thenmanually
analyzed for revisions to the code examples themselves. Therefore,
edits made to the text portion of the answer were not considered
as revisions. We utilized this method as minor text changes such as
typo fixes will have no affect on the vulnerabilities present in the
code segment. After obtaining all code snippet revision history, we
analyzed snippets that contained multiple versions for vulnerabili-
ties in order to determine which version the error was introduced.
Using Cppcheck to detect CWE types, we compared the results
from the revised snippets with the initial ones.

4.1.3 Results. Out of our studied 13,170 code examples across the
three Stack Exchange sites, we found 740 code snippets flagged
as vulnerable by the cppcheck tool. We then tracked the revisions
of each code snippet, and identified when the vulnerability was
introduced. We find that that the vast majority of vulnerabilities
are introduced before edits are made to code snippets, i.e., when
the code snippet was first shared. As shown in Figure 3, 713 out
of the 740 vulnerable code snippets were either not changed, or
contained CWE instances before revisions were made.

Table Table 3 shows the distribution of the vulnerable code snip-
pets by the stage when the vulnerability was first found in the
corresponding code snippet (pre or post-revisions). We see that

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

2lightgray!30
Table 2: Errors supressed in cppcheck

Criteria Name Criteria Description

Syntax Error Errors in the syntax of the code
Unread Variable Variable is assigned a value but never

used
Unused variable or un-
used stuct member

Variable or struct member is not as-
signed a value and then never used

Unused private function Private function is not called

(1) Were the vulnerabilities introduced through post edits/revi-
sions? (Section 4.1)

(2) What are the different types of vulnerabilities found during
the revisions? (Section 4.2)

(3) Does the type of vulnerabilities differ depending on revision
types? (Section 4.3)

(4) Were the vulnerabilities introduced pre-edit mitigated via
post revisions? (Section 4.4)

4.1 RQ1 Were the vulnerabilities introduced
through post edits/revisions?

4.1.1 Motivation. Answers on Stack Exchange websites can be
modified in order to improve it’s quality or to add further informa-
tion. The goal of collaborative editing in the online forums is to
foster content quality, which can also include improving the quality
of the shared code examples. However, through these modifica-
tions, it is possible that new security vulnerabilities are introduced
through the code snippets. An understanding of when vulnera-
bilities are introduced in the shared code examples could help us
determine tools and guidelines by focusing on the timeline. For ex-
ample, if most vulnerabilities are introduced and are left unchanged
during post-edit, the collaborative editing systems needs to change.

4.1.2 Approach. To understand when a user may introduce a vul-
nerability, we study the evolution and version history of the col-
lected code snippets. To determine the stage in which a vulnerability
was introduced in a code example, we first collected the entire ver-
sion history of each post. This version history was then manually
analyzed for edits, and was restricted to the code examples them-
selves. Therefore edits made to the text portion of the answer were
not counted as revisions. We utilized this method as minor text
changes in the post, such as typo fixes, will have no affect on the
vulnerabilities present in the code segment. After obtaining all code
snippet revision history, we analyzed snippets that contained multi-
ple versions for vulnerabilities in order to determine which version
the error was introduced. Using Cppcheck to detect CWE types,
we compared the results from the revised snippets with the initial
ones.

4.1.3 Results. Out of our studied 13,170 code examples across the
three Stack Exchange sites, we found total 740 code snippets flagged
as vulnerable by the cppcheck tool. We then tracked the revisions of
each of the 740 code snippets and identified when the vulnerability
was introduced in the code snippet. We find that that the vast
majority of vulnerabilities are introduced before edits are made

to code snippets, i.e., when the code snippet was first shared. As
shown in Figure 3, 713 out of the 740 vulnerable code snippets were
either not changed, or contained CWE instances before revisions
were made.

Post Revisions
27 VCS

Pre Revisions
713 VCS

Figure 3: Distribution of vulnerable code snippets (VCS) by
the stage when their vulnerabilities were introduced (pre vs
post revision of a code snippet)

Table Table 3 shows the distribution of the vulnerable code snip-
pets by the stage when the vulnerability was first found in the
corresponding code snippet (pre or post-revisions). We see that
only a few of the vulnerable code snippets in each site were intro-
duced post-edit, i.e., most of the snippets contained a vulnerability
when the code examples were first shared. Out of the three sites,
95.8% of the vulnerable code snippets in SO had the vulnerabilities
introduced pre-edit. The site Arduino had 96.6% of the vulnerable
code snippets introduced during pre-edit and 3.4% introduced dur-
ing post-edit. Finally, Raspberry Pi had no vulnerabilities introduced
after revisions.

Table 3: Distribution of VCS introduced pre and post edit
across the studied sites

Site #VCS %Pre (Black) vs. Post-edit (Red)

Stack Overflow 378 95.8% 4.2%
Arduino 322 96.6% 3.4%
Raspberry Pi 40 100.0% 0%

Listing 4 shows an example vulnerability that was not present in
original version but was introduced once the user made a revision
in an attempt to improve their code. In this case, an instance of
CWE 398 - 7PK Code Quality in line 13 was introduced after the
inclusion of a for loop that uses a variable (loop) with the same
name as another function. An example of a vulnerability that was
introduced before revisions and was never fixed during revisions
can be found in SO post (27918518), where an instance of CWE 401 -
Missing Release of Memory after Effective Lifetime is present in line
5. Figure 4 shows the evolution of the number of CWE introduced
pre and post revisions from 2009 to 2021. We find that although the
number of CWEs introduced pre revisions dramatically increased
between 2012 and 2016, it has been on a slight decline since. Fur-
thermore, the number of new CWEs introduced after a revision has
been made has remained relatively consistent and small.

We also find the IoT devices affected by the CWE types detected
in the code snippets by analyzing the CVE descriptions of the CWE
types. As shown in Fig 5, Snapdragon Consumer IoT and Snap-
dragon Industrial IoT are the most common affected IoT devices,
followed by other devices such as GoPro cameras.

Figure 3: Distribution of vulnerable code snippets (VCS) by
the stage when their vulnerabilities were introduced (pre vs
post revision of a code snippet)

only a few of the vulnerable code snippets in each site were intro-
duced post-edit, i.e., most of the snippets contained a vulnerability
when the code examples were first shared. Out of the three sites,
95.8% of the vulnerable code snippets in SO had the vulnerabili-
ties introduced pre-edit. Arduino had 96.6% of the vulnerable code
snippets introduced during pre-edit and 3.4% introduced during
post-edit. Finally, Raspberry Pi had no vulnerabilities introduced
after revisions.

Table 3: Distribution of VCS introduced pre and post edit
across the studied sites

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

2lightgray!30
Table 2: Errors supressed in cppcheck

Criteria Name Criteria Description

Syntax Error Errors in the syntax of the code
Unread Variable Variable is assigned a value but never

used
Unused variable or un-
used stuct member

Variable or struct member is not as-
signed a value and then never used

Unused private function Private function is not called

(1) Were the vulnerabilities introduced through post edits/revi-
sions? (Section 4.1)

(2) What are the different types of vulnerabilities found during
the revisions? (Section 4.2)

(3) Does the type of vulnerabilities differ depending on revision
types? (Section 4.3)

(4) Were the vulnerabilities introduced pre-edit mitigated via
post revisions? (Section 4.4)

4.1 RQ1 Were the vulnerabilities introduced
through post edits/revisions?

4.1.1 Motivation. Answers on Stack Exchange websites can be
modified in order to improve it’s quality or to add further informa-
tion. The goal of collaborative editing in the online forums is to
foster content quality, which can also include improving the quality
of the shared code examples. However, through these modifica-
tions, it is possible that new security vulnerabilities are introduced
through the code snippets. An understanding of when vulnera-
bilities are introduced in the shared code examples could help us
determine tools and guidelines by focusing on the timeline. For ex-
ample, if most vulnerabilities are introduced and are left unchanged
during post-edit, the collaborative editing systems needs to change.

4.1.2 Approach. To understand when a user may introduce a vul-
nerability, we study the evolution and version history of the col-
lected code snippets. To determine the stage in which a vulnerability
was introduced in a code example, we first collected the entire ver-
sion history of each post. This version history was then manually
analyzed for edits, and was restricted to the code examples them-
selves. Therefore edits made to the text portion of the answer were
not counted as revisions. We utilized this method as minor text
changes in the post, such as typo fixes, will have no affect on the
vulnerabilities present in the code segment. After obtaining all code
snippet revision history, we analyzed snippets that contained multi-
ple versions for vulnerabilities in order to determine which version
the error was introduced. Using Cppcheck to detect CWE types,
we compared the results from the revised snippets with the initial
ones.

4.1.3 Results. Out of our studied 13,170 code examples across the
three Stack Exchange sites, we found total 740 code snippets flagged
as vulnerable by the cppcheck tool. We then tracked the revisions of
each of the 740 code snippets and identified when the vulnerability
was introduced in the code snippet. We find that that the vast
majority of vulnerabilities are introduced before edits are made

to code snippets, i.e., when the code snippet was first shared. As
shown in Figure 3, 713 out of the 740 vulnerable code snippets were
either not changed, or contained CWE instances before revisions
were made.

Post Revisions
27 VCS

Pre Revisions
713 VCS

Figure 3: Distribution of vulnerable code snippets (VCS) by
the stage when their vulnerabilities were introduced (pre vs
post revision of a code snippet)

Table Table 3 shows the distribution of the vulnerable code snip-
pets by the stage when the vulnerability was first found in the
corresponding code snippet (pre or post-revisions). We see that
only a few of the vulnerable code snippets in each site were intro-
duced post-edit, i.e., most of the snippets contained a vulnerability
when the code examples were first shared. Out of the three sites,
95.8% of the vulnerable code snippets in SO had the vulnerabilities
introduced pre-edit. The site Arduino had 96.6% of the vulnerable
code snippets introduced during pre-edit and 3.4% introduced dur-
ing post-edit. Finally, Raspberry Pi had no vulnerabilities introduced
after revisions.

Table 3: Distribution of VCS introduced pre and post edit
across the studied sites

Site #VCS %Pre (Black) vs. Post-edit (Red)

Stack Overflow 378 95.8% 4.2%
Arduino 322 96.6% 3.4%
Raspberry Pi 40 100.0% 0%

Listing 4 shows an example vulnerability that was not present in
original version but was introduced once the user made a revision
in an attempt to improve their code. In this case, an instance of
CWE 398 - 7PK Code Quality in line 13 was introduced after the
inclusion of a for loop that uses a variable (loop) with the same
name as another function. An example of a vulnerability that was
introduced before revisions and was never fixed during revisions
can be found in SO post (27918518), where an instance of CWE 401 -
Missing Release of Memory after Effective Lifetime is present in line
5. Figure 4 shows the evolution of the number of CWE introduced
pre and post revisions from 2009 to 2021. We find that although the
number of CWEs introduced pre revisions dramatically increased
between 2012 and 2016, it has been on a slight decline since. Fur-
thermore, the number of new CWEs introduced after a revision has
been made has remained relatively consistent and small.

We also find the IoT devices affected by the CWE types detected
in the code snippets by analyzing the CVE descriptions of the CWE
types. As shown in Fig 5, Snapdragon Consumer IoT and Snap-
dragon Industrial IoT are the most common affected IoT devices,
followed by other devices such as GoPro cameras.

Listing 4 shows a vulnerability that was not present in original
version but was introduced once the user made a revision in an
attempt to improve their code. In this case, an instance of CWE 398
- 7PK Code Quality in line 13 was introduced after the inclusion of
a for loop that uses a variable (loop) with the same name as another
function. An example of a vulnerability that was introduced before
revisions and was never fixed during revisions can be found in SO
post (𝐴27918518), where an instance of CWE 401 - Missing Release
of Memory after Effective Lifetime is present in line 5. Figure 4
shows the evolution of the number of CWE introduced pre and
post revisions from 2009 to 2021. We find that although the number
of CWEs introduced pre revisions dramatically increased between
2012 and 2016, it has been on a slight decline since. Furthermore,
the number of new CWEs introduced after a revision has been made
has remained relatively consistent and small.

We also find the IoT devices affected by the CWE types detected
in the code snippets by analyzing the CVE descriptions of the CWE
types. As shown in Fig 5, Snapdragon Consumer IoT and Snap-
dragon Industrial IoT are the most common affected IoT devices,
followed by other devices such as GoPro cameras.

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

0

20

40

60

80

100

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

C

W
Es

 In
tr

o
d

u
ce

d Pre-Revision

Post-Revision

Figure 4: Evolution of CWE instances introduced pre revi-
sions vs. post revisions

Figure 5: Common IoT Devices affected by the CWEs

Listing 4: Revised 29060 code snippet with newly introduced
instance of CWE 398 - 7PK Code Quality

int LED_PIN = 13;

void flashing(size_t times =1) { // By default it will flash

once , you can chance this into your desire

int delayPeriod = 500;

- do {

- digitalWrite(LED_PIN , HIGH);

- delay(delayPeriod);

- digitalWrite(LED_PIN , LOW);

- delay(delayPeriod);

- i++;

- } while (i<=times);

+ for (size_t loop = 0; loop <

+ (times *2); ++loop) {

+ digitalWrite(LED_PIN , (loop % 2)?

+ HIGH:LOW);// Use Modulus

+ delay(delayPeriod);

+ }

}

void setup() {

pinMode(ledPin , OUTPUT);

flashing (3);

}

void loop() {

// Do something here

}

Summary of RQ1: Out of the 740 vulnerable code snippets, we
find that the vast majority had vulnerabilities introduce pre code
revisions (713 out of 740), which is also the case when looking at
each stack exchange site individually.

EV Evaluation 4S 5CCN Conversion 4S 2C
ME Memory 65S 8C

RC Resource 3S 2C

FN Function 49S 7C
CA Calculation 4S 2C IN Initialization 59S 2C

RE Reachability
24S 2C

Figure 6: Distribution of the observed 30 CWE Types by the
eight weakness categories (S = weak code snippet, C = CWE)

4.2 RQ2 What are the different types of
vulnerabilities found during the revisions?

4.2.1 Motivation. We analyze the vulnerabilities and CWE types
present in the Stack Exchange code snippets to better understand
their overall security. We also aim to determine if revisions add
or remove certain types of vulnerabilities in order to gain more
insight on the effect of code revisions.

4.2.2 Approach. We use the output generated by cppcheck to de-
termine types of CWEs present and the CWE database for their
descriptions and characteristics. Using these characteristics, we
try to understand the root cause behind the weaknesses in order
to determine a categorization. This is done by both of the paper’s
authors. We then check how revisions impacted the distribution of
vulnerable code snippets under each category.

4.2.3 Results. Across the three stack exchange sites, we observe a
total of 31 CWE types present in the 740 vulnerable code snippets
(total of 1221 CWE instances), with many code snippets containing
more than one CWE type. The most frequently occurring CWE
type we find is CWE 398 - 7PK Code Quality, which was present
in 520 code snippets. This CWE type however is not a distinct vul-
nerability, but instead indicates that the code snippet is of poor
quality. We categorize the remaining 30 distinct CWE types based
on their characteristics into the following 8 weakness categories:
Evaluation - incorrect logic and comparisons, Memory - insufficient
memory management, Function - improperly called and designed
functions , Initialization - improperly initialized variables, Reacha-
bility - unreachable or undefined code, Resource - mismanagement
of a program’s resources, Conversion - incorrect conversions of
variables to different types, and Calculation - improper or incor-
rect calculations. In Figure 6 we observe that code snippets are
more likely to contain CWE types that are evaluation, memory, and
initialization related.

Among the 30 distinct CWE types shown in Table 4, we find
that CWE 457 - Use of Uninitialized Variable is the most frequently
occurring (detected in 49 out of 294 code snippets), followed by
CWE 686 - Function Call With Incorrect Argument Type (32 out of
294).

Table 5 displays the proportion of vulnerable code snippets in
each weakness category that have weaknesses introduced pre or
post-edit.We find that across all categories and types, vulnerabilities
are introduced more frequently before revisions are made than after,
and for most categories there are no vulnerable code snippets that

https://cwe.mitre.org/data/definitions/398.html
https://cwe.mitre.org/data/definitions/398.html
https://stackoverflow.com/a/27918518
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/401.html

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

0

20

40

60

80

100

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

C

W
Es

 In
tr

o
d

u
ce

d Pre-Revision

Post-Revision

Figure 4: Evolution of #CWE instances introduced pre revi-
sions vs. post revisions

Figure 5: Common IoT Devices affected by the CWEs

4.2 RQ2 What are the different types of
vulnerabilities found during the revisions?

4.2.1 Motivation. We analyze the vulnerabilities and CWE types
present in the Stack Exchange code snippets to better understand
their overall security. We also aim to determine if revisions add
or remove certain types of vulnerabilities in order to gain more
insight on the effect of code revisions.

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

0

20

40

60

80

100

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

C

W
Es

 In
tr

o
d

u
ce

d Pre-Revision

Post-Revision

Figure 4: Evolution of CWE instances introduced pre revi-
sions vs. post revisions

Figure 5: Common IoT Devices affected by the CWEs

Listing 4: Revised 29060 code snippet with newly introduced
instance of CWE 398 - 7PK Code Quality

int LED_PIN = 13;

void flashing(size_t times =1) { // By default it will flash

once , you can chance this into your desire

int delayPeriod = 500;

- do {

- digitalWrite(LED_PIN , HIGH);

- delay(delayPeriod);

- digitalWrite(LED_PIN , LOW);

- delay(delayPeriod);

- i++;

- } while (i<=times);

+ for (size_t loop = 0; loop <

+ (times *2); ++loop) {

+ digitalWrite(LED_PIN , (loop % 2)?

+ HIGH:LOW);// Use Modulus

+ delay(delayPeriod);

+ }

}

void setup() {

pinMode(ledPin , OUTPUT);

flashing (3);

}

void loop() {

// Do something here

}

Summary of RQ1: Out of the 740 vulnerable code snippets, we
find that the vast majority had vulnerabilities introduce pre code
revisions (713 out of 740), which is also the case when looking at
each stack exchange site individually.

EV Evaluation 4S 5CCN Conversion 4S 2C
ME Memory 65S 8C

RC Resource 3S 2C

FN Function 49S 7C
CA Calculation 4S 2C IN Initialization 59S 2C

RE Reachability
24S 2C

Figure 6: Distribution of the observed 30 CWE Types by the
eight weakness categories (S = weak code snippet, C = CWE)

4.2 RQ2 What are the different types of
vulnerabilities found during the revisions?

4.2.1 Motivation. We analyze the vulnerabilities and CWE types
present in the Stack Exchange code snippets to better understand
their overall security. We also aim to determine if revisions add
or remove certain types of vulnerabilities in order to gain more
insight on the effect of code revisions.

4.2.2 Approach. We use the output generated by cppcheck to de-
termine types of CWEs present and the CWE database for their
descriptions and characteristics. Using these characteristics, we
try to understand the root cause behind the weaknesses in order
to determine a categorization. This is done by both of the paper’s
authors. We then check how revisions impacted the distribution of
vulnerable code snippets under each category.

4.2.3 Results. Across the three stack exchange sites, we observe a
total of 31 CWE types present in the 740 vulnerable code snippets
(total of 1221 CWE instances), with many code snippets containing
more than one CWE type. The most frequently occurring CWE
type we find is CWE 398 - 7PK Code Quality, which was present
in 520 code snippets. This CWE type however is not a distinct vul-
nerability, but instead indicates that the code snippet is of poor
quality. We categorize the remaining 30 distinct CWE types based
on their characteristics into the following 8 weakness categories:
Evaluation - incorrect logic and comparisons, Memory - insufficient
memory management, Function - improperly called and designed
functions , Initialization - improperly initialized variables, Reacha-
bility - unreachable or undefined code, Resource - mismanagement
of a program’s resources, Conversion - incorrect conversions of
variables to different types, and Calculation - improper or incor-
rect calculations. In Figure 6 we observe that code snippets are
more likely to contain CWE types that are evaluation, memory, and
initialization related.

Among the 30 distinct CWE types shown in Table 4, we find
that CWE 457 - Use of Uninitialized Variable is the most frequently
occurring (detected in 49 out of 294 code snippets), followed by
CWE 686 - Function Call With Incorrect Argument Type (32 out of
294).

Table 5 displays the proportion of vulnerable code snippets in
each weakness category that have weaknesses introduced pre or
post-edit.We find that across all categories and types, vulnerabilities
are introduced more frequently before revisions are made than after,
and for most categories there are no vulnerable code snippets that

Figure 6: Distribution of the observed 30 CWE Types by the
eight weakness categories (S = weak code snippet, C = CWE)

4.2.2 Approach. We use the output generated by cppcheck to de-
termine the types of CWEs present, and the CWE database for their
descriptions and characteristics. Using these characteristics, we
try to understand the root cause behind the weaknesses in order
to determine a categorization. This is done by both of the paper’s
authors. We then check how revisions impacted the distribution of
vulnerable code snippets under each category.

4.2.3 Results. Across the three stack exchange sites, we observe a
total of 31 CWE types present in the 740 vulnerable code snippets
(total of 1221 CWE instances), with many code snippets containing
more than one CWE type. The most frequently occurring CWE
type we find is CWE 398 - 7PK Code Quality, which was present
in 520 code snippets. This CWE type however is not a distinct vul-
nerability, but instead indicates that the code snippet is of poor
quality. We categorize the remaining 30 distinct CWE types based
on their characteristics into the following 8 weakness categories:
Evaluation - incorrect logic and comparisons, Memory - insufficient
memory management, Function - improperly called and designed
functions , Initialization - improperly initialized variables, Reacha-
bility - unreachable or undefined code, Resource - mismanagement
of a program’s resources, Conversion - incorrect conversions of
variables to different types, and Calculation - improper or incor-
rect calculations. In Figure 6 we observe that code snippets are
more likely to contain CWE types that are evaluation, memory, and
initialization related.

Among the 30 distinct CWE types shown in Table 4, we find
that CWE 457 - Use of Uninitialized Variable is the most frequently
occurring (detected in 49 out of 294 code snippets), followed by
CWE 686 - Function Call With Incorrect Argument Type (32 out of
294).

Table 5 displays the proportion of vulnerable code snippets in
each weakness category that have weaknesses introduced pre or
post-edit.We find that across all categories and types, vulnerabilities
are introduced more frequently before revisions are made than after,
and for most categories there are no vulnerable code snippets that
contain weaknesses introduced post revisions. We also observe that
memory related CWE instances are more likely to be introduced
by code revisions compared to evaluation related weaknesses or
instances of CWE 398.

When looking at code snippets that contained vulnerabilities
before revisions, but then saw a reduction in CWE instances after,
we find that only 3 weakness categories (evaluation, memory, and
initialization) and CWE 398 contained such snippets.

https://cwe.mitre.org/data/definitions/398.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/398.html
https://cwe.mitre.org/data/definitions/398.html

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

Table 4: Distribution of CWE Types by number of VCS (=
Vulnerable Code Snippet). Pre = Black bar, Post = Red bar

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

Table 4: Distribution of CWE Types by number of VCS (=
Vulnerable Code Snippet). Pre = Black bar, Post = Red bar

CWE Type Cat. #VCS % Pre vs.Post

398: Code Quality – 520
457: Use of Uninit.Var. IN 49
686: Func. Call With Incor. Arg. Type FN 32
595: Comparison of Object Refs. EV 30
571: Expression is Always True EV 30
788: Access of Mem. Loc. After Buff. ME 28
570: Expression is Always False EV 17
758: Reliance on Undefined Behavior RC 16
562: Return Stack Var. Address ME 11
665: Improper Initialization IN 10
561: Dead Code RC 8
467: sizeof() on Pointer Type ME 8
477: Use of Obsolete Function FN 7
401: Missing Release of Mem. ME 6
476: NULL Pointer Dereference ME 5
190: Integer Overflow ME 5
783: Operator Precedence Error EV 5
685: Func. Call Incorr. Num. of Args. FN 4
768: Incorr.Short Circuit Evaluation EV 4
252: Unchecked Return Value FN 3
704: Incorr. Type Conversion/Cast CN 3
682: Incorrect Calculation CA 3
664: Improp. Control of a Resource RE 2
672: Op. on Resource after Expir. RE 1
762: Mismatched Mem. Mgmt ME 1
590: Free of Mem. not on the Heap ME 1
687: Func. Call Incorr. Spec. Arg. Val FN 1
683: Func. Call Incorr. Order of Args FN 1
628: Func. Call Incorr. Spec. Args FN 1
195: Signed to Unsigned Con. Error CN 1
369: Divide By Zero CA 1

Table 5: Distribution of code snippets with weaknesses intro-
duced pre and post edits, and code snippets improved after
revisions by weakness category

CWE Category #VCS %Introduced Pre- vs Post-Edit

CWE 398 520
Evaluation 124
Function 96
Memory 86
Initialization 75
Reachability 33
Calculation 4
Conversion 5
Resource 3

contain weaknesses introduced post revisions. We also observe that
memory related CWE instances are more likely to be introduced
by code revisions compared to evaluation related weaknesses or
instances of CWE 398.

When looking code snippets that contained vulnerabilities before
revisions, but then saw a reduction in CWE instances after, we

find that only 3 weakness categories (evaluation, memory, and
initialization) and CWE 398 contained such snippets.

Summary of RQ2:We detect a total of 31 CWE types in 740
vulnerable code snippets (1221 CWE instances in total). These
CWE types were generalized into 8 categories, and we find that
evaluation, memory, and initialization weaknesses are the most
common. Across all categories, vulnerabilities are more
frequently introduced before revisions are made to the snippet.

4.3 RQ3 Does the type of vulnerabilities differ
depending on revision types?

4.3.1 Motivation. Users revise their answers for a variety of rea-
sons. We aim to better understand the behaviour of these users
by analyzing the types of revisions that are more commonly made
when editing code snippets.

4.3.2 Approach. We manually analyze code snippets that have at
least one code revision by looking at the nature of the edit. Then
following work byWang et al. [41], we label each revision with four
revision types: code correction, code formatting, code improvement,
and code removal/addition.

4.3.3 Results. An overview of the 4 revision types we label the
revised code snippets as is shown in Table 6. Overall we find that
142 out of the 740 vulnerable code snippets are revised, as shown
in Figure 7. Out of the 598 vulnerable code snippets that did not
have any code revisions, 327 originate from posts that were never
revised, meaning the user did not make any changes to the original
version of the post. The remaining 271 code snippets were not
revised themselves, but belong to posts that were only textually
edited. For example, users edit posts to correct typos, clarify their
work, or to include references and links to other resources. For
the 142 code snippets that were revised, we observe that users
more frequently make revisions with the intention to improve the
functionality of the example to better answer the question (86 out
of 142 snippets, 60.6%), and to make corrections in the code such
as fixing syntax errors and typos (31 out of 142, 21.8%). As shown
in Figure 8, the least common type of edit we observe in the code
snippets with revisions is formatting changes, such has adding
white space through indentation (9 out of 142 code snippets).

Revised
142

19%

Not Revised
598

81%

Figure 7: Number of code snippets revised and not revised

We then further analyze the relationship between the CWE type
present in a revised code snippet and it’s revision type. Table 7
shows that across the 6/8 weakness categories that contain vulnera-
ble code snippets that were revised, the most common revision type
is code improvement. We also find that code correction revisions are
more common in snippets with evaluation and initialization weak-
nesses (3 and 4 snippets respectively), and code removal/addition

Table 5: Distribution of code snippetswithweaknesses intro-
duced pre and post edits, and code snippets improved after
revisions by weakness category

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

Table 4: Distribution of CWE Types by number of VCS (=
Vulnerable Code Snippet). Pre = Black bar, Post = Red bar

CWE Type Cat. #VCS % Pre vs.Post

398: Code Quality – 520
457: Use of Uninit.Var. IN 49
686: Func. Call With Incor. Arg. Type FN 32
595: Comparison of Object Refs. EV 30
571: Expression is Always True EV 30
788: Access of Mem. Loc. After Buff. ME 28
570: Expression is Always False EV 17
758: Reliance on Undefined Behavior RC 16
562: Return Stack Var. Address ME 11
665: Improper Initialization IN 10
561: Dead Code RC 8
467: sizeof() on Pointer Type ME 8
477: Use of Obsolete Function FN 7
401: Missing Release of Mem. ME 6
476: NULL Pointer Dereference ME 5
190: Integer Overflow ME 5
783: Operator Precedence Error EV 5
685: Func. Call Incorr. Num. of Args. FN 4
768: Incorr.Short Circuit Evaluation EV 4
252: Unchecked Return Value FN 3
704: Incorr. Type Conversion/Cast CN 3
682: Incorrect Calculation CA 3
664: Improp. Control of a Resource RE 2
672: Op. on Resource after Expir. RE 1
762: Mismatched Mem. Mgmt ME 1
590: Free of Mem. not on the Heap ME 1
687: Func. Call Incorr. Spec. Arg. Val FN 1
683: Func. Call Incorr. Order of Args FN 1
628: Func. Call Incorr. Spec. Args FN 1
195: Signed to Unsigned Con. Error CN 1
369: Divide By Zero CA 1

Table 5: Distribution of code snippets with weaknesses intro-
duced pre and post edits, and code snippets improved after
revisions by weakness category

CWE Category #VCS %Introduced Pre- vs Post-Edit

CWE 398 520
Evaluation 124
Function 96
Memory 86
Initialization 75
Reachability 33
Calculation 4
Conversion 5
Resource 3

contain weaknesses introduced post revisions. We also observe that
memory related CWE instances are more likely to be introduced
by code revisions compared to evaluation related weaknesses or
instances of CWE 398.

When looking code snippets that contained vulnerabilities before
revisions, but then saw a reduction in CWE instances after, we

find that only 3 weakness categories (evaluation, memory, and
initialization) and CWE 398 contained such snippets.

Summary of RQ2:We detect a total of 31 CWE types in 740
vulnerable code snippets (1221 CWE instances in total). These
CWE types were generalized into 8 categories, and we find that
evaluation, memory, and initialization weaknesses are the most
common. Across all categories, vulnerabilities are more
frequently introduced before revisions are made to the snippet.

4.3 RQ3 Does the type of vulnerabilities differ
depending on revision types?

4.3.1 Motivation. Users revise their answers for a variety of rea-
sons. We aim to better understand the behaviour of these users
by analyzing the types of revisions that are more commonly made
when editing code snippets.

4.3.2 Approach. We manually analyze code snippets that have at
least one code revision by looking at the nature of the edit. Then
following work byWang et al. [41], we label each revision with four
revision types: code correction, code formatting, code improvement,
and code removal/addition.

4.3.3 Results. An overview of the 4 revision types we label the
revised code snippets as is shown in Table 6. Overall we find that
142 out of the 740 vulnerable code snippets are revised, as shown
in Figure 7. Out of the 598 vulnerable code snippets that did not
have any code revisions, 327 originate from posts that were never
revised, meaning the user did not make any changes to the original
version of the post. The remaining 271 code snippets were not
revised themselves, but belong to posts that were only textually
edited. For example, users edit posts to correct typos, clarify their
work, or to include references and links to other resources. For
the 142 code snippets that were revised, we observe that users
more frequently make revisions with the intention to improve the
functionality of the example to better answer the question (86 out
of 142 snippets, 60.6%), and to make corrections in the code such
as fixing syntax errors and typos (31 out of 142, 21.8%). As shown
in Figure 8, the least common type of edit we observe in the code
snippets with revisions is formatting changes, such has adding
white space through indentation (9 out of 142 code snippets).

Revised
142

19%

Not Revised
598

81%

Figure 7: Number of code snippets revised and not revised

We then further analyze the relationship between the CWE type
present in a revised code snippet and it’s revision type. Table 7
shows that across the 6/8 weakness categories that contain vulnera-
ble code snippets that were revised, the most common revision type
is code improvement. We also find that code correction revisions are
more common in snippets with evaluation and initialization weak-
nesses (3 and 4 snippets respectively), and code removal/addition

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

Table 4: Distribution of CWE Types by number of VCS (=
Vulnerable Code Snippet). Pre = Black bar, Post = Red bar

CWE Type Cat. #VCS % Pre vs.Post

398: Code Quality – 520
457: Use of Uninit.Var. IN 49
686: Func. Call With Incor. Arg. Type FN 32
595: Comparison of Object Refs. EV 30
571: Expression is Always True EV 30
788: Access of Mem. Loc. After Buff. ME 28
570: Expression is Always False EV 17
758: Reliance on Undefined Behavior RC 16
562: Return Stack Var. Address ME 11
665: Improper Initialization IN 10
561: Dead Code RC 8
467: sizeof() on Pointer Type ME 8
477: Use of Obsolete Function FN 7
401: Missing Release of Mem. ME 6
476: NULL Pointer Dereference ME 5
190: Integer Overflow ME 5
783: Operator Precedence Error EV 5
685: Func. Call Incorr. Num. of Args. FN 4
768: Incorr.Short Circuit Evaluation EV 4
252: Unchecked Return Value FN 3
704: Incorr. Type Conversion/Cast CN 3
682: Incorrect Calculation CA 3
664: Improp. Control of a Resource RE 2
672: Op. on Resource after Expir. RE 1
762: Mismatched Mem. Mgmt ME 1
590: Free of Mem. not on the Heap ME 1
687: Func. Call Incorr. Spec. Arg. Val FN 1
683: Func. Call Incorr. Order of Args FN 1
628: Func. Call Incorr. Spec. Args FN 1
195: Signed to Unsigned Con. Error CN 1
369: Divide By Zero CA 1

Table 5: Distribution of code snippets with weaknesses intro-
duced pre and post edits, and code snippets improved after
revisions by weakness category

CWE Category #VCS %Introduced Pre- vs Post-Edit

CWE 398 520
Evaluation 124
Function 96
Memory 86
Initialization 75
Reachability 33
Calculation 4
Conversion 5
Resource 3

contain weaknesses introduced post revisions. We also observe that
memory related CWE instances are more likely to be introduced
by code revisions compared to evaluation related weaknesses or
instances of CWE 398.

When looking code snippets that contained vulnerabilities before
revisions, but then saw a reduction in CWE instances after, we

find that only 3 weakness categories (evaluation, memory, and
initialization) and CWE 398 contained such snippets.

Summary of RQ2:We detect a total of 31 CWE types in 740
vulnerable code snippets (1221 CWE instances in total). These
CWE types were generalized into 8 categories, and we find that
evaluation, memory, and initialization weaknesses are the most
common. Across all categories, vulnerabilities are more
frequently introduced before revisions are made to the snippet.

4.3 RQ3 Does the type of vulnerabilities differ
depending on revision types?

4.3.1 Motivation. Users revise their answers for a variety of rea-
sons. We aim to better understand the behaviour of these users
by analyzing the types of revisions that are more commonly made
when editing code snippets.

4.3.2 Approach. We manually analyze code snippets that have at
least one code revision by looking at the nature of the edit. Then
following work byWang et al. [41], we label each revision with four
revision types: code correction, code formatting, code improvement,
and code removal/addition.

4.3.3 Results. An overview of the 4 revision types we label the
revised code snippets as is shown in Table 6. Overall we find that
142 out of the 740 vulnerable code snippets are revised, as shown
in Figure 7. Out of the 598 vulnerable code snippets that did not
have any code revisions, 327 originate from posts that were never
revised, meaning the user did not make any changes to the original
version of the post. The remaining 271 code snippets were not
revised themselves, but belong to posts that were only textually
edited. For example, users edit posts to correct typos, clarify their
work, or to include references and links to other resources. For
the 142 code snippets that were revised, we observe that users
more frequently make revisions with the intention to improve the
functionality of the example to better answer the question (86 out
of 142 snippets, 60.6%), and to make corrections in the code such
as fixing syntax errors and typos (31 out of 142, 21.8%). As shown
in Figure 8, the least common type of edit we observe in the code
snippets with revisions is formatting changes, such has adding
white space through indentation (9 out of 142 code snippets).

Revised
142

19%

Not Revised
598

81%

Figure 7: Number of code snippets revised and not revised

We then further analyze the relationship between the CWE type
present in a revised code snippet and it’s revision type. Table 7
shows that across the 6/8 weakness categories that contain vulnera-
ble code snippets that were revised, the most common revision type
is code improvement. We also find that code correction revisions are
more common in snippets with evaluation and initialization weak-
nesses (3 and 4 snippets respectively), and code removal/addition

Table 6: Revision types and their definitions

Revision Type Definition

Code Correc-
tion CR

Changes to the syntax, and typo changes in
comments and variable/function names.

Code Format-
ting FM

Adding white space or newlines, improving the
formatting/readability of the code.

Code Improve-
ment IP

Functionality or performance changes to the
code, includes changes to logical expressions,
calculations, and the types of variables or return
values.

CodeRemoval /
Addition RA

Removing or adding code segments, for example
adding a new function or class.

4.3 RQ3 Does the type of vulnerability differ
depending on revision types?

4.3.1 Motivation. Users revise their answers for a variety of rea-
sons. We aim to better understand the behaviour of these users
by analyzing the types of revisions that are more commonly made
when editing code snippets.

4.3.2 Approach. We manually analyze code snippets that have at
least one code revision by looking at the nature of the edit. Then
following work byWang et al. [41], we label each revision with four
revision types: code correction, code formatting, code improvement,
and code removal/addition.

4.3.3 Results. An overview of the 4 revision types we label the
revised code snippets as is shown in Table 6. Overall we find that
142 out of the 740 vulnerable code snippets are revised, as shown
in Figure 7. Out of the 598 vulnerable code snippets that did not
have any code revisions, 327 originate from posts that were never
revised, meaning the user did not make any changes to the original
version of the post. The remaining 271 code snippets were not
revised, but rather were part of posts that were only textually
edited. For example, users edit posts to correct typos, clarify their
work, or to include references and links to other resources. For
the 142 code snippets that were revised, we observe that users
more frequently make revisions with the intention of improving
the functionality of the example to better answer the question (86
out of 142 snippets, 60.6%), and to make corrections in the code
such as fixing syntax errors and typos (31 out of 142, 21.8%). As
shown in Figure 8, the least common type of edit we observe in the
code snippets with revisions is formatting changes, such has adding
white space through indentation (9 out of 142 code snippets).

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

Table 4: Distribution of CWE Types by number of VCS (=
Vulnerable Code Snippet). Pre = Black bar, Post = Red bar

CWE Type Cat. #VCS % Pre vs.Post

398: Code Quality – 520
457: Use of Uninit.Var. IN 49
686: Func. Call With Incor. Arg. Type FN 32
595: Comparison of Object Refs. EV 30
571: Expression is Always True EV 30
788: Access of Mem. Loc. After Buff. ME 28
570: Expression is Always False EV 17
758: Reliance on Undefined Behavior RC 16
562: Return Stack Var. Address ME 11
665: Improper Initialization IN 10
561: Dead Code RC 8
467: sizeof() on Pointer Type ME 8
477: Use of Obsolete Function FN 7
401: Missing Release of Mem. ME 6
476: NULL Pointer Dereference ME 5
190: Integer Overflow ME 5
783: Operator Precedence Error EV 5
685: Func. Call Incorr. Num. of Args. FN 4
768: Incorr.Short Circuit Evaluation EV 4
252: Unchecked Return Value FN 3
704: Incorr. Type Conversion/Cast CN 3
682: Incorrect Calculation CA 3
664: Improp. Control of a Resource RE 2
672: Op. on Resource after Expir. RE 1
762: Mismatched Mem. Mgmt ME 1
590: Free of Mem. not on the Heap ME 1
687: Func. Call Incorr. Spec. Arg. Val FN 1
683: Func. Call Incorr. Order of Args FN 1
628: Func. Call Incorr. Spec. Args FN 1
195: Signed to Unsigned Con. Error CN 1
369: Divide By Zero CA 1

Table 5: Distribution of code snippets with weaknesses intro-
duced pre and post edits, and code snippets improved after
revisions by weakness category

CWE Category #VCS %Introduced Pre- vs Post-Edit

CWE 398 520
Evaluation 124
Function 96
Memory 86
Initialization 75
Reachability 33
Calculation 4
Conversion 5
Resource 3

contain weaknesses introduced post revisions. We also observe that
memory related CWE instances are more likely to be introduced
by code revisions compared to evaluation related weaknesses or
instances of CWE 398.

When looking code snippets that contained vulnerabilities before
revisions, but then saw a reduction in CWE instances after, we

find that only 3 weakness categories (evaluation, memory, and
initialization) and CWE 398 contained such snippets.

Summary of RQ2:We detect a total of 31 CWE types in 740
vulnerable code snippets (1221 CWE instances in total). These
CWE types were generalized into 8 categories, and we find that
evaluation, memory, and initialization weaknesses are the most
common. Across all categories, vulnerabilities are more
frequently introduced before revisions are made to the snippet.

4.3 RQ3 Does the type of vulnerabilities differ
depending on revision types?

4.3.1 Motivation. Users revise their answers for a variety of rea-
sons. We aim to better understand the behaviour of these users
by analyzing the types of revisions that are more commonly made
when editing code snippets.

4.3.2 Approach. We manually analyze code snippets that have at
least one code revision by looking at the nature of the edit. Then
following work byWang et al. [41], we label each revision with four
revision types: code correction, code formatting, code improvement,
and code removal/addition.

4.3.3 Results. An overview of the 4 revision types we label the
revised code snippets as is shown in Table 6. Overall we find that
142 out of the 740 vulnerable code snippets are revised, as shown
in Figure 7. Out of the 598 vulnerable code snippets that did not
have any code revisions, 327 originate from posts that were never
revised, meaning the user did not make any changes to the original
version of the post. The remaining 271 code snippets were not
revised themselves, but belong to posts that were only textually
edited. For example, users edit posts to correct typos, clarify their
work, or to include references and links to other resources. For
the 142 code snippets that were revised, we observe that users
more frequently make revisions with the intention to improve the
functionality of the example to better answer the question (86 out
of 142 snippets, 60.6%), and to make corrections in the code such
as fixing syntax errors and typos (31 out of 142, 21.8%). As shown
in Figure 8, the least common type of edit we observe in the code
snippets with revisions is formatting changes, such has adding
white space through indentation (9 out of 142 code snippets).

Revised
142

19%

Not Revised
598

81%

Figure 7: Number of code snippets revised and not revised

We then further analyze the relationship between the CWE type
present in a revised code snippet and it’s revision type. Table 7
shows that across the 6/8 weakness categories that contain vulnera-
ble code snippets that were revised, the most common revision type
is code improvement. We also find that code correction revisions are
more common in snippets with evaluation and initialization weak-
nesses (3 and 4 snippets respectively), and code removal/addition

Figure 7: Number of code snippets revised and not revised

We then further analyze the relationship between the CWE type
present in a revised code snippet and its revision type. Table 7 shows

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 6: Revision types and their definitions

Revision Type Definition

Code Correc-
tion CR

Changes to the syntax, and typo changes in
comments and variable/function names.

Code Format-
ting FM

Adding white space or newlines, improving the
formatting/readability of the code.

Code Improve-
ment IP

Functionality or performance changes to the
code, includes changes to logical expressions,
calculations, and the types of variables or return
values.

Code Removal /
Addition RA

Removing or adding code segments, for example
adding a new function or class.

Correction
31

Formatting
9

Improvement
86

Removal/Addition
16

Figure 8: Distribution of revised vulnerable code snippets
(VCS) by their revision type

Table 7: Distribution of revised code snippets by their revi-
sion type and type of weakness (Revision Types from Table 6
CR = Black, FM = Blue, IP = Magenta, RA = Green). #TV =
Total Vulnerable Code Snippet VCS, #RV = Revised VCS. Cat.
= CWE categories from Figure 6

Cat. #TV #RV % Distribution of Revised VCS By Type

Function 49 16 6.3 18.8 75.0 0
Memory 65 12 8.3 16.7 66.7 8.3
Evaluation 86 15 20.0 13.3 60.0 6.7
Initialization59 13 23.1 7.7 69.2 0
Reachability 24 4 50.0 0 50.0 0
Resource 3 1 100.0 0 0 0

revisions are more common in snippets with memory weaknesses
(5 snippets). Overall, there is a statistically significant difference
between the number of vulnerable code snippets and the number
of revised vulnerable code snippets across the six categories (Mann
Whitney U test 𝑝 = 0.02).

Summary of RQ3:We observe that out of the 142 code
snippets that are revised, the most common types of revisions
made are code improvements and code corrections. When
looking at the relationship between CWE categories and
revision types, we find the for the majority of CWE categories
(6/8), code improvement revisions are the most common.

4.4 RQ4 Were the vulnerabilities introduced
pre-edit mitigated via post revisions?

4.4.1 Motivation. Revisions made by stack exchange users can
improve code snippets by fixing errors and reducing vulnerabilities,
or they can further deteriorate an already vulnerable snippet by
adding new weaknesses. Revisions may also leave vulnerabilities
unchanged. It is thus important to better understand the impact of
code revisions on reducing vulnerabilities.

4.4.2 Approach. Using the version history of the obtained code
snippets, we first determine the number of code revisions for each
code snippet. For the snippets that have at least one revision, we
run all versions through cppcheck to determine if the number of
vulnerabilities stayed the same, decreased, or increased.

4.4.3 Results. We look at whether certain revision types are cor-
related more closely with particular revision outcomes, such as
reducing the number of vulnerabilities in the snippet or introduc-
ing new ones. As shown in Fig 9, for the 40 revised code snippets
that contained correction and formatting revisions, all did not expe-
rience any change in vulnerabilities. We further find that all 9 code
snippets that were improved due to revisions were revised with
the intent to improve the code, such as Listing 3. However, a large
number of code snippets with improvement related revisions also
experienced deterioration or no change in the number of vulner-
abilities (23 and 54 code snippets respectively). Finally, we notice
that code snippets with revisions related to the removal or addition
of large segments of code were more likely to deteriorate (12 out of
16 snippets). This is likely due to the fact that the addition of large
code segments increases the chance a weakness will be introduced.
For example, in the following Stack Overflow answer (52560467),
the user revised the snippet by adding the check_relay function
and the large switch statement in the enable_relay function. Al-
though these changes may have been made with the intention to
better answer the question, they ultimately introduced an instance
of CWE 398 in line 35 due to the scope of the variable state.

9

12

23

4

54

9

31

0% 50% 100%

Removal/Addition

Improvement

Formatting

Correction

Proportion of Code Snippets

R
ev

is
io

n
 T

yp
e

Improved Deteriorated Unchanged

Figure 9: Distribution of revision effect (improved, deterio-
rated, or unchanged) by revision type

Overall, only a small number of code snippets experienced an
improvement due to revisions (9 in total). As shown in Figure 10,
those with initialization related weaknesses and instances of CWE
398 contained the most (2 out of 59, and 5 out of 520 respectively).

Figure 8: Distribution of revised vulnerable code snippets
(VCS) by their revision type

Table 7: Distribution of revised code snippets by their revi-
sion type and type ofweakness (RevisionTypes fromTable 6
CR = Black, FM = Blue, IP =Magenta, RA = Green). #TV = To-
tal Vulnerable Code Snippet VCS, #RV = Revised VCS. Cat. =
CWE categories from Figure 6

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 6: Revision types and their definitions

Revision Type Definition

Code Correc-
tion CR

Changes to the syntax, and typo changes in
comments and variable/function names.

Code Format-
ting FM

Adding white space or newlines, improving the
formatting/readability of the code.

Code Improve-
ment IP

Functionality or performance changes to the
code, includes changes to logical expressions,
calculations, and the types of variables or return
values.

Code Removal /
Addition RA

Removing or adding code segments, for example
adding a new function or class.

Correction
31

Formatting
9

Improvement
86

Removal/Addition
16

Figure 8: Distribution of revised vulnerable code snippets
(VCS) by their revision type

Table 7: Distribution of revised code snippets by their revi-
sion type and type of weakness (Revision Types from Table 6
CR = Black, FM = Blue, IP = Magenta, RA = Green). #TV =
Total Vulnerable Code Snippet VCS, #RV = Revised VCS. Cat.
= CWE categories from Figure 6

Cat. #TV #RV % Distribution of Revised VCS By Type

Function 49 16 6.3 18.8 75.0 0
Memory 65 12 8.3 16.7 66.7 8.3
Evaluation 86 15 20.0 13.3 60.0 6.7
Initialization59 13 23.1 7.7 69.2 0
Reachability 24 4 50.0 0 50.0 0
Resource 3 1 100.0 0 0 0

revisions are more common in snippets with memory weaknesses
(5 snippets). Overall, there is a statistically significant difference
between the number of vulnerable code snippets and the number
of revised vulnerable code snippets across the six categories (Mann
Whitney U test 𝑝 = 0.02).

Summary of RQ3:We observe that out of the 142 code
snippets that are revised, the most common types of revisions
made are code improvements and code corrections. When
looking at the relationship between CWE categories and
revision types, we find the for the majority of CWE categories
(6/8), code improvement revisions are the most common.

4.4 RQ4 Were the vulnerabilities introduced
pre-edit mitigated via post revisions?

4.4.1 Motivation. Revisions made by stack exchange users can
improve code snippets by fixing errors and reducing vulnerabilities,
or they can further deteriorate an already vulnerable snippet by
adding new weaknesses. Revisions may also leave vulnerabilities
unchanged. It is thus important to better understand the impact of
code revisions on reducing vulnerabilities.

4.4.2 Approach. Using the version history of the obtained code
snippets, we first determine the number of code revisions for each
code snippet. For the snippets that have at least one revision, we
run all versions through cppcheck to determine if the number of
vulnerabilities stayed the same, decreased, or increased.

4.4.3 Results. We look at whether certain revision types are cor-
related more closely with particular revision outcomes, such as
reducing the number of vulnerabilities in the snippet or introduc-
ing new ones. As shown in Fig 9, for the 40 revised code snippets
that contained correction and formatting revisions, all did not expe-
rience any change in vulnerabilities. We further find that all 9 code
snippets that were improved due to revisions were revised with
the intent to improve the code, such as Listing 3. However, a large
number of code snippets with improvement related revisions also
experienced deterioration or no change in the number of vulner-
abilities (23 and 54 code snippets respectively). Finally, we notice
that code snippets with revisions related to the removal or addition
of large segments of code were more likely to deteriorate (12 out of
16 snippets). This is likely due to the fact that the addition of large
code segments increases the chance a weakness will be introduced.
For example, in the following Stack Overflow answer (52560467),
the user revised the snippet by adding the check_relay function
and the large switch statement in the enable_relay function. Al-
though these changes may have been made with the intention to
better answer the question, they ultimately introduced an instance
of CWE 398 in line 35 due to the scope of the variable state.

9

12

23

4

54

9

31

0% 50% 100%

Removal/Addition

Improvement

Formatting

Correction

Proportion of Code Snippets

R
ev

is
io

n
 T

yp
e

Improved Deteriorated Unchanged

Figure 9: Distribution of revision effect (improved, deterio-
rated, or unchanged) by revision type

Overall, only a small number of code snippets experienced an
improvement due to revisions (9 in total). As shown in Figure 10,
those with initialization related weaknesses and instances of CWE
398 contained the most (2 out of 59, and 5 out of 520 respectively).

that across the 6/8 weakness categories that contain vulnerable code
snippets that were revised, the most common revision type is code
improvement. We also find that code correction revisions are more
common in snippets with evaluation and initialization weaknesses
(3 and 4 snippets respectively), and code removal/addition revisions
aremore common in snippets withmemoryweaknesses (5 snippets).
Overall, there is a statistically significant difference between the
number of vulnerable code snippets and the number of revised
vulnerable code snippets across the six categories (Mann Whitney
U test 𝑝 = 0.02).

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 6: Revision types and their definitions

Revision Type Definition

Code Correc-
tion CR

Changes to the syntax, and typo changes in
comments and variable/function names.

Code Format-
ting FM

Adding white space or newlines, improving the
formatting/readability of the code.

Code Improve-
ment IP

Functionality or performance changes to the
code, includes changes to logical expressions,
calculations, and the types of variables or return
values.

Code Removal /
Addition RA

Removing or adding code segments, for example
adding a new function or class.

Correction
31

Formatting
9

Improvement
86

Removal/Addition
16

Figure 8: Distribution of revised vulnerable code snippets
(VCS) by their revision type

Table 7: Distribution of revised code snippets by their revi-
sion type and type of weakness (Revision Types from Table 6
CR = Black, FM = Blue, IP = Magenta, RA = Green). #TV =
Total Vulnerable Code Snippet VCS, #RV = Revised VCS. Cat.
= CWE categories from Figure 6

Cat. #TV #RV % Distribution of Revised VCS By Type

Function 49 16 6.3 18.8 75.0 0
Memory 65 12 8.3 16.7 66.7 8.3
Evaluation 86 15 20.0 13.3 60.0 6.7
Initialization59 13 23.1 7.7 69.2 0
Reachability 24 4 50.0 0 50.0 0
Resource 3 1 100.0 0 0 0

revisions are more common in snippets with memory weaknesses
(5 snippets). Overall, there is a statistically significant difference
between the number of vulnerable code snippets and the number
of revised vulnerable code snippets across the six categories (Mann
Whitney U test 𝑝 = 0.02).

Summary of RQ3:We observe that out of the 142 code
snippets that are revised, the most common types of revisions
made are code improvements and code corrections. When
looking at the relationship between CWE categories and
revision types, we find the for the majority of CWE categories
(6/8), code improvement revisions are the most common.

4.4 RQ4 Were the vulnerabilities introduced
pre-edit mitigated via post revisions?

4.4.1 Motivation. Revisions made by stack exchange users can
improve code snippets by fixing errors and reducing vulnerabilities,
or they can further deteriorate an already vulnerable snippet by
adding new weaknesses. Revisions may also leave vulnerabilities
unchanged. It is thus important to better understand the impact of
code revisions on reducing vulnerabilities.

4.4.2 Approach. Using the version history of the obtained code
snippets, we first determine the number of code revisions for each
code snippet. For the snippets that have at least one revision, we
run all versions through cppcheck to determine if the number of
vulnerabilities stayed the same, decreased, or increased.

4.4.3 Results. We look at whether certain revision types are cor-
related more closely with particular revision outcomes, such as
reducing the number of vulnerabilities in the snippet or introduc-
ing new ones. As shown in Fig 9, for the 40 revised code snippets
that contained correction and formatting revisions, all did not expe-
rience any change in vulnerabilities. We further find that all 9 code
snippets that were improved due to revisions were revised with
the intent to improve the code, such as Listing 3. However, a large
number of code snippets with improvement related revisions also
experienced deterioration or no change in the number of vulner-
abilities (23 and 54 code snippets respectively). Finally, we notice
that code snippets with revisions related to the removal or addition
of large segments of code were more likely to deteriorate (12 out of
16 snippets). This is likely due to the fact that the addition of large
code segments increases the chance a weakness will be introduced.
For example, in the following Stack Overflow answer (52560467),
the user revised the snippet by adding the check_relay function
and the large switch statement in the enable_relay function. Al-
though these changes may have been made with the intention to
better answer the question, they ultimately introduced an instance
of CWE 398 in line 35 due to the scope of the variable state.

9

12

23

4

54

9

31

0% 50% 100%

Removal/Addition

Improvement

Formatting

Correction

Proportion of Code Snippets

R
ev

is
io

n
 T

yp
e

Improved Deteriorated Unchanged

Figure 9: Distribution of revision effect (improved, deterio-
rated, or unchanged) by revision type

Overall, only a small number of code snippets experienced an
improvement due to revisions (9 in total). As shown in Figure 10,
those with initialization related weaknesses and instances of CWE
398 contained the most (2 out of 59, and 5 out of 520 respectively).

4.4 RQ4 Were the vulnerabilities introduced
pre-edit mitigated via post revisions?

4.4.1 Motivation. Revisions made by stack exchange users can
improve code snippets by fixing errors and reducing vulnerabilities,
or they can further deteriorate an already vulnerable snippet by
adding new weaknesses. Revisions may also leave vulnerabilities
unchanged. It is thus important to better understand the impact of
code revisions on reducing vulnerabilities.

4.4.2 Approach. Using the version history of the obtained code
snippets, we first determine the number of code revisions for each

code snippet. For the snippets that have at least one revision, we
run all versions through cppcheck to determine if the number of
vulnerabilities stayed the same, decreased, or increased.

4.4.3 Results. We look at whether certain revision types are cor-
related more closely with particular revision outcomes, such as
reducing the number of vulnerabilities in the snippet or introduc-
ing new ones. As shown in Fig 9, for the 40 revised code snippets
that contained correction and formatting revisions, all did not expe-
rience any change in vulnerabilities. We further find that all 9 code
snippets that were improved due to revisions were revised with
the intent to improve the code, such as Listing 3. However, a large
number of code snippets with improvement related revisions also
experienced deterioration or no change in the number of vulner-
abilities (23 and 54 code snippets respectively). Finally, we notice
that code snippets with revisions related to the removal or addition
of large segments of code were more likely to deteriorate (12 out of
16 snippets). This is likely due to the fact that the addition of large
code segments increases the chance of introducing a weakness. For
example, in the following Stack Overflow answer (𝐴52560467), the
user revised the snippet by adding the check_relay function and
the large switch statement in the enable_relay function. Although
these changes may have been made with the intention of better
answering the question, they ultimately introduced an instance of
CWE 398 in line 35 due to the scope of the variable state.

9

12

23

4

54

9

31

0% 50% 100%

Removal/Addition

Improvement

Formatting

Correction

Proportion of Code Snippets

R
ev

is
io

n
 T

yp
e

Improved Deteriorated Unchanged

Figure 9: Distribution of revision effect (improved, deterio-
rated, or unchanged) by revision type

Overall, only a small number of code snippets experienced an
improvement due to revisions (9 in total). As shown in Figure 10,
those with initialization related weaknesses and instances of CWE
398 contained the most (2 out of 59, and 5 out of 520 respectively).

In total, 115 code snippets with pre-existing vulnerabilities ex-
perienced one or more revisions. In Figure 11, we observe that the
majority of all revised code snippets (in total 142) were revised
just once. However, we also observe that the effect of revisions on
these code snippets is minimal. Figure 12 shows the vast majority
of these code snippets with pre-existing vulnerabilities that were
revised did not experience a decrease or increase in vulnerabilities
(98 out of 115). We also find that in some code snippets (9 out of
115), revisions removed vulnerabilities that existed in previous ver-
sions. However, in a similar number of code snippets (8 out of 115),
vulnerabilities were introduced by revisions.

https://stackoverflow.com/a/52560467
https://cwe.mitre.org/data/definitions/398.html

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

5

1

1

2

0 2 4 6

CWE 398

Evaluation

Memory

Initialization

Code Snippets

C
W

E
Ty

p
e/

C
at

eg
o

ry

Figure 10: Distribution of code snippets that were improved
due to revisions by CWE type or CWE category

16

39

87

0 50 100

>=3

2

1

Vulnerable Code Snippets

C

o
d

e
Sn

ip
p

et
s

Figure 11: Distribution of the number of code revisions

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

5

1

1

2

0 2 4 6

CWE 398

Evaluation

Memory

Initialization

Code Snippets

C
W

E
Ty

p
e/

C
at

eg
o

ry

Figure 10: Distribution of code snippets that were improved
due to revisions by CWE type or CWE category

In total, 115 code snippets with pre existing vulnerabilities ex-
perienced one or more revisions. In Figure 11, we observe that the
majority of all revised code snippets (in total 142) most were revised
just once. However, we also observe that the effect of revisions on
these code snippets is minimal. Figure 12 shows the vast majority
of these code snippets with pre-existing vulnerabilities that were
revised did not experience a decrease or increase in vulnerabilities
(98 out of 115). We also find that in some code snippets (9 out of
115), revisions removed vulnerabilities that existed in previous ver-
sions. However, in a similar number of code snippets (8 out of 115),
vulnerabilities were introduced by revisions.

16

39

87

0 50 100

>=3

2

1

Vulnerable Code Snippets

C

o
d

e
Sn

ip
p

et
s

Figure 11: Distribution of the number of code revisions

Deteriorated
8 VCS

Unchanged
98 VCS

Improved
9 VCS

Figure 12: Distribution of revision effect in snippets with
pre-existing vulnerabilities

Stack Overflow answer 25827521 is an example of a snippet that
was revised once but did not improve in terms of removing it’s
weakness. Comparing the final version of the code to the original,
we observe that the user likely intended to improve the functionality
and correctness of the code. The revisions they made were changing
the function parameters to void instead of leaving it empty to ensure
no arguments can be passed, and also attempting error handling
by first checking if read_AT_string did not return NULL. However,
they did not address the instance of CWE 562 - Return of Stack
Variable Address detected by cppheck in line 36 where the return
value was a pointer to a local variable, which is invalid in c++.
This is an example of a revision that went beyond non-functional

NC→ NW
8 CSMC→ NW

16 CS

NC→MW
1 CS

MC →MW
6 CS

FS→MW
4 CS

Figure 13: Distribution of deterioration type (M = Modified,
N = New, C = Code, W = Weakness. FS = Fixed Syntax.)

changes such as adding comments or fixing typos, but was still not
effective at removing the weakness in the snippet.

We analyze the 31 deteriorated code snippets for similarities in
the changes made to the code, and the subsequent CWE instances
that were introduced. In total we find 4 distinct deterioration types :
(1) New component added + introduced newweakness, (2) Modified
existing component + introduced new weakness, (3) New compo-
nent added + introducedmore existingweaknesses, and (4)Modified
existing component + introduced more existing weaknesses. We
further find that a few deteriorations occurred due the a user fixing
a syntax error in the code, which allowed for more weaknesses to
be detected by cppcheck (5). The distribution of these 5 types is
shown in Figure 13, where we see that the most common type of de-
terioration was caused by users modifying an existing component
in the code (such as a function, variable, or class), and introduced
new CWE instances that were not present before.

Summary of RQ4: The vast majority of revised snippets
remained unchanged in terms of the number of CWE instances
present in the code. When looking at the effect of each revision
type, we find that all revised related to code correction and
formatting left the code snippet unchanged, while a large
proportion of code removal/addition type revisions deteriorated.

5 DISCUSSION
Our study findings can guide the following stakeholders: IoT de-
velopers, IoT vendors, Forum designers, and IoT researchers and
educators. We discuss the implications below.
IoT Developers: In Figure 14, we show the number of CVEs re-
ported in the NVD database per the six vulnerability types we
observed in our IoT code snippets (in pre + post revisions). The
reported CVEs are grouped under eight types in the cvedetails.com
site: (1) Denial of service, (2) Overflow, (3) Code execution, (4) Mem-
ory corruption, (5) Cross-site scripting, (6) Gain privilege, (7) Gain
information, and (8) Bypass. This Figure 14 shows that the six vul-
nerability types in the IoT code snippets can cause all the eight
types of critical security issues in the IoT devices, if the vulnerable
code snippets are reused from the Stack Exchange sites. Therefore,
IoT developers need to stay aware of the potential security problems
in such shared code snippets in the developer forums. Our study
findings like the catalog of CWEs and the associated vulnerable
code snippets can be used by the IoT developers to learn about

Figure 12: Distribution of revision effect in snippets with
pre-existing vulnerabilities

Stack Overflow answer 𝐴25827521 is an example of a snippet
that was revised once but did not improve in terms of removing
its weakness. By comparing the final version of the code to the
original, we observe that the user likely intended to improve the
functionality and correctness of the code. We see they changed the
function parameters to void instead of leaving it empty to ensure no
arguments could be passed, and they also attempted error handling
by first checking if read_AT_string did not return NULL. However,
they did not address the instance of CWE 562 - Return of Stack
Variable Address detected by cppheck in line 36 where the return
value was a pointer to a local variable, which is invalid in C++.
This is an example of a revision that went beyond non-functional
changes such as adding comments or fixing typos, but was still not
effective at removing the weakness in the snippet.

We analyze the 31 deteriorated code snippets for similarities in
the changes made to the code, and the subsequent CWE instances
that were introduced. In total, we find 4 distinct deterioration types
: (1) New component added + introduced new weakness, (2) Mod-
ified existing component + introduced new weakness, (3) New
component added + introduced more existing weaknesses, and (4)
Modified existing component + introduced more existing weak-
nesses. We further find that a few deteriorations occurred due to
the user fixing a syntax error in the code, which allowed for more
weaknesses to be detected by cppcheck (5). The distribution of these
5 types is shown in Figure 13, where we see that the most common
type of deterioration was caused by users modifying an existing

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

5

1

1

2

0 2 4 6

CWE 398

Evaluation

Memory

Initialization

Code Snippets

C
W

E
Ty

p
e/

C
at

eg
o

ry

Figure 10: Distribution of code snippets that were improved
due to revisions by CWE type or CWE category

In total, 115 code snippets with pre existing vulnerabilities ex-
perienced one or more revisions. In Figure 11, we observe that the
majority of all revised code snippets (in total 142) most were revised
just once. However, we also observe that the effect of revisions on
these code snippets is minimal. Figure 12 shows the vast majority
of these code snippets with pre-existing vulnerabilities that were
revised did not experience a decrease or increase in vulnerabilities
(98 out of 115). We also find that in some code snippets (9 out of
115), revisions removed vulnerabilities that existed in previous ver-
sions. However, in a similar number of code snippets (8 out of 115),
vulnerabilities were introduced by revisions.

16

39

87

0 50 100

>=3

2

1

Vulnerable Code Snippets

C

o
d

e
Sn

ip
p

et
s

Figure 11: Distribution of the number of code revisions

Deteriorated
8 VCS

Unchanged
98 VCS

Improved
9 VCS

Figure 12: Distribution of revision effect in snippets with
pre-existing vulnerabilities

Stack Overflow answer 25827521 is an example of a snippet that
was revised once but did not improve in terms of removing it’s
weakness. Comparing the final version of the code to the original,
we observe that the user likely intended to improve the functionality
and correctness of the code. The revisions they made were changing
the function parameters to void instead of leaving it empty to ensure
no arguments can be passed, and also attempting error handling
by first checking if read_AT_string did not return NULL. However,
they did not address the instance of CWE 562 - Return of Stack
Variable Address detected by cppheck in line 36 where the return
value was a pointer to a local variable, which is invalid in c++.
This is an example of a revision that went beyond non-functional

NC→ NW
8 CSMC→ NW

16 CS

NC→MW
1 CS

MC →MW
6 CS

FS→MW
4 CS

Figure 13: Distribution of deterioration type (M = Modified,
N = New, C = Code, W = Weakness. FS = Fixed Syntax.)

changes such as adding comments or fixing typos, but was still not
effective at removing the weakness in the snippet.

We analyze the 31 deteriorated code snippets for similarities in
the changes made to the code, and the subsequent CWE instances
that were introduced. In total we find 4 distinct deterioration types :
(1) New component added + introduced newweakness, (2) Modified
existing component + introduced new weakness, (3) New compo-
nent added + introducedmore existingweaknesses, and (4)Modified
existing component + introduced more existing weaknesses. We
further find that a few deteriorations occurred due the a user fixing
a syntax error in the code, which allowed for more weaknesses to
be detected by cppcheck (5). The distribution of these 5 types is
shown in Figure 13, where we see that the most common type of de-
terioration was caused by users modifying an existing component
in the code (such as a function, variable, or class), and introduced
new CWE instances that were not present before.

Summary of RQ4: The vast majority of revised snippets
remained unchanged in terms of the number of CWE instances
present in the code. When looking at the effect of each revision
type, we find that all revised related to code correction and
formatting left the code snippet unchanged, while a large
proportion of code removal/addition type revisions deteriorated.

5 DISCUSSION
Our study findings can guide the following stakeholders: IoT de-
velopers, IoT vendors, Forum designers, and IoT researchers and
educators. We discuss the implications below.
IoT Developers: In Figure 14, we show the number of CVEs re-
ported in the NVD database per the six vulnerability types we
observed in our IoT code snippets (in pre + post revisions). The
reported CVEs are grouped under eight types in the cvedetails.com
site: (1) Denial of service, (2) Overflow, (3) Code execution, (4) Mem-
ory corruption, (5) Cross-site scripting, (6) Gain privilege, (7) Gain
information, and (8) Bypass. This Figure 14 shows that the six vul-
nerability types in the IoT code snippets can cause all the eight
types of critical security issues in the IoT devices, if the vulnerable
code snippets are reused from the Stack Exchange sites. Therefore,
IoT developers need to stay aware of the potential security problems
in such shared code snippets in the developer forums. Our study
findings like the catalog of CWEs and the associated vulnerable
code snippets can be used by the IoT developers to learn about

Figure 13: Distribution of deterioration type (M = Modified,
N = New, C = Code, W = Weakness. FS = Fixed Syntax.)

component in the code (such as a function, variable, or class), and
introducing new CWE instances that were not present before.

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

5

1

1

2

0 2 4 6

CWE 398

Evaluation

Memory

Initialization

Code Snippets

C
W

E
Ty

p
e/

C
at

eg
o

ry

Figure 10: Distribution of code snippets that were improved
due to revisions by CWE type or CWE category

In total, 115 code snippets with pre existing vulnerabilities ex-
perienced one or more revisions. In Figure 11, we observe that the
majority of all revised code snippets (in total 142) most were revised
just once. However, we also observe that the effect of revisions on
these code snippets is minimal. Figure 12 shows the vast majority
of these code snippets with pre-existing vulnerabilities that were
revised did not experience a decrease or increase in vulnerabilities
(98 out of 115). We also find that in some code snippets (9 out of
115), revisions removed vulnerabilities that existed in previous ver-
sions. However, in a similar number of code snippets (8 out of 115),
vulnerabilities were introduced by revisions.

16

39

87

0 50 100

>=3

2

1

Vulnerable Code Snippets

C

o
d

e
Sn

ip
p

et
s

Figure 11: Distribution of the number of code revisions

Deteriorated
8 VCS

Unchanged
98 VCS

Improved
9 VCS

Figure 12: Distribution of revision effect in snippets with
pre-existing vulnerabilities

Stack Overflow answer 25827521 is an example of a snippet that
was revised once but did not improve in terms of removing it’s
weakness. Comparing the final version of the code to the original,
we observe that the user likely intended to improve the functionality
and correctness of the code. The revisions they made were changing
the function parameters to void instead of leaving it empty to ensure
no arguments can be passed, and also attempting error handling
by first checking if read_AT_string did not return NULL. However,
they did not address the instance of CWE 562 - Return of Stack
Variable Address detected by cppheck in line 36 where the return
value was a pointer to a local variable, which is invalid in c++.
This is an example of a revision that went beyond non-functional

NC→ NW
8 CSMC→ NW

16 CS

NC→MW
1 CS

MC →MW
6 CS

FS→MW
4 CS

Figure 13: Distribution of deterioration type (M = Modified,
N = New, C = Code, W = Weakness. FS = Fixed Syntax.)

changes such as adding comments or fixing typos, but was still not
effective at removing the weakness in the snippet.

We analyze the 31 deteriorated code snippets for similarities in
the changes made to the code, and the subsequent CWE instances
that were introduced. In total we find 4 distinct deterioration types :
(1) New component added + introduced newweakness, (2) Modified
existing component + introduced new weakness, (3) New compo-
nent added + introducedmore existingweaknesses, and (4)Modified
existing component + introduced more existing weaknesses. We
further find that a few deteriorations occurred due the a user fixing
a syntax error in the code, which allowed for more weaknesses to
be detected by cppcheck (5). The distribution of these 5 types is
shown in Figure 13, where we see that the most common type of de-
terioration was caused by users modifying an existing component
in the code (such as a function, variable, or class), and introduced
new CWE instances that were not present before.

Summary of RQ4: The vast majority of revised snippets
remained unchanged in terms of the number of CWE instances
present in the code. When looking at the effect of each revision
type, we find that all revised related to code correction and
formatting left the code snippet unchanged, while a large
proportion of code removal/addition type revisions deteriorated.

5 DISCUSSION
Our study findings can guide the following stakeholders: IoT de-
velopers, IoT vendors, Forum designers, and IoT researchers and
educators. We discuss the implications below.
IoT Developers: In Figure 14, we show the number of CVEs re-
ported in the NVD database per the six vulnerability types we
observed in our IoT code snippets (in pre + post revisions). The
reported CVEs are grouped under eight types in the cvedetails.com
site: (1) Denial of service, (2) Overflow, (3) Code execution, (4) Mem-
ory corruption, (5) Cross-site scripting, (6) Gain privilege, (7) Gain
information, and (8) Bypass. This Figure 14 shows that the six vul-
nerability types in the IoT code snippets can cause all the eight
types of critical security issues in the IoT devices, if the vulnerable
code snippets are reused from the Stack Exchange sites. Therefore,
IoT developers need to stay aware of the potential security problems
in such shared code snippets in the developer forums. Our study
findings like the catalog of CWEs and the associated vulnerable
code snippets can be used by the IoT developers to learn about

5 DISCUSSION
Our study findings can guide the following stakeholders: IoT de-
velopers, IoT vendors, Forum designers, and IoT researchers and
educators. We discuss the implications below.

Figure 14: Mapping of CWE categories to CVE Types. Width
of each line represents the number of CVEs per CWEs.

IoT Developers: In Figure 14, we show the number of CVEs re-
ported in the NVD database per the six vulnerability types we

https://stackoverflow.com/a/25827521
https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/562.html

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

observed in our IoT code snippets (in pre + post revisions). The
reported CVEs are grouped under eight types in the cvedetails.com
site: (1) Denial of service, (2) Overflow, (3) Code execution, (4) Mem-
ory corruption, (5) Cross-site scripting, (6) Gain privilege, (7) Gain
information, and (8) Bypass. This Figure 14 shows that the six vul-
nerability types in the IoT code snippets can cause all the eight
types of critical security issues in the IoT devices, if the vulnerable
code snippets are reused from the Stack Exchange sites. Therefore,
IoT developers need to stay aware of the potential security problems
in such shared code snippets in the developer forums. Our study
findings like the catalog of CWEs and the associated vulnerable
code snippets can be used by the IoT developers to learn about
such pitfalls. Such knowledge can be useful for the developers in
multiple phases. First, when they share any IoT code examples in
the forums. Second, when they revise a shared code example. Third,
when they reuse a shared code example. In all phases, they can
check the code for vulnerability by consulting our catalog of CWEs.
Given that revisions from others rarely fix such a vulnerable code
snippets, it is important for the IoT developers to practice such
quality assurance of the code snippets, even after the code snippet
is revised by other users in the forums.
IoT Vendors: In Figure 14, we showed that the six vulnerability
type we observed in the shared IoT code snippets can be mapped
to eight CVE types in NVD database. In the NVD database, each
reported CVE is categorized into the severity types: Critical (C),
High (H), Medium (M), and Low (L). In Table 8, we show the distri-
bution of the CVEs by four severity types. Overall, we see that all
six vulnerability categories in our observed IoT code snippets can
contribute to many critical and highly severe security vulnerabili-
ties in the IoT devices. In Figure 5, we showed that such affected IoT
devices can belong to many vendors (e.g., Cisco, Snapdragon, etc.).
Therefore, IoT device and SDK vendors can work together to make
the devices more resilient. One solution would be to incorporate
automated security testing tool into the IoT SDKs and devices. The
IoT vendors cannot rely much on the collaborative editing system in
the crowd-sourced developer forums to improve the code snippets.

Table 8: Distribution of the 12 CWEs with mapped CVEs in
the cvedetails.com database. Each colored bar under CVSS
score category denotes a severity category (Black = Low,
Cyan = Medium, Magenta = High, Red = Critical)

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

Figure 14: Mapping of CWE categories to CVE Types. Width
of each line represents the number of CVEs per CWEs.

such pitfalls. Such knowledge can be useful for the developers in
multiple phases. First, when they share any IoT code examples in
the forums. Second, when they revise a shared code example. Third,
when they reuse a shared code example. In all phases, they can
check the code for vulnerability by consulting our catalog of CWEs.
Given that revisions from others rarely fix such a vulnerable code
snippets, it is important for the IoT developers to practice such
quality assurance of the code snippets, even after the code snippet
is revised by other users in the forums.
IoT Vendors: In Figure 14, we showed that the six vulnerability
type we observed in the shared IoT code snippets can be mapped
to eight CVE types in NVD database. In the NVD database, each
reported CVE is categorized into the severity types: Critical (C),
High (H), Medium (M), and Low (L). In Table 8, we show the distri-
bution of the CVEs by four severity types. Overall, we see that all
six vulnerability categories in our observed IoT code snippets can
contribute to many critical and highly severe security vulnerabili-
ties in the IoT devices. In Figure 5, we showed that such affected IoT
devices can belong to many vendors (e.g., Cisco, Snapdragon, etc.).
Therefore, IoT device and SDK vendors can work together to make
the devices more resilient. One solution would be to incorporate
automated security testing tool into the IoT SDKs and devices. The
IoT vendors cannot rely much on the collaborative editing system in
the crowd-sourced developer forums to improve the code snippets.
Forum Designers: In Table 9, we show the distribution of our
observed six vulnerability types across the four types of code revi-
sions we observed, i.e, whether and how a revision type introduced
a vulnerability type in the revised code. We find that correction
to a code introduced all the six types of vulnerability categories.
Intuitively, this observation goes against the general assumption
that correction to a code should have fixed more vulnerability. The

Table 8: Distribution of the 12 CWEs with mapped CVEs in
the cvedetails.com database. Each colored bar under CVSS
score category denotes a severity category (Black = Low, Cyan
= Medium, Magenta = High, Red = Critical)

CWE Category #CVEs %Distribution by CVSS Score Category

Memory 3460 %L %M %H %C
Calculation 276 %L %M %H %C
Conversion 172 %L %M %H %C
Initialization 172 %L %M %H %C
Function 39 %L %M %H %C
Resource 17 %L %M %H %C
Overall 4136 %L %M %H %C

Table 9: Distribution of weakness categories by revision type.
Each colored bar denotes a different category. (Black = Func-
tion, Green = Memory, Magenta = Evaluation, Red = Initial-
ization, Cyan = Reachability, Orange = Resource)

CVE Type # Code Snippets per Category

Correction
Formatting
Improvement
Removal/Addition

Calculation

Conversion

Evaluation

Function

Initialization

Memory

Reachability

Resource
-10

0

10

20

30

40

50

60

-1 1 3 5 7 9

R

ev
is

io
n

 T
yp

es

CVE Types

Figure 15: The tradeoff between the revisions and the vulner-
abilities introduced towards the IoT code snippets

statistics from Table 9 can inform forum designers of the fact that
the current mechanisms (e.g., the four revision types) to support
collaborative editing in the online forums are insufficient to help
mitigate security vulnerabilities in the shared code. In Figure 15, we
reinforce this observation by showing a bubble chart as a tradeoff
between the number of revisions made to our studied vulnerable
code snippets and the number of distinct CVEs types that were in-
troduced during the revisions. The size of each bubble corresponds
to the number of total CVEs reported against the CWE IDs found
per CWE category. Figure 15 shows that the most number of CVEs
reported for the ‘Memory’ category weaknesses, and code snippets
with such weaknesses in our dataset were revised considerably

Forum Designers: In Table 9, we show the distribution of our
observed six vulnerability types across the four types of code revi-
sions we observed, i.e, whether and how a revision type introduced
a vulnerability type in the revised code. We find that correction
to a code introduced all the six types of vulnerability categories.
Intuitively, this observation goes against the general assumption

Table 9: Distribution ofweakness categories by revision type.
Each colored bar denotes a different category. (Black = Func-
tion, Green = Memory, Magenta = Evaluation, Red = Initial-
ization, Cyan = Reachability, Orange = Resource)

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

Figure 14: Mapping of CWE categories to CVE Types. Width
of each line represents the number of CVEs per CWEs.

such pitfalls. Such knowledge can be useful for the developers in
multiple phases. First, when they share any IoT code examples in
the forums. Second, when they revise a shared code example. Third,
when they reuse a shared code example. In all phases, they can
check the code for vulnerability by consulting our catalog of CWEs.
Given that revisions from others rarely fix such a vulnerable code
snippets, it is important for the IoT developers to practice such
quality assurance of the code snippets, even after the code snippet
is revised by other users in the forums.
IoT Vendors: In Figure 14, we showed that the six vulnerability
type we observed in the shared IoT code snippets can be mapped
to eight CVE types in NVD database. In the NVD database, each
reported CVE is categorized into the severity types: Critical (C),
High (H), Medium (M), and Low (L). In Table 8, we show the distri-
bution of the CVEs by four severity types. Overall, we see that all
six vulnerability categories in our observed IoT code snippets can
contribute to many critical and highly severe security vulnerabili-
ties in the IoT devices. In Figure 5, we showed that such affected IoT
devices can belong to many vendors (e.g., Cisco, Snapdragon, etc.).
Therefore, IoT device and SDK vendors can work together to make
the devices more resilient. One solution would be to incorporate
automated security testing tool into the IoT SDKs and devices. The
IoT vendors cannot rely much on the collaborative editing system in
the crowd-sourced developer forums to improve the code snippets.
Forum Designers: In Table 9, we show the distribution of our
observed six vulnerability types across the four types of code revi-
sions we observed, i.e, whether and how a revision type introduced
a vulnerability type in the revised code. We find that correction
to a code introduced all the six types of vulnerability categories.
Intuitively, this observation goes against the general assumption
that correction to a code should have fixed more vulnerability. The

Table 8: Distribution of the 12 CWEs with mapped CVEs in
the cvedetails.com database. Each colored bar under CVSS
score category denotes a severity category (Black = Low, Cyan
= Medium, Magenta = High, Red = Critical)

CWE Category #CVEs %Distribution by CVSS Score Category

Memory 3460 %L %M %H %C
Calculation 276 %L %M %H %C
Conversion 172 %L %M %H %C
Initialization 172 %L %M %H %C
Function 39 %L %M %H %C
Resource 17 %L %M %H %C
Overall 4136 %L %M %H %C

Table 9: Distribution of weakness categories by revision type.
Each colored bar denotes a different category. (Black = Func-
tion, Green = Memory, Magenta = Evaluation, Red = Initial-
ization, Cyan = Reachability, Orange = Resource)

CVE Type # Code Snippets per Category

Correction
Formatting
Improvement
Removal/Addition

Calculation

Conversion

Evaluation

Function

Initialization

Memory

Reachability

Resource
-10

0

10

20

30

40

50

60

-1 1 3 5 7 9

R
ev

is
io

n
 T

yp
es

CVE Types

Figure 15: The tradeoff between the revisions and the vulner-
abilities introduced towards the IoT code snippets

statistics from Table 9 can inform forum designers of the fact that
the current mechanisms (e.g., the four revision types) to support
collaborative editing in the online forums are insufficient to help
mitigate security vulnerabilities in the shared code. In Figure 15, we
reinforce this observation by showing a bubble chart as a tradeoff
between the number of revisions made to our studied vulnerable
code snippets and the number of distinct CVEs types that were in-
troduced during the revisions. The size of each bubble corresponds
to the number of total CVEs reported against the CWE IDs found
per CWE category. Figure 15 shows that the most number of CVEs
reported for the ‘Memory’ category weaknesses, and code snippets
with such weaknesses in our dataset were revised considerably

Calculation

Conversion

Evaluation

Function

Initialization

Memory

Reachability

Resource
-10

0

10

20

30

40

50

60

-1 1 3 5 7 9

R
ev

is
io

n
 T

yp
es

CVE Types

Figure 15: The tradeoff between the revisions and the vul-
nerabilities introduced towards the IoT code snippets

that correction to a code should have fixed more vulnerability. The
statistics from Table 9 can inform forum designers of the fact that
the current mechanisms (e.g., the four revision types) to support
collaborative editing in the online forums are insufficient to help
mitigate security vulnerabilities in the shared code. In Figure 15, we
reinforce this observation by showing a bubble chart as a tradeoff
between the number of revisions made to our studied vulnerable
code snippets and the number of distinct CVEs types that were in-
troduced during the revisions. The size of each bubble corresponds
to the number of total CVEs reported against the CWE IDs found
per CWE category. Figure 15 shows that the most number of CVEs
reported for the ‘Memory’ category weaknesses, and code snippets
with such weaknesses in our dataset were revised considerably
with little or no success in fixing. On the other hand, code snippets
belonging to ‘Conversion’ type weaknesses were revised almost
never. Overall, there is a positive correlation between the number of
revisions made to a code snippet and the number of vulnerabilities
found in the code snippet. The findings call for a redesign in the
collaborative editing process in the forums by the designers of the
sites, e.g., to facilitate the incorporation of security guidelines into
the editing process by providing automated recommendations.
IoT Researchers and Educators: Our findings offer a grim pic-
ture on the effectiveness of collaborative editing to help mitigate
security vulnerabilities in developer forums. IoT researchers can
join hands with both the forum designers and the IoT vendors to

ESEM ’22, September 19–23, 2022, Helsinki, Finland Selvaraj and Uddin

conduct research on the better design of the collaborative edit-
ing and to incorporate security validation framework into the IoT
devices. Our findings reinforce the recent worries on software sup-
ply chain attacks [27] by showing that security vulnerabilities are
prevalent in online developer forums and they are mostly left unad-
dressed during revisions. One way to help IoT developers during the
sharing of code snippets in online forums is to educate them with
on-demand documentation about the security issues by consult-
ing security patterns and the vulnerabilities reported in the NVD
database. The IoT security educators can join hands with the forum
designers to produce such documentation, which can also offer new
directions to the current approaches that utilize online developer
forums to create and/or improve software documentation [8, 34–
38]. This is important given studies that IoT developers do indeed
consult about security issues in online developer forums [33], but
they also face difficulty to get answers to their questions [39].

6 THREATS TO VALIDITY
Internal validity threats relate to author bias in deciding which
weaknesses to ignore. We noticed that some claimed weaknesses in
cppcheck were not accurate. We addressed this issue by suppressing
certain CWE types in Cppcheck like CWE 563 (Assignment to
Variable without Use) and by following a previous study [42] to
suppress syntax errors and to ignore code snippets with less than 5
lines. In addition, the categorization of the 28 distinct CWE types
into 8 weakness categories was done by both authors. Construct
validity threats relate to errors that may have occurred during the
data collection. To determine if a SO post was related to IoT, we
used tags from existing studies [33, 39]. For Arduino and Raspberry,
we made the assumption that all posts would be related to IoT.
Another threat is our use of the language detection tool guesslang to
identify C/C++ code snippets. Guesslang has been used in previous
studies to specifically detect C/C++ code and has a validity rate of
90% [14]. External validity threats relate to how our findings can
be generalized to the nature of IoT posts on online Q/A sites as a
whole. We focused on vulnerabilities in Stack Exchange answers.
This is because code snippets found in answers are meant to be
‘solutions’ and are more likely to be copied and used by developers.
We also focus our study on strictly C and C++ code snippets due to
their popularity in IoT development.

7 RELATEDWORK
To the best of our understanding, the C/C++ code examples shared
in Stack Overflow were subject to two empirical studies recently,
first by Verdi et al. [40] and then by Zhang et al. [42]. Our study
differs from the two studies as follows.
(1) While both Verdi et al. [40] and Zhang et al. [42] analyze C/C++

code examples in general, we focused on IoT C/C++ code exam-
ples. While both analyzed only SO code examples, we studied
data from three sites: SO, Arduino, and Raspberry Pi.

(2) While Verdi et al. [40] analyzed C/C++ code for weakness, we
studied revisions to the vulnerable C/C++ IoT code.

(3) Unlike Verdi et al. [42] and Zhang et al. [42], we studied the
vulnerability types and their relationships with different revision
types. Our fous is to learn whether and how revisions could help
mitigate the observed vulnerability types.

We observed some similarities and differences between our study
results and above two papers. First, in all SO C/C++ code snippets,
Zhang et al., found 32 CWE types [42] while Verdi et al. found
31 CWE types [40]. We found 28 distinct CWE types identified in
the IoT C/C++ code snippets. Zhang et al., who similar to us used
cppcheck to automatically detect CWE instances, found that 1.82%
of their collected code snippets (11,748 out of 646,716) contained
weaknesses. However, we observed a slightly higher proportion for
IoT code examples as having at least one CWE (6.4%). Verdi et al.
manually reviewed all of their 72,483 code snippets. They found
vulnerabilities in 99 (i.e., 0.14%) of their SO code snippets.

Other related work can be broadly divided into Studies and
Techniques to understand and mitigate IoT security issues.

Studies investigated underlying middleware solutions [9], big
data analytics [21], and the design of secure protocols and tech-
niques [2, 19, 43] and their applications on diverse domains (e.g.,
eHealth [22]). SO posts have been previously studied for inse-
cure python vulnerabilities [28], topics discussed by IoT develop-
ers [20, 33, 39], big data [4] and chatbot issues [1]. Techniques and
safety measures are studied in Soteria [6], IoTGuard [7]. IoT devices
can be easy targets for cyber threats [12, 43]. Encryption and secure
hashing technologies [31]. Many authorization techniques for IoT
are proposed like SmartAuth [32]. For smart home security, IoT
security techniques are proposed like Piano [13], smart authentica-
tion [16], and cross-App Interference threat mitigation [10]. Attacks
on Zigbee, an IEEE specification used to support interoperability
can make IoT devices vulnerable [29]. We are not aware of any
studies that checked the effectiveness of revisions to help mitigate
vulnerabilities in online shared code.

8 CONCLUSION
We analyzed code examples from the Stack Overflow, Arduino, and
Raspberry Stack Exchange sites. We focused on analyzing weak-
nesses by analyzing their revision history. We found a total of 31
CWE types present in 740 code snippets. We observed that the
vast majority of vulnerabilities are introduced pre code revisions
(713 out of 740). When snippets are revised, the number of vulner-
abilities that are present in that snippets are likely to not change.
Our results indicate the collaborative editing in the forums do not
help mitigate the code vulnerabilities. Our future work will focus
developing techniques to incorporate security recommendations
into the collaborative editing process.

REFERENCES
[1] Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem, and Emad

Shihab. 2020. Challenges in Chatbot Development: A Study of Stack Overflow
Posts. In 17th International Conference on Mining Software Repositories, October
5–6, 2020, Seoul, Republic of Korea. New York, NY, USA. ACM.

[2] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. 2015. Internet of things: A survey on enabling technologies,
protocols, and applications. IEEE Communications Surveys & Tutorials 17, 4 (2015),
2347–2376.

[3] Andrei Arusoaie, Stefan Ciobaca, Vlad Craciun, Dragos Gavrilut, and Dorel Lu-
canu. 2017. A Comparison of Open-Source Static Analysis Tools for Vulnerability
Detection in C/C++ Code. 161–168. https://doi.org/10.1109/SYNASC.2017.00035

[4] Mehdi Bagherzadeh and Raffi Khatchadourian. 2019. Going Big: A Large-scale
Study on What Big Data Developers Ask. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). ACM,
New York, NY, USA, 432–442.

https://doi.org/10.1109/SYNASC.2017.00035

Does Collaborative Editing Help Mitigate Security Vulnerabilities in Crowd-Shared IoT Code Examples? ESEM ’22, September 19–23, 2022, Helsinki, Finland

[5] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. 2018.
SOTorrent: Reconstructing and Analyzing the Evolution of Stack Overflow Posts.
Proceedings of the 15th International Conference on Mining Software Repositories
(May 2018), 8. https://doi.org/10.1145/3196398.3196430

[6] Z Berkay Celik, Patrick Drew McDaniel, and Gang Tan. 2018. SOTERIA: auto-
mated IoT safety and security analysis. In USENIX Conference on Usenix Annual
Technical Conference. 147 – 158.

[7] Z Berkay Celik, Gang Tan, and Patrick DrewMcDaniel. 2019. IoTGuard: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT. In Network and
Distributed System Security Symposium. 15.

[8] Partha Chakraborty, Rifat Shahriyar, Anindya Iqbal, and Gias Uddin. 2021. How
Do Developers Discuss and Support New Programming Languages in Techni-
cal Q&A Site? An Empirical Study of Go, Swift, and Rust in Stack Overflow.
Information and Software Technology (IST) (2021), 19.

[9] Moumena A Chaqfeh and Nader Mohamed. 2012. Challenges in middleware
solutions for the internet of things. In International Conference on Collaboration
Technologies and Systems (CTS). 21–26.

[10] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping Yu. 2020. Cross-App Inter-
ference Threats in Smart Homes: Categorization, Detection and Handling. In 50th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks.
411–423.

[11] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack overflow considered harmful?
the impact of copy&paste on android application security. In 2017 IEEE Symposium
on Security and Privacy (SP). IEEE, 121–136.

[12] Mario Frustaci, Pasquale Pace, Gianluca Aloi, and Giancarlo Fortino. 2017. Eval-
uating Critical Security Issues of the IoT World: Present and Future Challenges.
IEEE Internet of Things Journal 5, 4 (2017), 2483 – 2495.

[13] Neil Zhenqiang Gong, Altay Ozen, YuWu, Xiaoyu Cao, Richard Shin, Dawn Song,
Hongxia Jin, and Xuan Bao. 2017. PIANO: Proximity-Based User Authentication
on Voice-Powered Internet-of-Things Devices. In 37th International Conference
on Distributed Computing Systems. 2212 – 2219.

[14] GuessLang. n.d. Guesslang documentation. https://guesslang.readthedocs.
io/en/latest/#:\sim:text=Guesslang%20detects%20the%20programming%
20language,a%20million%20source%20code%20files.. Accessed: 2021-11-23.

[15] Fraser Hall, Leandros Maglaras, Theodoros Aivaliotis, Loukas Xagoraris, and
Ioanna Kantzavelou. 2020. Smart Homes: Security Challenges and Privacy Con-
cerns. (10 2020), 1–3.

[16] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Ear-
lence Fernandes, and Blase Ur. 2018. Rethinking access control and authentication
for the home internet of things (IoT). In 27th USENIX Conference on Security Sym-
posium. 255 – 272.

[17] AbdelRahman Hussein. 2019. Internet of Things (IOT): Research Challenges and
Future Applications. International Journal of Advanced Computer Science and
Applications 10 (01 2019), 77. https://doi.org/10.14569/IJACSA.2019.0100611

[18] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting working code
examples. (05 2014), 7. https://doi.org/10.1145/2568225.2568292

[19] Minhaj Ahmad Khan and Khaled Salah. 2018. IoT security: Review, blockchain
solutions, and open challenges. Future Generation Computer Systems 82 (2018),
395–411.

[20] Nibir Mandal and Gias Uddin. 2022. An Empirical Study of IoT Security Aspects
at Sentence-Level in Developer Textual Discussions. Elsevier Information and
Software Technology 50 (2022).

[21] Mohsen Marjani, Fariza Nasaruddin, Abdullah Gani, Ahmad Karim, Ibrahim
Abaker Targio Hashem, Aisha Siddiqa, and Ibrar Yaqoob. 2017. Big IoT Data
Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE
Access 5, 1 (2017), 5247 – 5261.

[22] Daniel Minoli, Kazem Sohraby, and Benedict Occhiogrosso. 2017. IoT Security
(IoTSec) Mechanisms for e-Health and Ambient Assisted Living Applications. In
IEEE/ACM International Conference on Connected Health: Applications, Systems

and Engineering Technologies. 13–18.
[23] MITRE. 2021. CWE VIEW: Weaknesses in Software Written in C. Accessed:

2021-11-10.
[24] MITRE. 2021. CWE VIEW: Weaknesses in Software Written in C++. Accessed:

2021-11-10.
[25] MITRE. n.d. About CWE. https://cwe.mitre.org/about/index.html Accessed:

2021-10-18.
[26] MITRE. n.d. CWE List Version 4.6. Accessed: 2021-11-2.
[27] National Institute of Standards and Technology. 2021. Defending Against Soft-

ware Supply Chain Attacks. https://www.cisa.gov/sites/default/files/publications/
defending_against_software_supply_chain_attacks_508_1.pdf. [Online; accessed
1-May-2022].

[28] Akond Rahman, Effat Farhana, and Nasif Imtiaz. 2019. Snakes in paradise?:
insecure python-related coding practices in stack overflow. In Proceedings of the
16th Working Conference on Mining Software Repositories. IEEE / ACM, 200–204.
https://doi.org/10.1109/MSR.2019.00040

[29] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT goes
nuclear: Creating a ZigBee chain reaction. In IEEE Symposium on Security and
Privacy. 195 – 212.

[30] Satyajit Sinha. 2021. State of IoT 2021: Number of connected IoT devices growing 9%
to 12.3 billion globally, cellular IoT now surpassing 2 billion. https://iot-analytics.
com/number-connected-iot-devices/.

[31] Pietro Tedeschi, Savio Sciancalepore, Areej Eliyan, and Roberto Di Pietro. 2020.
LiKe: Lightweight Certificateless Key Agreement for Secure IoT Communications.
IEEE Internet of Things Journal 7, 1 (2020), 621–638.

[32] Yuan Tian, Ferdian Thung, Abhishek Sharma, and David Lo. 2017. APIBot: ques-
tion answering bot for API documentation. In Proc. 32nd IEEE/ACM International
Conference on Automated Software Engineering. 153–158.

[33] Gias Uddin. 2021. Security and Machine Learning Adoption in IoT: A Preliminary
Study of IoT Developer Discussions. arXiv:2104.00634 [cs.CR]

[34] Gias Uddin and Foutse Khomh. 2017. Automatic Summarization of API Re-
views. In Proc. 32nd IEEE/ACM International Conference on Automated Software
Engineering. 12.

[35] Gias Uddin and Foutse Khomh. 2019. Automatic Opinion Mining from API
Reviews from Stack Overflow. IEEE Transactions on Software Engineering (2019),
35.

[36] Gias Uddin, Foutse Khomh, and Chanchal K Roy. 2020. Automatic Mining of API
Usage Scenarios from Stack Overflow. Information and Software Technology (IST)
(2020), 16.

[37] Gias Uddin and Martin P. Robillard. 2015. How API Documentation Fails. IEEE
Softawre 32, 4 (2015), 76–83.

[38] Gias Uddin and Martin P. Robillard. 2017. Resolving API mentions in informal
documents. Technical Report. McGill University.

[39] Gias Uddin, Fatima Sabir, Yann-Gaël Guéhéneuc, Omar Alam, and Foutse Khomh.
2021. An Empirical Study of IoT Topics in IoT Developer Discussions on Stack
Overflow. Empirical Software Engineering 26, 121 (2021).

[40] M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and A. Karami Motlagh. 5555.
An Empirical Study of C++ Vulnerabilities in Crowd-Sourced Code Examples.
IEEE Transactions on Software Engineering 01 (sep 5555), 1–19. https://doi.org/
10.1109/TSE.2020.3023664

[41] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2019. How
Do Developers Utilize Source Code from Stack Overflow? Empirical Software
Engineering 24 (04 2019), 2. https://doi.org/10.1007/s10664-018-9634-5

[42] Haoxiang Zhang, Shaowei Wang, Heng Li, Tse-Hsun Peter Chen, and Ahmed E.
Hassan. 2021. A Study of C/C++ Code Weaknesses on Stack Overflow. IEEE
Transactions on Software Engineering PP (02 2021), 1–15. https://doi.org/10.1109/
TSE.2021.3058985

[43] Zhi-Kai Zhang, Michael Cheng Yi Cho, Chia-Wei Wang, Chia-Wei Hsu, Chong-
Kuan Chen, and Shiuhpyng Shieh. 2014. IoT Security: Ongoing Challenges and
Research Opportunities. In IEEE 7th International Conference on Service-Oriented
Computing and Applications. 230–234.

https://doi.org/10.1145/3196398.3196430
https://guesslang.readthedocs.io/en/latest/#:$\sim $:text=Guesslang%20detects%20the%20programming%20language,a%20million%20source%20code%20files.
https://guesslang.readthedocs.io/en/latest/#:$\sim $:text=Guesslang%20detects%20the%20programming%20language,a%20million%20source%20code%20files.
https://guesslang.readthedocs.io/en/latest/#:$\sim $:text=Guesslang%20detects%20the%20programming%20language,a%20million%20source%20code%20files.
https://doi.org/10.14569/IJACSA.2019.0100611
https://doi.org/10.1145/2568225.2568292
https://cwe.mitre.org/about/index.html
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://doi.org/10.1109/MSR.2019.00040
https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://arxiv.org/abs/2104.00634
https://doi.org/10.1109/TSE.2020.3023664
https://doi.org/10.1109/TSE.2020.3023664
https://doi.org/10.1007/s10664-018-9634-5
https://doi.org/10.1109/TSE.2021.3058985
https://doi.org/10.1109/TSE.2021.3058985

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Study Setup
	3.1 Data Collection
	3.2 Data Preprocessing

	4 Study Results
	4.1 RQ1 Were the vulnerabilities introduced through post revisions?
	4.2 RQ2 What are the different types of vulnerabilities found during the revisions?
	4.3 RQ3 Does the type of vulnerability differ depending on revision types?
	4.4 RQ4 Were the vulnerabilities introduced pre-edit mitigated via post revisions?

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

