
Identifying Source Code File Experts
Otávio Cury

Federal University of Piauí
Teresina, Brazil

otaviocury@ufpi.edu.br

Guilherme Avelino
Federal University of Piauí

Teresina, Brazil
gaa@ufpi.edu.br

Pedro Santos Neto
Federal University of Piauí

Teresina, Brazil
pasn@ufpi.edu.br

Ricardo Britto
Blekinge Institute of Technology

Karlskrona, Sweden
rbr@bth.se

Marco Túlio Valente
Federal University of Minas Gerais

Belo Horizonte, Brazil
mtov@dcc.ufmg.br

ABSTRACT
Background: In software development, the identification of source
code file experts is an important task. Identifying these experts helps
to improve software maintenance and evolution activities, such as
developing new features, code reviews, and bug fixes. Although
some studies have proposed repository-mining techniques to auto-
matically identify source code experts, there are still gaps in this
area that can be explored. For example, investigating new variables
related to source code knowledge and applying machine learn-
ing aiming to improve the performance of techniques to identify
source code experts. Aim: The goal of this study is to investigate
opportunities to improve the performance of existing techniques to
recommend source code files experts. Method: We built an oracle
by collecting data from the development history and surveying
developers of 113 software projects. Then, we use this oracle to: (i)
analyze the correlation between measures extracted from the de-
velopment history and the developers’ source code knowledge and
(ii) investigate the use of machine learning classifiers by evaluating
their performance in identifying source code files experts. Results:
First Authorship and Recency of Modification are the variables with
the highest positive and negative correlations with source code
knowledge, respectively. Machine learning classifiers outperformed
the linear techniques (F-Measure = 71% to 73%) in the public dataset,
but this advantage is not clear in the private dataset, with F-Measure
ranging from 55% to 68% for the linear techniques and 58% to 67%
for ML techniques. Conclusion: Overall, the linear techniques
and the machine learning classifiers achieved similar performance,
particularly if we analyze F-Measure. However, machine learning
classifiers usually get higher precision while linear techniques ob-
tained the highest recall values. Therefore, the choice of the best
technique depends on the user’s tolerance to false positives and
false negatives.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM ’22, September 19–23, 2022, Helsinki, Finland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9427-7/22/09. . . $15.00
https://doi.org/10.1145/3544902.3546243

CCS CONCEPTS
• Software and its engineering→ Maintaining software.

KEYWORDS
software maintenance, software evolution, mining software reposi-
tory, source-code expertise, machine learning

ACM Reference Format:
Otávio Cury, GuilhermeAvelino, Pedro Santos Neto, Ricardo Britto, andMarco
Túlio Valente. 2022. Identifying Source Code File Experts. In ACM / IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement
(ESEM) (ESEM ’22), September 19–23, 2022, Helsinki, Finland. ACM, Helsink,
HEL, Finland, 12 pages. https://doi.org/10.1145/3544902.3546243

1 INTRODUCTION
Source code changes are fundamental activities during software
evolution [58]. These changes are made in many development-
related activities. Such activities require efficient management of
the development team. However, this management becomes partic-
ularly complicated in large and geographically distributed projects,
where project managers need asmuch information as possible about
their development team to coordinate the project activities [30]. In
this context, knowing who has expertise in which parts of the
source code is a very useful information, especially in a context
where remote work is growing fast and face-to-face interactions
have been reduced [59].

Information on developers’ expertise is valuable in various sce-
narios in software development. For example, it can be used in
tasks assignment, such as to identify which experienced developer
can help newcomers in implementing changes [38] or who is most
suitable for bug fixing [2]. Additionally, this information helps to
identify the concentration of knowledge in parts of the code [4, 21],
i.e., situation that poses high risks to the future of the project.

However, due to the large amount of change-related informa-
tion that developers and managers deal with every day [24], it is
challenging to keep track of who is familiar with each project file.
To help with this task, it is possible to rely on information avail-
able in Version Control Systems (VCS), wherein a large part of
the developer-file iterations are logged. By using such information,
several techniques were developed to automate the identification
of experts in source code files [18, 24, 46, 48, 49].

Some research has been conducted to address the file expert
identification problem. For example, in the work [7], the authors
compared the performance of three techniques for identifying file

ar
X

iv
:2

20
8.

07
50

1v
1

 [
cs

.S
E

]
 1

6
A

ug
 2

02
2

https://doi.org/10.1145/3544902.3546243
https://doi.org/10.1145/3544902.3546243

ESEM ’22, September 19–23, 2022, Helsinki, Finland Cury, et al.

experts. They identified an opportunity for improving the per-
formance of existing techniques by adding information on
file size and recency of modifications. In this paper, we explore
this opportunity by first analyzing the correlation between twelve
measures extracted from the development history and the devel-
opers’ source code knowledge. Following, we investigate the use
of machine learning classifiers by evaluating their performance in
identifying source code file experts on a large dataset composed of
public and industrial software systems (including two projects from
Ericsson). Particularly, we seek to answer the following research
questions:

• (RQ1) How do repository-based metrics correlate with devel-
oper’s knowledge?
Motivation: There are several works in the literature that use
different repository-based metrics to infer the knowledge of
developers in source code files. However, we did not identify
studies that correlated these variables with knowledge. By
answering this question, we seek to understand how these
variables are related to knowledge in source code, which can
guide the creation of models that estimate knowledge and
help to identify source code experts.

• (RQ2) How do machine learning classifiers compare with tra-
ditional techniques for identifying source code experts?
Motivation: Due to the vastly successful application of ma-
chine learning classifiers in the software engineering liter-
ature, we believe that the application of machine learning
classifiers can improve the performance in identifying ex-
perts achieved by other techniques in previous works.

The main contributions of this paper are twofold:

(1) A correlation analysis between variables extracted from ver-
sion control systems and developers’ source code knowledge.

(2) A comparative study on the performances of machine learn-
ing classifiers and three well-known techniques for identify-
ing source code experts.

The remainder of this paper is organized as follows: Section 2
presents related work. Section 3 describes the procedure adopted
to select the target subjects of the study, the compared techniques,
and how we evaluate their performance. Sections 4 and 5 present
the results of the comparison of the techniques and discuss the
results, respectively. Section 6 lists threats to the validity of our
results. Finally, Section 7 concludes by presenting our key findings.

2 RELATEDWORK
We identified two main goals on research related to the identifica-
tion of code experts: propose new techniques for the identification
of source code experts and compare existing techniques. This sec-
tion covers both types of works. Section 2.1 presents works that
propose techniques to infer developers expertise on source code
artifacts and Section 2.2 describes works that compare existing
techniques.

2.1 Research that Proposes New Techniques
MacDonald and Ackerman [46] use a heuristic called Line 10 rule
that prioritizes the developer who last changed a module in solving
problems. Following the same premise, Hossen et al. [33] presented
an approach called iMacPro that identifies experts associated with
a change request based on who last changed certain files. Other
works count the number of changes made on source code elements
[9, 12, 28, 29, 49]. There are also studies that use information from
files present in development branches to identify experts who per-
form merge operations involving these files [16, 17]. Other models,
such as the one proposed by Sülün, Tüzün and Dogrusöz [64], use
the number of commits in the artifact of interest and in related
artifacts for the calculation of knowledge, in order to recommend
code reviewers. In summary, these studies are based mainly on
information about changes such as the number of commits and
who made the last change to identify expertise. However, based on
past works [7, 41], we suspect that these variables alone are not
enough. For this reason, in this study, we analyze more variables
and their relationship with developers’ knowledge.

Other studies try to model the knowledge flow in the history of
the source code. The Degree of Knowledge (DOK) model proposed
by Fritz et al. [24] uses the information related to the degree of
authorship (DOA) that the developer has with the code artifact, and
the number of interactions (selections and edits) that the developer
had with the artifact, named the degree of interest (DOI). However,
the calculation of the DOI requires the use of special plugins in
the development environment, which makes its usage impractical
in a large study as the one we present in this paper. Regarding
the differences for the models studied in this work, DOK does not
deal with recency directly and does not consider the size of the file
when estimating knowledge. These two variables were pointed out
as important factors in the calculation of knowledge in previous
works [7, 41].

Other techniques model the impact of time on the knowledge
that developers have with source code artifacts. Silva et al. [18]
presented a model that computes the developer’s expertise in an
entire (atomic) artifact, and also in its subparts (internal classes and
methods), based on the number of changes made by a developer.
The expertise analysis can be done using time windows that divide
the history of an artifact into subsets of commits. Other approaches
that consider the recency of changes appear in studies focused on
the recommendation of developers for the resolution of change
requests. Kagdi et al. [37] proposed an approach that locates source
code files relevant for a given change request and identifies experts
in those files using the xFinder [38, 39] approach, which prioritizes
developers who made most commits in a given file. Tüzün and
Dogrusöz [65], extend a previous work [64], by adding information
on modification recency for the calculation of knowledge, aiming
to recommend code reviewers. On one hand, these studies consider
some measure of recency for identifying experts in source code
files. On the other hand, they did not present an in-depth and large
analysis that shows how the variables used are suitable for this
identification.

In comparison to the data source used to extract knowledge
information in source code, in this work we focus only on data
contained in version control systems. Some works use other sources

Identifying Source Code File Experts ESEM ’22, September 19–23, 2022, Helsinki, Finland

such as: number of interactions with a file [23], code reviews[35, 68],
numbers of meeting related to commits [35]. While these are valid
data sources, they depend on specific tools, such as plugins installed
in the development environment, the use of company-specific tools,
and development culture. Due to the universality of version control
systems in current software development [74], its use as a data
source becomes easier in practice.

Regarding the use of machine learning, Montandon and col-
leagues [50] investigated the performance of supervised and un-
supervised classifiers in identifying experts in three open-source
libraries. Even though we followed a similar process for data col-
lection and analysis, our work has a distinct purpose. We rely on
classifiers for identifying experts at the level of source code files,
while Montandon target the identification of experts in the use of
libraries and frameworks, therefore using different variables than
the ones used in this work. Other examples of machine learning
applications in the context of developer expertise target the bug
assignment problem [62], which is also a distinct problem than the
one investigated here. In summary, we have not identified stud-
ies that investigate the performance of machine learning in
the classification of file experts based on VCS information,
such as our key goal in this work.

2.2 Comparison of Existing Techniques
Krüger and colleagues [41] analyzed the impact of forgetfulness
of the developer about the code, using data from ten open-source
repositories. They studied whether the forgetting curve described
by Ebbinghaus [20] can be applied in the context of software devel-
opment, and which variables influence the developer’s familiarity
with source code. They analyzed variables such as number of com-
mits, changes made by other developers, percentage of code written
by a developer in the current version of the file, and the behavior
of tracking changes made by other developers.

Other works used techniques and models to identify expertise.
Avelino and colleagues compared the performance of Commits,
Blame, and Degree-of-Authorship (DOA) techniques in identifying
source code file maintainers [7]. A survey similar to the one pre-
sented in this paper was made to create a dataset with data from
eight open-source repositories and two private ones. The results
showed that all three techniques have similar performance in iden-
tifying source code maintainers. However, the results also pointed
out the importance of considering the recency of the modifications
and the file size as a possible strategy to improve these techniques.

There are also papers that studied other types of expertise. For
example, Hannebaur et al. [26] compared the performance of eight
algorithms to recommend code reviewers. Out of these algorithms,
six are based on expertise by modification and two are based on
review expertise. The six algorithms based on expertise by modifi-
cation are Line 10 Rule [46], Number of Changes, Expertise Recom-
mender [46], Code Ownership [25], Expertise Cloud [1], and DOA.
The algorithms based on review expertise are File Path Similarity
(FPS) [67], and a model proposed by the authors, calledWeighted
Review Count (WRC). They used data from four FLOSS projects:
Firefox, AOSP, OpenStack, and Qt. The algorithms based on review
expertise performed better than the ones based on modification
expertise, and the WRC algorithm achieved the best results.

Other works use information on expertise for the resolution of
bug reports. Anvik and Murphy [3] compared two approaches to
determine appropriate developers for resolving bug reports. One
approach uses data from code repositories to define which develop-
ers are experts in the files associated with the bug report using the
Line 10 heuristic. The other approach uses data from bug networks
such as the carbon-copy list (cc:), comments, and information from
who resolved previous bugs. Development data from the Eclipse1
platform was used. The authors concluded that the best approach
depends on what users are looking for regarding precision and
recall.

The work presented in this paper can be distinguished from the
works described before in three key aspects: purpose, compared
techniques, and scope. In relation to purpose, two works have the
same objectives as ours: Avelino et al. [7] and Anvik and Murphy
[3] (but they do not use the same techniques, particularly machine
learning classifiers).

Regarding the compared techniques, Avelino et al. [7], Krüger
et al. [41], and Hannebauer et al. [26] used the baseline techniques
selected in this work. However, we also investigate the performance
of machine learning models. Finally, regarding the scope of the stud-
ies, none of them used data from a similar number of repositories
as in our study.

3 RESEARCH DESIGN
To achieve the objectives defined in this study, it is required a
ground truth with data on source code experts. We build this ground
truth by extracting data from open source and industrial projects.
This ground truth is composed of the developers’ knowledge in
source code files and variables (or metrics) computed from the
projects’ development history.

3.1 Target Subjects
We selected open source repositories from the GitHub platform2.
To select these repositories, we adopted a similar procedure to
other studies that investigate GitHub data [4, 60, 72]. First, for
each of the six most popular programming languages on GitHub
(Java, Python, Ruby, JavaScript, PHP, and C++)3 we selected the
50 most popular repositories as indicated by their number of stars.
This measure is widely used by researchers in the selection of
GitHub repositories [4, 13, 31, 36, 45, 52, 55, 60, 61], and perceived
by developers as a reliable proxy of popularity [10]. Then, after
cloning the repositories, we performed a repository filtering step
based on three metrics: number of commits, number of files, and
number of developers. As was done in a previous work [4], for
each language, we removed repositories in the first quartile of
the distribution of each metric, resulting in the intersection of the
remaining sets. In other words, repositories with few commits, files,
and developers were removed. Table 1 shows the first quartile of
each of the three metrics for each programming language.

Additionally, we discarded repositories whose development his-
tory suggests that most of the software was developed outside of

1https://www.eclipse.org/eclipse/
2https://github.com/
3The six most popular programming languages in 2019
https://octoverse.github.com/#top-languages

ESEM ’22, September 19–23, 2022, Helsinki, Finland Cury, et al.

Table 1: First quartiles of filteringmetrics, for each language

Language Commits Files Developers
Python 510.75 87.50 45.25
Java 829.25 318.00 39.25
PHP 823.50 89.00 97.50
Ruby 1,650.25 152.75 198.25
C++ 2,010.25 706.00 113.50
JavaScript 1,455.75 113.25 129.25

Table 2: Target open source repositories.

Language Repos Devs Commits Files

Python 25 18,936 192,587 39,154
Java 17 5,733 138,473 62,429
PHP 16 9,802 144,092 29,902
Ruby 25 38,036 605,546 88,869
C++ 14 11,467 350,345 72,991
JavaScript 14 10,319 109,541 21,477

Total: 111 94,293 1,540,584 314,822

GitHub by removing repositories where more than half of its files
were added in a few commits. As few commits, we considered the
outliers of the distribution of the number of files added in each
commit of a repository; we discarded repositories if most of their
files (>50%) were added by the set of outliers commits, following
the procedure done by Avelino and others [4].

The resulting dataset is composed of 111 popular GitHub
repositories distributed over the six most popular programming
languages, which have a relevant number of developers, files, and
commits. Table 2 summarizes the characteristics of these 111 repos-
itories.

We also used data from two industrial projects from Eric-
sson4. Both projects were developed in the Java programming
language. The development history of Project #1 has 74,078 com-
mits, 17,329 files, and 513 contributors. On the other hand, Project
#2 has 26,678 commits, 15,930 files, and 262 contributors. Therefore,
the two industrial projects are also relevant according to the criteria
applied to select the open-source repositories.

3.2 Ground Truth Construction
ExtractingDevelopmentHistory: after downloading the selected
repositories, we started the process of extracting their development
history data. This data was extracted by collecting the commits
from the master/default-branch of each repository, as described
below.

First, we ran git log –no-merge –find-renames command to extract
data from the commits logs of each repository. This command
returns all commits that have no more than one parent (no-merge)
and it automatically handles possible file renames.5 From each
commit, three pieces of information were extracted: (1) changed
files; (2) name and email of the commit’s author (developer who

4https://www.ericsson.com/en
5https://git-scm.com/docs/git-log/1.5.6

performed the change); (3) type of the change: addition,modification,
or rename.

After that, we discarded files that do not contain source code
(e.g., images and documentation), third-party libraries, and files that
are not part of one of the six programming languages considered in
the study. To identify and discard these files we rely on the Linguist
tool 6.

Finally, we handled developer aliases by following the same pro-
cedure adopted in other works [4–7]. Aliases arise when a developer
is associated with more than one pair (name-dev, email) on Git. For
the purposes of this work, it is important to unify these contrib-
utors. This unification was performed in two stages. First, users
who shared the same email, but with different names, were unified.
Additionally, users with different emails, but with similar names
were grouped. This similarity was computed using the Levenshtein
distance [51], using a maximum modification threshold of 30% on
the number of letters.

Generating Survey Sample:We used information extracted from
development histories to create sample pairs (developer, file) for each
repository. These samples are necessary to elaborate the survey
applied in this study. Theywere created by performing the following
steps for each repository:

(1) We randomly selected a file and retrieved the list of develop-
ers who touched (created or modified) it.

(2) We discarded the file if at least one of these developers
reached the maximal limit of files we plan to send to a devel-
oper (file_limit), asking about his/her expertise on the file.
Otherwise, we added the file to the list of each developer.

(3) We repeated steps 1-2 until there are no more files to be
verified.

By discarding files in each one of the developers already reached
her file_limit, step 2 warrants that a file will be added to the sample
only if it is possible to add all developers who modified it. This
step aims to maximize the possibility of obtaining answers from
all developers who touched a file. We established a file limit of
five, seeking to not discourage developers from responding to the
survey, which can happen according to guidelines in the literature
[40, 43].

At the end of this step, a list of pairs (developer, file) was created
for each repository. For open-source repositories, 20,564 pairs were
generated, with 7,803 developers, 2.64 files per developer on av-
erage. For the two private repositories, 394 pairs were generated,
with 92 developers, and 4.34 files per developer.

Sending the Survey: We conducted the survey by sending indi-
vidual e-mails to each developer on the generated sample. The
developers were invited to evaluate their knowledge in each of the
files on their list, by using a scale from 1 (one) to 5 (five), where (1)
means you have no knowledge about the file’s code; (3) means you
would need to perform some investigations before reproducing the
code; and (5) means you are an expert on this code

For the open-source repositories, 7,803 emails were sent, and
501 responses were received, representing a response rate of 7%.
For the private repositories, 92 emails were sent, 38 responses were

6https://github.com/github/linguist/blob/master/lib/linguist/languages.yml

Identifying Source Code File Experts ESEM ’22, September 19–23, 2022, Helsinki, Finland

Figure 1: Responses distribution in the Public dataset.

received, representing a rate of 41%. From these responses, two
datasets were created: one with 1,024 developer-file pairs coming
from the answers of the open-source repositories, and a second
dataset with 163 pairs extracted from the answers of the two private
repositories. In the remainder of this paper, these two datasets will
be named public and private datasets.

Processing the Answers: We process the answers by classifying
each pair (developer, file) into one of two disjoint sets: declared
experts (𝑂𝑚), and declared non-experts (𝑂𝑚). A declared expert is a
developer who claims to have knowledge of more than 3 (three) in
a file; otherwise, he/she is a declared non-expert.

Figure 1 and 2 shows the distribution of responses in the pub-
lic and private datasets respectively. The public dataset is com-
posed of 54% of declared experts and 46% of declared non-
experts, and the private dataset is composed of 47% of de-
clared experts and 53% of declared non-experts. As we can see,
the proportion of declared expert and declared non-expert sets
are close in both datasets, and this class balance is an important
property in classifier training [69].

3.3 Development Variables
Extracting Variables:We selected 12 variables (or features) that
can be extracted from the development history. These variables and
their meanings are shown in Table 3. Subsets of these variables are
explored in other studies. Table 4 lists studies that analyzed these
variables in the context of inferring source code knowledge. As
shown, NumCommits is the most explored variable.

The variables Adds, Dels, Mods, and Conds are extracted using
the command git diff 7. This command returns the lines added and
removed between two versions of a file. In this work, a modifica-
tion is defined as a set of removed lines followed by a set of added
lines of the same size [34, 44]. We use Levenshtein distance [51] to
identify which pairs (remove, add) are modifications between two
versions of the files. The algorithm takes the removed and added
line as input, and returns a value that represents the number of

7https://git-scm.com/docs/git-diff

Figure 2: Responses distribution in the Private dataset

characters that must be modified to transform the removed line
into the added line. In this work, a change is a modification if the
returned value is less than a certain percentage (threshold) of the
size of the removed line. A threshold of 40% was used, as suggested
by Canfora et al. [11].

3.4 Compared techniques
This section describes the techniques used in this study to identify
code experts.

Number of Commits: This technique counts the number of com-
mits as a measure of knowledge that a developer has in a given
source code file. The idea behind this technique is that a developer
gains knowledge in a file by creating or modifying it. In other words,
more commits are interpreted as more knowledge. This technique
is widely used in the context of developer expertise, as shown in
Table 4. It is applied individually [7, 18, 26], as well as combined
with other techniques [24, 37, 66]. In this study, we use the number
of commits individually as an expert identification technique. In
this paper, we refer to this technique as NumCommits.

Blame: This technique infers the knowledge that a developer has
in a file by counting the number of lines added by him and present
in the last version of the file. Blame-like tools such as git-blame8

command are used to identify the authors of each file line. As in
other works [7, 25, 26, 41, 57], we use the percentage of lines asso-
ciated with a developer as a measure of knowledge.

Degree of Authorship (DOA): Fritz et al. [24] proposed that the
knowledge of a developer on a source code file depends on fac-
tors such as the file’s authorship, his/her number of contributions,
and number of changes made by other developers. The authors
combined these variables into a linear model called Degree of Au-
thorship (DOA). The weights associated with each variable in this
linear model were defined through an empirical study based on

8https://git-scm.com/docs/git-blame

ESEM ’22, September 19–23, 2022, Helsinki, Finland Cury, et al.

Table 3: Variables extracted from the development history. The variables description are given considering a developer d and
a file f in its last version.

Variable Meaning
Adds Number of lines added by a developer d on a file f
Dels Number of lines deleted by a developer d on a file f
Mods Number of lines modified by a developer d on a file f
Conds Number of conditional statements added by a developer d on a file f
Amount Sum of number of added and deleted lines of a developer d on a file

FA Binary variable that indicates whether a developer d added the file f to
the repository

Blame Number of lines authored by a developer d that are in a file f
NumCommits Number of commits made by a developer d on a file f
NumDays Number of days since the last commit of a developer d on a file f

NumModDevs Number of developers that committed on the file f since the last
commit of a developer d

Size Number of lines of code (LOC) of the file f

AvgDaysCommits Average number of days between the commits of a developer d
on a file f

Table 4: Extracted variables and related studies

Variable Also used in these studies

Adds, Dels [19, 25, 28, 34, 44, 49]
Mods, Conds, Amount [19, 34, 44]
Blame [7, 25, 26, 41, 57]
FA [23, 24]
NumCommits [1, 7, 15, 19, 24, 34, 41, 44, 46, 49, 50, 53]
[18, 26, 37, 39, 48, 66]
NumDays [7, 19, 34, 41, 44, 66]
NumModDevs [19, 24, 34, 44]
Size [7, 53]
AvgDaysCommits [50]

data from the development of two systems. The DOA value that
a developer d has in the version v of a f file is calculated by the
following equation:

DOA(d, f(v)) = 3.293+1.098∗𝐹𝐴+0.164∗𝐷𝐿−0.321∗𝑙𝑛(1+𝐴𝐶) (1)

where,
• 𝐹𝐴: 1 if developer d is the creator of the file f, 0 otherwise.
• 𝐷𝐿: is the number of changes made by developer d until
version v of file f.

• 𝐴𝐶: is the number of changes made by other developers in
the file f up to version v.

Machine Learning Classifiers: We also investigate the applica-
bility of machine learning algorithms for identifying source code
experts. This proposal comes down to a binary classification. From
the dataset described in Section 3.2, we labeled each pair (developer,
file) in non-expert (knowledge 1-3, as their answers in the survey)
and experts (knowledge 4-5). We choose the development variables
(Table 4) Adds, FA, Size, and NumDays as features to train the ma-
chine learning models. The rationale for these choices is given in

Section 4, where we present the results of the RQ1. According to
the values of these features, machine learning models can classify
a developer as an expert or not from a source code file.

Five well-known machine learning classifiers are evaluated: Ran-
dom Forest [42], Support-Vector Machines (SVM) [70], K-Nearest
Neighbor (KNN) [56], Gradient Boosting Machine [22], and Lo-
gistic Regression [32]. We use 10-fold Cross-Validation to evaluate
the performance of the machine learning classifiers. 10-fold Cross-
Validation consists of partitioning the data set in ten complementary
subsets, and the use of each of these subsets for model training
and the rest for model validation. In the end, the fitness measures
are combined to obtain a more accurate estimate of the model’s
performance [8]. We use F-Measure as a performance measure. To
find the best settings for these classifiers, we perform a grid search
[14] to adjust the hyper-parameters and find the best settings for
each classifier.

3.5 Linear Techniques Evaluation
To evaluate NumCommits, Blame, and DOA in the identification of
software experts, we adopt a similar procedure as the one followed
in a previous related work [7]. First, we normalize the technique
values. For this purpose, we set as 1 the expertise of a developer
d in file f if d has the highest value for a given technique in f ;
otherwise, we set a proportional value. For example, suppose that
for a given file f developers d1, d2, and d3 have a Blame value of 10,
15, and 20. Their normalized values for blame regarding the file f
are as follows: expertise(d1, f) = 10/20 = 0.5, expertise(d2, f) = 15/20
= 0.75, and expertise(d3, f) = 20/20 = 1. We apply this normalization
process to all techniques.

After the normalization, a developer d is classified as an expert
of a file f if its expertise (d, f) is higher or equal than a threshold k;
otherwise he/she is considered a non-expert. In the example of the
previous paragraph, considering a threshold k = 0.7, developers d2
and d3 would be considered experts of the f file accordingly with

Identifying Source Code File Experts ESEM ’22, September 19–23, 2022, Helsinki, Finland

Figure 3: Performance at analyzed thresholds using public
data

the Blame technique.

Evaluating Performance:We always compared the performance
of the technique in their best settings. For the linear techniques,
this requires setting the classification threshold k that maximizes
the correct identification of file experts.

To this purpose, we first compute the performance of each tech-
nique by adopting 11 different thresholds, i.e., by varying the thresh-
old k from 0 to 1, under 0.1 steps. At the end of this process, the best
performance of the linear techniques is obtained together with their
associated thresholds k. For each threshold, we use 10-fold Cross-
Validation to compute the F-Measure (F1-Score) of the techniques
by applying the following equations:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘) =

| (𝑑,𝑓) ∈𝑂𝑚 | expertise(d, f)> k |

| expertise(d, f)> k | , if 𝑘 = 0
| (𝑑,𝑓) ∈𝑂𝑚 | expertise(d, f) ≥ k |

|expertise(d, f) ≥ k | , otherwise
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑘) =
{ | (𝑑,𝑓) ∈𝑂𝑚 | expertise(d, f)> k |

|𝑂𝑚 | , if 𝑘 = 0
| (𝑑,𝑓) ∈𝑂𝑚 | expertise(d, f) ≥ k |

|𝑂𝑚 | , otherwise
(3)

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝑘) = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑘)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘) + 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑘) (4)

where 𝑂𝑚 is the set of declared experts, as we inferred from the
survey responses (Section 3.2).

Thresholds Calibration:
Figures 3 and 4 show the F-Measure results for each linear tech-

nique at each analyzed threshold, under the public and private
datasets, respectively.

As we can see, Blame reaches its best performance when we use
the lowest possible threshold (k = 0), in both public and private
data. In other words, by adopting k = 0, Blame reaches its best

Figure 4: Performance at analyzed thresholds using private
data

performance when it is used to classify as an expert any developer
who has at least one line of code in the last version of the file. Simi-
larly, NumCommits achieves the best performance by adopting the
thresholds k = 0.1 and k = 0.3, in the public and private datasets,
respectively. The low thresholds indicate that both techniques per-
form better by relying on minimal changes to consider developers
as file experts. On the other hand, DOA has it best performance
with a threshold k = 0.1. on public data; and k = 0.7, on private data.

4 RESULTS
This section presents the results of the two research questions
proposed in this study. First, we present the correlation analysis
between the extracted variables and developers’ knowledge. Next,
we present the performance of the techniques in our two datasets.

4.1 How do repository-based metrics correlate
with developer’s knowledge? (RQ1)

We analyze the correlations between the development variables
and the developers’ knowledge, as obtained in the survey. In the
remainder of this paper, the survey responses will be represented
by a variable named Knowledge. We answer RQ1 and, consequently,
identify which variables could be part of a prediction knowledge
model.

Table 5 shows the directions and intensities of the correlations
between the extracted variables and the Knowledge variable, by
applying Spearman’s rho, since it is suitable for data sets that do
not follow the normal distribution. We consider results to be statis-
tically significant when p < 0.05. Even though NumCommits is the
most used variable for inferring file’s knowledge in the literature, it
does not show the strongest positive correlation with theKnowledge
variable. The variable with the highest positive correlation is FA,
closely followed by Adds. This suggests that a more fine-grained

ESEM ’22, September 19–23, 2022, Helsinki, Finland Cury, et al.

Table 5: Correlation of extracted variables with Knowledge

Variable Corr. with Knowledge p-value

NumDays - 0.24 <0.001
Size - 0.21 <0.001
NumModDevs - 0.21 <0.001
Mods 0.01 0.515
Dels 0.02 0.369
Cond 0.19 <0.001
NumCommits 0.20 <0.001
AvgDaysCommits 0.21 <0.001
Amount 0.28 <0.001
Blame 0.29 <0.001
Adds 0.31 <0.001
FA 0.33 <0.001

Figure 5: Correlation between dependent variables

measure of changes like Adds can be more important than Num-
Commits to compose a knowledge model. The variable with the
lowest correlation with Knowledge is Mods. Finally, the variable
that shows the highest negative correlation is NumDays, followed
by NumModDevs and Size. These results reinforce the importance
of recency for inferring the knowledge that a developer has about
a source code file.

We also analyze the correlation between the extracted variables
using Spearman’s rho [63]. These correlations are represented in
Figure 5, where colors close to 1 and -1 represent higher positive
and negative correlations, respectively. This analysis is relevant
because variables with a certain level of correlation can lead to
inaccurate models [73].

As expected, NumCommits has a strong correlation with Adds,
Dels, Mods, Amount, and AvgDaysCommits (rho ≥ 0.5). Therefore,
any one of these five variables can be used to measure the number
of changes made by a developer throughout the history of a file.

The variables NumModDevs and NumDays also show a moderate
positive correlation (rho ≥ 0.5) with each other.

Summary of RQ1: First Authorship (FA) has the highest pos-
itive correlation with knowledge in source code files and Re-
cency of Modification has the highest negative correlation.
Therefore, this result suggests that file creators tend to have
high knowledge on the files they created; however, this knowl-
edge decreases with time.

Variable Selection Rationale: In a previous research, Avelino
and colleagues described how the variables file size and recency
influence developer’s knowledge on source code files [7]. Thus,
models that take this information into account tend to be more
accurate. This previous finding is reinforced by the results in Table
5, where these variables achieved the highest negative correlation
with Knowledge. Therefore, we include the variables Size and Num-
Days in the proposed machine learning models. Considering the
variables Adds, Amount, and Blame, we choose the variable Adds, as
it has the highest positive correlation with Knowledge among the
three. No more than one of the three variables is chosen because
these variables are conceptually related, as commented in Section
3.3.

The variableNumCommits is not included in themodels. It can be
viewed as just a macro way of accounting for changes made by a de-
veloper to a source code file, and the variable Adds has already been
chosen, since it has a higher positive correlation with Knowledge.
In addition, Adds has a moderate correlation with NumCommits
(𝑟ℎ𝑜 ≥ 0.5, Figure 5). For a similar reason, AvgDaysCommits is not
included in the model.

We also add the variable FA, which has the highest positive corre-
lation with Knowledge among all variables. The variable NumMod-
Devs is not included due to its moderate correlation with NumDays
(𝑟ℎ𝑜 ≥ 0.5).

4.2 How do machine learning classifiers
compare with traditional techniques in
identifying source code experts? (RQ2)

After identifying and selecting the variables with the highest corre-
lations with source code knowledge, we train the machine learn-
ing models using them as features. After that, we compared the
performance of these models with those of linear models in the
identification of experts.

Table 6 presents the performance of linear techniques and ma-
chine learning classifiers, in the two analyzed scenarios. Regarding
the public dataset (Table 6 - Public), DOA and NumCommits had
the best F-Measure (70%), followed by Blame, with a F-Measure of
67%. Regarding recall, the technique with the best result was DOA
(97%). The technique with the lowest recall in the same scenario
is Blame (83%). Finally, the technique with the highest precision is
NumCommits (60%), while DOA has the lowest precision (55%).

When using the private dataset (Table 6 - Private), DOA had the
highest value for F-Measure (68%), closely followed by NumCom-
mits (67%). As in the other scenario, Blame had the worst F-Measure
(55%). The best Recall was fromNumCommits (86%), with Blame pre-
senting the lowest recall (62%). Regarding precision, DOA achieved
the best result (61%), and Blame the lowest one (50%).

Identifying Source Code File Experts ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 6: Performance of linear and machine learning techniques

Public Private

Precision Recall F-Measure Precision Recall F-Measure
DOA 0.55 0.97 0.70 0.61 0.77 0.68
NumCommits 0.60 0.87 0.70 0.55 0.86 0.67
Blame 0.56 0.83 0.67 0.50 0.62 0.55

Random Forest 0.73 0.74 0.73 0.59 0.62 0.60
SVM 0.71 0.75 0.73 0.63 0.60 0.61
KNN 0.71 0.71 0.71 0.70 0.69 0.67
GBM 0.73 0.73 0.73 0.65 0.58 0.60
Logistic Regression 0.69 0.75 0.72 0.70 0.51 0.58

When we consider the scenario using the public dataset (Table 6
- Public), Random Forest, SVM, and GBM had the best F-Measure
(73%), with the other two classifiers reaching close values. The clas-
sifiers with the highest recall were SVM and Logistic Regression
(75%), and KNN obtained the lowest result (71%). In terms of preci-
sion, GBM and Random Forest have the highest values (73%). The
lowest precision is from Logistic Regression (69%).

Regarding the private dataset (Table 6 - Private), the classifier
with the highest F-Measure was KNN (67%) and Logistic Regression
had the lowest one (58%). The best recall was also obtained by KNN
(69%) and Logistic Regression had the lowest one (51%). Finally, the
best precision was achieved by Logistic Regression and KNN (70%).
Random Forest had the lowest precision (59%).

Summary of RQ2: In the public dataset, machine learning
classifiers outperformed the linear techniques (F-Measure =
0.71 to 0.73). In the private dataset, this advantage is not
clear, with F-Measure ranging from 0.55 to 0.68 for the linear
techniques and 0.58 to 0.67 for ML techniques.

5 DISCUSSION
In this section, we start by highlighting our key findings:

(1) The linear techniques (DOA, Commits, and Blame) tend
to have low precision, but high recall in the two analyzed
datasets (public and industrial projects). In other words, they
tend to positively classify developers as experts, but at the
cost of a significant number of false positives.

(2) Regarding the linear techniques, DOA has the best perfor-
mance, in both datasets.

(3) The ML classifiers have a very distinct performance in the
investigated datasets. However, we must highlight the size
difference of both datasets: there are 1,024 datapoints in the
public dataset and only 163 in the private one. This difference
can have amajor impact on algorithms that include a training
phase. In other words, ML techniques tend to improve their
performance as the size of the training set increases, up to a
certain point of stability, a behavior called the Learning Curve
[47]. For this reason, we argue the public dataset results are
more representative of the performances of such techniques.

(4) Considering the public dataset, the best ML classifiers (in
terms of F-Measure) are Random Forest, SVM, and Gradient

Boosting Machines. On the other hand, in the private dataset,
K Nearest Neighbors reached the best performance.

(5) Even though there are linear techniques with similar F-
Measure, the machine learning classifiers show a better bal-
ance between Precision and Recall.

However, overall, we acknowledge that the linear techniques
and the machine learning classifiers achieved similar performance,
particularly if we analyze F-Measure. For this reason, the choice of
the best technique depends on the user’s tolerance to false
positives and false negatives. Particularly, we envision two prac-
tical application scenarios:

• When the application requires finding few or even just one
expert, such as when performing a merge operation [16]
or onboarding a new team member [39], machine learning
classifiers are more recommended as they are more precise.

• When the application demands more experts, such as when
we need to evolve or maintain a more complex feature [33],
it is more plausible to tolerate some false positives. In such
cases, linear techniques are recommended.

6 THREATS TO VALIDITY
This section describes the threats to the validity of this study based
on four categories: construct, internal, conclusion, and external
validity [71].

Construct Validity: Some of the developers who participated in
the survey may have inflated their self-assessment knowledge, due
to some fear regarding the commercial use of this information. To
tackle this problem, we clarified in the survey that their answers
would be used only for academic purposes. Regarding the risk of
misinterpretation of the knowledge scale (1 to 5), we provided a
guide to the scores meaning. However, even the concept of an ex-
pert is subjective, which remains a threat. Another threat is the
definition of expert according to the survey responses. Developers
with knowledge above three were considered file experts. We claim
this is a more conservative division of the knowledge scale, already
applied on a similar study [7].

Internal Validity: There are other factors that may have an in-
fluence on the knowledge that a developer has in a source code
file, which might not have been taken into account in this study.

ESEM ’22, September 19–23, 2022, Helsinki, Finland Cury, et al.

For example, knowledge can be acquired in activities that do not
require commits in VCS. However, in this work we limit ourselves
to identify experts using authorship information that can be ex-
tracted from version control systems, which are tools widely used in
software development, making the evaluated techniques applicable
to most projects. Nevertheless, there are other variables that can
be extracted from the information contained in code repositories,
which can also play an important role in the process of identifying
file experts. Among them, we can mention the iteration with files in
the same module and the complexity of the changed code. However,
we perceive these variables as more complex, more difficult to com-
pute, and dependent on the programming language and design of
the target systems. For this reason, we focused on variables that are
less dependent on the particularities of the software under analysis.

Conclusion Validity: Regarding the statistical tests, Spearman’s
rho is used to analyze the correlation between the extracted vari-
ables. This coefficient was chosen because it does not require a
normal distribution or a linear relationship between the variables.
However, there is no wide consensus on the interpretation of the
correlation values returned by the test. However, we relied on inter-
pretations that are also used in studies from different areas [54, 63].
We use 10-fold cross-validation to assess the performance of the
machine learning models. We emphasize the classifier results may
vary to some degree according to the number of folds chosen in
the cross-validation. However, in general, five or 10-folds are rec-
ommended as good parameters [27].

External Validity: Some decisions were taken to maximize the
ability to generalize the study results. For open-source systems, we
choose six popular programming languages. Therefore, by not lim-
iting the projects to a single programming language, we intended
to reduce the impact that certain languages may have on the de-
velopers’ familiarity assessment, and consequently in our results.
In total, data from 113 systems are used. The small amount of data
from private projects makes it difficult to generalize the results for
this type of project, but these results can be generalized to projects
with characteristics similar to those analyzed.

7 CONCLUSION
In this paper, we investigated the use of predictive models for the
identification of source code file experts based on information avail-
able in version control systems. From a large dataset composed
of public and industrial projects, we identified the variables that
are most related to source code knowledge (RQ1). First Authorship
and Number of Lines Added shown highest positive correlations
with knowledge, while Recency and File Size have the highest nega-
tive correlation. Using the best variables in this analysis, machine
learning models were evaluated for the identification of experts
(RQ2). The performance of these models was compared with other
techniques previously studied in the literature. As a result, the ML
algorithms achieved the best F-Measure and precision among the
compared techniques, with highlights for Random Forest, Support
Vector Machines, and Gradient Boosting Machines.

Our findings can support the design and implementation of tools
that seek to automate the process of identifying file experts in

software projects. We also provided insights on the variables that
are most relevant to the derivation of new knowledge models. The
models evaluated in this paper can be part of future investigations
and research in repository analysis. In addition, future research can
assess the performance of the studied techniques in other industrial
contexts.

As a final note, we provide a replication package with the results
of our analysis as well as the survey’s answers, repositories data,
and scripts used in the paper. The replication package is available
at https://doi.org/10.5281/zenodo.6757349.

8 COMPETING INTERESTS
The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

ACKNOWLEDGMENTS
We would like to thank the 501 developers (Ericsson and Open
Source projects) who took their time to answer the survey and
provided essential information to our investigation. Additionally,
we also thank CAPES, CNPq, FAPEMIG, and UFPI for supporting
this work.

REFERENCES
[1] Omar Alonso, Premkumar T Devanbu, and Michael Gertz. 2008. Expertise iden-

tification and visualization from CVS. In Proceedings of the 2008 international
working conference on Mining software repositories. 125–128.

[2] John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who should fix this bug?. In
Proceedings of the 28th international conference on Software engineering. 361–370.

[3] John Anvik and Gail C Murphy. 2007. Determining implementation expertise
from bug reports. In Fourth InternationalWorkshop onMining Software Repositories
(MSR’07: ICSE Workshops 2007). IEEE, 2–2.

[4] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2016.
A novel approach for estimating truck factors. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). IEEE, 1–10.

[5] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2017.
Assessing code authorship: The case of the Linux kernel. In IFIP International
Conference on Open Source Systems. Springer, Cham, 151–163.

[6] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2019.
Measuring and analyzing code authorship in 1 + 118 open source projects. Science
of Computer Programming 176 (may 2019), 14–32.

[7] Guilherme Avelino, Leonardo Passos, Fabio Petrillo, and Marco Tulio Valente.
2018. Who Can Maintain This Code?: Assessing the Effectiveness of Repository-
Mining Techniques for Identifying Software Maintainers. IEEE Software 36, 6
(2018), 34–42.

[8] Daniel Berrar. 2019. Cross-validation. Encyclopedia of Bioinformatics and Com-
putational Biology 1 (2019), 542–545.

[9] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’t touch my code! Examining the effects of
ownership on software quality. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software engineering.
4–14.

[10] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub star? un-
derstanding repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112–129.

[11] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. 2007. Identifying
changed source code lines from version repositories. In Fourth International
Workshop on Mining Software Repositories (MSR’07: ICSE Workshops 2007). IEEE,
14–14.

[12] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is going to mentor newcomers in open source projects?. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering. 1–11.

[13] Diego Castro and Marcelo Schots. 2018. Analysis of test log information through
interactive visualizations. In Proceedings of the 26th Conference on Program Com-
prehension. 156–166.

[14] Marc Claesen and Bart De Moor. 2015. Hyperparameter search in machine
learning. arXiv preprint arXiv:1502.02127 (2015).

Identifying Source Code File Experts ESEM ’22, September 19–23, 2022, Helsinki, Finland

[15] Eleni Constantinou and Georgia M Kapitsaki. 2016. Identifying developers’
expertise in social coding platforms. In 2016 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 63–67.

[16] Catarina Costa, Jair Figueiredo, Leonardo Murta, and Anita Sarma. 2016. TIP-
Merge: recommending experts for integrating changes across branches. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 523–534.

[17] Catarina de Souza Costa, Jose Jair Figueiredo, Joao Felipe Pimentel, Anita Sarma,
and Leonardo Gresta Paulino Murta. 2019. Recommending Participants for
Collaborative Merge Sessions. IEEE Transactions on Software Engineering (2019),
1–1. https://doi.org/10.1109/TSE.2019.2917191

[18] Jose Ricardo da Silva, Esteban Clua, Leonardo Murta, and Anita Sarma. 2015.
Niche vs. breadth: Calculating expertise over time through a fine-grained analysis.
In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 409–418.

[19] Francisco Vanderson de Moura Alves, Pedro de Alcântara dos Santos Neto, Wer-
ney Ayala Luz Lira, and Irvayne Matheus de Sousa Ibiapina. 2018. Analysis of
Code Familiarity in Module and Functionality Perspectives. In Proceedings of the
17th Brazilian Symposium on Software Quality. 41–50.

[20] Hermann Ebbinghaus. 1885. Über das gedächtnis: untersuchungen zur experi-
mentellen psychologie. Duncker & Humblot.

[21] Mívian Ferreira, Marco Tulio Valente, and Kecia Ferreira. 2017. A comparison of
three algorithms for computing truck factors. In 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC). IEEE, 207–217.

[22] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[23] Thomas Fritz, Gail C Murphy, and Emily Hill. 2007. Does a programmer’s activity
indicate knowledge of code?. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. 341–350.

[24] Thomas Fritz, Gail C Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily
Hill. 2014. Degree-of-knowledge: Modeling a developer’s knowledge of code.
ACM Transactions on Software Engineering and Methodology (TOSEM) 23, 2 (2014),
1–42.

[25] Tudor Girba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. 2005.
How developers drive software evolution. In Eighth international workshop on
principles of software evolution (IWPSE’05). IEEE, 113–122.

[26] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn.
2016. Automatically recommending code reviewers based on their expertise:
An empirical comparison. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. 99–110.

[27] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The elements of
statistical learning: data mining, inference, and prediction. Springer Science &
Business Media.

[28] Lile Hattori and Michele Lanza. 2009. Mining the history of synchronous changes
to refine code ownership. In 2009 6th ieee international working conference on
mining software repositories. IEEE, 141–150.

[29] Lile Hattori and Michele Lanza. 2010. Syde: a tool for collaborative software
development. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 2. 235–238.

[30] James D Herbsleb and Rebecca E Grinter. 1999. Splitting the organization and in-
tegrating the code: Conway’s law revisited. In Proceedings of the 21st international
conference on Software engineering. 85–95.

[31] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In 2016 31st IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 426–437.

[32] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied
logistic regression. Vol. 398. John Wiley & Sons.

[33] Md Kamal Hossen, Huzefa Kagdi, and Denys Poshyvanyk. 2014. Amalgamating
source code authors, maintainers, and change proneness to triage change requests.
In Proceedings of the 22nd International Conference on Program Comprehension.
130–141.

[34] Irvayne M. S. Ibiapina, F. V. M. Alves, Werney A. L. Lira, Gleison A. Silva, and
Pedro A. S. Neto. 2017. Inferência da Familiaridade de Código por Meio da
Mineração de Repositórios de Software. Simpósio Brasileiro de Qualidade de
Software - SBQS (2017).

[35] Elgun Jabrayilzade, Mikhail Evtikhiev, Eray Tüzün, and Vladimir Kovalenko.
2022. Bus Factor In Practice. arXiv preprint arXiv:2202.01523 (2022).

[36] Jing Jiang, David Lo, Xinyu Ma, Fuli Feng, and Li Zhang. 2017. Understanding
inactive yet available assignees in GitHub. Information and Software Technology
91 (2017), 44–55.

[37] Huzefa Kagdi, Malcom Gethers, Denys Poshyvanyk, and Maen Hammad. 2012.
Assigning change requests to software developers. Journal of software: Evolution
and Process 24, 1 (2012), 3–33.

[38] Huzefa Kagdi, Maen Hammad, and Jonathan I Maletic. 2008. Who can help me
with this source code change?. In 2008 IEEE International Conference on Software
Maintenance. IEEE, 157–166.

[39] Huzefa Kagdi and Denys Poshyvanyk. 2009. Who can help me with this change
request?. In 2009 IEEE 17th International Conference on Program Comprehension.
IEEE, 273–277.

[40] Mark Kasunic. 2005. Designing an effective survey. Technical Report. Carnegie-
Mellon Univ Pittsburgh PA Software Engineering Inst.

[41] Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich.
2018. Do you remember this source code?. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 764–775.

[42] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by ran-
domForest. R news 2, 3 (2002), 18–22.

[43] Johan Linaker, Sardar Muhammad Sulaman, Martin Höst, and Rafael Maiani de
Mello. 2015. Guidelines for conducting surveys in software engineering v. 1.1.
Lund University (2015).

[44] Werney Ayala Luz Lira. 2016. Um método para inferência da familiaridade de
código em projetos de software. Master’s thesis. Universidade Federal do Piauí,
Teresina.

[45] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2017.
Understanding the use of lambda expressions in Java. Proceedings of the ACM on
Programming Languages 1, OOPSLA (2017), 1–31.

[46] David W McDonald and Mark S Ackerman. 2000. Expertise recommender: a
flexible recommendation system and architecture. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work. 231–240.

[47] Christopher Meek, Bo Thiesson, and David Heckerman. 2002. The learning-curve
sampling method applied to model-based clustering. Journal of Machine Learning
Research 2, Feb (2002), 397–418.

[48] Shawn Minto and Gail C Murphy. 2007. Recommending emergent teams. In
Fourth International Workshop on Mining Software Repositories (MSR’07: ICSE
Workshops 2007). IEEE, 5–5.

[49] Audris Mockus and James D Herbsleb. 2002. Expertise browser: a quantitative ap-
proach to identifying expertise. In Proceedings of the 24th International Conference
on Software Engineering. ICSE 2002. IEEE, 503–512.

[50] Joao Eduardo Montandon, Luciana Lourdes Silva, and Marco Tulio Valente. 2019.
Identifying experts in software libraries and frameworks among GitHub users.
In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR). IEEE, 276–287.

[51] Gonzalo Navarro. 2001. A guided tour to approximate string matching. ACM
computing surveys (CSUR) 33, 1 (2001), 31–88.

[52] Sebastian Nielebock, Robert Heumüller, and Frank Ortmeier. 2019. Programmers
do not favor lambda expressions for concurrent object-oriented code. Empirical
Software Engineering 24, 1 (2019), 103–138.

[53] Johnatan Oliveira, Markos Viggiato, and Eduardo Figueiredo. 2019. How Well
Do You Know This Library? Mining Experts from Source Code Analysis. In
Proceedings of the XVIII Brazilian Symposium on Software Quality. 49–58.

[54] Brian R Overholser and Kevin M Sowinski. 2008. Biostatistics primer: part 2.
Nutrition in clinical practice 23, 1 (2008), 76–84.

[55] Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. 2014. A study of external
community contribution to open-source projects on GitHub. In Proceedings of
the 11th Working Conference on Mining Software Repositories. 332–335.

[56] Leif E Peterson. 2009. K-nearest neighbor. Scholarpedia 4, 2 (2009), 1883.
[57] Foyzur Rahman and Premkumar Devanbu. 2011. Ownership, experience and

defects: a fine-grained study of authorship. In Proceedings of the 33rd International
Conference on Software Engineering. 491–500.

[58] Václav Rajlich. 2014. Software evolution and maintenance. In Proceedings of the
on Future of Software Engineering. 133–144.

[59] Paul Ralph, Sebastian Baltes, Gianisa Adisaputri, Richard Torkar, Vladimir Ko-
valenko, Marcos Kalinowski, Nicole Novielli, Shin Yoo, Xavier Devroey, Xin Tan,
et al. 2005. Pandemic programming: how COVID-19 affects software developers
and how their organizations can help (2020). arXiv preprint arXiv:2005.01127
(2005).

[60] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 155–165.

[61] Manuel Rigger, Stefan Marr, Stephen Kell, David Leopoldseder, and Hanspeter
Mössenböck. 2018. An analysis of x86-64 inline assembly in C programs. In
Proceedings of the 14th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments. 84–99.

[62] Ali Sajedi-Badashian and Eleni Stroulia. 2020. Guidelines for evaluating bug-
assignment research. Journal of Software: Evolution and Process (2020), e2250.

[63] Patrick Schober, Christa Boer, and Lothar A Schwarte. 2018. Correlation coeffi-
cients: appropriate use and interpretation. Anesthesia & Analgesia 126, 5 (2018),
1763–1768.

[64] Emre Sülün, Eray Tüzün, and Uğur Doğrusöz. 2019. Reviewer recommendation
using software artifact traceability graphs. In Proceedings of the Fifteenth Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineering.
66–75.

[65] Emre Sülün, Eray Tüzün, and Uğur Doğrusöz. 2021. RSTrace+: Reviewer sug-
gestion using software artifact traceability graphs. Information and Software

https://doi.org/10.1109/TSE.2019.2917191

ESEM ’22, September 19–23, 2022, Helsinki, Finland Cury, et al.

Technology 130 (2021), 106455.
[66] Xiaobing Sun, Hui Yang, Xin Xia, and Bin Li. 2017. Enhancing developer rec-

ommendation with supplementary information via mining historical commits.
Journal of Systems and Software 134 (2017), 355–368.

[67] Patanamon Thongtanunam, Raula Gaikovina Kula, Ana Erika Camargo Cruz,
Norihiro Yoshida, and Hajimu Iida. 2014. Improving code review effectiveness
through reviewer recommendations. In Proceedings of the 7th International Work-
shop on Cooperative and Human Aspects of Software Engineering. 119–122.

[68] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida.
2016. Revisiting code ownership and its relationship with software quality in the
scope of modern code review. In Proceedings of the 38th international conference
on software engineering. 1039–1050.

[69] Gary M Weiss and Foster Provost. 2001. The effect of class distribution on
classifier learning: an empirical study. (2001).

[70] Jason Weston and Chris Watkins. 1998. Multi-class support vector machines.
Technical Report. Citeseer.

[71] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[72] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, Ahmed E Hassan, and
Naoyasu Ubayashi. 2015. Revisiting the applicability of the pareto principle to
core development teams in open source software projects. In Proceedings of the
14th International Workshop on Principles of Software Evolution. 46–55.

[73] Lei Yu and Huan Liu. 2003. Feature selection for high-dimensional data: A fast
correlation-based filter solution. In Proceedings of the 20th international conference
on machine learning (ICML-03). 856–863.

[74] Nazatul Nurlisa Zolkifli, Amir Ngah, and Aziz Deraman. 2018. Version control
system: A review. Procedia Computer Science 135 (2018), 408–415.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Research that Proposes New Techniques
	2.2 Comparison of Existing Techniques

	3 Research Design
	3.1 Target Subjects
	3.2 Ground Truth Construction
	3.3 Development Variables
	3.4 Compared techniques
	3.5 Linear Techniques Evaluation

	4 Results
	4.1 How do repository-based metrics correlate with developer's knowledge? (RQ1)
	4.2 How do machine learning classifiers compare with traditional techniques in identifying source code experts? (RQ2)

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	8 Competing interests
	Acknowledgments
	References

