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ABSTRACT

For graph matching, each vertex is allowed to match with exactly

one other vertex, such that the spanning subgraph of the matching

has a maximum degree of one, i.e., the subgraph is a [0,1]-factor.

In this work, we provide a highly parallel algorithm to extract a

spanning subgraph with a maximum degree of n (the subgraph

is a [0,n]-factor) and demonstrate the efficiency of our GPU im-

plementation for n=1,2,3,4 by expressing the algorithm in terms

of generalized sparse matrix-vector products. Moreover, from the

[0,2]-factor, we compute a maximum linear forest (union of disjoint

paths) by breaking up cycles and permuting the subgraph with

respect to the vertex order within the paths. Both tasks execute

efficiently on the GPU because of our novel parallel scan imple-

mentation, which does not require a random access iterator. As an

application of linear forests, we demonstrate the algebraic creation

of enhanced tridiagonal preconditioners for various large matrices

from the Sparse Matrix Collection and report runtimes in the order

of milliseconds for graphs with millions of edges and vertices on

an RTX 2080 Ti.
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1 INTRODUCTION

We recall some graph terminology [10]. An undirected graph of

order N is a pair G := (V ,E) with a set of vertices V ⊂ N0
(N := |V |) and a set of edges E := {{v,w} | v,w ∈ V }. A
weighted graph has in addition a function ω : V 2 → R, which
returns a weight ω(e) , 0 for each edge e ∈ E and zero other-

wise. A path in G is a non-empty subgraph P := (VP ,EP ) ⊆ G
with distinct vertices vi in VP = {v0,v1, . . . ,vk−1} and edges

EP = {{v0,v1}, {v1,v2}, . . . , {vk−2,vk−1}}. Vertices v0 and vk−1
are called the ends of P . If we connect the ends with the additional

edge {vk−1,v0} then this is a cycle inG . A spanning subgraph ofG
is a graph with the same vertices asG but only a subset of its edges

E.
In this paper we are interested in the fast extraction of spanning

subgraphs with certain properties. A [0,n]-factor [31] is a spanning
subgraph of G in which each vertex has a degree of at most n. A
[0, 1]-factor does not contain cycles, but all [0,n]-factors with n ≥ 2

can. Removing cycles in general is hard. For the [0, 2]-factor we will

present the fast removal of cycles to obtain an acyclic [0, 2]-factor.

It is a union of disjoint paths, also called a linear forest. Quickly
reordering the vertices in the linear forest with respect to their

order in the paths is a challenge, and we will discuss fast parallel

algorithms for that.

Why are graph factors of interest? Classical graph matchings [6]

compute [0, 1]-factors, which are used for optimizing the power

consumption of wireless networks [38], preconditioning sparse

linear systems [18], solving the data path allocation problem [4],

and for the reordering and scaling of sparse matrices [20]. Com-

puting maximum linear forests is the edge analog of the maximal

path set problem [5], which is solved to approximate the shortest

superstring problem occuring during DNA sequencing [29]. Linear

forests, which contain many strong edges, are also used for direc-

tional coarsening in algebraic multigrid [24], for adaptive algebraic

smoothers [30], and for the setup of tridiagonal preconditioners,

which we will discuss here as an application.

Tridiagonal systems can be inverted at the bandwidth limit of

the GPU [21], so they lend themselves as fast preconditioners for

a linear system of equations Ax = d . However, simply extracting

the tridiagonal part of the system matrix A does not consider the

strength of the included coefficients in the tridiagonal precondi-

tioner and therefore gives suboptimal convergence rates. Instead,

we want a tridiagonal preconditioner that contains many strong

coefficients fromA. We obtain it by extracting a linear forest fromA
and a permutation under which the adjacency matrix of the linear

forest has a tridiagonal form.
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This paper consists of two major parts: first, formulation of the

[0,n]-factor extraction (Section 3.2) in terms of generalized sparse

matrix-vector products (Section 4.1), and second, the computation

of a linear forest from a [0, 2]-factor by breaking up cycles and

determining the path ID and position (Section 3.3). The two tasks

in the second part run efficiently in parallel because of our novel

parallel scan implementation, which does not require a random

access iterator (Section 4.2). Section 5 presents benchmarks and

Section 6 the application of enhanced tridiagonal preconditioners.

2 RELATEDWORK

[0, 1]-Factor Computations: Hagemann et al. [18] use weighted

matchings to precondition symmetric indefinite linear systems,

also similarly performed by Naim et al. [27] on GPUs. Cohen [6]

and Naumov et al. [28] describe how graph matching and coloring

is implemented efficiently on GPUs. Auer and Bisseling [16] de-

veloped a greedy graph matching on GPUs with an MD5 coloring

technique to coarsen a graph in the context of graph partitioning.

The graph matching problem is most related to our algorithms and

was well studied on GPUs [6, 16, 27, 28], but only extracts matched

vertex pairs instead of long paths from a graph.

Linear Forest Computations: Uehara and Chen [36] formulate three

parallel algorithms for the calculation of maximal linear forests.

The work of Shoudai andMiyano [35] shows that finding a maximal

vertex-induced subgraph with a maximum degree of n is an NC
2

problem. These papers are theoretical, they do not provide actual

parallel implementations.

GraphBLAS:. the GraphBLAS standard [23] expresses graph prob-

lems in terms of linear algebra operations, e.g., a shortest-path

calculation expressed as sparse matrix-vector multiplication on the

semiring {min,+,R ∪ {+∞},+∞}. However, a memory efficient

[0,n]-factor computation requires different types for the input and

output vector, the sparsematrix, and the accumulator; this flexibility

is supported by our generalized sparse matrix-vector multiplication.

Minimum Spanning Trees: Minimum spanning tree (MST) algo-

rithms [22, 32, 37] compute an acyclic [0,n′]-factor for an uncon-

strained n′, so that n′ potentially equals the maximum degree in

the graph. An unconstrained n′ allows non-mutual, parallel edge

confirmations, which is not possible for a constrained n in our

[0,n]-factors. We resolve the conflict of more than n propositions

to a single vertex by requiring mutual propositions. However, the

main difference is that MST algorithms keep track of connected

components to avoid cycles during construction, which requires

irregular data structures and limits parallelism to the number of

currently connected components. Instead, we utilize highly par-

allel and more regular algorithmic building blocks of SpMV and

bidirectional scan to get around these limitations.

Other Relations: Our graph algorithms are also related to linear sum

assignment, and matrix transversal problems. The linear sum as-

signment problem [2, 3] is solved by a column permutation, which

minimizes the sum of the diagonal entries of the column-permuted

matrix, which generally represents a weighted bipartite graph, and

was implemented on a GPU by Date and Nagi [7]. Maximum ma-

trix transversals aim to provide a permutation, which maximizes

the sum, product, or amount of non-zero entries of the diagonal

elements of the permuted matrix, and was intensively studied by

Duff et al. [11–15]. Both related problems can also be used to design

algorithms which extract one-dimensional subgraphs, but although

they could provide long paths, they rely on parallel breadth-first

search algorithms [7] or consider dense matrices only [7, 17, 33].

3 ALGORITHMS

We divide the algorithmic contributions of this paper into twomajor

parts: first, the computation of the [0,n]-factor π , and second, the

extraction of a linear forest from a [0, 2]-factor.

3.1 Factor Notation

We generalize the notation from [16] and choose the following

functional representation of the [0,n]-factor π :

π : V → Φ := {ϕ ∈ P(V ) | |ϕ | ≤ n}, π (v) ⊆ Vv , (1)

with Vv := {w ∈ V | ∃ e ∈ E : {v,w} = e } \ {v}, (2)

and P(V ) representing the power set ofV . Thus, π (v) returns either
the empty set, one vertex, . . . , or n vertices from the neighborhood
Vv of v . Function π is subject to the following conditions:

(1) For all v ∈ V there exist at most n different vertices wi ∈

V \ {v} such that v ∈ π (wi ) with i = 0, . . . ,n − 1, i.e., we
allow a vertex to have at most n neighboring vertices in the

[0,n]-factor.
(2) For all v,w ∈ V , v , w , if v ∈ π (w), thenw ∈ π (v),w ∈ Vv ,

and v ∈ Vw , i.e., we only include existing edges {v,w} ∈ E
in the [0,n]-factor.

Algorithm 1: Sequential greedy [0,n]-factor computation

on a weighted graph G = (V ,E).

1 for v ∈ V do

2 π (v) ← ∅

3 end

4 for (v,w) ∈ E in order of decreasing |ω({v,w})| do
5 if |π (v)| < n, |π (w)| < n, and v , w then

6 π (v) ← π (v) ∪ {w}

7 π (w) ← π (w) ∪ {v}

8 end

9 end

If it is not possible to increase the size of π (V ) further without
breaking the conditions, the [0,n]-factor is maximal.

The weight of a [0,n]-factor ωπ is defined as

ωπ :=
∑
e ∈Eπ

|ω(e)|, Eπ := {{v,w} ∈ E | v ∈ π (w)}, (3)

and the relative weight coverage cπ as

cπ :=
ωπ
ωG
, ωG :=

∑
{v,w }∈E,v,w

|ω({v,w})|. (4)

For comparisons with the original vertex ordering we also define

c
id
:=

(N−1∑
i=0
|ω({i, i − 1})| + |ω({i, i + 1})|

)
/ωG (5)
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Algorithm 2: Parallel [0,n]-factor algorithm. Function

charge returns positve(+) or negative(-).

1 Function max_target(v, Θ)
2 return arg maxw∈Θ ( |ω({v, w }) |)
3 end

Data: Weighted graph G = (V , E), ω , and integersm, km
Result: Number of iterations Mmax and [0, n]-factor π

4 for v ∈ V do in parallel

5 π (v) ← ∅
6 end

7 for k = 0, . . . , M − 1 do
8 if k mod m , km then

9 for v ∈ V do in parallel // kernel launch
10 q(v) ←charge(v ,k)
11 end

12 end

13 π ′ ← π // copy current π
14 for v ∈ V do in parallel // kernel launch
15 W ← Vv \ {w ∈ V | |π ′(w ) | = n }
16 if k mod m , km then

17 W ←W \ {w ∈ V | q(w ) = q(v)}
18 end

// Propose edges to neighbors

19 while |π (v) | < n and |Θ←W \ π (v) | > 0 do

20 π (v) ← π (v) ∪ {max_target(v, Θ)}

21 end

22 end

// [0, n]-factor is maximal?

23 if |π (V ) | = |π ′(V ) | and k mod m = km then

24 return k + 1 // return Mmax

25 end

// Remove non-mutual propositions

26 for v ∈ V do in parallel // kernel launch
27 π (v) ← {w ∈ π (v) | v ∈ π (w )}
28 end

29 end

30 return M

3.2 Parallel [0,n]-Factor Algorithm
To evaluate the quality of our parallel [0,n]-factor algorithm, we

use the sequential greedy [0,n]-factor Algorithm 1, which sorts the

edges with respect to their weight in decreasing order and adds

them to π if possible. Note that for n = 1, this algorithm computes

a matching with at least half of the maximum weight considering

all possible matchings [16].

Our parallel [0,n]-factor Algorithm 2 is structured similarly to

the graph matching techniques of Auer and Bisseling [16], but con-

trary to classical graph matching, a vertex is allowed to have n other

neighboring vertices in the [0,n]-factor. For each vertex at most n
outgoing edges with the largest absolute weights are proposed in

parallel in Algorithm 2 Line 19 and non-mutually proposed edges

are removed in Line 27. The remaining edges are the confirmed
edges and part of the [0,n]-factor. The neighboring set for potential
propositions Θ in Line 19 excludes neighbors which already have

n confirmed edges (Line 15), the same charge if k mod m , km
(Line 17), and neighbors with existing confirmed edges (Line 19). If

Algorithm 3: Parallel bidirectional scan to compute path

IDs and positions for a linear forest.

Data: acyclic [0, 2]-factor π
Result: path IDs l , and positions p

1 for v ∈ V do in parallel // kernel launch
2 r (v) ← (1, 1)
3 q(v) ←make_tuple(π (v))
4 end

5 while

∃ wi ∈ q(v) for any v ∈ V such that not is_path_end(wi) do
6 q′ ← q// copy

7 r ′ ← r// copy

8 for v ∈ V do in parallel // kernel launch
9 (w0, w1) ← q′(v)

10 (r0, r1) ← r ′(v)
11 for i = 0, 1 do

12 if not is_path_end(wi) then

13 (v0, v1) ← q′(wi )

14 (t0, t1) ← r ′(wi )

15 for j = 0, 1 do

16 if vj , v then

17 ri ← ri + tj
18 wi ← vj
19 end

20 end

21 end

22 end

// write updated values

23 q(v) ← (w0, w1)

24 r (v) ← (r0, r1)
25 end

26 end

// chose one path end as path ID

27 for v ∈ V do in parallel // kernel launch
28 (w0, w1) ← q(v)
29 (r0, r1) ← r (v)
30 i ← argminj∈{0,1}(w j )

31 l (v) ← wi

32 p(v) ← ri
33 end

a vertex is charged prior to the edge proposition, it is positive(+)

or negative(-) with a probability of p and (1 − p), respectively, and
is only allowed to propose to vertices with a different charge. The

randomness of charge assignments enables larger [0,n]-factors for
graphs with unfavorable structural edge weight properties, e.g.,

strict monotonically increasing edge weights in a specific direction.

The charge of a vertex depends on its ID and the iteration index k .
The propositions and confirmations of edges are done iteratively

with loop index k , to include more edges in the [0,n]-factor. The
parametersm and km control when vertex charging is enabled,M
represents an upper limit for the number of propositions, and the

algorithm returns the number of actual propositions Mmax for a

maximal [0,n]-factor in Line 24.
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(a) Parallel proposition of edges to vertices of different charge

(+,-). Each vertex proposes at most two edges to its neighbors

(two strongest edges).
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(b) Confirmation of mutually proposed edges. For the linear for-

est extraction, the match between vertex 4 and 7 is removed to

break up the cycle.

Figure 1: Edge proposition and confirmation for a [0, 2]-factor (Algorithm 2, with n = 2, k = 0, km = 0) executed on a small

graph.

0 1 2 4 9 8 3 5 7 6

0 1 2 4 9 8 3 5 7 6

0 1 2 4 9 8 3 5 7 6

0 1 2 4 9 8 3 5 7 6

Figure 2: Three steps (bottom to top) of a parallel bidirec-

tional scan for the graph of Figure 1 withN = 10 vertices and

4 paths. Vertices of the same path are connected with green

horizontal lines. Each step represents one kernel launch.

Figure 1 shows the edge proposition and confirmation for charged

vertices for n = 2. For each iteration step k , the charging of the ver-
tices is disabled if k mod m = km , such that each vertex is allowed

to propose to every neighbor which did not reach the maximum

number of confirmed edges yet. This has two advantages: first, for

some graphs, the unrestricted edge proposition creates large [0,n]-
factors after the first proposition step. If vertex charging had been

used for these graphs, more iterations would have been required

to obtain the same [0,n]-factor size. Second, if nothing is proposed

without vertex charging enabled, the [0,n]-factor is maximal and

we may stop the iterations (Alg. 2 Line 23).

3.3 From a [0, 2]-Factor to a Linear Forest

The [0, 2]-factor represented by π contains only connectivity infor-

mation. Only the two or fewer neighbors are known for each vertex,

whereas it is unknown in which path or cycle a vertex is located

(there is no path ID), nor at which position within the path or cycle

a vertex resides. We first break up the cycles. For that purpose,

the weakest edge of each cycle is removed to keep the weight ωπ
(Eq. 3) of the linear forest large. Afterward, we compute the path

ID and position within the path for each vertex. A permutation of

the adjacency matrix of the linear forest, which makes it tridiago-

nal, is obtained by sorting the vertex IDs with respect to their key

composed of path ID and position.

We arrange the linear forest extraction algorithm from a [0, 2]-

factor π into four steps:

((A′)4, j , j) (0.2, 3) (0.3, 5) (0.9, 6) (0.4, 7) (0.5, 9)

accumulator

without charging

(0.2, 3)

(0.0, _)

(0.3, 5)

(0.2, 3)

(0.9, 6)

(0.3, 5)

(0.9, 6)

(0.4, 7)

(0.9, 6)

(0.5, 9)

charge + - - + +

accumulator

with charging

(0.2, 3)

(0.0, _)

(0.2, 3)

(0.0, _)

(0.2, 3)

(0.0, _)

(0.4, 7)

(0.2, 3)

(0.5, 9)

(0.4, 7)

Table 1: Edge proposition for vertex 4 (-) of Figure 1 ex-

pressed as reduction along matrix row (A′)4, j from left to

right. The accumulator consists of two (n = 2) sorted pairs

((A′)i, j , j).

(1) Identify cycles: identify cycles and break them up by re-

moving their weakest edge.

(2) Identify paths: obtain the path ID and position within the

path for all vertices.

(3) Compute permutation: sort vertex IDs with respect to

their path ID and position to get the permutation in which

the adjacency matrix of the linear forest is tridiagonal.

(4) Extract weight coefficients:with the permuattion, extract

coefficients from the adjacency matrix of G.

For steps (1) and (2), we use a bidirectional scan to design parallel

algorithms. A bidirectional scan executes two scans in two opposite

directions simultaneously. In this way, we can compute the result

of two different opposed scans or find and broadcast a specific

value in parallel. The access pattern of our bidirectional scan on

multiple paths is shown in Figure 2. Considering a single path,

this pattern appears in the Parallel Cyclic Reduction Algorithm [9].

Such an access pattern allows, for example, to broadcast a value to

all threads participating in the scan, although a single thread does

not visit every neighbor explicitly. The scan must be bidirectional

because π is structured like a double-linked list but with unknown

orientation about which neighbor is forward and which backward,

e.g., within the [0, 2]-factor, the forward neighbor of vertex 8 in the

right part of Figure 1 might be vertex 9, but vertex 4 might be the

backward neighbor of vertex 9.

In the bidirectional scan for step (2), the path-ends and the path-

positions for all vertices are determined, which is shown in Al-

gorithm 3. For the latter, each vertex initializes its forward and

backward oriented position with a ’1’ in Line 2 and the bidirec-

tional scan with an addition operator, which is applied in Line 17,
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computes the path position in both directions. The initialization of

the stride-q neighbors in Line 3, sets q(v) to the [0, 2]-factor neigh-

bors π (v), and fills up the tuple with the vertex ID v , but marked as

a path end. First, q saves the vertices, which are visited in the next

scan iteration step but also contains both path ends after execution,

which is assigned to the result in Line 31. We define the path ID as

the minimum ID of the vertices at the path ends, and this defines

also the orientation: the vertex at the path end with the smaller ID

is at position 1, its neighbor at position 2, etc.

Scan algorithms are often parameterized on the operation (e.g.,

thrust::inclusive_scan [19]) so that prefix sums and other prop-

erties like minima can be computed by changing the operator to

min. In the same fashion, we use a bidirectional scan for step (1)

to determine the weakest edge within a cycle. The weakest edge

is uniquely identified by the weight and the IDs of the incident

vertices. The algorithm for step (1) is constructed analogously to

step (2) but only identifies cycles and their weakest edge.

Theoretically, steps (1) and (2) can be merged by searching for

the weakest edge and the distance to it, but in practice this incurs

more data movement and longer running times.

4 IMPLEMENTATION

All implementations use CUDA for a parallel execution on NVIDIA

GPUs. In the following, we assume that the graph is saved as an

adjacency matrix A. Thus, each matrix entry ai j corresponds to the
weight of the edge between vertex i and vertex j . To avoid additional
branching in the kernels the diagonal of A is deducted and the co-

efficients are set to their absolute values with A′ := |A| − diag(|A|)
before the [0,n]-factor computation. The implementation of Al-

gorithm 2 also supports directed input graphs for the calculation

of π , which works well for the test cases presented in this paper.

However, constructing π from an underlying undirected graph

and extracting the coefficients from the original graph is a better

alternative for general graphs.

4.1 Parallel [0,n]-Factor Computation for n ≤ 4

The edge proposition (Alg. 2, Line 14) was implemented by leverag-

ing a generalized sparse matrix-vector product on the GPU, where

the multiplication is replaced by a different binary operation (⊗)

and the summation is replaced by a different reduction operation

(⊕). For the first edge proposition (k = 0), a reduction-by-key algo-

rithm finds the n maximum edge weights in each row i of matrix

A′, which is shown in Table 1 for vertex 4, n = 2 and A′ in CSR

format. The corresponding accumulator type saves n sorted pairs of

a value and its corresponding column index j. In the beginning of

the example the first value-column pair (0.2, 3) is the initial value

of the accumulator, and pairs with larger coefficients are inserted

into the accumulator in subsequent steps to the right. With vertex

charging enabled, the coefficients of the same charge as the current

matrix row are ignored, which results in a proposition of vertex 4

to vertices 9 and 7 because these edges are of maximum weight and

different charge. Without charging, vertex 4 proposes to vertices 6

and 9.

In subsequent edge propositions (k > 0), a vertex is may only

propose edges to vertices, which do not have n confirmed edges yet.

That indirect lookup is expressed in sparse matrix-vector products

A′x by vector x , which saves the n ·N confirmed edges. If a vertex j
has already n confirmed edges, the result of the abstract multiplica-

tion operator (A′)i, j ⊗ x j evaluates to zero, and the edge is ignored

during edge proposition. When vertex charging is enabled, another

indirect lookup in the abstract multiplication operator ensures that

zero is returned if the vertices have the same charge. The charges

are calculated before each edge proposition in Line 10 with a part of

the MD5 algorithm, which was also used by Auer and Bisseling [16].

We summarize the memory requirements for the edge proposition

in Table 2. Note that the edge weights ofA′ are also written if n = 2,

such that the minimum edge weight of cycles can be identified in

the subsequent Algorithm 3.

After the edge proposition, the parallel loop in Algorithm 2

Line 26 is executed by another kernel to remove non-mutually

proposed edges.

4.2 From a [0, 2]-Factor to a Linear Forest

We implemented a step-efficient bidirectional scan to obtain the

path IDs and position of the vertices with log 2(N ) kernel launches
and a butterfly access pattern, which is visualized in Figure 2 for

a linear forest. Instead of explicitly checking the condition in Al-

gorithm 3 Line 5, the kernel is launched log 2(N ) times, so even if

all vertices reside in one path we obtain the correct result. Overall

work is N log 2(N ), whereas a work-efficient scan is O(N ).
If we reach the path’s end, during the stride-q neighbor compu-

tation, we mark this by setting the stride-q neighbor to the nega-

tive 1-based index of the path’s end ID. Let qmax be the last and

largest stride of the algorithm. A positive stride-qmax neighbor af-

ter log 2(N ) scan steps indicates that the vertex is part of a cycle

because had it reached a path’s end, it would be negative.

The first bidirectional scan of step (1) in Section 3.3 requires

read/write buffers for the stride-q neighbors, the weakest edge

weights, and the vertex IDs incident to the weakest edge. The

second bidirectional scan for step (2) in Section 3.3 requires only

read/write buffers for the stride-q neighbors and the path positions,

thus requiring fewer buffers during execution.

Each buffer mentioned above is allocated twice as an input and

output buffer and used in a ping-pong fashion. Otherwise, other

threads might read a value of a neighboring vertex during the scan

execution after the update for that vertex has already overwritten

the original input value in memory.

The above algorithms could not have been implemented with

other scan operators of GPU libraries like Thrust [19] or CUB [26]

as these are restricted to random access iterators. Even on CPUs,

all parallel implementations of reduction or scan always assume

random access iterators, cf. parallel STL in C++17. Our novel paral-

lel scan implementation does not have this restriction; bidirectional

connectivity suffices. This is even weaker than the concept of a

bidirectional iterator, which includes global orientation informa-

tion of what is forward and backward. We only have bidirectional

connectivity, not knowing which neighbor is forward and which is

backward along the path and still compute the scan in parallel.

4.3 Linear Forest Extraction

To obtain a permutation Q of A such that the edge weights, which

are part of a linear forest of A are located in the tridiagonal part of
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read written

label length type label length type

for k = 0

CSR values nnz value proposed edges nN index

CSR col indices nnz index proposed edge weights nN value

CSR row ptrs N + 1 index

vertex charges N bool

additional data for k > 0 confirmed edges nN index

Table 2: Read and written buffers in global GPU memory for the implementation of the edge proposition, which is expressed

as generalized sparse matrix-vector product.

matrix symmetric N nnz ∆(G)
af_shell8 y 504 855 17 588 875 34.84

aniso1 y 6 250 000 56 220 004 9.00

aniso2 y 6 250 000 56 220 004 9.00

aniso3 y 6 250 000 56 220 004 9.00

atmosmodd n 1 270 432 8 814 880 6.94

atmosmodj n 1 270 432 8 814 880 6.94

atmosmodl n 1 489 752 10 319 760 6.93

atmosmodm n 1 489 752 10 319 760 6.93

bump_2911 y 2 911 419 127 729 899 43.87

cube_coup_dt0 y 2 164 760 127 206 144 58.76

curlcurl_3 y 1 219 574 13 544 618 11.11

curlcurl_4 y 2 380 515 26 515 867 11.14

ecology1 y 1 000 000 4 996 000 5.00

ecology2 y 999 999 4 995 991 5.00

g3_circuit y 1 585 478 7 660 826 4.83

geo_1438 y 1 437 960 63 156 690 43.92

hook_1498 y 1 498 023 60 917 445 40.67

long_coup_dt0 y 1 470 152 87 088 992 59.24

ml_geer n 1 504 002 110 879 972 73.72

stocf-1465 y 1 465 137 21 005 389 14.34

thermal2 y 1 228 045 8 580 313 6.99

transport n 1 602 111 23 500 731 14.67

Table 3: Pattern symmetric test matrices which are from the

SparseMatrix Collection [8] or from [21] (aniso{1,2,3}). ∆(G)
denotes the mean degree of the graph G.

QTAQ , the vertex IDs are sorted with a radix sort from CUB [25]

with respect to their key composed of path ID and position. The

coefficients of the tridiagonal system are taken from the original in-

put matrix A by converting A into a COO format and assigning one

GPU thread to one coefficient ofA. With the vector of the confirmed

edges, each thread checks if the edge is part of the linear forest and

scatters its value with the permutation into the tridiagonal system,

which is saved in three buffers of length N .

5 RESULTS

For the results presented in this paper, we use a machine with

CentOS 7, CUDA Toolkit 11.4.48, CUDA driver 470.74, GCC 10.2.0,

a GeForce 2080 Ti and an Intel(R) Xeon(R) Platinum 8168 CPU @

2.70GHz. If not mentioned explicitly, the experiments were done in

single-precision as the RTX 2080 Ti only has a few double-precision

units. For double-precision performance, professional accelerator

cards (V100, A100) can be used. Additionally to the test matrices

from the Sparse Matrix Collection [8], which are listed in Table 3

we use three 2D anisotropic problems (aniso1,2,3) from [21], which

represent an equidistant grid with the stencils:

aniso1 aniso2©«
−0.2 −0.1 −0.2

−1.0 3.0 −1.0

−0.2 −0.1 −0.2

ª®¬ , ©«
−0.1 −0.2 −1.0

−0.2 3.0 −0.2

−1.0 −0.2 −0.1

ª®¬ ,
and matrix aniso3 is obtained by permuting aniso2, such that the

coefficients with value −1.0 are located on the sub- and superdiag-

onal of A.

5.1 Weight Coverage Results

Table 4 shows the weight coverage results for the parallel [0, 2]-

factor computation with Algorithm 2 in comparison to the greedy

sequential Algorithm 1. When A′ is not symmetric, the [0,n]-factor
computations use A′ + A′T , but the weight coverage results are

calculated with respect to the original matrix A. For the parallel
[0, 2]-factor computation, we use three different configurations:

(1) m = 1, km = 0: no vertex charging enabled ∀k .
(2) m = 5, km = 0: no charging on iterations k = 0, 5, 10, . . . .

(3) m = 5, km = 1: no charging on iterations k = 1, 6, 11, . . . .

All configurations use p = 0.5, which is the rounded optimal value

for graph matching determined by Auer and Bisseling [16]. For

configuration (1), the weight coverage of the maximal [0, 2]-factor

exceeds the results of the sequential algorithm for matrices ecol-

ogy1,2, atmosmodd, and atmosmodj (Table 4). However, the num-

ber of iterations to reach a maximal [0, 2]-factor is often high and

the weight coverage increase per iteration is very little for the same

matrices, which is indicated by low values of the weight coverage

after five iterations cπ (5). Configurations (2) and (3) perform much

better on these matrices. The comparison between them points

out the possible limitations of cπ if vertex charging is applied in

the first iteration, e.g., for matrices stocf-1465, g3_circuit, and

long_coup_dt0.The same limiting effect is also observable for

n = 1, 3, 4. Therefore, for all following results, we utilize configura-

tion (2) withM = 5 as the default configuration because it results in

the same weight coverage as the sequential [0, 2]-factor algorithm

in most cases.

In Table 5 the weight coverages for n = 1, 2, 3, 4 are shown with

the previously chosen default parameters in comparison to the se-

quential results. With the maximum difference between the parallel

and sequential result of 0.04 for n = 1 on matrix atmosmodm, the

parallel algorithm reaches almost the same weight coverage as the

sequential algorithm. Additionally, the table contains the weight

coverage of the sub- and superdiagonal c
id
given by Equation 5.
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parallel alg. 2 seqential

no charging ∀k no charging on k = 0, 5, 10, . . . no charging on k = 1, 6, 11, . . . alg. 1

matrix cπ (5) cπ (Mmax) Mmax cπ (5) cπ (Mmax) Mmax cπ (5) cπ (Mmax) Mmax cπ
af_shell8 0.20 0.24 195 0.23 0.23 16 0.22 0.22 17 0.23

aniso1 0.67 0.67 1252 0.67 0.67 11 0.54 0.54 17 0.67

aniso2 0.67 0.67 1251 0.67 0.67 11 0.57 0.57 12 0.67

aniso3 0.67 0.67 55 0.67 0.67 11 0.56 0.56 17 0.67

atmosmodd 0.02 0.47 164 0.41 0.42 16 0.42 0.42 17 0.44

atmosmodj 0.02 0.47 164 0.41 0.42 16 0.42 0.42 17 0.44

atmosmodl 0.48 0.49 297 0.49 0.49 16 0.43 0.43 12 0.49

atmosmodm 0.95 0.95 297 0.95 0.95 16 0.74 0.74 12 0.95

bump_2911 0.81 0.82 31 0.81 0.82 26 0.64 0.64 27 0.82

cube_coup_dt0 0.26 0.26 102 0.26 0.26 21 0.22 0.22 22 0.26

curlcurl_3 0.34 0.34 47 0.34 0.34 16 0.36 0.36 12 0.34

curlcurl_4 0.33 0.34 47 0.33 0.33 16 0.35 0.35 12 0.34

ecology1 0.00 0.50 1037 0.46 0.47 16 0.46 0.47 17 0.47

ecology2 0.00 0.50 1038 0.46 0.47 16 0.46 0.47 17 0.47

g3_circuit 0.56 0.71 159 0.70 0.70 16 0.59 0.59 17 0.70

geo_1438 0.28 0.28 18 0.28 0.28 16 0.25 0.25 17 0.28

hook_1498 0.22 0.22 11 0.22 0.22 16 0.20 0.20 17 0.22

long_coup_dt0 0.70 0.70 110 0.69 0.69 31 0.55 0.55 27 0.70

ml_geer 0.20 0.20 383 0.20 0.20 11 0.17 0.17 17 0.20

stocf-1465 1.00 1.00 11 1.00 1.00 16 0.78 0.78 17 1.00

thermal2 0.47 0.47 7 0.47 0.47 16 0.44 0.44 12 0.47

transport 0.24 0.49 290 0.45 0.45 16 0.44 0.44 17 0.47

Table 4: [0, 2]-factor computation on the undirected graph of the given matrix and their relative weight coverage (Eq. 4) after

five iterationsM = 5, cπ (5), and the maximal [0, 2]-factor cπ (Mmax), which is reached afterMmax iterations.

scheme cuSPARSE SpMV SRCSR SpMV proposition−n=1 proposition−n=2 proposition−n=3 proposition−n=4
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Figure 3: Performance results for one kernel execution of edge proposition according to Algorithm 2, Lines 14-22 with k >
0, m = 1, km = 0 and different n in comparison to SpMV algorithms. Except cuSPARSE SpMV, all schemes use our generalized

sparse matrix-vector implementation.

Comparing c
id
with cπ (5) for n = 2 allows an estimation of the

weight of an algebraically extracted tridiagonal system with the

tridiagonal part of A in the original vertex order, e.g., the tridi-

agonal part of atmosmodd already contains strong coefficients,

whereas the algebraically extracted [0, 2]-factor of atmosmodm
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Figure 4: Double-precision BiCGStab convergence results

with our algebraically constructed scalar and 2x2 block tridi-

agonal preconditioner in comparison to a Jacobi and tridiag-

onal preconditioner based on the original vertex ordering.

holds a much larger weight than just the tridiagonal part of the

matrix in the original order.

5.2 Performance Results

5.2.1 Edge Proposition of Parallel [0,n]-Factor Computation. We

use our generalized sparse matrix-vector implementation for the

parallel edge proposition of Algorithm 2, Line 14 and compare the

performance with the normal cuSPARSE SpMV and our segmented

reduction (SRCSR) SpMV implementation, which both calculate

d = Ax + d for a CSR matrix. The implementation of the parallel

edge proposition and the SRCSR SpMV schemes only differ by data

types and functors, and use the same generic sparse matrix-vector

API. The time of the SpMV setup kernels for cuSPARSE and our

generalized sparse matrix-vector implementation is not included in

the time measurement. Although the setup of cuSPARSE’s SpMV is

not explicitly exposed, a binary search kernel is executed prior to

the actual sparse-matrix vector calculating kernel, which is visible

with the profiler.

The average runtimes and throughputs were measured with

NVIDIA Nsight Compute and are shown in Figure 3. Due to sig-

nificantly different matrix sizes, the upper plot shows the times

relative to the longest kernel. For the normal sparse matrix-vector

product (d = Ax + d), our general SRCSR code has similar per-

formance to the specialized cuSPARSE assembly optimized code.

Therefore, SRCSR has an efficient implementation, despite its gen-

erality which cuSPARSE does not have. The kernel (Algorithm 2,

Line 14) is executed by SRCSR with appropriate lambda and type

parameterization, but the lambdas contain a lot of complex code

(70 lines). So the resulting SRCSR code after lambda inlining by the

compiler

• does much more work than a normal SpMV,

• has more instruction flow divergence (if-statements) than a

normal SpMV,

• uses more registers than a normal SpMV,

• uses more shared memory than a normal SpMV,

• uses more input and output vectors (more DRAM traffic)

than a normal SpMV (see Table 2).

Therefore, we cannot expect Algorithm 2 to run at the speed of

a normal SpMV. The performance of the normal SpMV serves as

roofline in the comparison because it solves a simpler problem but

on the same matrix structure. Achieving 30-50% of this roofline

with a more demanding and irregular algorithm (Alg. 2), proves

high efficiency of the implementation.

We evaluated alternative implementations for [0,n]-factor com-

putation in which the SRCSR kernel contains less work and has a

similar runtime to normal SpMV but this requires more substeps

and other additional kernels. Although the additional kernels run

at full bandwidth the approach presented here, which is limited by

the reduction operation along the rows, has the shortest overall

runtime.

Other implementations to find the columns of the n maximal

values within each matrix row with CUB’s [25] segmented reduc-

tion or segmented sort are approximately one order of magnitude

slower for 2 ≤ n ≤ 4.

5.2.2 Bidirectional Scan to Extract the Linear Forest. The linear

forest extraction consists of the identification of the cycles, the path

identification, and the extraction of the coefficients (see Section 3.3).

The first two steps are implemented with our bidirectional scan

that is executed log 2(N ) times for each step. Top of Figure 5 shows

the throughput statistics of the bidirectional scans as a boxplot,

which reveals worse throughput for some kernel executions due

to the expected irregular global memory accesses when visiting

the stride-q vertex neighbors. However, in most cases, the median

of the throughputs is close to the performance of a simple copy

kernel. The comparison of the averaged total running times of the

sequential CPU version with the parallel GPU version in the lower

part of Figure 5 reports speedups from factor 4x to 24x. Contrary

to the parallel GPU algorithm, the sequential version performs far
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c
id

cπ (5) 2x2 block

n = 1 n = 2 n = 3 n = 4 tridiagonal

matrix par seq par seq par seq par seq m = 1 m = 5

af_shell8 0.01 0.14 0.14 0.23 0.23 0.34 0.34 0.40 0.40 0.38 0.43

aniso1 0.68 0.27 0.29 0.67 0.67 0.72 0.73 0.79 0.79 0.68 0.64

aniso2 0.13 0.27 0.29 0.67 0.67 0.72 0.73 0.79 0.79 0.68 0.64

aniso3 0.68 0.27 0.29 0.67 0.67 0.72 0.73 0.79 0.79 0.68 0.64

atmosmodd 0.46 0.19 0.21 0.41 0.44 0.65 0.67 0.93 0.93 0.02 0.50

atmosmodj 0.46 0.19 0.21 0.41 0.44 0.65 0.67 0.93 0.93 0.02 0.50

atmosmodl 0.25 0.21 0.22 0.49 0.49 0.60 0.61 0.73 0.73 0.41 0.45

atmosmodm 0.03 0.38 0.42 0.95 0.95 0.96 0.96 0.97 0.97 0.94 0.86

bump_2911 0.01 0.46 0.49 0.81 0.82 0.84 0.84 0.86 0.86 0.84 0.83

cube_coup_dt0 0.06 0.11 0.13 0.26 0.26 0.33 0.34 0.38 0.38 0.29 0.29

curlcurl_3 0.15 0.17 0.17 0.34 0.34 0.54 0.55 0.76 0.76 0.44 0.54

curlcurl_4 0.15 0.17 0.17 0.33 0.34 0.53 0.54 0.74 0.74 0.40 0.53

ecology1 0.50 0.21 0.23 0.46 0.47 0.71 0.71 1.00 1.00 0.00 0.55

ecology2 0.50 0.21 0.23 0.46 0.47 0.71 0.71 1.00 1.00 0.00 0.55

g3_circuit 0.29 0.50 0.51 0.70 0.70 0.83 0.84 1.00 1.00 0.61 0.73

geo_1438 0.04 0.13 0.14 0.28 0.28 0.36 0.37 0.44 0.44 0.33 0.33

hook_1498 0.04 0.11 0.11 0.22 0.22 0.28 0.28 0.33 0.33 0.25 0.25

long_coup_dt0 0.10 0.49 0.50 0.69 0.70 0.79 0.79 0.87 0.87 0.84 0.83

ml_geer 0.05 0.09 0.09 0.20 0.20 0.25 0.26 0.32 0.32 0.23 0.26

stocf-1465 0.23 0.92 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

thermal2 0.10 0.23 0.24 0.47 0.47 0.68 0.68 0.84 0.84 0.58 0.58

transport 0.49 0.20 0.22 0.45 0.47 0.68 0.70 0.98 0.98 0.25 0.53

Table 5: [0,n]-factors of underlying undirected graphs and their relative weight coverages (Eq. 4) after five iterations M =

5, cπ (5), km = 0, m = 5 of the parallel (par) Algorithm 2, in comparison to the results of the sequential (seq) Algorithm 1. The

coverage of the sub- and superdiagonal in the original ordering is shown by c
id
(Eq. 5). The weight coverage of the algebraically

constructed 2x2 block tridiagonal preconditioner is shown in the right part of the table (see Section 6).

less work: it creates the permutation while the vertices are visited

without an explicit sorting.

We cannot compare against well-known parallel scan implemen-

tations from Thrust [19] or CUB [26] because of their random access

iterator requirement, the end of Section 4.2 has more details.

6 APPLICATION

As an exemplary application, we show the setup of an algebraic

scalar (AlgTriScalPrecond) and 2x2 block tridiagonal preconditioner

(AlgTriBlockPrecond). The [0, 2]-factor computation and the extrac-

tion of a linear forest are used to setup AlgTriScalPrecond, which

is shown in Figure 6 by the time breakdown of the complete setup.

Algorithm 2 for the [0, 2]-factor computation and the bidirectional

scans (including Algorithm 3) consumes most of the time, whereas

the actual coefficient extraction only requires at most 10% of the

setup time.

AlgTriBlockPrecond is constructed by a [0, 1]-factor and a sub-

sequent [0, 2]-factor computation. With the [0, 1]-factor, the graph

is coarsened, such that the matched pairs represent a single ver-

tex in the coarser graph. On that coarse graph, the [0, 2]-factor is

computed, resulting in a 2x2 block tridiagonal system on the fine

graph. For vertices without a match in the [0, 1]-factor, we add an

uncoupled ghost equation by setting the diagonal and right-hand

side value in the corresponding additional row to one. Otherwise

an irregular 2x2/1x1 block tridiagonal system would have to be

processed. The weight coverage of AlgTriBlockPrecond is shown in

the right part of Table 5 form = 1, 5, which is used for both factor

computations. For matrices aniso1,2,3 and atmosmodm,m = 1 (no

vertex charging ∀k) results in a higher weight coverage, whereas

for matrices af_shell8 and ecology1,2,m = 5 (no vertex charging

on k = 0, 5, 10, . . . ) is better. Hence we conclude that the parame-

ters for a [0,n]-factor computation and for recursive [0,n]-factor
computations on the coarser graphs, must be chosen differently to

maximize the weight coverage but automatic parameter control in

nested factor computations is beyond the scope of this paper.

To evaluate the convergence of our new preconditioners, we

compare it with a Jacobi and a tridiagonal preconditioner (TriScal-

Precond) which are constructed based on the original vertex order-

ing and use a BiCGStab as the outer Krylov solver [34]. Obviously,

there are many more choices of preconditioners. The compared pre-

conditioners here all have a tridiagonal matrix structure and take

a similar time to solution. Comparing against preconditioners of

completely different complexity (e.g. ILU) would require many plots

on the tradeoff between numerical vs. computational efficiency and

a detailed discussion of suitability with respect to matrix types.

The implementation of the outer solver and the Jacobi precondi-

tioner is taken from the MAGMA [1] library. The right-hand side is

constructed from a generated solution with xt [i] := sin (16πi/N ).
With the true solution being known, we calculate the forward rel-

ative error as FRE := |x − xt |2/|xt |2, where x is the computed

solution. The convergence results with the relative residual norm

and the forward relative error are shown in Figure 4. Here, all results

are in double-precision as we want to highlight the convergence

improvement of the new preconditioners. In single-precision the
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Figure 5: Memory throughput statistics (top) for both bidirectional scan kernels and total runtimes (bottom) including

steps (1), (2), (3) from Section 3.3. The speedup of the parallel version is written above the bars.
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Figure 6: Time breakdown for [0, 2]-factor computation (Algorithm 2 with M = 5,m = 5,km = 0,n = 2), and the extraction

of the linear forest (Section 3.3) to algebraically construct a tridiagonal preconditioner. The total absolute running time in

milliseconds is written above the bars.

tridiagonal solves execute at the bandwidth limit of the GPU [21],

for double-precision performance professional accelerator cards

(V100, A100) would be required. The improvement of the algebraic

tridiagonal preconditioners for matrix aniso2 is expected, as they

include the strong coefficients from the diagonal of the stencil,

which were permuted manually to the sub- and superdiagonal in

aniso3. For matrices atmosmodj, atmosmodl, and atmosmodm,

the [0, 2]-factor contains increasingly more weight relative to the

original vertex ordering c
id
, which is visible in Table 5. The con-

vergence improvement for matrix atmosmodm is strongest, as the

algebraic preconditioners have a weight coverage of up to 95%,

whereas TriScalPrecond has a weight coverage of only 3%. This

example also shows the coupling between convergence rate and

weight coverage of AlgTriBlockPrecond, which has either a weight
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coverage of 94% form = 1 and performs as well as the AlgTriScal-

Precond (cπ (5) = 0.95), or a weight coverage of 86% form = 5 and

performs worse. For matrix af_shell8, the TriScalPrecond with

a weight coverage of 1% includes approximately the same coeffi-

cients as the Jacobi preconditioner. The AlgTriScalPrecond with

cπ (5) = 0.23 includes not enough off-diagonal coefficients to obtain

a stable convergence behaviour, which is achieved by AlgTriBlock-

Precond with a weight coverage of 38% or 43%. In summary, in

most cases, we see significant benefits of algebraically creating the

tridiagonal system (AlgTriScalPrecond) rather than relying on the

tridiagonal part of the matrix in the original ordering. The block

version (AlgTriBlockPrecond) performs consistently even better.

7 CONCLUSION

We have shown how to compute [0,n]-factors efficiently in parallel

with our generalized sparse matrix-vector product and how our

new bidirectional scan, which does not require a random access

iterator, identifies cycles, paths and positions in a [0, 2]-factor to

create a linear forest. Benchmarks on large graphs demonstrate

our parallel algorithms’ high weight coverage at high speed. In the

application to linear equation systems the high coverage results in

superior convergence of the algebraically constructed scalar and

2x2 block tridiagonal preconditioners.
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