
Investigating Coverage Guided Fuzzing with Mutation Testing
Ruixiang Qian∗

qrx@smail.nju.edu.cn
State Key Laboratory for Novel Software Technology

Nanjing University, China

Quanjun Zhang∗
quanjun.zhang@smail.nju.edu.cn

State Key Laboratory for Novel Software Technology
Nanjing University, China

Chunrong Fang†
fangchunrong@nju.edu.cn

State Key Laboratory for Novel Software Technology
Nanjing University, China

Lihua Guo
garyglh@163.com

State Key Laboratory for Novel Software Technology
Nanjing University, China

ABSTRACT

Coverage guided fuzzing (CGF) is an effective testing technique
which has detected hundreds of thousands of bugs from various
software applications. It focuses on maximizing code coverage to
reveal more bugs during fuzzing. However, a higher coverage does
not necessarily imply a better fault detection capability. Triggering
a bug involves not only exercising the specific program path but
also reaching interesting program states in that path.

In this paper, we use mutation testing to improve CGF in detect-
ing bugs. We use mutation scores as additional feedback to guide
fuzzing towards detecting bugs rather than just covering code. To
evaluate our approach, we conduct a well-designed experiment on
5 benchmarks. We choose the state-of-the-art fuzzing technique
Zest as baseline and construct two modified techniques on it using
our approach. The experimental results show that our approach
can improve CGF in both code coverage and bug detection.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; • Theory of computation→ Program analysis.

KEYWORDS

Fuzzing, Coverage Guided Fuzzing, Mutation testing

ACM Reference Format:

Ruixiang Qian, Quanjun Zhang, Chunrong Fang, and Lihua Guo. 2022. In-
vestigating Coverage Guided Fuzzing with Mutation Testing. In Proceedings
of Internetware’22: the 13th Asia-Pacific Symposium on Internetware (Inter-
netware’22). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
1122445.1122456

∗Both authors contributed equallny to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Internetware’22, June 11–12, 2022, Hohhot, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Fuzzing is one of the most popular techniques to test software cor-
rectness and reliability [8, 20]. At high level, fuzzing is a process
that repeatedly runs the program under test (PUT) with a mess of
generated inputs, some of which maybe syntactically or semanti-
cally invalid. It relies on a component named fuzzer to generate test
inputs and execute the PUT. Generally, a fuzzer generates inputs
from given seeds and exercises the PUT continuously with the aim
of exposing errors of PUTs in a period of time. To date, fuzzing is
almost the most widely-adopted technique due to its conceptual
simplicity, low barrier for deployment, and efficacy in discovering
real-world bugs [20].

However, fuzzing can be rather ineffective at exploring different
program paths. This is because a fuzzer, or more specifically a black-
box fuzzer, exercises a PUT in a totally blind manner. White-box
fuzzers adopt systematic effort[8, 12] to aid fuzzing in searching
diverse program paths. However, white-box fuzzers can slow down
the execution of the PUT due to the heavy program analysis it
performs [20]. To make balance, coverage guided fuzzing (CGF)
[2, 20] uses lightweight instrumentation to gain coverage informa-
tion from executions and guide fuzzing towards rarely executed
paths with attained coverage. Owing to its strengths, many CGF
techniques have emerged in recent years[2, 4, 16, 23, 24, 33]. For
example, Zest [24] focuses on programs with syntax checks and
has revealed semantic bugs in 5 widely used third-party applica-
tions; AFL [33] has been reported to detect tens of thousands of
vulnerabilities in hundreds of real-world software projects [4].

CGF endeavours to reveal bugs within the PUT via maximizing
code coverage [25]. However, a higher coverage does not neces-
sarily imply a better bug detection capability. Many researches
have revealed that the correlation between code coverage and bug
detection capability is weak [10, 15, 18]. Concentrating only on
code coverage provides inadequate feedback for fuzzing, which
may potentially lower its effectiveness in detecting bugs.

In this paper, we incorporate CGF with mutation testing to ad-
dress the aforementioned challenges. Mutation testing is a fault-
based testing technique which realises the idea of using mutants
(buggy versions mutated from the PUT) to support testing activ-
ities [25]. We exploit mutation testing to identify bug-revealing
inputs generated by fuzzers, and use mutation scores as additional
feedback to guide fuzzing towards detecting bugs. Our approach
comprises two stages: (1) in initialization stage, we create mutants
and make preparations for fuzzing, and (2) in fuzzing stage, we

ar
X

iv
:2

20
3.

06
91

0v
2 

 [
cs

.S
E

] 
 1

 M
ay

 2
02

2

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


Internetware’22, June 11–12, 2022, Hohhot, China Ruixiang Qian, Quanjun Zhang, Chunrong Fang, and Lihua Guo

generate inputs and execute them against PUT and mutants. We
check fault detection capability for each generated test input and
preserve the bug-revealing ones, i.e., the inputs that can kill any
mutants.

We conduct a well-designed experiment with 15 fuzz campaigns
involving 5 benchmarks to evaluate the proposed approach. We
choose the state-of-the-art CGF technique Zest [24] as baseline and
construct two modified techniques on it with our approach in both
negative (generating fewer children from inputs kill mutants which
have been killed in previous) and positive (generating more children
from inputs which are capable of killing any mutants) manners.
The experimental results show that mutation testing can help CGF
(1) to maximize code coverage faster in 3 out of 5 benchmarks with
a negative manner, and (2) to reveal bugs faster in all 5 benchmarks.
Besides, the techniques modified with our approach detects 10
more bugs in one of the benchmarks. We summarize the main
contributions of this paper are as follows:
• Novel Approach.We propose an approach which uses mutation
scores as feedback to guide fuzzing towards detecting bugs. To
our best knowledge, this is the first work which incorporates
CGF with mutation testing.
• Practical Framework. We implement the proposed approach
as a framework which comprises a mutation engine, a testing
engine and a fuzzing engine. The components of our framework
are scalable and can be generalized to other CGF techniques.
• Extensive Study. We conduct an experiment with 15 fuzz cam-
paigns involving 5 benchmarks. The experimental results demon-
strate that our approach outperforms CGF in both code coverage
and bug detection.

2 BACKGROUND

2.1 Coverage Guided Fuzzing

Algorithm 1 presents the typical process of CGF. It takes a instru-
mented program 𝑝 and a set of initial seeds 𝐼 as inputs, and return
saved seeds 𝑄 as well as seeds lead to crashes 𝐹 as outputs. At
first, a coverage guided fuzzer add all inputs given in 𝐼 to 𝑄 and
initialize 𝐹 and global coverage 𝐶𝑜𝑣 as empty. Next, it comes into
the main fuzzing loop (line 4 ~ line 18). For each input 𝑖 in 𝑄 , the
fuzzer computes the number of mutations 𝑛 it going to perform on
current input (line 8). The computation heuristic is abstracted as a
function mutationChance, whose process is shown as Algorithm 2.
Next, the fuzzer mutates current input 𝑖 for 𝑛 times to get children
inputs 𝑖𝑐 . For each 𝑖𝑐 , the fuzzer executes 𝑝 with it once to check the
attained coverage 𝑐𝑜𝑣 and execution result 𝑟𝑒𝑠 . If the 𝑟𝑒𝑠 is failure,
then 𝑖𝑐 is a failing input and will be added into 𝐹 . This suggests
that 𝑖𝑐 has crashed the execution and triggered some vulnerabilities
of 𝑝; If the 𝑟𝑒𝑠 is success, the fuzzer further checks whether 𝑐𝑜𝑣
contains some paths that didn’t covered before. If new coverage
attained, then 𝑖𝑐 will be added into 𝑄 for subsequent fuzzing, and
the total coverage 𝐶𝑜𝑣 will be updated.

In Algorithm 2, both BASE and FACTOR are positive constants.
To begin with, the number of mutations for each input 𝑖 is set to
the unified baseline constant 𝐵𝐴𝑆𝐸. Next, to show the favor for
inputs that can supply new coverage, another constant 𝐹𝐴𝐶𝑇𝑂𝑅 is
used to scale up the numbers of mutations for these inputs through
multiplication (line 2 ~ 4). The intuition behind these manipulations

Algorithm 1: Coverage Guided Fuzzing
Input: program 𝑝 , initial inputs 𝐼
Output: seed inputs queue 𝑄 , failing inputs set 𝐹

1 𝑄 ← 𝐼 ;
2 𝐹 ← ∅ ;
3 𝐶𝑜𝑣 ← ∅ ;
4 repeat

5 foreach input 𝑖 in Q do

6 𝑛 ← mutationChance(𝑖,𝑄) ;
7 for 0 < 𝑖 < 𝑛 do

8 𝑖𝑐 ← mutate(𝑖,𝑄) ;
9 𝑐𝑜𝑣, 𝑟𝑒𝑠 ← execute(𝑝, 𝑖𝑐);

10 if isCrash(𝑟𝑒𝑠) then
11 𝐹 ← 𝐹 ∪ {𝑖𝑐 } ;
12 else if existNewCov(𝑐𝑜𝑣) then

13 𝑄 ← 𝑄 ∪ {𝑖𝑐 } ;
14 𝐶𝑜𝑣 ← 𝐶𝑜𝑣 ∪ {𝑐𝑜𝑣} ;
15 end

16 end

17 end

18 until exceeding given resources;
19 return 𝑄, 𝐹 ;

Algorithm 2: Computation of Mutation Chance
Input: seed input 𝑖 , seed inputs queue 𝑄
Output: number of mutations 𝑛

1 𝑛 ← BASE;
2 if canProduceNewCov(𝑖,𝑄) then

3 𝑛 ← 𝑛 × FACTOR;
4 end

5 return n

is to keep the quality of generated inputs with the help of "Matthew
Effect" [4]. However, traditional CGF use same heuristic to compute
𝑛 for every inputs. It does not distinguish inputs that are capable
of detecting bugs from normal ones, which consequently hinder
fuzzing from finding more bug-revealing inputs. We will elaborate
the challenges and show our solution at Section 2.3.

2.2 Mutation Testing

Mutation testing is a fault-based testing technique [6, 25]. It uses
artificial bugs, called mutants, to evaluate the adequacy of testing
activities. Given a PUT and a set of test inputs, mutation testing
firstly generates a set of mutants with a mutation engine, and
then executes these test inputs against these mutants to compute
mutation score.

A mutation engine generate mutants in three steps: Firstly, it
selects a set of mutators (syntactic rules which encodes the trans-
formation of the syntax of program) to create mutants. Secondly,
it creates a group of mutants according to used mutators. Thirdly,
it optimizes mutants through removing redundant mutants. Note
that mutant creation may result in mutants that are equivalent to
or subsumed by other mutants [25]. Besides, some mutants may



Investigating Coverage Guided Fuzzing with Mutation Testing Internetware’22, June 11–12, 2022, Hohhot, China

semantically equivalent to the PUT, even though they are syntac-
tically different. These mutants are detrimental to the result of
mutation result such that should be removed before execution [25].

The generated mutants are then executed to evaluate the ade-
quacy of test inputs. The adequacy of test inputs is measured by
mutation score, which can be computed as follows:

𝑠𝑐𝑜𝑟𝑒 =
𝑚𝑢𝑡𝑘

𝑚𝑢𝑡𝑠 +𝑚𝑢𝑡𝑘
× 100%

Specifically, mutation score is the ratio of killed mutants (𝑚𝑢𝑡𝑘 )
to all mutants (the sum of killed and survived mutants). If the
execution of a mutant with the given test inputs fails, it means
the defect represented by this mutant is detected such that the
mutant is killed; Otherwise the mutant is survived, implying that
the given inputs are incapable of detecting such a defect. Generally,
mutation score can be used to reflect the capability of given inputs
in detecting bugs. Suppose only one input was sent to mutation
testing, then a non-zero mutation score implies that the input is
capable of detecting bugs.

2.3 Motivation

1 int foo(int x, int y) {
2 if (x > y)
3 return x;
4 else
5 return x; // Should return y.
6 }

Listing 1: A simple method that is supposed to return the

larger value of x and y. A bug lies on line 5 where the y is

larger one and should be returned.

Motivating example. Consider the code snippet presented at List
1. The method foo takes two integers x and y as inputs and is
supposed to return the larger value among them as output. However,
there is a bug lies on line 5 in that else clause. It is y rather than x
that should be returned as y is no less than x.

This code snippet illustrates the situation that a bug is reached
but may not be triggered. Consider we have two test inputs 𝑖1 =

⟨1, 1⟩ and 𝑖2 = ⟨1, 2⟩. Both of 𝑖1 and 𝑖2 cover line 5 but only 𝑖2 can
trigger the bug by making it observable at output.
Drawbacks of traditional CGF. Suppose test input 𝑖1 and 𝑖2 are
generated in sequence during a fuzz campaign. According to Al-
gorithm 1, traditional CGF will not preserve 𝑖2 as it supplies same
coverage as 𝑖1. As a result, the bug-revealing input 𝑖2 is discarded,
and the fault lies at line 5 may hidden.

1 int foo(int x, int y) {
2 if (x > y)
3 return x;
4 else
5 return 0; // Being mutated.
6 }

Listing 2: Amutant of code snippet illustrated at List 1where

a “ReturnZero” mutator is conducted at line 5

Our solution.We leverage mutation testing to address the draw-
backs of traditional CGF. We firstly create a mutant for PUT, which
is shown in List 2. Specifically, this mutant is created by conduct

a “ReturnZero” mutator at line 5 of the method foo. After that we
perform mutation testing with the created mutant. In addition to
the original PUT (List 1), we execute the created mutant with the
same inputs (𝑖1 and 𝑖2) generated during fuzzing. We check the
consistency between the outputs of original PUT and the created
mutant to compute mutation score. If outputs are consistent, then
the mutant is survived and the mutation score is “0”; Otherwise
the mutant is killed and the mutation score is “1”. We prefer bug-
revealing inputs such that preserve the inputs which are capable
of killing the mutant (getting a mutation score of “1”). With our
approach, the bug-revealing input 𝑖2 will not be discarded as before,
and the bug lies at Lsine 5 can be potentially detected.

3 APPROACH

3.1 Overview

Algorithm 3: Fault Detection Aware CGF
Input: program 𝑝 , initial inputs 𝐼 , mutation configuration 𝑐
Output: seed inputs queue 𝑄 , failing inputs set 𝐹

1 𝑄 ← 𝐼 ;
2 𝐹 ← ∅ ;
3 𝐶𝑜𝑣 ← ∅ ;
4 𝑀 ← buildMutantPool(𝑝, 𝑐) ;
5 repeat

6 foreach input 𝑖 in Q do

7 𝑛 ← mutationChance(𝑖,𝑄) ;
8 for 0 < 𝑖 < 𝑛 do

9 𝑖𝑐 ← mutate(𝑖,𝑄) ;
10 𝑀 ′ ← selectMutants(𝑀,𝑐) ;
11 𝑐𝑜𝑣, 𝑟𝑒𝑠, 𝑠𝑡𝑎𝑡 ← execute(𝑝,𝑀 ′, 𝑖𝑐);
12 if canKillMutants(𝑠𝑡𝑎𝑡) then

13 markAsCapable(𝑖𝑐) ;
14 𝑄 ← 𝑄 ∪ {𝑖𝑐 } ;
15 if canKillNewMutants(𝑠𝑡𝑎𝑡, 𝑀) then

16 markKillNew(𝑖𝑐 , 𝑠𝑡𝑎𝑡);
17 update(𝑀, 𝑠𝑡𝑎𝑡);
18 end

19 end

20 if isCrash(𝑟𝑒𝑠) then
21 𝐹 ← 𝐹 ∪ {𝑖𝑐 } ;
22 else if existNewCov(𝑐𝑜𝑣) then

23 𝑄 ← 𝑄 ∪ {𝑖𝑐 } ;
24 𝐶𝑜𝑣 ← 𝐶𝑜𝑣 ∪ {𝑐𝑜𝑣} ;
25 end

26 end

27 end

28 until exceeding given resources;
29 return 𝑄, 𝐹 ;

Figure 1 depicts the overview of our approach. Our approach
takes a PUT and system configurations as inputs and outputs pre-
served seeds (i.e., test inputs). System configurations not only con-
tain settings for mutation testing but also settings for fuzzing such



Internetware’22, June 11–12, 2022, Hohhot, China Ruixiang Qian, Quanjun Zhang, Chunrong Fang, and Lihua Guo

PUT

Configurations

Global Inputs Preserved Seeds

𝑄𝑄

𝐹𝐹

Interesting Seeds

Failing Seeds

Mutation Engine

Construct Mutant Pool (Offline)

Select mutant (Online) Mutant Pool

Testing Engine

PUT

Execute 
Instrumented PUT

Execution Results

Differential 
Output Checking

Mutants

Execute Mutants

Mutant Outputs
Mutation Statistics

Code Coverage

Feedback

Test Input

Selected 
Mutants

Test Input Feedback

Fuzzing Engine

Compute 
Mutation Chance Generate Inputs

# Children Inputs

Figure 1: Overview of our approach.

Algorithm 4: Fault Detection Aware Mutation Chance
Input: seed input 𝑖 , seed inputs queue 𝑄
Output: number of mutations 𝑛

1 𝑛 ← BASE;
2 if canProduceNewCov(𝑖,𝑄) then

3 𝑛 ← 𝑛 × FACTOR;
4 end

5 if isBugRevealing(𝑖) then
6 𝑛 ← 𝑛 × KILL_FACTOR;
7 else

8 𝑛 ← 𝑛 ÷ KILL_FACTOR;
9 end

10 return n

as allocated resources and initial seeds. We elaborate modified CGF
algorithms (Algorithm 3 and Algorithm 4) in Section 3.2. Our ap-
proach comprises three main components: (1) amutation engine M

for creating and selecting mutants (Section 3.3), (2) a testing engine
T for executing programs and computing feedback (Section 3.4),
and (3) a fuzzing engine F for computing mutation chances and
generating inputs (Section 3.5).

3.2 Fault Detection Aware CGF

We modified the general CGF workflow to enable (1) the identi-
fication of bug-revealing inputs and (2) the preservation of fault
detection capability. Algorithm 3 shows the fault detetion aware
CGF (𝜇CGF in short) modified from Algorithm 1. The additional
parts are highlighted in blue. In spite of the PUT 𝑝 and initial inputs
𝐼 , 𝜇CGF requires a configuration 𝑐 for mutation testing. It comprises
a set of mutators for mutant creation before fuzzing and a strategy
for mutation selection (line 10) during fuzzing. Before coming into
main fuzz loop, we additionally create a mutant pool 𝑀 for 𝑝 ac-
cording to 𝑐 as preparation. During fuzzing, we perform mutation

testing with each generated input 𝑖𝑐 by executing it against selected
mutants 𝑀 ′ to get statistics 𝑠𝑡𝑎𝑡 . Note that we only select partial
mutants to ensure the efficiency of fuzzing. By 𝑠𝑡𝑎𝑡 we record de-
tailed information to indicate whether a specific mutant was killed
or survived in the last execution. We identify whether a generated
𝑖𝑐 is bug-revealing via checking 𝑠𝑡𝑎𝑡 at line 12. Specifically, an 𝑖𝑐
is capable of detecting bugs if it has gotten a non-zero mutation
score in the last execution. For the 𝑖𝑐 capable of detecting bugs,
we mark it as “capable” and preserve it into seed queue 𝑄 . After
that, we further check whether 𝑖𝑐 can kill new mutants (which has
not been killed by any previous inputs yet) at line 15. For 𝑖𝑐 killed
new mutants, we mark it in 𝑠𝑡𝑎𝑡 and update the statuses for each
mutants in𝑀 at line 17.

With Algorithm 3 the bug-revealing inputs are marked and now
identifiable. On this basis, we further propose Algorithm 4 to pre-
serve fault detection capability of these bug-revealing inputs. We
realize this through rewarding bug-revealing inputs by amplifying
their chances of being mutated. The inputs which are not bug-
revealing will be penalized in an opposite way. Note that the “muta-
tion” here indicates the process of generating children inputs from
parent seeds. We set a positive constant KILL_FACTOR to adjust the
computation of mutation chances. At first the number of mutations
𝑛 is assigned by a fixed constant 𝐵𝐴𝑆𝐸. If an inputs it bug-revealing,
we multiply 𝑛 with KILL_FACTOR to amplify its influences in the
subsequent input generation. Otherwise, we avoid generating chil-
dren inputs from it by dividing its 𝑛 with KILL_FACTOR. Note that
it is possible that an actually bug-revealing input is marked as “in-
capable” as we only select a part of mutants from𝑀 during fuzzing
due to efficiency concern. The mutants the input can kill may not
be selected thus the input will be not be treated as bug-revealing.
The trade of missing some bug-revealing inputs for efficiency is
acceptable as the main goal of Algorithm 3 is to preserve fault
detection capability. With Matthew effect [4], only a small faction
of bug-revealing inputs preserved can improve the possibility of
generating bug-revealing children in numerous cycles of fuzzing.



Investigating Coverage Guided Fuzzing with Mutation Testing Internetware’22, June 11–12, 2022, Hohhot, China

3.3 Mutant Creation and Selection

M provides two modes: an offline mode for mutant creation and
a online mode for on-the-fly mutation selection. The offline mode
is used for preparing fault detection aware fuzzing. Mutants are
created according to mutators specified in mutation configuration 𝑐
(Algorithm 3). We preserve a mutated version of the PUT together
with correspondingmutation information (such as mutated location
and used mutator) for each mutant, and construct a mutant pool for
subsequent usage. The offline mode is performed only once to avoid
overheads caused by repeated creations. On the contrary, the online
mode continuously works during test executions. M periodically
selects a subset of mutants from the pool according to a selection
strategy specified in 𝑐 . The selected mutants are sent to T to for
mutation testing. Generally, by selection strategy, we only pick a
small set (typically 10) of mutants to ensure the efficiency of fuzzing
as the number of total mutants can be very large [6, 25], especially
when there are too many locations for mutation.

3.4 Test Execution

T is the core of our approach. It extends the test execution compo-
nent of traditional coverage guided fuzzers. T receives test inputs
from F and sends feedback information, i.e. coverage and mutation
statistics, back to F to aid input generation. Besides executing the
instrumented PUT with the received test inputs, T also needs to
execute the same inputs against the mutants selected by M .

3.4.1 Terms. We formalize the terms used in this section to avoid
ambiguous understanding.
Definition 1 (Program). A program is an object of test. In this
paper, a program can be a PUT 𝑝 or a mutant𝑚𝑢𝑡 .
Definition 2 (Program Behavior). A program behavior repre-
sents a functionality of a PUT, which can be denoted as 𝑏. A PUT
involves a set of behaviors B = {𝑏1, 𝑏2, ..., 𝑏𝑛}, where 𝑛 ≥ 1.
Definition 3 (Output). An output 𝑜 is the result of exercising a
program behavior 𝑏 belongs to a program 𝑝 with a given test input
𝑖 , which can be denoted as 𝑜 = 𝑏 [𝑝, 𝑖].
Definition 4 (Execution Result). An execution result 𝑒𝑥𝑒𝑐 is a
triple ⟨𝑠,O, 𝑒⟩, where 𝑠 is the status of execution which satisfies
𝑠 ∈ {SUCCESS, FAILURE},O is a set of outputs which can be denoted
as O = {𝑜1, 𝑜2, ..., 𝑜𝑛}, (𝑛 ≤ 1), and 𝑒 is the crash occurred during
execution. Note that one of O and 𝑒 is null as when 𝑠 is SUCCESS,
the execution was successful such that no crash will be raised;
whereas in turn, when 𝑠 is FAILURE, the execution was crashed and
no outputs will be produced.
Definition 5 (Mutant Status). Amutant status representswhether
a artificial bug represented by a mutant𝑚𝑢𝑡 was detected, which
can be denoted as 𝜖 [𝑚𝑢𝑡]. A mutant status 𝜖 satisfies 𝜖 [𝑚𝑢𝑡] ∈
{KILLED, SURVIVED}. We further discuss the judging of mutant sta-
tuses in Section 3.4.3.

3.4.2 RunningMutants and PUT. Mutation testing can be very time
consuming [6, 25] as it has to run a single test input against every
selected mutants once. Note that we do not distinguish mutation
analysis and mutation testing [25] as there is only one test input to
run at each execution. We have reduced the number of mutants to
execute by strategically selecting a subset of mutants (Section 3.3).

To further improve execution efficiency, we concurrently execute
the selected mutants together with the PUT in multi-threads. We
collect execution results for both PUT and the selected mutants.
Herein, we call execution results for PUT and mutation testing as
“test result” and "mutation test result" respectively. A test execu-
tion is FAILURE if it was crashed (e.g. throws an exception) during
execution, or else it is SUCCESS (Definition 4). We allow mutants
to run slightly longer than the PUT does, and provide an extra
execution time ratio to control the extra time. We make this design
for two reasons: (1) To get more confidential mutation statistics.
Test executions can accidentally fluctuate due to reasons like sys-
tem scheduling. Besides, since mutants are created using various
mutators (each mutator is a kind of syntactic transformation), some
mutants exactly needmore time to execute than the others. A longer
time can enable more mutants to finish executions without timeout,
which consequently reduces false negatives; (2) To keep fuzzing effi-
cient. Syntactic transformations on the PUT may sometimes result
in time-consuming artificial bugs such as endless loop in practice
[6]. Setting an upper bound time for executing mutants can prevent
executions from being blocked by such unexpected issues. For a
PUT whose execution time is 𝑡 , we use extra ratio 𝑟 (0 ≤ 𝑟 ≤ 1) to
control the upper bound time 𝑡 ′ for executing mutants, which is
computed as 𝑡 ′ = 𝑡 × (1 + 𝑟 ). Note that we consider the mutation
test results of mutants which does not finished executing in 𝑡 ′ as
FAILURE during fuzzing.

3.4.3 Analyzing Execution Results. Test execution results should
be further analyzed to identify the nature of test inputs. Through
such analysis, We further analyze test execution results to identify
whether a test input has supplied fresh coverage or killed mutants.
The the process of analysis varies according to execution statuses.
Specifically, if test result is FAILURE, the test input is failing input
should be saved into failing seed queue 𝐹 (Algorithm 3). Mutation
test results will not be analyzed no outputs was produced; Else,
if test result is SUCCESS, we further analyze execution results to
determine the statuses of mutants. A mutant is killed if it is detected
by certain test cases (Section 2.2). Killing mutants requires the
buggy outputs of mutants can be observed explicitly. However, as
executed test inputs are generated dynamically during fuzzing, the
real expected outputs are impossible to know in advance. Therefore,
we use output of the PUT as expected output. We build a mutant
checking mechanism based on the thoughts of differential testing.
Differential testing [21] is a random testing technique which reveals
potential bugs through comparing the outputs (with same inputs)
of among comparable software systems. We treat a mutant as a
comparable system to the PUT and identify the statuses of it by
comparing its outputsO′ to the outputs of the PUTO. We formalize
the goal of the mutant checking as follows:
Definition 6 (Differential Outputs Checking). Given a test input
𝑖 , a set of program behaviors 𝐵 = {𝑏1, 𝑏2, ..., 𝑏𝑚}, a PUT 𝑝 and a set
of selected mutants𝑀 ′ = {𝑚𝑢𝑡1,𝑚𝑢𝑡2, ...,𝑚𝑢𝑡𝑛}, the goal ofmutant
checking is to determine status for each𝑚𝑢𝑡 ∈ 𝑀 ′ via comparing
its outputs O′ to outputs O of the PUT 𝑝 . The result of mutant
checking are mutation statistics 𝑠𝑡𝑎𝑡 described in Algorithm 3.

Specifically, if the execution of a mutant 𝑚𝑢𝑡 has crashed, or
some of its outputs are inconsistent to the PUT, then the mutant is



Internetware’22, June 11–12, 2022, Hohhot, China Ruixiang Qian, Quanjun Zhang, Chunrong Fang, and Lihua Guo

detected and killed by the executed test input 𝑖 . Otherwise,𝑚𝑢𝑡 is
ignored such that survived. We define mutant surviving and killing
as follows:
Definition 7 (Mutant Surviving). Given a PUT 𝑝 whose test re-
sult is 𝑒𝑥𝑒𝑐 = ⟨𝑠,O, 𝑒⟩ and a mutant𝑚𝑢𝑡 whose mutation test result
is 𝑒𝑥𝑒𝑐 ′ = ⟨𝑠 ′,O′, 𝑒 ′⟩, the𝑚𝑢𝑡 is survived if the execution status is
SUCCESS and all its outputs are consistent to the PUT. We denote
mutant surviving as 𝑠 ′ = SUCCESS∧O = O′ ⇒ 𝜖 [𝑚𝑢𝑡] = SURVIVED.
Definition 8 (Mutant Killing). Given a PUT 𝑝 whose test result
is 𝑒𝑥𝑒𝑐 = ⟨𝑠,O, 𝑒⟩ and a mutant 𝑚𝑢𝑡 whose mutation test result
is 𝑒𝑥𝑒𝑐 ′ = ⟨𝑠 ′,O′, 𝑒 ′⟩, the 𝑚𝑢𝑡 is killed if the execution status is
FAILURE or existing at least one output which is inconsistent to
that of 𝑝 . We denote mutant killing as 𝑠 ′ = FAILURE ∨ ∃ 𝑗 → 𝑜 𝑗 ≠

𝑜 ′
𝑗
, 𝑜 𝑗 ∈ O, 𝑜 ′𝑗 ∈ O

′ ⇒ 𝜖 [𝑚𝑢𝑡] = KILLED.

3.4.4 Constructing feedback. At the end of each execution, T

gathers attained coverage 𝑐𝑜𝑣 together with fault detection statistics
𝑠𝑡𝑎𝑡 to construct feedback. These feedback information will be sent
to F to guide input generation.

3.5 Input Generation

F enables fault detection aware fuzzing with feedback information
sent back from T . It updates interesting seeds queue 𝑄 as well as
failing inputs queue 𝐹 according to Algorithm 3. Inputs capable of
killing mutants will be allocated more energy in order to generate
more children from them (Algorithm 4). Note that F is a general
component which can be replaced by any coverage guided fuzzer.

4 EXPERIMENTAL SETUP

In this paper, we evaluate how our approach influences the perfor-
mance of CGF technique. In particular, we focus on the following
research questions:
• RQ1: How mutation testing influences CGF in covering code?
• RQ2: How mutation testing influences CGF in terms of killing
mutants?

Implementation. We implement the proposed approach in Java.
Specifically, we implement fuzzing components with JQF [23],
which is a widely used fuzzing framework for Java. We implement
mutant creation with PIT, which is the most widely used mutation
testing engine for Java programs [6]. For test engine T , we imple-
ment it using test runner supplied by Junit 4 and enable parallel
execution with APIs supplied by JDK. For on-the-fly mutant selec-
tion, we implement it as an interface MutantSelectionStrategy.
For differential outputs checking, we implement it as an interface
Criterion. MutantSelectionStrategy can be extended to build
subtypes to implement different mutant selection strategy. Simi-
larly, Criterion can be extended to meet special needs of checking
different kinds of outputs. To conduct experiments, we implement
BasicRandomStrategy to select fixed number of mutants from mu-
tant pool during fuzzing. For PUT with serializable output, we build
a subtype, SerializableCriterion, to serialize the outputs of the
PUT and its mutants and compare the bytes after serialization.

Benchmarks. The details of the benchmarks are shown at Table 1.
All our benchmarks are from Github[9] or previous works. One
of our authors manually build 5 fuzz cases for 5 benchmarks. In

particular, C01, C02 and C03 are experimental objects used in [29];
C04 and C05 are widely adopted open-sourced subjects. The version
of Apache Commons Math3 3.6.1 and Apache Commons Numbers
is 1.0. Column #Mutants illustrates the total number of mutants
we created for each benchmark using PIT default mutators1, and
the last column shows the number of non-blank lines of code.

Table 1: Details of Benchmarks.

CID Fuzz Case #Mutants LoC of Bench.

C01 SortingFuzz 69 88
C02 MatrixInverseFuzz 75 65
C03 SuffixArrayFuzz 215 219
C04 SimpleRegressionFuzz 49783 208891
C05 DivFuzz 577 30396

Techniques. We choose state-of-the-art CGF technique Zest [24]
as baseline. Zest is the only fuzzing technique for Java to our best
knowledge. We modified Zest with our approach from two aspects,
and construct two techniques, namely N-𝜇Zest and P-𝜇Zest. “N”
and “P” indicate how we enhance fuzzing campaigns with mu-
tation testing: for N-𝜇Zest we influences fuzzing with mutation
testing “negatively”, that is, we punish the inputs that kill mutants
which have been killed in previous by lessening children inputs
generated from them; [3]. for P-𝜇Zest we influences fuzzing with
mutation testing “positively”, that is, we reward the inputs which
could kill mutants (no matter whether the mutants have been killed
in previous). N-𝜇Zest and P-𝜇Zest guide CGF in very different ways:
with N-𝜇Zest we guide fuzzing to explore space far away from the
mutants that have been detected in previous, which follows the
observation of [3]; with P-𝜇Zest, on the contrary, we want to guide
fuzzing towards exploring deeper paths.

We instantiate Algorithm 4 differently to implement N-𝜇Zest
and P-𝜇Zest. We choose 20 (the multiplication factor for number of
children to produce for favored inputs used by ZestGuidance) as
the modifier factor used in Algorithm 4. In particular, for N-𝜇Zest
we (1) divide the number of generated children inputs with 20 when
inputs kill old mutants, and (2) multiply the number of generated
children kill with 20 when inputs detect fresh mutants; for P-𝜇Zest,
we just multiply the number of generated children inputs with 20
when inputs kill any mutants.

Experiments. We combine fuzz caseswith techniques to construct 15
fuzz campaigns (each campaign is a pair {𝑐𝑎𝑠𝑒, 𝑡𝑒𝑐ℎ}). We run each
campaign for 3h following the setup of [24] to obtain seed corpus.
To remove the impact of randomness, we repeat each campaign for
10 times. We use BasicRandomStategy to select 10 mutants during
each campaign and use 11 threads (10 for mutants and 1 for original
PUT) to run these mutants along with original PUT concurrently.
We set extra execution time ratio as 0.1, which means the time
upper bound of executing a mutant is 10% more than executing
the original PUT. After finishing all fuzzing campaigns, we run
scripts to reproduce each preserved inputs to compute average
branch coverage and mutant killing rate obtained in 10 runs. All

1https://pitest.org/quickstart/mutators/

https://pitest.org/quickstart/mutators/


Investigating Coverage Guided Fuzzing with Mutation Testing Internetware’22, June 11–12, 2022, Hohhot, China

experiments were run on a cloud machine with 32GB RAM and
16-core Intel Core Processor CPU.

5 EVALUATION

5.1 RQ1: Effectiveness in Code Coverage

To illustrate the performances of different techniques in cover-
ing code, we reproduce the seed inputs created during fuzzing
campaigns and attach the most recent time points to them. For
example, suppose that a certain fuzz campaign generates 4 input
seeds id_0000∼id_0003 during 0∼1s, then we attach the average
coverage achieve by id_0000∼id_0003 to time point 1s. Figure
2 shows the average branch coverage achieved during different
fuzz campaigns. Each row of sub-figures represents the changing
tendencies in different time durations from 1 minute (1m) to 3

hours (3h). We use red, blue and green lines to illustrate coverage
curves produced by Zest, P-𝜇Zest and N-𝜇Zest respectively. The
x-axis represents time points whereas y-axis the achieved average
branch coverage rates. We obtain the following observations:
• Compare among durations. Branch coverage increases drasti-
cally at the beginning of each fuzz campaigns, especially in the
first minute (the first column of Figure 2).
• Compare among techniques. In terms of covering code, N-
𝜇Zest performs slightly better then Zest, while P-𝜇Zest performs
slightly worse. In C01, C03, C05, the maximum coverage rates
achieved by each techniques are nearly the same and the curves
appear to overlap with each other. In C02, although the maximum
coverage rates achieved by each technique are nearly the same,
the increasing tendency of N-𝜇Zest is much more drastic than
that of Zest. By contrast, the increasing tendency of P-𝜇Zest is
much gentler. In C04, although the increasing tendency of Zest
is the most drastic compared to N-𝜇Zest and P-𝜇Zest in the first
minute of campaign, it is quickly caught up by P-𝜇Zest in the
next few minutes. What’s more, the maximum coverage rate
achieved by Zest is also worse than that of N-𝜇Zest.
• Compare among cases. The performance in covering codes
varies for different fuzz cases, appears as two aspects: (1) In-
creasing tendencies. In C01, C05 and C05, coverage curves
overlap with each other and the maximum coverage rates are
similar. Code coverage rates in these cases rise rapidly in the
first minute to achieve maximum and become flat in the rest of
campaigns. On the contrary, coverage curves in C04 and C04
keep rising for more than 30 minutes. (2)Maximum coverage

rates. In C01∼C03, the maximum coverage rates are more than
60%, whereas the maximum coverage rates in C04 and C05 are
far less (below 15%), especially in C04, which is no more than
0.10% (0.096%).

Analysis. According to the observations above we can see that
mutation testing does be able to influence the performance of Zest
in terms of branch coverage. The enhancement from opposite direc-
tions (N-𝜇Zest and P-𝜇Zest) presents different results. Specifically,
N-𝜇Zest covers more branches compare to Zest in some cases. The
negative enhancement with mutation testing directs fuzzing to-
wards covering area far from the mutants that have already been
killed, which is consistent to [3]. However, a positive enhancement
with mutation testing (P-𝜇Zest) can make fuzzing covering fewer

branches (C02 and C04). This is because P-𝜇Zest amplifies the num-
ber of children inputs generated from inputs that kill old mutants,
which then increases the chance to exploring the branches that
has already been covered. Moreover, the maximum branch cover-
age rates depend on the logic of fuzz cases (which is also know
as the distribution of test cases [5]). For example, C04 takes a set
of double values as inputs to exercise public methods supplies by
SimpleRegression. As a result, C04 is not likely to fuzz branches
that belong to types that are not invoked by SimpleRegression.

Answer to RQ1: Mutation testing can improve the effectiveness
of CGF techniques in covering code in a negative manner. The
maximum branches achieved are relevant to the properties of
benchmarks.

5.2 RQ2: Effectiveness in killing Mutants

Figure 3 shows average killing rates achieved during fuzz cam-
paigns. Like analysis for branch coverage, Figure 3 also illustrates
curves in different time durations. The y-axis of the sub-figures
represents the average killing rates. From Figure 3 we can also get
observations from the following perspectives:
• Compare amongdurations. Like branch coverage, the increases
of mutation killing rates also happen at the beginning of each
fuzz campaigns. However, killing rates curves go flat at much
latter time points compares to branch coverage. In C01 and C05,
curves for N-𝜇Zest and P-𝜇Zest still rise after fuzzing for more
than 1 hour.
• Compare among techniques. Both the enhanced techniques
(N-𝜇Zest and P-𝜇Zest) are better than the baseline technique
Zest, and N-𝜇Zest is better than P-𝜇Zest. In C01 and C05, the
killing rates of the enhanced techniques rise faster than Zest
and finally come to a higher killing rates. In C02, Zest is worse
than N-𝜇Zest but better than P-𝜇Zest during the first 10 minutes.
Three curves finally merge together after fuzzing for 30 minutes.
In C03 and C04, although the killing rate of Zest rises fastest in
the first minute, it is immediately caught up by the enhanced
techniques in the next few minutes.
• Compare among cases.We get observations similar to Figure 2
for killing rates. The increasing tendencies and the maximum kill
rates also varies for different fuzz cases. The killing rate curves for
C02∼C04 rise drastically at the first minute of fuzzing campaigns
and rapidly become flat in the next few minutes, whereas for
C01 and C05 the curves keep increasing for the while 3 hours.
In terms of maximum kill rates, in C02 and C03 all the three
techniques can achieve peek values that are larger than 70%. C04
achieves the smallest maximum kill rates around 0.12%.
Analysis. Compares to Zest, the enhanced techniques kill more

mutants with the guidance of mutation testing. However, although
both N-𝜇Zest and P-𝜇Zest achieve higher kill rates than Zest, the
type of the mutants which are additionally killed should be different.
Moreover, the object for fuzzing as well as the logic of fuzz cases
are also important factors for killing mutants.

Answer to RQ2: Mutation testing can improve the effectiveness
of CGF techniques in killing mutants with both negative and
positive manners. The maximum numbers of mutants killed are
relevant to the properties of benchmarks.



Internetware’22, June 11–12, 2022, Hohhot, China Ruixiang Qian, Quanjun Zhang, Chunrong Fang, and Lihua Guo

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Time (Hours)

66.0

66.1

66.2

66.3

66.4

66.5

66.6

66.7

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(a) C01-1min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Hours)

66.0

66.1

66.2

66.3

66.4

66.5

66.6

66.7

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(b) C01-10min

0.0 0.1 0.2 0.3 0.4 0.5
Time (Hours)

66.0

66.1

66.2

66.3

66.4

66.5

66.6

66.7

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(c) C01-30min

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

66.0

66.1

66.2

66.3

66.4

66.5

66.6

66.7

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(d) C01-1hour

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Hours)

66.0

66.1

66.2

66.3

66.4

66.5

66.6

66.7

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(e) C01-3hour

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Time (Hours)

30

40

50

60

70

80

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage
zest
nmuzest
pmuzest

(f) C02-1min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Hours)

30

40

50

60

70

80

90

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(g) C02-10min

0.0 0.1 0.2 0.3 0.4 0.5
Time (Hours)

30

40

50

60

70

80

90

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(h) C02-30min

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

30

40

50

60

70

80

90

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(i) C02-1hour

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Hours)

30

40

50

60

70

80

90

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(j) C02-3hour

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Time (Hours)

56

58

60

62

64

66

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(k) C03-1min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Hours)

56

58

60

62

64

66

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(l) C03-10min

0.0 0.1 0.2 0.3 0.4 0.5
Time (Hours)

56

58

60

62

64

66

%
 B

ra
nc

h 
Co

ve
ra

ge
Average Branch Coverage

zest
nmuzest
pmuzest

(m) C03-30min

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

56

58

60

62

64

66

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(n) C03-1hour

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Hours)

56

58

60

62

64

66

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(o) C03-3hour

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Time (Hours)

0.03

0.04

0.05

0.06

0.07

0.08

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage
zest
nmuzest
pmuzest

(p) C04-1min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Hours)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(q) C04-10min

0.0 0.1 0.2 0.3 0.4 0.5
Time (Hours)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(r) C04-30min

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(s) C04-1hour

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Hours)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(t) C04-3hour

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Time (Hours)

10

11

12

13

14

15

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(u) C05-1min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Hours)

10

11

12

13

14

15

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(v) C05-10min

0.0 0.1 0.2 0.3 0.4 0.5
Time (Hours)

10

11

12

13

14

15

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(w) C05-30min

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

10

11

12

13

14

15

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(x) C05-1hour

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Hours)

10

11

12

13

14

15

%
 B

ra
nc

h 
Co

ve
ra

ge

Average Branch Coverage

zest
nmuzest
pmuzest

(y) C05-3hour

Figure 2: Average branch coverage rates for different fuzz campaigns in different time durations. The x-axis of each figure

represents time points and the y-axis represents the achieved branch coverage rates.

6 RELATEDWORK

In this paper, we enhances CGF via identifying bug-revealing inputs
and amplifying their effect by mutation testing. Our work is related
to coverage guided fuzzing, mutation testing and differential testing.

Coverage Guided Fuzzing. Fuzzing has been a hot research area in
the past few decades [20]. It was introduced in the early 1990s [22].
At first, fuzzingwas dedicated for testing a PUT fully randomlywith
given inputs, which called seeds. To make fuzzing more systematic,
CGF guides fuzzing with code coverage attained with lightweight
instrumentation. AFL [33] employs a novel type of compile-time
instrumentation and genetic algorithms to discover interesting test

inputs. Based on AFL, AFLFast [2] proposes strategies to systemati-
cally bias fuzzer towards exercising low-frequency paths. Libfuzzer
[13] is an in-process, coverage-guided, evolutionary fuzzer which
linked with the library under test, and feeds fuzzed inputs to the
library via a specific fuzzing entrypoint. It tracks reached code
areas and generates inputs by mutating the corpus of seeds in order
to maximize code coverage. Both AFL [33] and Libfuzzer [13] are
typical coverage guided fuzzers which are widely used in literature
[2, 4, 24, 30, 32].

Some researches introduce extra information coverage to facili-
tate fuzzing on finding specific types of bugs. MUZZ [4] provides
three types of instruments to discover and reveal multi-thread



Investigating Coverage Guided Fuzzing with Mutation Testing Internetware’22, June 11–12, 2022, Hohhot, China

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Time (Hours)

28

30

32

34

36

38

40

42

44

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(a) C01-1min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Hours)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(b) C01-10min

0.0 0.1 0.2 0.3 0.4 0.5
Time (Hours)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(c) C01-30min

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(d) C01-1hour

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Hours)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(e) C01-3hour

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Time (Hours)

20

30

40

50

60

70

%
 K

illi
ng

 R
at

e

Average Killing Rate
zest
nmuzest
pmuzest

(f) C02-1min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Hours)

20

30

40

50

60

70

80

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(g) C02-10min

0.0 0.1 0.2 0.3 0.4 0.5
Time (Hours)

20

30

40

50

60

70

80

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(h) C02-30min

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

20

30

40

50

60

70

80

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(i) C02-1hour

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Hours)

20

30

40

50

60

70

80

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(j) C02-3hour

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Time (Hours)

60

62

64

66

68

70

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(k) C03-1min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Hours)

60

62

64

66

68

70

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(l) C03-10min

0.0 0.1 0.2 0.3 0.4 0.5
Time (Hours)

60

62

64

66

68

70

%
 K

illi
ng

 R
at

e
Average Killing Rate

zest
nmuzest
pmuzest

(m) C03-30min

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

60

62

64

66

68

70

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(n) C03-1hour

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Hours)

60

62

64

66

68

70

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(o) C03-3hour

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Time (Hours)

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(p) C04-1min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Hours)

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(q) C04-10min

0.0 0.1 0.2 0.3 0.4 0.5
Time (Hours)

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(r) C04-30min

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12
%

 K
illi

ng
 R

at
e

Average Killing Rate

zest
nmuzest
pmuzest

(s) C04-1hour

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Hours)

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(t) C04-3hour

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Time (Hours)

7

8

9

10

11

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(u) C05-1min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (Hours)

7

8

9

10

11

12

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(v) C05-10min

0.0 0.1 0.2 0.3 0.4 0.5
Time (Hours)

7

8

9

10

11

12

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(w) C05-30min

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

7

8

9

10

11

12

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(x) C05-1hour

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Hours)

7

8

9

10

11

12

%
 K

illi
ng

 R
at

e

Average Killing Rate

zest
nmuzest
pmuzest

(y) C05-3hour

Figure 3: Average killing rates for different fuzz campaigns in different time durations. The x-axis of each figure represents

time points and the y-axis represents the achieved mutation killing rates.

vulnerabilities of the PUT during fuzzing. MemLock [30] tracks
memory usage during fuzzing in order to trigger uncontrolled mem-
ory usage bugs. PerfFuzz [16] endeavors to generate pathological
inputs which exercise hot spots of the PUT or with a higher total
execution path length. To trigger vulnerabilities at semantic stage,
Zest [24] proposes an approach with property-based testing [5]
which build and mutate inputs in a semantic-valid way in order to
detect vulnerabilities at semantic stage. This paper aims to enhance
CGF to discover more bug-revealing inputs enhanced by mutation
testing, which is distinct from the researches mentioned above.

Mutation Testing. Mutation testing measures the adequacy of
testing with mutation score, or mutation coverage. In this regard,

many researches use mutation testing as a manner of feedback or
guidance. For example, Mike and Yves [26] build a mutation-based
fault local technique with a test suite constructed from mutation
testing. Gordon and Andreas [7] use mutation testing to guide
oracle constructions. Some test optimization techniques also benefit
from mutation testing, such as test suite reduction [28] and test
case prioritization [17]. Unlike these techniques, the goal of our
approach is to use mutation testing to guide fuzzing towards finding
inputs that are capable of finding bugs.

Differential Testing. Differential testing [21] detects bugs via
comparing comparable systems. It amends the absence of oracles
by using the outputs of different systems to validate the behaviors



Internetware’22, June 11–12, 2022, Hohhot, China Ruixiang Qian, Quanjun Zhang, Chunrong Fang, and Lihua Guo

of themselves interactively. Differential testing is widely adopted in
situations that oracles are hard to obtain, such as compiler testing [27,
31], DNN testing[1, 19] and regression testing [11, 14]. In this paper,
we utilize differential testing to enable the detection of mutants. We
propose a configurable differential outputs checking frameworks.
It checks the consistency of outputs during fuzzing. Mutants of
which the outputs are inconsistent to those of the PUT is detected
and will be considered as killed.

7 CONCLUSION

In this paper, we incorporate mutation testing with fuzzing in or-
der to guide fuzzing towards detecting bugs. We conduct a well-
designed experiment on 5 benchmarks with 3 techniques (2 modi-
fied techniques and 1 baseline) to evaluate the proposed approach.
The experimental results show that mutation testing can make
progress in terms of both code coverage and bug detection.

Our approach is general and can be extended to other CGF tech-
niques. A larger scale experiments are worth conducting on other
real world benchmarks as well as coverage guided fuzzers. Mean-
while, it is also important to investigate how different types of mu-
tants can influence our approach. We leave these as future works.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
insightful comments. This research is partially supported by the Na-
tional Natural Science Foundation of China (No. 61932012, 62141215).

REFERENCES

[1] Muhammad Hilmi Asyrofi, Zhou Yang, and David Lo. 2021. Crossasr++: A
modular differential testing framework for automatic speech recognition. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1575–
1579.

[2] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2019. Coverage-
Based Greybox Fuzzing as Markov Chain. IEEE Trans. Software Eng. 45, 5 (2019),
489–506.

[3] FT Chan, Tsong Yueh Chen, IK Mak, and Yuen-Tak Yu. 1996. Proportional
sampling strategy: guidelines for software testing practitioners. Information and
Software Technology 38, 12 (1996), 775–782.

[4] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang
Li, Haijun Wang, and Yang Liu. 2020. MUZZ: Thread-aware Grey-box Fuzzing
for Effective Bug Hunting in Multithreaded Programs. In 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020. USENIX Association, 2325–
2342.

[5] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000. ACM, 268–279.

[6] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: a practical mutation testing tool for Java (demo). In
Proceedings of the 25th International Symposium on Software Testing and Analysis,
ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016. ACM, 449–452.

[7] Gordon Fraser and Andreas Zeller. 2010. Mutation-driven generation of unit
tests and oracles. In Proceedings of the Nineteenth International Symposium on
Software Testing and Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010. ACM,
147–158.

[8] Vijay Ganesh, Tim Leek, and Martin C. Rinard. 2009. Taint-based directed
whitebox fuzzing. In 31st International Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Proceedings. IEEE, 474–484.

[9] github. visited at 2022 March. Github. https://github.com/.
[10] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin

Alipour, and Darko Marinov. 2015. Guidelines for Coverage-Based Comparisons
of Non-Adequate Test Suites. ACM Trans. Softw. Eng. Methodol. 24, 4 (2015),
22:1–22:33.

[11] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differential
regression testing for REST APIs. In ISSTA ’20: 29th ACM SIGSOFT International

Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020.
ACM, 312–323.

[12] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2012. SAGE: whitebox
fuzzing for security testing. Commun. ACM 55, 3 (2012), 40–44.

[13] Libfuzzer group. 2017. LibFuzzer. https://llvm.org/docs/LibFuzzer.html.
[14] Muhammad Ali Gulzar, Yongkang Zhu, and Xiaofeng Han. 2019. Perception and

practices of differential testing. In Proceedings of the 41st International Confer-
ence on Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2019,
Montreal, QC, Canada, May 25-31, 2019. IEEE / ACM, 71–80.

[15] Hadi Hemmati. 2015. How Effective Are Code Coverage Criteria?. In 2015 IEEE
International Conference on Software Quality, Reliability and Security, QRS 2015,
Vancouver, BC, Canada, August 3-5, 2015. IEEE, 151–156.

[16] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
automatically generating pathological inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,
Amsterdam, The Netherlands, July 16-21, 2018. ACM, 254–265.

[17] Yiling Lou, Dan Hao, and Lu Zhang. 2015. Mutation-based test-case prioritiza-
tion in software evolution. In 26th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2015, Gaithersbury, MD, USA, November 2-5, 2015.
IEEE Computer Society, 46–57.

[18] Ping Ma, Hangyuan Cheng, Jingxuan Zhang, and Jifeng Xuan. 2020. Can this
fault be detected: A study on fault detection via automated test generation. J.
Syst. Softw. 170 (2020), 110769.

[19] Yu-Seung Ma, Shin Yoo, and Taeho Kim. 2021. Selecting test inputs for DNNs
using differential testing with subspecialized model instances. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1467–1470.

[20] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Trans. Software Eng. 47, 11 (2021), 2312–
2331.

[21] William M. McKeeman. 1998. Differential Testing for Software. Digit. Tech. J. 10,
1 (1998), 100–107.

[22] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of the
Reliability of UNIX Utilities. Commun. ACM 33, 12 (1990), 32–44.

[23] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: coverage-guided
property-based testing in Java. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2019, Beijing, China,
July 15-19, 2019. ACM, 398–401.

[24] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le
Traon. 2019. Semantic fuzzing with zest. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing,
China, July 15-19, 2019. ACM, 329–340.

[25] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Chapter Six - Mutation Testing Advances: An Analysis and Survey.
Adv. Comput. 112 (2019), 275–378.

[26] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Softw. Test. Verification Reliab. 25, 5-7 (2015), 605–628.

[27] Jihyeok Park, Seungmin An, Dongjun Youn, Gyeongwon Kim, and Sukyoung
Ryu. 2021. JEST: N+1 -version Differential Testing of Both JavaScript Engines and
Specification. In 43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 13–24.

[28] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing trade-offs in test-suite reduction. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
(FSE-22), Hong Kong, China, November 16 - 22, 2014. ACM, 246–256.

[29] Weisong Sun, Xingya Wang, Haoran Wu, Ding Duan, Zesong Sun, and Zhenyu
Chen. 2019. MAF: method-anchored test fragmentation for test code plagiarism
detection. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, 110–120.

[30] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,
Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. 2020. MemLock: memory
usage guided fuzzing. In ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020. ACM, 765–777.

[31] Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xi-
aoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated
conformance testing for JavaScript engines via deep compiler fuzzing. In Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 435–450.

[32] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM
: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018. USENIX Association, 745–761.

[33] Michal Zalewski. 2017. American Fuzzy Lop 2.5.2b. https://lcamtuf.coredump.cx/
afl/.

https://github.com/
https://llvm.org/docs/LibFuzzer.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background
	2.1 Coverage Guided Fuzzing
	2.2 Mutation Testing
	2.3 Motivation

	3 Approach
	3.1 Overview
	3.2 Fault Detection Aware CGF
	3.3 Mutant Creation and Selection
	3.4 Test Execution
	3.5 Input Generation

	4 EXPERIMENTAL SETUP
	5 Evaluation
	5.1 RQ1: Effectiveness in Code Coverage
	5.2 RQ2: Effectiveness in killing Mutants

	6 Related Work
	7 Conclusion
	References

