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ABSTRACT
Decomposition is considered one of the four cornerstones of com-
putational thinking, which is essential to software development
[36]. It requires the ability to assess a problem at a high level, de-
velop a strategy to combat it, and then design a solution. Our study
focuses on the metacognitive aspect of decomposition. We try to
understand the learner’s thought process and, specifically, what
makes the novice programmer decide to break down a function.

Researchers have studied decomposition in introductory pro-
gramming courses through guided experiments, case studies, and
surveys [23, 37]. In this work, we follow a different, more scalable
approach. We develop an automated system to analyze 45,000 code
snapshots from 168 students for a challenging CS1 programming
assignment, detect the pivotal moments when they decide to de-
compose their programs, and identify what drives their decisions
from the code. We then classify the students and study the rela-
tionship between the different categories, the code complexity, and
the time to derive the final solution. We evaluate the impact of
decomposition on the student’s performance in the assignment and
the course exams. Finally, we discuss the implications of our results
for computing education.

CCS CONCEPTS
• Social and professional topics → CS1; • Software and its
engineering → Software development methods.
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1 INTRODUCTION
Decomposition is a higher-layer cognitive process that interacts
with other cognitive processes such as abstraction, decision-making,
inference, analysis, and synthesis. Therefore, it is perceived as one
of the most challenging programming skills for learners to master
[28]. In general, it can manifest on multiple levels in programming:
data level, statement level, function level, module implementation,
module interface, and system level [22].

In introductory programming courses where a program is primar-
ily a single module, decomposition is synonymous with breaking
down the overall task (i.e., main function) into subfunctions that
implement simpler subtasks. In other words, decomposition mani-
fests when the student introduces a function to simplify a task. Our
study’s primary goal is to identify what makes a student decide to
decompose the code, which means two things. First, we must detect
the pivotal moments when the novice programmer chooses to add
a new function. Second, we need to compare the student program
before and after to understand the driving force. This work tries to
answer the following research questions:

(1) What makes a student add a new function, and how
can we detect the reason from the code? (Section 3.4)

(2) How can we classify student behavior from the identi-
fied reasons? (Section 3.5)

(3) How does the classification relate to a) the program
complexity, b) the time it takes to derive the final solu-
tion, and c) the student’s performance? (Section 4)

We present a system to process program snapshots, identify the
driving forces behind new functions, and then cluster these reasons
to profile the student’s behavior. Next, we explore how they are
related to a) the program complexity, b) the time to complete the
programming challenge, and c) student performance. We proceed
with threats to the reliability of our work. Finally, we share our
thoughts on the implications for computing education and conclude
with a summary and final remarks.

2 RELATEDWORK
Researchers consider problem decomposition a critical skill in soft-
ware development. Many examine the differences in its uses and
strategies between experts and novices [14, 30]. Ginat studies the
various perspectives of problem decomposition [9]. Wing identifies
breaking problems down by functionality as part of computational
thinking [33].

Keen and Mammen use the cyclomatic complexity [21] to com-
pare the decomposition skills students develop during a term-long
project against those acquired by their cohorts in courses with
stand-alone projects [16]. Charitsis et al. use NLP for a system that
learns the main problem-related entities and tracks how they evolve
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Figure 1: Simplified pipeline to classify the students based on when and why they decide to decompose their code.

to quantify the learner’s ability to break down the problem into
simpler tasks [3]. Haglund et al. emphasize controlling complex-
ity and investigate how well students in CS1 create and maintain
abstractions through user-defined functions [11].

Students with high metacognitive awareness perform better
than those with low self-efficacy and underdeveloped metacogni-
tive abilities [5, 7, 20]. Yadav et al. study the relationship between
computational thinking and metacognition in K-12 classrooms [34].
Parham et al. explore how computer science students solve prob-
lems to understand the relationship between metacognition and
schemata [25].

Researchers proposed several methods to assess students’ de-
composition abilities [6, 10, 19]. Although surveys, think-aloud
experiments, and guided-based research techniques are undeniably
insightful, applying them at scale takes a lot of effort. One can
argue that the safest way to reach objectiveness is not to rely pri-
marily on what the students think but on their actual source code
and analyze the program structure. Doing so by hand is inefficient
and time-consuming. This paper presents a computer-assisted ap-
proach to studying the relationship between decomposition and
program complexity, the time to derive the solution, and student
performance.

This work makes several contributions to early-stage research
[2]: 1) it explores how the factors that drive decomposition relate to
code complexity and student performance, 2) it delves into subtle
concepts and addresses threats to the method’s reliability, and 3) it
discusses the implications for computing education.

3 METHOD
Figure 1 summarizes the steps of our method, which begins with
the data collection. We gather multiple student snapshots during
the program development (stage 1). Next, we parse them to find
where a function is introduced (stage 2), locate the pre- and post-
decomposition snapshots (stage 3), and compare those two to un-
derstand what drives the student’s decision (stage 4). We repeat this
process for each user-defined function to profile the decomposition

behavior (stage 5). The following subsections elaborate on each
step.

3.1 Data Collection
We modified the Integrated Development Environment (IDE) that
CS1 learners use to develop their programs to commit a source code
snapshot to a local repository every time they save or run the pro-
gram. When students submit online the assignment solution, they
can opt-in to also upload the repository with the snapshots taken in
their problem-solving journey. We collected 49,000 program snap-
shots extracted from 168 student submissions for this research study.
We filtered out programs with syntax errors that did not compile
and analyzed the remaining snapshots (i.e., approximately 45,000).
The programming challenge is structured such that the deliverable
tasks are well-defined [31]. The novice programmers are given ex-
plicit directions to clarify the expected functionality and ensure
that the problem is well understood. Also, the description order
probably aids the inexperienced individual who is often unsure how
to begin. Nevertheless, the program decomposition is left to the
student. The first stage completes upon extracting the compilable
snapshots and their timestamps from the local repository.

3.2 Parser
The parser processes the snapshots in the local repository and
performs three tasks: 1) it creates a list with the function signatures,
2) it tracks the calls to those functions, and 3) it captures source
code-related metrics to evaluate decomposition (Section 4). There
are many code-based software complexity measures [12, 17, 18, 21,
32]. Like Keen and Mammen [16], we used McCabe’s cyclomatic
complexity metric and tracked the software lines of code (SLOC).

The formatting style varies among programmers, and simply
counting lines of code is not enough. The parser constructs an
abstract syntax tree (AST) from the program to ensure that the
style does not affect the results. Nevertheless, we cannot count
the number of lines directly from ASTs. First, we apply standard
stylistic formatting conventions to every AST (i.e., pretty-printing
[4]) and count the lines from the output source code.
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3.3 Decomposition Detection
In CS1, programs consist primarily of a single module. Therefore,
decomposition is synonymous with breaking down functions into
subfunctions to simplify a task. Figure 2 summarizes the next step in
our method. One must look for places in the code where a function
is introduced to detect decomposition. Moreover, we need to ensure
that it gets eventually called from somewhere else in the program
(i.e., it is part of the execution flow).

First, we collect the student submissions, extract the program
snapshots (Section 3.1), and process the source code to retrieve the
functions for every snapshot (Section 3.2). For each function, we
find the last snapshot before it gets declared (Figure 2b)) and the
one that first calls it1 (Figure 2c)). We need them to determine what
triggered the decomposition (Section 3.4).

Figure 2: Steps to detect decomposition. We need to: a) collect
snapshots during the program development, b) find the snap-
shot where a function is first declared, c) locate the previous
snapshot and then the first that calls it (i.e., after declaration).

Figure 3: We consider only cases where two subsequent snap-
shots differ by only one function. All but one function sig-
nature must be identical in both snapshots, although the
internal implementations may vary.

Although it is not very common, a function may be introduced
while another is removed. In this case, both changes affect the pro-
gram, and one cannot draw safe conclusions regarding the impact
of the new function alone. Therefore, our analysis considers only
cases where two subsequent snapshots differ by only one function
(Figure 3).

3.4 Motivation Behind a New Function
Next, we address the first research question: What makes a student
add a new function, and how can we detect the reason from the code?
There are three reasons to introduce a function.

First, the novice programmer may want to either a) insert new
code to break a bigger problem into smaller chunks and, as a result,
inject stub functions to lay out the steps or b) add new functionality
(Figure 4).

Figure 4: In the example on top, the student lays out the steps
to assign letter grades by calling two stub functions to get
the median and the standard deviation. On the bottom, the
student adds the implementation for the first stub function
that calculates the median and, in doing so, introduces a
helper function to sort the scores.

Second, as students work on implementing a given task, they
keep adding code. At some point, they may realize that a function
has grown long or is too complicated to handle and decide to split
it to make progress. Modifying the program in a way that does not
alter its external behavior but improves the internal structure of
the code is a process known as refactoring [8, 24] (Figure 5).

Figure 5: In this example, the student decides to split a long
and complex function into simpler subfunctions.

1In most cases, the snapshot that declares a function is also the one that first calls it. If
not, we must search in the subsequent snapshots to find the one that first calls it.
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Third, the student may want to transfer a code fragment that
appears similar in multiple locations2 to a shared function to elimi-
nate duplication (Figure 6).

Figure 6: In this example, the student decides to introduce
a function that sorts the scores to avoid duplication in the
code that calculates the maximum, minimum, and median
scores.

How can we identify the motivation from the code?
Novices often save the code with syntax errors to protect their

work. The system ignores non-compilable snapshots, finds where
a function is first declared (Figure 2b), and, from there, locates
the previous snapshot (Figure 2c). Then it compares this before-
decomposition with the first five after-decomposition snapshots3 (Fig-
ure 7) to determine what motivated the student.

3.5 Classifier
A programmer swaps hats frequently between various activities.
For example, one can start by trying to add a new function and then
realize it becomes easier if the code is structured differently. The
system detects the motivation behind every new function (Figure
1/stage 4), and then the classifier uses this information to profile
the student behavior (Figure 1/stage 5). There are eight taxonomy
groups based on the programmer’s motivation (Figure 8).

Functions that add functionality grow over time. Thus, one can
track the size to detect them (Table 1). Noting the time when this
happens is equally important. A student is considered to add new
functionality early if most size-growing functions appear before
the development midpoint (i.e., 50% progress). The system uses the
2Roy et al. provide a clone classification involving the amount and the way a code
fragment is duplicated [27].
3We consider five snapshots instead of one because implementing a function is incre-
mental (i.e., takes some time), not instant. In addition, there are two requirements: 1)
no other function is removed or added, and 2) the newly declared function is called.

Figure 7: Function implementation is not an instant but an
incremental process. Therefore, we consider up to five snap-
shots after a function is introduced.

Figure 8: There are three reasons to add a new function. Our
classifier considers two options for every reason. Thus, there
are 23=8 taxonomy groups.

Table 1: The manifestation of the student’s motivation in the
program before and after the decomposition.

Student’s motivation Manifestation in the code

Add new functionality A new function is added and the
initial function (now the caller
function) grows in size.

Need to restructure code Code moves from a long function
to a new function that the initial
(long) function now calls. Thus,
the caller/initial function shrinks.

Remove duplicate code The new function is called multiple
times (i.e., the common code moved
to a shared function which is called
in multiple places in the program)

snapshot timestamps (Section 3.1) to find the midpoint. It calculates
the net time spent on the assignment as an aggregate of relative
timing information between a snapshot and the previous one, ex-
cluding breaks. A break occurs when two consecutive timestamps
differ by ten minutes [35].

The intention to remove duplicate code (known as clones) is easily
detected as the student moves the common code to a new function
that calls multiple times (Table 1). Clone elimination qualifies as
motivation for decomposition if 10% or more of the functions are
shared (i.e., called more than once). Finally, the desire to reduce
the program complexity qualifies as a reason if at least 10% of the
functions come from splitting longer ones (i.e., refactoring). Both
thresholds are relatively relaxed and, therefore, safe to use.

4 RESULTS
We collected 49,000 program snapshots extracted from 168 students
for a challenging CS1 programming assignment. After filtering out
non-compilable code, we analyzed approximately 45,000 snapshots.
In our study, we tried to answer a series of compelling questions.

- Which is the primary reason that makes students
decompose their programs?

Adding functionality is common for all students. The analysis
suggests that 54.2% add most functions late. Moreover, it reveals
that 43.4% of learners feel the need to restructure their programs,
and 37.5% identify and remove duplicate code (Figure 9).
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Figure 9: Classification histogram for the students who com-
pleted the programming challenge

- How does each reason relate to program complexity?
We measured McCabe’s cyclomatic complexity and tracked each

program’s software lines of code (SLOC) (Section 3.2). We were
interested only in the snapshots before and after the decomposition
and grouped them based on what triggered it. Finally, we calculated
the median values for the cyclomatic complexity (Figure 10) and
the SLOC (Figure 11) in each group.

Students who need to restructure their code have the most signif-
icant drop in cyclomatic complexity and lines of code, 7.4% and 7.3%,
respectively. On the other hand, adding gradually new functionality
means that complexity is under control. Thus, it decreases only by

Figure 10: The cyclomatic complexity (per function) before
and after decomposition depending on the motivation.

Figure 11: The SLOC (per function) before and after decom-
position depending on the motivation.

Table 2: Statistical measures for the reasons that make a
student add a function, before and after the decomposition.

Add new Need for code Remove
functionality restructure duplicate code

Before the new function
CYC Median 2.93 3.25 3.18
CYC Mean 2.94 3.72 3.22
CYC Std Dev 0.37 0.41 0.39
SLOC Median 9.71 11.60 10.77
SLOC Mean 9.81 12.94 11.13
SLOC Std Dev 1.20 1.43 1.15

After the new function
CYC Median 2.82 3.01 3.06
CYC Mean 2.86 3.14 3.13
CYC Std Dev 0.37 0.39 0.38
SLOC Median 9.58 10.75 10.40
SLOC Mean 9.83 11.08 10.87
SLOC Std Dev 0.89 1.07 0.91

3.8%. SLOC falls even less, by 1.3%. Table 2 shows the mean, median
and standard deviation for the complexity and the SLOC before and
after the decomposition. The results are statistically significant (i.e.,
the p-value is 0.004 for the cyclomatic complexity and 0.005 for the
SLOC).

- What is the impact on the time to derive the solution?
We tracked the total time to complete the programming chal-

lenge for each student group. Then we performed a pairwise com-
parison between groups that restructured/did not restructure the
program (Figure 12). The main takeaway is that students who need
to refactor their code take, on average, 17% more time to deliver the
final solution than their peers who don’t. Adding new functionality
early in the development helps reduce the overall time, although
only by 6%. The p-value for the average time is 0.005.

Figure 12: Total time (mean value) to deliver the final solution
for each group. The groups are paired so that the reasons
that drive decomposition differ only in terms of the need
to restructure the code. In red are the students who feel the
need to restructure the code and in green are those who don’t.
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Figure 13: The exam score (mean value) for each student
group. The score range is 0 to 100, the mean is 70, the median
is 71 and the standard deviation is 3.5. The groups are paired,
so that the only difference is the need to restructure the code.

-How does each group perform?
We considered the assignment grades and the exam scores to

evaluate student performance. For each group, we compared the
mean values. The assignment grades are almost unaffected. On
the other hand, exam scores fluctuate. Our findings agree with
other studies that observed a higher correlation between student
programming skills and exam scores than assignment grades [3, 26].
A pairwise comparison between groups that restructured/did not
restructure the program indicates that the latter performed better
in the exams (Figure 13). The p-value is 0.006, slightly higher than
the statistical significance threshold of 0.005.

5 THREATS TO RELIABILITY
We took several precautions to preserve the research’s generality
and objectiveness. Our work relies on source code analysis rather
than other, more subjective methods (e.g., surveys, think-aloud
experiments, etc.). Moreover, it considers multiple metrics (i.e., cy-
clomatic complexity and SLOC) to capture the program complexity
and ensures that the measurements do not depend on the program-
mer’s formatting style. Finally, to determine how early a student
introduces new functionality, we use timestamps and consider only
the net time the student has worked on the assignment by that
point.

Despite our efforts, there are still threats to the reliability of our
work:

(1) Detecting decomposition does not include rare cases where
two subsequent snapshots differ by more than one function
(Section 3.3).

(2) We attribute the function decomposition to a single reason
(Section 3.4). Although rare, there can be multiple driving
forces. For example, the student may want to reduce the
program complexity and, at the same time, remove duplicate
code.

(3) The system considers up to five snapshots after the decom-
position to determine its impact on the program (Section 3.4).
This number is sufficient in most cases to account for the
time it takes to complete the new function’s implementation.
Nevertheless, the selection is still arbitrary.

(4) Similarly, for the threshold (i.e., development midpoint) to
determine if a student adds functionality early and the per-
centage (i.e., 10% or more) of shared functions that make
duplicate code elimination qualify as a reason for decompo-
sition (Section 3.5).

(5) Although the sample size (i.e., N=168 students) is not small,
a larger data set of students and assignments can be helpful
for validation.

6 DISCUSSION
The analysis suggests that students who need to restructure the
code fail to keep the program complexity under control and spend
17% more time deriving the final solution. Although it is not imme-
diately evident that simple metrics for measuring code complex-
ity are related to the cognitive obscureness encountered by the
programmer, code complexity is a proxy for increasing difficulty.
The assignment grades and exam scores can be used to study the
short-term and long-term effects, respectively [15]. A weekly pro-
gramming assignment imposes more relaxed time constraints than
a three-hour exam. As mentioned, lower complexity is correlated
with solving a problem faster. Thus, it increases time efficiency
leading to higher exam scores.

Arguably the most substantial implications of our work for CS
education lie in the field of metacognition, as novice students often
lack a deep understanding of how they learn. A growing research
community advocates assisting the novice in building a mental scaf-
fold around which they can correctly place knowledge and, in doing
so, develop metacognitive awareness [1, 5, 7, 13, 20, 25, 29, 34]. Top
universities and educational institutions use one-on-one sessions
between the learner and the TA to provide formative feedback on
how students implement programming methodology and have de-
veloped software to facilitate the discussion [35]. Exploring when
students decompose the program, what drives their decision, how
complicated their code is at the time, and to what extent they have
an overall plan to add functionality gradually can help them de-
velop a growth mindset. It seems reasonable to believe that some
ideas in this paper can be incorporated into computer education
software to foster metacognition.

7 CONCLUSION
Educators and researchers agree that program decomposition is
a fundamental software development skill that the novice learner
must acquire. This paper presents a systematic approach to detect-
ing when novice programmers decompose their code and classify
their behavior from the motivation that drives their decision. We
built a system to perform these steps and used it to analyze the
results in a CS1 programming challenge. Our findings suggest that
students often introduce a function to add functionality, while many
try to restructure their code to manage program complexity. Those
who keep complexity under control without code refactoring de-
rive the final solution faster. Investigating when and why students
decide to decompose a function can help them acquire a deeper
understanding of the problem-solving journey around which they
can correctly place knowledge and, in the process, develop metacog-
nitive awareness.
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