
Plagiarism Deterrence in CS1 Through Keystroke Data
Kaden Hart

Utah State University
Logan, Utah

kaden.hart@usu.edu

Chad Mano
Utah State University

Logan, Utah
chad.mano@usu.edu

John Edwards
Utah State University

Logan, Utah
john.edwards@usu.edu

Abstract
Recent work in computing education has explored the idea of ana-
lyzing and grading using the process of writing a computer program
rather than just the final submitted code. We build on this idea by
investigating the effect on plagiarism when the process of coding,
in the form of keystroke logs, is submitted for grading in addition to
the final code. We report results from two terms of a university CS1
course in which students submitted keystroke logs. We find that
when students are required to submit a log of keystrokes together
with their written code they are less likely to plagiarize. In this
paper we explore issues of implementation, adoption, deterrence,
anxiety, and privacy. Our keystroke logging software is available
in the form of an IDE plugin in a public plugin repository.

CCS Concepts
• Social and professional topics → CS1.

Keywords
CS1, Keystrokes, Plagiarism
ACM Reference Format:
Kaden Hart, Chad Mano, and John Edwards. 2023. Plagiarism Deterrence
in CS1 Through Keystroke Data. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2023), March 15–
18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3545945.3569805

1 INTRODUCTION
Universities have reported that computer science departments are
the worst offenders of academic integrity code violations [18]. Pla-
giarism detection tools such as MOSS have been deployed to catch
instances of cheating, but many students think they can circumvent
these detection tools and are not deterred. Catching plagiarism
after it has occurred is necessary for universities to do, but is too
late to help students. Students who are caught plagiarizing at our
university receive an immediate failing grade for the course and
face expulsion in serious or repeated cases.

Recent scholarship has discussed the benefits of collecting pro-
gramming process data such as keystrokes, compiles, saves, and
commits [e.g. 10]. The majority of collecting such data has been for
research purposes, but calls for collecting and using it for identifica-
tion of at-risk students, assessment, and awareness are increasing.

This work is licensed under a Creative Commons Attribution-
NoDerivs International 4.0 License.

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9431-4/23/03.
https://doi.org/10.1145/3545945.3569805

A highly suitable application of this type of data is plagiarism detec-
tion, though it has been little talked about. However, the usefulness
of process data, especially keystrokes, in detecting and deterring
plagiarism can hardly be questioned. It offers a fine-grained view
of the process a student took to complete a computer programming
assignment.

In this experience report we discuss a two-semester project
where students in our CS1 classes installed the ShowYourWork
plugin that logged their keystrokes to a file on their computer.
One group of students were required to submit the keystroke file
along with their submitted code. We discuss the effect of simply
installing the keystroke logger in deterring students from plagia-
rism. We report alleged cases of plagiarism (detected using standard
code checkers and not the keystroke logs), answers to a series of
Likert-style questions, and responses in a free-response paragraph
in which students describe their experience with keystroke logging.
We find that simply logging keystrokes appears to deter plagiarism
through a reduced temptation to cheat and that most students feel
positively about the tool. Unintended side-effects are an increased
anxiety level of some students due to fears that they will be falsely
accused of cheating and a sense that the instructor didn’t trust them.
We also discuss issues of privacy.

2 BACKGROUND

2.1 Plagiarism Detection and Shortcomings
There are many ways to detect plagiarism, and students find meth-
ods of circumventing each of them. Code similarity detection soft-
ware such as MOSS can detect if a student copied code from some-
where else by inspecting the final submission of code [20]. MOSS
can be defeated by students who take sufficient care in renaming
variables and shuffling lines of code around. Comparing the ab-
stract syntax trees [7], or binary compilations [16], of programs
can still detect plagiarism even with renaming of variables and
small changes to the order of lines of code; however, a student who
makes larger changes to plagiarized code, especially to the order of
conditionals, may evade detection.

Other methods to detect plagiarism have been used such as sign-
ing documents with white space characters that will be copied if
students share their work [8], or the use of version control sys-
tems [17] to track the history of a document. Others have used key-
stroke data to authenticate the author of a document by their typing
behaviors [13, 15]. While keystroke data provides rich information
about the creation of a document, it is rarely available because it
requires students to use online editors that track interactions, or
have software installed on their development environments that
will log their keystrokes.

Ahadi et. al. [2] compared three popular plagiarism detection
tools – MOSS, SIM, and JPlag – and found that they do not always

493

https://doi.org/10.1145/3545945.3569805
https://doi.org/10.1145/3545945.3569805
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3545945.3569805
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545945.3569805&domain=pdf&date_stamp=2023-03-03

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Kaden Hart, Chad Mano, & John Edwards

agree on what is potential plagiarism and what isn’t. Ahadi et. al.
also found that the software packages give many false positives
for plagiarism. False positives can be especially common in CS1,
where assignments can be so small that code similarity checkers can
flag almost every submission as possible plagiarism. Instructors in
our university have reported that they do not check for plagiarism
on some assignments because the assignments were too small to
determine if plagiarism occurred or not.

Not only do plagiarism detection tools not agree on what is
plagiarism and what isn’t, students and instructors don’t agree
either. Stepp et. al. [21] found a lack of consensus among students
on what constituted cheating, and suggested that discussion of
what is and is not cheating could be useful for students. Brimble
et. al. [5] gave 1206 students and 190 academic staff 20 scenarios
about academic integrity, and for every scenario, students rated
seriousness and penalty lower and prevalence higher than the staff.

2.2 Programming Process
Recent scholarship has investigated analysis of the process of writ-
ing a computer program using log data. For example, Jadud et
al. [11] proposed a metric called the error quotient (EQ), based on
compile behavior, to measure probability of success of a student.
Similar metrics include the Watwin score [23], the RED score [4],
and NPSM [6]. Similar metrics from process data include number
of attempts of programming exercises [1], code submissions [22],
and typing speed [14], among others. Ihantola et al. [10] give an
excellent overview of programming process data, characteristics of
the different types, and examples of uses.

Despite the demonstrated utility of collecting programming pro-
cess data, it does not seem to have been adopted in an educational
(as opposed to research) setting. To our knowledge, no CS1 course
captures keystrokes as an assessment or even as an observational
tool. We are aware of classrooms that collect more course-grained
data, however. In classes at our university, assignments can be sub-
mitted via a repository like GitHub or Bit Bucket. These classes
require students to have at least a certain number of commits, qual-
ity commits, and good commit messages, and the student’s grade
is determined by how well they followed good coding practices
in addition to submitting a quality final product. Similarly, in soft-
ware engineering classes, students are typically required to submit
process documents such as burndown charts, reports of standup
meetings, and user stories. Despite a rich history of course-grained
process data collection, educators have not seemed to have adopted
richer, fine-grained data.

3 METHODS
This paper reports on two consecutive semesters (14-week terms)
of a CS1 course taught at a U.S. university: Fall 2021 and Spring
2022. Three groups of students, one whose keystrokes were not
logged, one whose keystrokes were logged but not made available
to the instructor, and one whose keystrokes were made available
to the instructor. See Table 1. In both semesters students were
warned about the consequences of plagiarism and notified that
the instructor did their best to identify and prosecute cases of
plagiarism. In both semesters (and semesters prior as well) the
instructor used MOSS to detect possible instances of plagiarism.

Keystrokes Known to
Group Semester logged instructor 𝑛

no logging Fall 2021 200
unsubmitted logging Fall 2021 x 62
submitted logging Spring 2022 x x 245

Table 1: Details of three groups of students. 𝑛 is the number
of participants.

All students were given a survey at the end of the semester. Both
semesters of our study were conducted according to a protocol
approved by our university’s ethics review board.

3.1 Keystroke Data Collection
In the first semester, students were given the opportunity to opt into
a study which included installing the ShowYourWork plugin to their
IDE that logged their keystrokes. No compensation was offered for
opting in. Keystrokes were available only to researchers and not
the instructor and students were informed of this fact. We call these
students the unsubmitted logging group. See Table 1. Students in the
first semester who chose not to participate in the study did not have
their keystrokes logged and are called the no logging group in this
paper. In the second semester all students were required to install
the keystroke logger plugin and all keystrokes were submitted to
the instructor. These students compose the submitted logging group.

ShowYourWork is a PyCharm IDE plugin that logs keystrokes
to a local file in a sibling directory (unsubmitted logging group) or
the same directory (submitted logging group) as the source code.
Students in the submitted logging group were required to submit
the keystroke logs together with their code submissions. The plugin
collected two types of data: keystrokes, and edits to project files.
With keystroke and file edit data, the step-by-step process students
made to write their code can be recreated.

3.2 Privacy
An important issue with keystroke logging is privacy. Knowing
that privacy was a concern we discussed the issue with our univer-
sity’s general counsel during development of ShowYourWork. The
attorney agreed that capturing keystrokes was analogous to and
even literally having students show their work. The attorney found
that our approach is ethical given the following conditions:

• Students are informed that their keystrokes are being recorded,
including which files the logs are being written to.

• Students are informed that they have control over their key-
stroke logs and that no university faculty or staff will see
them until the student submits them with their assignment.

• Students are informed that only keystrokes within PyCharm
are recorded.

• Recorded keystrokes while working on computer program-
ming projects not related to CS1 remain privately stored on
their computer.

• Students are informed what the keystrokes will be used
for, namely, discussions with instructors/TAs, plagiarism
detection, improvement of instruction, and estimation of
effort.

494

Plagiarism Deterrence in CS1 Through Keystroke Data SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

• Keystrokes are not used for any other purpose other than
those stated above.

Citing privacy concerns, some faculty members were opposed to
requiring keystroke logging for CS1. But with the above conditions,
our department voted to proceed with requiring the plugin.

An important part of these conditions is student access to their
keystroke data. Students own and can inspect their keystroke data,
either directly in the log file or through the playback feature, to
knowwhat is or is not logged. Students can evenmodify and remove
parts of their logs. However, doing so is extremely difficult without
corrupting the file such that reconstruction and playback result
in jumbled code and out of bounds errors. However, during the
course of the semester we realized that we need to provide students
with a tool to delete events from the log. This is necessary because
students may inadvertently type something sensitive, such as an
accidental paste of a credit card number or password. Furthermore,
providing students with a tool to expunge keystrokes could inspire
confidence that the keystroke logger needn’t be feared. Of course,
such a tool could be used to mask plagiarism. However, that risk
is attenuated because most students would realize doing so will
appear suspicious.

Courses that grade the coding process as part of the assign-
ment do not receive complaints about privacy. Students have been
required to use Git, and have a certain number of commits. Git
commits show file states similarly to keystroke data, keystroke data
is simply higher-resolution, and automatically done with every
keystroke.

3.3 Step-By-Step Playback
In Spring 2022 ShowYourWork was updated to include a step-by-
step playback of assignments. After installing the plugin, an ad-
ditional window is available in PyCharm that has a text section
and a slider. The text section shows the state of the focused file
in PyCharm at the selected position of the slider. The slider has a
position for every edit done to the current focused file in PyCharm.
Students can start from any point in the edit history of a file and see
step-by-step edits to any other point in the file’s history. This play-
back feature used the keystroke log to build code snapshots to show
during playback. It was added as a convenience to the students.
The playback feature is not a part of the plagiarism study reported
in this paper, but we mention it here because two questions in the
survey ask about its usefulness to students.

3.4 Survey
At the end of both semesters students were given the opportunity to
respond to our survey about plagiarism. Responses can be used to
determine how keystroke logging affects student attitudes, poten-
tially reducing plagiarism. Surveys included the following prompts,
which used a 5-point Likert scale with response options Strongly
disagree, Somewhat disagree, Neither agree nor disagree, Somewhat
agree, and Strongly agree:

• I was tempted to plagiarize in CS1 this semester.
• I believe that I would get caught if I plagiarized in CS1.
• If I copied someone else’s code, I would be capable of making
it look like I didn’t copy.

• The CS1 instructor is capable of finding cases of plagiarism.

Code Kappa % Description

privacy 0.65 6.4% Invaded privacy
forgot 0.86 11.1% “I forgot about it”
remembered 0.71 6.4% “It was on my mind”
no trust 1.0 1.6% Instructor doesn’t trust students
anxiety 0.40 9.5% Gave anxiety
temptation 1.0 4.8% Reduced temptation to cheat
positive 0.51 11.1% A positive thing
negative 0.31 6.4% A negative thing

Table 2: Coding results. “Kappa” is the inter-rater reliability
Kappa values for topics found in free response answers. The
complete description for “Gave anxiety” is “Gave anxiety of
being accused of cheating even if student wasn’t plagiarizing.”
The % column is the percentage among the 63 responses
that mentioned the code. Responses that were empty, “N/A”,
“none”, or similar were ignored.

Students who installed the keystroke logger were additionally
asked:

• The plugin that logs keystrokes would make it easier for the
CS1 instructor to find cases of plagiarism.

• I would have been more tempted to plagiarize if I hadn’t
been required to submit the keystroke log file.

• I forgot about the plugin.
• I think the plugin was a good idea.

Students in the second semester (submitted logging group) were
also asked:

• I used the plugin playback feature.
• The plugin playback feature was useful.
• Please share any additional thoughts you have about the
plugin.

Three questions did not use the 5-point Likert scale: “I forgot
about the plugin” had the options “Never”, “Within 2 months”,
“Within 2 weeks”, and “Immediately”, “I used the plugin playback
feature” had the options “0 times”, “1 to 3 times”, “4 to 10 times”,
and “more than 10 times”, “Please share any additional thoughts
you have about the plugin” was a free response question.

3.5 Coding
Coding proceeded using the method of Saldana [19]. First, the
research team met to create a list of codes, or themes, contained in
the survey responses. The result of the discovery session was the
list of codes in Table 2. The codebook contained the code name and
description.

To code the student responses, two authors used the codebook
and independently coded the responses. The codes were compared
using Cohen’s kappas [3] and pooled kappas [9] to determine inter-
rater reliability. The pooled kappa was 0.69, which is considered
moderate agreement [12]. For the individual codes’ Cohen’s kappas,
the lowest was 0.31 and the highest was 1.0, or complete agreement
(Table 2).

495

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Kaden Hart, Chad Mano, & John Edwards

Strongly Disagree Neither Strongly Agree
0

10

20

30

40

p
er

ce
n
t

No Logging

Unsubmitted Logging

Submitted Logging

Figure 1: Student responses to “I was tempted to plagiarize
in CS1 this semester”.

3.6 Detecting PlagiarismWith Keystroke Data
Keystroke data can be used to detect plagiarism in the following
cases: (1) copying then renaming variables and shuffling lines of
code in PyCharm, (2) copying, renaming, and shuffling outside
PyCharm, and (3) retyping plagiarized code. In the first case, if a
student copies code, then changes variable names, and moves lines
of code around, keystroke data captures the paste event and the
original pasted code. The original pasted code can be inspected to
determine where the student got the code from. In the second case,
if a student copies code and changes it outside the editor then pastes
it into their editor, the paste event is stored, and the pasting of a
large amount of code is suspicious and can be considered cheating
if students have been asked to do all their work in the editor. In the
third case, if a student copies code by typing it instead of pasting it,
the step-by-step playback will show a student writing code from
top to bottom in a single pass; something that rarely happens even
with experienced programmers.

The instructor was given a script that would detect large pastes
among a set of submissions. It was decided that for this first semes-
ter using keystroke logging that the instructor would use keystrokes
only for a first pass at plagiarism detection, but would rely on tradi-
tional methods for confirmation. As this paper is about deterrence,
we defer detailed discussion of plagiarism detection to future work.

4 RESULTS AND DISCUSSION
We received 217 survey responses from the Fall 2021 semester and
155 from the Spring 2022 semester. Of the 155 responses in the
spring semester, 63 wrote in the free response question (excluding
“none”, “N/A”, etc.). Information about plagiarism was supplied by
a single instructor for their class alone.

4.1 Temptation
When asked, “I was tempted to plagiarize in CS1 this semester”, one
in five students responded that they strongly or somewhat agreed
(Figure 1). Those students are at-risk for plagiarizing, and could
benefit from keystroke data requirements. When asked, “I would
have been more tempted to plagiarize if I hadn’t been required
to submit the keystroke log file”, 18% of responses reported that
requiring keystroke logs reduced their temptation to plagiarize

Strongly Disagree Neither Strongly Agree
0

10

20

30

40

p
er

ce
n
t

Unsubmitted Logging

Submitted Logging

Figure 2: Student responses to “I would have been more
tempted to plagiarize if I hadn’t been required to submit
the keystroke log file”.

Semester Enrollment Cases %

Summer 2020 66 13 19.7%
Fall 2020 120 8 6.7%

Spring 2021 223 7 3.1%
Fall 2021 41 | 62 6 | 2 14.6% | 3.2%

Spring 2022 137 5 3.6%

No logging 450 34 7.5%
Logging 199 7 3.5%

Table 3: Cases of plagiarism in CS1 for one instructor from
Summer 2020 to Spring 2022. The first value in Fall 2021 is
the no logging group and the second value is the unsubmitted
logging group. The % column is the percentage of students
that plagiarized.

(Figure 2). This number is higher than we expected; nearly 1 in 5
students reporting a reduced temptation to cheat is remarkable.

In the free response section of our survey, 4.8% of students re-
ported that requiring keystroke data reduced their temptation to
cheat. One student expressed how requiring keystroke logs reduced
their temptation to look at outside resources – something they were
asked not to do.

It definitely did makeme not even really look for other
code outside of the class to find ways around issues
though. i didn’t want to get ideas from somewhere
else and get accused of cheating even if it was just
subconscious from seeing another solution before.

Another student expressed how requiring keystroke data reminded
them not to copy code.

I honestly did not put to much thought into the fact
that it was there, but I did always deep down know it
was there and figured it could tell I copied code.

Temptation reduction appears to be a benefit of keystroke logging
and a deterrent to plagiarize.

496

Plagiarism Deterrence in CS1 Through Keystroke Data SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

Strongly Disagree Neither Strongly Agree
0

10

20

30

40

50

60
p

er
ce

n
t

No Logging

Unsubmitted Logging

Submitted Logging

Figure 3: Student responses to “The CS1 instructor is capable
of finding cases of plagiarism”.

Strongly Disagree Neither Strongly Agree
0

10

20

30

40

50

60

p
er

ce
n
t

No Logging

Unsubmitted Logging

Submitted Logging

Figure 4: Student responses to “I believe that I would get
caught if I plagiarized in CS1”.

4.2 Deterrence
As a measure of deterrence, we report prosecuted cases of plagia-
rism. One of the two instructors participating in our study did not
check submissions for plagiarism so we did not use data from his
course. We collected plagiarism counts from the other instructor’s
CS1 courses from Summer 2020 to Spring 2022 in which he used the
MOSS code checker to check for plagiarism. See Table 3. While we
did see a reduction in plagiarism cases when keystroke logging was
in place, it is not a strong result (𝑧 = 1.95, 𝑝 = .051). With results
from the survey however, we find that requiring keystrokes with
assignments increased students’ beliefs that they would get caught
if they did cheat (Figure 4). We suggest that students who believe
they could be caught will be less likely to cheat, and as discussed in
Section 4.1, we find a number of students who expressed that they
were deterred from cheating.

An interesting dichotomy we discovered in our survey is that
students overwhelmingly believe that the instructor is capable of
finding cases of plagiarism (Figure 3) and will catch them if they
plagiarize (Figure 4), yet students think they are capable of making it
look like they didn’t plagiarize (Figure 5). Two students’ responses
to the free response question expressed this “I could if I tried”
attitude.

I think that the plug in was helpful in keeping me hon-
est in my coding. However, if I wanted to plagiarize
code I could do it pretty easy.

Strongly Disagree Neither Strongly Agree
0

10

20

30

40

50

p
er

ce
n
t

No Logging

Unsubmitted Logging

Submitted Logging

Figure 5: Student responses to “If I copied someone else’s
code, I would be capable of making it look like I didn’t copy”.

It didn’t mean much to me. I think that if someone
is copypasting plagiarizing, it could be helpful and
should discourage that, but if someone is plagiarizing
even mildly intelligently, that it wouldn’t do much to
deter that.

Whether or not we should be concerned that students still think
they can cheat is a question we don’t know the answer to. On one
hand, it seems harmless in the cases of the quoted students, yet
it could suggest that students who are prone to cheating are also
confident in their ability to mask it.

4.3 Anxiety
False positives are common in plagiarism detection [2]; Keystroke
data not only provides better evidence for accusations of plagia-
rism, but it can also be used to detect false positives. A student
falsely accused of cheating could use their keystroke log to defend
themselves. Students in our classes may not have understood that
keystroke logs can actually work to their benefit. In the free re-
sponse section of our survey, 9.5% of students expressed anxiety
about issues with plagiarism detection through keystroke data. One
student in particular had a strong response to the use of keystroke
data.

“Even though I didn’t cheat, I was constantly stressed
out that my assignments were being marked for pla-
giarism. This caused A LOT of anxiety throughout
the semester, so much so that I wish I didn’t take this
class because of the emphasis on cheating....It would
be really helpful if my professor was more clear about
what the plugin is, especially for students who are
prone to feelings of anxiety.”

This student unfortunately felt significant anxiety, which is under-
standable. But it is instructive and encouraging that they suggested
that becoming more educated about the logging plugin and, in our
minds, understanding better the features of a case of plagiarism,
would reduce their worry. Other students felt similarly, although
not as strongly: “It kind of freaked me out a little bit to be totally
honest. But I also forgot about it really quick as well.”

Initial concern followed by indifference seems to be a some-
what common theme. It reveals a difference in students, with some
dwelling on concerns and others setting them aside rather quickly.

497

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Kaden Hart, Chad Mano, & John Edwards

Upon reflection, one of the most important tasks in implementing
a measure like this is education and satisfying students that they
will not be falsely accused.

I didn’t know much about it except that it recorded
every keystroke I made. Sometimes I put together
code in a separate test project and pasted it in to my
assignment and I was worried that might make it look
like I was plagiarizing but it was okay.

Addressing the case of students writing test code outside of the
IDE and then pasting it into their own code is an important and
difficult use case to consider. One solution is to teach students how
to write bits of experimental code within their project. Another is
to have them make sure their keystrokes are logged while writing
the snippets and keeping the logs around just in case.

Our work seeks to deter plagiarism, but had the unintended
effect of worrying students too much about plagiarism accusations.
A better explanation about how keystroke data is used may help
alleviate student anxiety, and is important to anyone who uses
keystroke data for plagiarism detection. We are also improving
the playback feature – fixing bugs and making it more obvious
to the user – to give students a better idea of what the instructor
can see from their keystroke data. Instructors can also improve by
giving students a better explanation of precisely what constitutes
cheating, and informing them that they are given a chance to defend
themselves in the event of an accusation – something the playback
feature could aid in.

4.4 General Attitude
Student attitudes towards requiring keystrokes are generally posi-
tive, with 60% indicating it is a good idea, and only 18% disagreeing.
See Figure 6. In the free response question we found 11% of re-
sponses explicitly stating that the plugin was a positive thing, and
6% explicitly stating that it was a negative thing. Students who did
not plagiarize responded positively, expressing that requiring key-
stroke data made the class more fair: “yes, very good. i love anything
that evens the playing field and makes people more accountable.”

I completely forgot it was there since I was never
influenced to plagiarize anything, but I feel like it is
a very useful tool to catch those who are trying to
plagiarize.

We also found 1.6% of students felt requiring keystroke data showed
a lack of trust towards students, but still accepted it: “it shows a
lack of trust in your students but other than that it’s fine.”

Privacy was a concern for some students. In the free response
answers to our survey, 6% of students mentioned that the plugin
felt invasive.

I did not like the plugin at all. I would have never
voluntary downloaded a key logger to my computer
no matter what its intended purpose was if it wasn’t a
requirement for any of my assignments to get graded.

A benefit to using a plugin for student IDEs is that students
remember it is logging their actions. 58% of students indicated that
they always remember it is installed in the survey. They know if
they cheat, their instructor could see what they did. In the free

Strongly Disagree Neither Strongly Agree
0

10

20

30

p
er

ce
n
t

Figure 6: Student responses to “I think the plugin was a good
idea”.

response 6% of the students said they did not forgot about the
plugin, and 11% said they did forget about the plugin.

5 CONCLUSIONS

Many methods have been developed to detect plagiarism in com-
puter science, but without proper deterrence, they only find the
problem after it has occurred. By simply collecting student key-
stroke data we found evidence of plagiarism deterrence. Student
attitudes were mostly positive as they appreciated that it evened the
playing field with their peers, but we also found evidence that anx-
iety among honest students may increase if they don’t understand
how detection methods work.

Keystroke data can accomplish plagiarism detection and help
identify false positives from file similarity. Keystroke data is a min-
imally invasive method to record student effort on programming
assignments and deter plagiarism. Only 6.4% of our students indi-
cated that requiring keystroke data felt invasive. Computer science
classes are typically focused on teaching the process of solving
problems with computer science, but are typically graded on the
final solution. Some courses have adopted the use of version control
systems to record student effort. Keystroke data works similarly to
version control systems, but at a higher resolution. We found in our
survey that requiring students to submit keystroke data with their
assignments helped them follow the proper programming process,
and discouraged them from plagiarizing.

In this paper we have presented our experience collecting key-
stroke data to detect and deter plagiarism. We have discussed how
keystroke data can better detect plagiarism, increase the difficulty
to obfuscate plagiarism, and detect false positives from file simi-
larity. We have shown that requiring students to submit keystroke
data is a minimal invasion of privacy that deters students from
plagiarizing, and can prevent innocent students from plagiarism
accusations. Students were given a survey to express how they felt
towards these topics and the requirement of keystroke data. Sixty
percent of our students responded in support of keystroke data
requirements, but 9.5% expressed anxiety caused by the require-
ment. To deter plagiarism and limit student anxiety, instructors
who require keystroke data should explain clearly to students what
plagiarism is and how keystroke data can detect both plagiarism
and false positives.

498

Plagiarism Deterrence in CS1 Through Keystroke Data SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

References
[1] Alireza Ahadi, Raymond Lister, and Arto Vihavainen. 2016. On the number of

attempts students made on some online programming exercises during semester
and their subsequent performance on final exam questions. In Proceedings of the
2016 ACM conference on innovation and technology in computer science education.
218–223.

[2] Alireza Ahadi and Luke Mathieson. 2019. A comparison of three popular source
code similarity tools for detecting student plagiarism. In Proceedings of the Twenty-
First Australasian Computing Education Conference. 112–117.

[3] Mousumi Banerjee, Michelle Capozzoli, Laura McSweeney, and Debajyoti Sinha.
1999. Beyond kappa: A review of interrater agreement measures. Canadian
journal of statistics 27, 1 (1999), 3–23.

[4] Brett A Becker. 2016. A new metric to quantify repeated compiler errors for
novice programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. 296–301.

[5] Mark Brimble and Peta Stevenson-Clarke. 2005. Perceptions of the prevalence
and seriousness of academic dishonesty in Australian universities. The Australian
Educational Researcher 32, 3 (2005), 19–44.

[6] Adam S Carter, Christopher D Hundhausen, and Olusola Adesope. 2015. The
normalized programming state model: Predicting student performance in com-
puting courses based on programming behavior. In Proceedings of the Eleventh
Annual International Conference on International Computing Education Research.
141–150.

[7] Baojiang Cui, Jiansong Li, Tao Guo, Jianxin Wang, and Ding Ma. 2010. Code
Comparison System based on Abstract Syntax Tree. In 2010 3rd IEEE International
Conference on Broadband Network and Multimedia Technology (IC-BNMT). 668–
673. https://doi.org/10.1109/ICBNMT.2010.5705174

[8] Charlie Daly and Jane Horgan. 2005. Patterns of plagiarism. ACM SIGCSE Bulletin
37, 1 (2005), 383–387.

[9] Han De Vries, Marc N Elliott, David E Kanouse, and Stephanie S Teleki. 2008.
Using pooled kappa to summarize interrater agreement across many items. Field
methods 20, 3 (2008), 272–282.

[10] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. Proceedings of the 2015 ITiCSE on Working
Group Reports (2015), 41–63.

[11] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing

education research. ACM, 73–84.
[12] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement

for categorical data. biometrics (1977), 159–174.
[13] Juho Leinonen, Krista Longi, Arto Klami, Alireza Ahadi, and Arto Vihavainen.

2016. Typing patterns and authentication in practical programming exams. In
Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. 160–165.

[14] Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Automatic
inference of programming performance and experience from typing patterns. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
132–137.

[15] Krista Longi, Juho Leinonen, Henrik Nygren, Joni Salmi, Arto Klami, and Arto
Vihavainen. 2015. Identification of programmers from typing patterns. In Proceed-
ings of the 15th Koli Calling conference on computing education research. 60–67.

[16] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017.
Semantics-based obfuscation-resilient binary code similarity comparison with
applications to software and algorithm plagiarism detection. IEEE Transactions
on Software Engineering 43, 12 (2017), 1157–1177.

[17] Karen L Reid and Gregory V Wilson. 2005. Learning by doing: introducing
version control as a way to manage student assignments. In Proceedings of the
36th SIGCSE technical symposium on Computer science education. 272–276.

[18] Eric Roberts. 2002. Strategies for promoting academic integrity in CS courses. In
32nd Annual Frontiers in Education, Vol. 2. IEEE, F3G–F3G.

[19] J. Saldana. 2015. The Coding Manual for Qualitative Researchers. SAGE Publica-
tions, Los Angeles.

[20] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing: local
algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. 76–85.

[21] Michael Stepp and Beth Simon. 2010. Introductory computing students’ con-
ceptions of illegal student-student collaboration. In Proceedings of the 41st ACM
technical symposium on Computer science education. 295–299.

[22] Efrat Vinker and Amir Rubinstein. 2022. Mining Code Submissions to Elucidate
Disengagement in a Computer Science MOOC. In LAK22: 12th International
Learning Analytics and Knowledge Conference. 142–151.

[23] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2013. Predicting
performance in an introductory programming course by logging and analyzing
student programming behavior. In 2013 IEEE 13th international conference on
advanced learning technologies. IEEE, 319–323.

499

https://doi.org/10.1109/ICBNMT.2010.5705174

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Plagiarism Detection and Shortcomings
	2.2 Programming Process

	3 METHODS
	3.1 Keystroke Data Collection
	3.2 Privacy
	3.3 Step-By-Step Playback
	3.4 Survey
	3.5 Coding
	3.6 Detecting Plagiarism With Keystroke Data

	4 RESULTS AND DISCUSSION
	4.1 Temptation
	4.2 Deterrence
	4.3 Anxiety
	4.4 General Attitude

	5 CONCLUSIONS
	References

