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A Proofs for DF Analysis
A.1 Proof of Theorem 1 (Perfect Heuristic)

Proof. We first prove that a heuristic with strictly
monotonically increasing ratios must be a perfect heuris-
tic. Consider two arbitrary packets 𝑝𝐴 and 𝑝𝐵 , and a
heuristic ℎ with strictly monotonically increasing ratios.
𝑐 (𝑝𝐴)
𝑠 (𝑝𝐴) <

𝑐 (𝑝𝐵 )
𝑠 (𝑝𝐵 ) =⇒ ℎ (𝑝𝐴)

𝑠 (𝑝𝐴) <
ℎ (𝑝𝐵 )
𝑠 (𝑝𝐵 ) , which means that if 𝑝𝐴 has

a smaller true 𝑧-ratio then it must be served first in a WSJF
system, and thus the heuristic is optimal.

Next, we show that if a heuristic does not estimate 𝑧-ratios
to be strictly monotonically increasing, then the heuristic is
not optimal, meaning that it is not guaranteed to schedule all
packets correctly. If a functionℎ is not strictly monotonically
increasing in ratio estimates, there must exist packets 𝑝𝐴,𝑝𝐵
such that 𝑐 (𝑝𝐴)

𝑠 (𝑝𝐴) <
𝑐 (𝑝𝐵 )
𝑠 (𝑝𝐵 ) and

ℎ (𝑝𝐴)
𝑠 (𝑝𝐴) ≥

ℎ (𝑝𝐵 )
𝑠 (𝑝𝐵 ) . Then it is possible

for the system to serve 𝑝𝐵 before 𝑝𝐴, an exploitable point that
makes the heuristic imperfect.

□

We also provide an example of a class of perfect heuristic:
Any heuristic of the formℎ(𝑝)=𝑘 ·𝑐 (𝑝) for some 𝑘 ∈R+ will
ensure perfect scheduling underWSJF.
We first prove that a heuristic of this form is, in fact,

perfect. Given that the expected service order (priority under
WSJF scheduling) is in increasing value of 𝑐 (𝑝)

𝑠 (𝑝) , while the

heuristic’s service order will be in increasing value of ℎ (𝑝)
𝑠 (𝑝) ,

we want to show that these orderings will always be the
same. Consider 2 packets 𝑝𝐴 and 𝑝𝐵 . It holds that

𝑐 (𝑝𝐴)
𝑠 (𝑝𝐴)

<
𝑐 (𝑝𝐵)
𝑠 (𝑝𝐵)

⇐⇒ 𝑘 · 𝑐 (𝑝𝐴)
𝑠 (𝑝𝐴)

<𝑘 · 𝑐 (𝑝𝐵)
𝑠 (𝑝𝐵)

⇐⇒ ℎ(𝑝𝐴)
𝑠 (𝑝𝐴)

<
ℎ(𝑝𝐵)
𝑠 (𝑝𝐵)

A perfect scheduling order ensures that all of the assump-
tions from SurgeProtector are maintained, allowing WSJF
to provide the same DF upper bound of 1.

A.2 Proof
of Theorem 2 (Step FunctionHeuristic)

Proof. In order for an adversary to achieve a DF greater
than 𝑘 , it must be able to displace innocent packets such that
for everybyte of data transmitted by the adversary,𝑘 times the

amount of innocent data is displaced. Equivalently, the inno-
cent packet job size to packet size ratio is a factor of𝑘 less than
the adversary’s. We will prove that the step function guaran-
tees this property by showing the contrapositive to be true.
We first consider an adversarial packet 𝑝𝐴 and innocent

packet 𝑝𝐼 , and assume that 𝑐 (𝑝𝐴)
𝑠 (𝑝𝐴) > 𝑘 · 𝑐 (𝑝𝐼 )

𝑠 (𝑝𝐼 ) , and we want
to show that then the packets cannot be swapped by the
scheduler, 𝑖 .𝑒 . ℎ (𝑝𝐴)

𝑠 (𝑝𝐴) >
ℎ (𝑝𝐼 )
𝑠 (𝑝𝐼 ) .

ℎ(𝑝𝐴)=𝑎 ·𝑘 ⌊log𝑘𝑐 (𝑝)) ⌋

≥𝑎 ·𝑘 ⌊log𝑘 (𝑘 ·𝑐 (𝑝𝐼 ) ·
𝑠 (𝑝𝐴 )
𝑠 (𝑝𝐼 )

) ⌋ (By assumption)

=𝑎 ·𝑘 ⌊1+log𝑘𝑐 (𝑝𝐼 )+log𝑘 (
𝑠 (𝑝𝐴 )
𝑠 (𝑝𝐼 )

) ⌋

≥𝑎 ·𝑘1+⌊log𝑘𝑐 (𝑝𝐼 ) ⌋+log𝑘 (
𝑠 (𝑝𝐴 )
𝑠 (𝑝𝐼 )

)

=𝑎 ·𝑘 ·𝑘 ⌊log𝑘𝑐 (𝑝𝐼 ) ⌋ ·𝑘 log𝑘 (
𝑠 (𝑝𝐴 )
𝑠 (𝑝𝐼 )

)

=𝑘 ·ℎ(𝑝𝐼 ) ·
𝑠 (𝑝𝐴)
𝑠 (𝑝𝐼 )

=⇒ ℎ(𝑝𝐴)
𝑠 (𝑝𝐴)

≥𝑘 ·ℎ(𝑝𝐼 )
𝑠 (𝑝𝐼 )

=⇒ ℎ(𝑝𝐴)
𝑠 (𝑝𝐴)

>
ℎ(𝑝𝐼 )
𝑠 (𝑝𝐼 )

Given that an adversarial packet cannot displace innocent
packets with a job size to packet size ratio more than a factor
of𝑘 smaller than the adversarial packet’s, we see that the step
function heuristic upper bounds theDF at the fixed value of𝑘.

□

A.3 Proof of Theorem 3 (Preemption)
Proof. We consider a system that starts with estimated

job size 𝐽𝑝 = 𝜖 for all packets, in order to complete analysis
with no assumptions about the quality of job size estimates.
We also assume no preemption cost. We first look at a period
of𝑇 seconds, duringwhich𝑁 innocent packets arrive.We can
represent the true job sizes 𝑗𝑖 of incomingpackets in scheduled
order, as 𝑆 = [ 𝑗1, 𝑗2,..., 𝑗𝑁 ] where 𝑗𝑖 ≤ 𝑗𝑖+1∀𝑖 . The main insight
here is that an attacker can exploit the system by injecting
adversarial packets such that all innocent packets are partially
served but displaced (preempted and then never fully served).
An adversary’s goal thus becomes to "weaponize" innocent
packet work by causing the system to serve each innocent
packet for someamountof time that is less than its true job size.



Since job estimates for all packets increase by factors of 2 of
the initial estimate 𝜖, for a packet of job size 𝑐, the maximum
work the adversary canweaponize is𝑤 =max𝑘∈Z+ (𝜖 ·2𝑘 ) such
that𝑤 <𝑐.Weseeworst-case behaviorwhen the value of𝑐−𝑤
is minimized for all innocent packets, such that practically all
of the innocent work can beweaponized. So, for a fixed𝑘 ∈Z+
(and thus a fixed𝑤 =𝜖 ·2𝑘 ), we consider a scenariowhere all in-
nocent packets have the same job size𝑐 =𝑤+𝛿 , with𝛿→0. For
simplicity, we assume that all packets have a packet size of 1.
Assume that the attacker pushes the system to capacity

by using 𝑙 adversarial packets, each of packet size 1 and a true
job size of 𝐽𝐴 . In order to minimize 𝑙 , it is in the attacker’s
interest to encode as much work as possible in each attack
packet. Observe that, as long as service capacity is available,
each adversarial packet is guaranteed at lease𝑤 service time
(equivalent to the work served in each innocent packet).
Thus, we choose 𝐽𝐴 ≥𝑤. Since the systemmust be at capacity
in order to displace any traffic, we have:

Weaponized work︷︸︸︷
𝑤 ·𝑁 +

Adversarial work︷︸︸︷
𝑤 ·𝑙 = 𝑇

𝑙 =
𝑇 −𝑤 ·𝑁

𝑤
= lim
𝛿→0

𝑇 −(𝑐−𝛿)𝑁
𝑐−𝛿 =

𝑇 −𝑐𝑁
𝑐

=
(𝑇 −𝑡)𝑁

𝑡

where 𝑡 =𝑐𝑁 is the cumulative true service time for inno-
cent traffic alone. We also note that given the uniform-sized
packets in innocent traffic, we can express the load due to
innocent traffic as 𝜌 = 𝑡

𝑇
. We are now able to bound the DF

for preemptiveWSJF, the innocent traffic displaced relative
to the adversarial traffic sent:

𝐷𝐹 = lim
𝑇→∞

𝑁

(𝑇−𝑡 )𝑁
𝑡

= lim
𝑇→∞

𝑡

𝑇 −𝑡 = lim
𝑇→∞

𝑡
𝑇

1− 𝑡
𝑇

=
𝜌

1−𝜌 ,

which becomes unbounded as 𝜌→1.
□
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