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Post-Moore’s law area-constrained systems rely on accelerators to deliver performance enhancements. Coarse
grained accelerators can offer substantial domain acceleration, but manual, ad-hoc identification of code to
accelerate is prohibitively expensive. Because cycle-accurate simulators and high-level synthesis (HLS) flows
are so time-consuming, manual creation of high-utilization accelerators that exploit control and data flow
patterns at optimal granularities is rarely successful. To address these challenges, we present AccelMerger,
the first automated methodology to create coarse grained, control- and data-flow-rich, merged accelerators.
AccelMerger uses sequence alignment matching to recognize similar function call-graphs and loops, and
neural networks to quickly evaluate their post-HLS characteristics. It accurately identifies which functions to
accelerate, and it merges accelerators to respect an area budget and to accommodate system communication
characteristics like latency and bandwidth. Merging two accelerators can save as much as 99% of the area of
one. The space saved is used by a globally optimal integer linear program to allocate more accelerators for
increased performance. We demonstate AccelMerger’s effectiveness using HLS flows without any manual
effort to fine-tune the resulting designs. On FPGA-based systems, AccelMerger yields application performance
improvements of up to 16.7× over software implementations, and 1.91× on average with respect to state-of-
the-art early-stage design space exploration tools.

CCS Concepts: •Code Synthesis; •Compilers; •Computer AidedDesign Tools for Embedded Systems;
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1 INTRODUCTION
As CMOS scaling slows, and with it the increase in micro-circuitry per unit area, deciding which
code regions to accelerate becomes harder. However, the demand for improved performance
is exacerbated by novel domains such as AR/VR, Robotics and Machine Learning that require
more agile and efficient design methodologies. The traditional approach in accelerating novel
applications is to manually profile them and decide in an ad-hoc manner what code regions should
be mapped onto hardware. These manual approaches are ad-hoc since they either directly map
specific functions or loops onto hardware at a fixed granularity (e.g. [28]) and/or informally identify
a simple pattern occurring across different functions and create an accelerator for that (e.g. [5, 15]).
Code patterns can be as simple as repeated sequences of multiply-add operations to complex control
and data flow graphs representing a function (CDFG) or a function call graph (nested-CDFG). In
the case of manual accelerator design, patterns are only exploited at fine basic-block/DFG-level
granularities, based on the architect’s domain intuition.
To overcome some of these manual aspects of accelerator design, Early-Stage Design Space

Exploration [11, 36, 37] (Early-DSE) has emerged as a profiling methodology able to discover
new SoC architectures adjusted to the application’s characteristics without having to manually
transform the most executed application functions into a synthesizable format, i.e. acceptable by
High Level Synthesis Tools [3, 4, 19, 33], an extremely error-prone and time-consuming process.
However Early-DSE comes unprepared to exploit variable CDFG granularities and much less to
reason about architectures that reuse CDFG logic.
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Fig. 1. AccelMerger Overview.
Merging [6, 17, 29, 31] small data-flow (DFG) circuits has been implemented with very-limited

success using a graph-isomorphism approach, and at the RTL level, therefore missing an opportunity
to think about the whole system in terms of reusing CDFG patterns. These approaches have not
received widespread adoption in RTL synthesis tools [19] [4], most likely due to the fact that graph-
isomorphism is NP-Hard and not very scalable, but also since at low granularities the benefits of
calling an accelerator are greatly diminished by the cost of updating and reading from a register
file (RF). In the HLS context, RF-less, coarse-grained accelerators have had the most success since
rich CDFGs are mapped to hardware via datapaths handled via control-logic. There is no current
technology able to merge these coarse grained accelerators.

In this paper, we present AccelMerger, an automated tool able to generate coarse-grained merged
accelerators for the first time, to exploit CDFG patterns, able to generate new merged code regions
with flexible granularities from loops and functions to entire call-graphs of merged and non-
merged functions and to automatically select candidates for hardware acceleration. As illustrated in
Figure 1, AccelMerger starts from two pieces of information: the application source code containing
potentially non-synthesizable functions as well as a configuration file specifying an area budget for
a specific technology node and the parameters latency and bandwidth for the interconnect between
the different accelerators and a general purpose CPU. If the area budget is not specified, or the
interconnect latency/bandwidth, it will provide a scalability analysis for a wide range of relevant
area budgets and bandwidths/latencies.

The fourmain steps performed in AccelMerger are illustrated in Figure 1.AcceleratorModeling:
We achieve quick and automated accelerator modeling via Machine Learning Models, such as the
Multilayer Perceptron (MLP). Our modelling relies both on the static information available in the
application source code as well as on dynamic profiling information for each function indicated in
Figure 1 with the "dyn" label. This allows us to predict post-HLS accelerator resource consumption
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with less than 15% error, which is very close to the error produced by late-DSE tools when applied
to accelerator merging.Merging Codegen: Being able to quickly model accelerators goes hand-in-
hand with code-generating merged functions and realizing them in hardware only if they present
predicted opportunities for area savings, and by ensuring that the introduced multiplexing latency
overheads do not cancel the benefit of allocating new merged and non-merged accelerators using
the saved area resources. For this we use a scalable sequence alignment approach to achieve merging
at coarse granularities. Late DSE and HLS: We use cycle accurate simulation and HLS not only
to create a dataset to predict accelerator area and latency but also to validate accelerators when
the original functions are synthesizable.MIP Early-DSE: When area wins are measured on the
corresponding merged accelerators, we forward them to the selection stage via mixed integer linear
programming (MIP) which determines the final list of merged and non-merged accelerators in the
system. In particular for merged accelerators it is a requirement for the two input functions to be
synthesizable to be able to run the final validation step via HLS and Cycle-Accurate Simulation.
In Figure 1 we can see that functions such as 𝑓2 are selected for acceleration and RTL can be
generated for them as indicated by the "rtl" note attached to the function. The requirement for
merged functions to be synthesizable however, is for both of the input functions to be synthesizable,
which is the case for functions 𝑓3 and 𝑓4 but not for 𝑓𝑖 and 𝑓𝑁 since 𝑓𝑁 is non-synthesizable.
AccelMerger does not require a function to be in a synthesizable form and might still suggest it for
hardware acceleration since Neural Networks are used to perform accelerator modeling based on
the instruction opcodes available in the high-level application.
In experiments carried out on the SPEC CPU2006 benchmark suite [9] and the H.264 video

decoder [16], targeting Programmable Systems on Chip (PSoCs) Artix Z7007S and Artix Z-7012S
[34], we observe performance improvements of 1.91× on average, with respect to state of the art
Early-DSE, while remaining compatible with well known, mature HLS toolflows.

This work makes the following contributions.

• Merging of candidates for acceleration. To the best of our knowledge, we merge coarse-
grained accelerators for the first time. We describe the machine learning models, the code
generation techniques, the metrics, the dynamic profiling and the optimization techniques
necessary to effectively identify and merge accelerators.

• Automated design space exploration for large-area designs. We provide an automated
toolflow from high-level C/C++ to RTL that generates merged accelerators when the applica-
tion is synthesizable. When the application is only available in non-synthesizable format,
AccelMerger is still able to provide insights about the code most amenable for acceleration
and merging. By using Neural Networks, 4.5×106 merged accelerators can be analyzed in less
than 10 seconds with AccelMerger, whereas pure Late-DSE techniques struggle to analyze
eight hundred merged accelerators in less than 22 hours.

• Merged and non-merged accelerator selection. AccelMerger is able to select the optimal
mix of merged, non-merged, and software versions of the functions in the original program.
We contribute a Mixed Integer Programming model that can operate on nested CDFGs while
deciding what to merge based on an area budget.

To motivate our approach to DSE automation, we categorize in Section 2 existing design tools and
techniques for SoC accelerators. That leads to a statement (Section 3) of the problem AccelMerger
solves: efficient selection of application regions of varying granularity for implementation in
hardware that is optimized for area constraints and chip characteristics. AccelMerger solves this
problem (Section 4.2) by searching for hot regions that match well enough to merge, saving area
and allowing more accelerators to be allocated. Since performance improvements are derived from
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area savings and hardware realization of new accelerators, we describe in Section 4.1 why Neural
Networks provide increased accuracy as opposed to more explainable estimating models such
as LASSO and Random Forests. In Section 4.3 we describe the Linear Programming-based DSE
that supports merging-aware accelerator selection and efficient scaling to the large numbers of
candidates that merging introduces. Finally, Section 5 analyzes AccelMerger’s design support for a
variety of workloads, sweeping area budgets, granularities, interconnect latency and bandwidth.

2 RELATEDWORK

Feature Fine grained Manual Early Accel
Merging DFG Merging DSE Merger

Application Time ✗ ✓ ✓ ✓

Communication ✗ ✓ ✓ ✓

Fine Grained Merging ✓ ✓ ✗ ✓

Coarse Grained Merging ✗ ✗ ✗ ✓

Early HW/SW Part. ✗ ✗ ✓ ✓

Flexible granularity ✗ ✗ ✗ ✓

Automated ✓ ✗ ✓ ✓

Table 1. Taxonomy Table. We highlight the dimensions along which AccelMerger provides most contributions
in bold.

Table 1 presents a taxonomy of related work. The rows represent desirable features for accelerator
merging/DSE tools and the columns represent bodies of related research. For each column, we look
at the following features:

Application Time. It indicates whether the set of techniques evaluate applications in an end-to-
end manner instead of focusing on datasets of basic blocks as it occurs in the case of Fine grained
DFG Merging.

Communication. It indicates whether latency and/or bandwidth for the communication be-
tween the accelerators and the CPU is taken into account. The manual design of accelerators
takes this into account using back-of-the-envelope calculations and eventually slow-cycle accurate
Late-DSE [23, 25, 26], that still requires manual application transformations, to validate a limited
number of designs. Among prior Early-DSE techniques, only AccelSeeker [36] supports latency
estimation. For synthesizable applications, in which the amount of data produced and consumed is
easier to analyze statically, AccelMerger supports bandwidth estimation as well.

Fine grained merging. In manual accelerator design, the architects might come up with
Processing-Element-based accelerators which capture common DFGs relevant across an application.
The fine grained DFG literature has automated this step on small basic-block datasets.

Early HW/SW Partitioning. Other than the Early-DSE literature, manual accelerator design
and fine-grained merging do not approach accelerator design in a unified and systematic manner
tying together resource consumption with the performance maximization problem.

CoarseGrainedMerging and FlexibleGranularity. To the best of our knowledgeAccelMerger
is the first to achieve these two goals.

We next discuss the columns in Table 1:
Early-DSE: The only other Early-DSE related work to use Machine Learning as part of its

pipeline is Peruse [11]. Peruse however does not tie together resource area constraints with the
system performance maximization as a single optimization problem. More recently, RIP [38] and
Accel/RegionSeeker [36, 37] formulated the problem as a single optimization procedure using mixed
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integer programming and ad-hoc algorithms respectively. RIP is very limited by its applications,
containing only two end-to-end applications and similarly AccelSeeker is only demonstrated on
one application. Neither RIP nor AccelSeeker use machine learning to estimate key accelerator
statistics. We observe that this is necessary for Early-DSE in general since the application CDFG
goes through many complex transformations during HLS, and estimating accelerator statistics
directly on the original application CDFG is challenging. An ML-approach is even more important
for AccelMerger in order to effectively filter the huge number of merged accelerators.

Manual DFG Merging: Noteworthy implemented accelerators that benefit from manually
merging computational patterns include the PuDianNao and DianNao accelerators [5, 15], which
are built specifically for machine learning workloads and reuse common computational patterns
such as activation functions and typical linear algebra operators. AccelMerger is aimed at informing
the architect about even more profitable accelerator merges at a coarse granularity. If the application
code is available in synthesizable format, AccelMerger wiil also provide the RTL for the merged
accelerators.

Fine Grained Merging: QsCores [31], is an infrastructure that generates accelerators tightly
coupled to the CPU via the L1 cache and programmable through a specific interface that allows arbi-
trary control transitions, a model that is incompatible with many HLS and cycle accurate simulation
flows. Similarly Stitch [29] is focused on generating such tightly coupled fine grained accelerators
for wearable applications. While these two approaches together with older contributions focus on
merging dataflow graphs available in basic blocks [2, 13, 17, 29, 31], AccelMerger is compatible
with state-of-the-art HLS and cycle accurate simulators, since it supports the full complexity of a
function, including control, data flow, and call graphs. [2, 13, 17] represent a fine grained merging
body of work focused on small basic block datasets. These approaches are designed for Late-DSE
when the application fragments to accelerate have already been determined and transformed to
make use of these fine grained accelerators. AccelMerger is completely designed for scalability and
the early design stages.

Other contributions relevant for AccelMerger: For Late-DSE techniques it is also worth men-
tioning Hetero-CL [12], Spatial [10] and Aetherling [8]. Even though they present significant
performance, accuracy vs performance tradeoffs and programmability advantages when compared
to writing Verilog or VHDL, the architect would still have to port an application to a specific DSL
(domain specific language) to benefit from the DSE available in these tools. Moreover, these tools
do not exploit accelerator merging.

FMSA and SalSSa [21, 22] were recently introduced as LLVM [14] compilation transformations
that target code reduction for embedded devices. Work prior to FMSA is only able to merge equal
functions whereas FMSA is able to merge functions with different argument lists, returned values
and references as well as differing control flow. FMSA does not take into account the dynamic
behavior of the application nor does it try not to hurt the application performance by introducing
less multiplexing in the application hot spots. Finally, neither FMSA nor other function merging
approaches have been used for accelerator merging. Both the function merging and the Early-DSE
related-work [11, 21, 22] demonstrate their results on the SPEC CPU2006 suite, and we include
these applications in this paper for comparison.

3 PROBLEM DEFINITION
Vanilla HW/SW Partitioning. We first describe the vanilla HW/SW partitioning problem as
addressed in the related work and then proceed to the larger problem present in systems with
limited area resources. Given a set of functions 𝑃 = {𝑓1, .., 𝑓𝑛}, each best represented by a CDFG,
a list of arguments and a returned type, the vanilla HW/SW partitioning generates two sets
of functions 𝐴 = {𝑓𝑖1 , .., 𝑓𝑖𝑝 } and 𝐵 = {𝑓𝑗1 , .., 𝑓𝑗𝑞 } to execute on a general purpose core and on
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Fig. 2. AccelMerger’s SoC model and feedback template for the system architect. This is a lower level view of
the Merged and Non-merged accelerator selection output in Figure 1.

specialized hardware, respectively. The two sets represent a partitioning of 𝑃 since 𝐴 ∩ 𝐵 = ∅ and
𝐴 ∪ 𝐵 = 𝑃 . This partitioning is done by maximizing program performance subject to the total
resource requirements of the accelerators and the general purpose CPU, along with a description
of how these components communicate. The related work in early-stage DSE [36, 37] operates
on parameters 𝑠𝑤𝑖 , ℎ𝑤𝑖 and 𝑎𝑟𝑒𝑎𝑖 , which are automatically determined for each function. 𝑠𝑤𝑖 and
ℎ𝑤𝑖 represent the overall time spent in seconds executing a function in software, using a general-
purpose core and in hardware, using coarse-grained accelerators, respectively. 𝑎𝑟𝑒𝑎𝑖 is the area
requirement per component measured in Lookup Tables (LUTs). Some uncommon features that are
usually only modeled in late-stage DSE tools, such as gem5-aladdin [27] and gem5-salam [24], are
the interconnect 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 and 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ that provide insights about the system-level, and we take
these into account when determining the optimal partitioning. In contrast with late-stage DSE,
which is focused on evaluating point-solution SoC designs with the predefined set of functions to
accelerate and run in software, we need an agile way of determining which loops and functions to
accelerate and merge.
Moreover, for Post-Moore’s law accelerators with limited compute fabric, we need to build an

extended set of functions that result from merging the most similar functions in 𝑃 . These would
enable hardware realization with lower area cost. The creation of merged accelerators needs to
overcome three technical issues, described in the following paragraphs.

Function Merging at arbitrary granularities. We need to expand the set 𝑃 with merged
functions𝑀 = {𝑓𝑘1 , .., 𝑓𝑘𝑙 }, that exploit flexible computational granularities and CDFG patterns to
produce a new set 𝑃 ′ = 𝑃 ∪𝑀 , containing new merged functions and functions from the original
set 𝑃 . When merging two "parent" functions, 𝑓𝑖1 ∈ 𝑃 and 𝑓𝑖2 ∈ 𝑃 , the desired effect is that the
result, say 𝑓𝑘1 , satisfies 𝑎𝑟𝑒𝑎𝑓𝑘1 < 𝑎𝑟𝑒𝑎𝑓𝑖1 + 𝑎𝑟𝑒𝑎𝑓𝑖2 . The exact code transformation to create these
new candidates, namely Function Merging, should do more than just concatenate the CDFGs of
the parent functions. Instead, it should reuse nodes corresponding to instructions in the high-level
functions, and to RTL functional units at the lower level if these functions are synthesizable. We
can express the Function Merging transformation more concisely as

fm : 𝑃 × 𝑃 → 𝑀

(𝑓𝑖 , 𝑓𝑗 ) ↦→ 𝑓𝑘

The size of𝑀 , denoted |𝑀 |, is less than or equal to 𝑛2 depending on how many similar functions
there are in 𝑃 , therefore 𝑛 + 1 ≤ 𝑘 ≤ 𝑛 + 1 +𝑛2. We use subindexes starting from 𝑛 + 1 for 𝑘 to avoid
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Fig. 3. AccelMerger’s workflow. A) Accelerator Modeling and Loop Extraction. B) Function Merging Pass. C)
HW/SW Partitioning.

confusing the 𝑓𝑘 functions in𝑀 with functions in 𝑃 with subindexes 1..𝑛. We address the CDFG
reuse problem in Section 4.2.

Accelerator Modeling. Since the set of possible merged functions𝑀 grows quadratically with
the number of functions and loops in the original program 𝑃 , Early-DSE needs to be able to model
𝑎𝑟𝑒𝑎𝑖 quantities with high accuracy since area reduction is the main criterion for choosing to merge
two functions. For hardware and software latency, the related work has indicated that simple linear
models can provide estimates for 𝑠𝑤𝑖 and ℎ𝑤𝑖 that result in overall high quality feedback about the
most desirable functions to accelerate [36]. In Section 4.1, we describe how AccelMerger is able to
model area reduction for merged accelerators with high accuracy.

HW/SW Partitioning. In the context of the new program 𝑃 ′, HW/SW partitioning is signifi-
cantly complicated because 𝑃 ′ contains functions that have overlapping functionalities, and because
RTL flows create hardware for a function 𝑓 in a hierarchical manner, including the CDFGs of 𝑓 ’s
callees. These interactions include the fact that merged functions still need to be considered in the
context for 𝑃 ’s call graph. For example, if a merged function is realized in hardware, its callees
need to be realized in hardware as well. Solving the HW/SW Partitioning problem with merged
accelerators will result in an output as illustrated in Figure 2. The HW/SW partitioning step needs
to produce three sets 𝐴′ = {𝑓 ′𝑖1 , .., 𝑓

′
𝑖𝑝
}, 𝐵′ = {𝑓 ′𝑗1 , .., 𝑓

′
𝑗𝑞
} and 𝐶 = {𝑓𝑘1 , .., 𝑓𝑘𝑟 } such that 𝐴′ ⊆ 𝑃 and

𝐵′ ⊆ 𝑃 and 𝐶 ⊆ 𝑀 . 𝐴, 𝐵 and 𝐶 cannot be considered a partition in the mathematical sense since
there can be more functions in 𝑃 ′ than in the union 𝐴 ∪ 𝐵 ∪𝐶 , meaning that before the HW/SW
partitioning step the function merging step might generate merged functions 𝑓𝑘 that are not selected
in the final SoC when the parent functions fm−1 (𝑓𝑘 ) = (𝑓𝑖 , 𝑓𝑗 ) are more profitable for a specific area
budget and SoC communication characteristics.

We use 𝑓 ′𝑖1 in contrast to 𝑓𝑖1 to denote that for a given area budget, the functions we will decide to
have in software and hardware will differ from these selected and generated by vanilla Early-DSE.
Subset 𝐶 represents merged functions that are mapped onto hardware but never on to the general
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purpose software processor, since merged functions present benefits for accelerator reduced area
consumption which can be leveraged by the accelerators only. In Figure 2, we observe that the
interconnect we model between the CPU and the accelerators has latency and bandwidth properties
which is information the architect can provide in a configuration file as indicated in Figure 1.
For each call to a function that is mapped onto hardware, it takes "latency" cycles to initiate the
computation plus the time required to move data from the CPU or another accelerator’s local
memory according to the available bandwidth. We indicate how AccelMerger handles this larger
HW/SW partitioning problem in Section 4.3.

4 ACCELMERGER
A○ Frontend: Accelerator Modelling and Loop Extraction are described in Section 4.1. The input
to this stage is the application source code and the main result is a model for coarse grained
accelerator area prediction. Also the application is transformed to also enable loop-level merging.
B○ Function Merging in Section 4.2 is a transformation pass used to merge functions taking into
account their characteristics when mapping them onto hardware using the model from step A○
and latency prediction models from the related work. In order to determine whether the merged
functions make sense in the context of the system specification, both the new merged functions
and the original functions are forwarded to the final step. C○ HW/SW partitioning is the step
where we determine the final layout of the application in terms of functions to be executed in
software, in merged hardware and non merged hardware depending on the available area budget,
and interconnect characteristics. This step is described in Section 4.3. Finally, Section 5 analyzes
AccelMerger’s design support for a variety of workloads, sweeping area budgets, and interconnect
latency and bandwidth.

4.1 Frontend
As detailed in Section 4.2, merging needs to quickly evaluate the feasibility of a merge operation as
the number of possible merges increases quadratically.1

Area and LatencyModels: For AccelMerger the most critical components that need an accurate
evaluation are the coarse grained accelerators that we will synthesize using Bambu HLS and
simulate with the cycle-accurate trace-based simulator Aladdin. Recently, research has focused on
the mapping classification problem, studied in the context of CPUs and GPUs. This code mapping
problem is about determining which platform should execute a piece of code. [7] and [35] have
used Recurrent Neural Networks and Graph Neural Networks for this classification problem for
GPUs and CPUs. However, there has been limited work on accurately predicting FPGA and ASIC
accelerator statistics without integrating these predictions in an Early DSE infrastructure [11]. Tools
such as gem5-aladdin or gem5-salam do not emphasize how latency models have been constructed
as long as they achieve high accuracy, and most likely these models rely on architect’s intuition
about how fast an instruction typically runs. AccelMerger takes a mixed approach by modeling area
in great detail, since we need to quickly determine whether there are area wins for many function
pairs and discard less profitable candidates, and we use Aladdin’s estimations for instruction latency,
which have been shown to have an error as low as 0.9% [25]. Modeling the area consumption
with our own Machine Learning models is further motivated by the fact that Aladdin models area
consumption using a linear model directly attributing a latency estimate to each LLVM instruction,
resulting in a 7.22× higher error when measuring area than for latency.
Features used to predict Area and Latency: We model the area required for each static

instruction using multiple techniques including Multilayer Perceptron, Random Forests and the

1The complexity can be larger since merged functions can be merged again in high-similarity programs.
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Accuracy vs 𝑟 2 train 𝑟 2 test MRE Train MRE Test
Model

LASSO-200 0.82 0.67 0.44 0.49
Random 0.96 0.86 0.12 0.37
Forest-200
MLP-200 0.99 0.9 0.1 0.29

LASSO-600 0.96 0.95 0.24 0.35
Random 0.98 0.89 0.12 0.27
Forest-600
MLP-600 0.99 0.97 0.15 0.21

Table 2. Model Selection and Accuracy table for area wins prediction. LASSO stands for the "Least Absolute
Shrinkage and Selection Operator" linear prediction model and MLP stands for the Multilayer Perceptron, a
neural network model.

Fig. 4. Multilayer Perceptron (MLP-600) area model for LUT wins. Synthesized/Real area vs. Predicted Area.
TP = True Positive, FP = False Positive, TN = True Negative, FN = worse case scenario, accelerators not
produced which would have brought area benefits

LASSO linear model. The features we use are the number of LLVM operations of each type and the
base truth HW resources number, obtained with Bambu HLS for area. When modeling the area
for a function 𝑓 , we count the LLVM instruction features hierarchically, taking into account the
static number of instructions for 𝑓 ’s callees. We obtain the models by training on both merged
and non-merged synthesizable functions in H.264 and MachSuite [20]. We configure Bambu HLS
to allocate logic by using Lookup Tables (LUTs) exclusively to simplify area consumption and
speedup comparisons across different approaches. In order to estimate the accelerator latency we
use Aladdin’s latency model on the hierarchical counts of dynamic instructions for each instruction
type.
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Model Hyperparameters: Table 2 shows the result of predicting the area wins for merged
accelerators using different machine learning models. We will explain in Section 4.2 the exact
mechanism that allows us to produce merged accelerators and in this section we focus exclusively on
howwemeasure their area wins. The accuracy numbers shown in the table are generated for the best
model across an exhaustive (grid) search of model hyper-parameters, using 3-fold cross-validation.
LASSO is the simplest model that we experiment with here and we tune 2 hyper-parameters,
including the model complexity penalization alpha parameter, with a total of 6 combinations. For
Random Forests we perform a grid search for trees with a specific maximum depth, a maximum
number of estimators and a maximum number of features. The total number of hyper parameter
configurations we explore for Random Forests is 360. For the Multilayer Perceptron (MLP) neural
network, we tune the number of hidden layers, the number of neurons per layer, the activation
functions, the complexity penalization parameter alpha, and the random seed. The total number
of combinations explored is 360 and the best selected model had 6 hidden layers with 40 neurons
each, ReLU activation function and 𝑎𝑙𝑝ℎ𝑎 = 0. This architecture was better than larger ones which
were over-fitting the data and resulting in lower accuracies.

Accuracy Metrics: Table 2 shows the model accuracy both for training each model on fewer
data points (functions), 200 specifically in the case of the <model>–200 rows, as well as on more
functions, 600 specifically in the case of the <model>–600 rows. In the columns we display two
common regression accuracy metrics. First, 𝑟 2 = 1 − 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
which is interpreted as the percentage

of variance in the true target variable 𝑦 explained by the model 𝑓 , with 𝑆𝑆𝑟𝑒𝑠 =
∑𝑛

𝑖=0 (𝑦𝑖 − 𝑓𝑖 )2 and
𝑆𝑆𝑡𝑜𝑡 =

∑𝑛
𝑖=0 (𝑦𝑖 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑦))2. We see that the LASSO linear model can generalize very well,

provided that enough data is available. With only 200 data points, 𝑟 2 is of only 67% though whereas
the non-linear models can quickly model the patterns resulting from the multiple transformations
HLS tools perform to transform high level code to RTL, even with less data points. 𝑟 2 is a loose
accuracy metric even though popular in the related work.
Secondly, we also measure the Mean Relative Error 𝑀𝑅𝐸 =

∑𝑛
𝑖=0

𝑎𝑏𝑠 (𝑦𝑖−𝑓𝑖 )
𝑎𝑏𝑠 (𝑦𝑖 ) . This is the metric

related work in Late-Stage DSE such as Aladdin [25] uses to measure accuracy for area and latency.
This is a much stronger metric and late-stage DSE is able to minimize this error by iterating over
representative applications with dozens of optimizations over the dynamic data-dependence graph
(DDDG) representative of HLS flows that generate hardware. In a sense, the related-work for
late-DSE is reporting the equivalent of train-time MRE error, since models are created on the same
data that is later reported as indicative of the in-production behavior. It is very remarkable that
with the model MLP-600 we are able to achieve roughly the same MRE train error as Aladdin, but
we also provide the MRE test error which is of 21%. This is very remarkable since MLP is able
to produce this accuracy just starting from information available in the high-level LLVM-code
(the instruction opcodes), and thus, we’re able to use this model on both synthesizable as well as
non-synthesizable applications.

Choosing the MLP model: Figure 4 shows these results via the relationship between the
predicted area savings, using the MLP-600 model, measured in LUTs and the real area savings
that can be observed by synthesizing the merged accelerators. The figure demonstrates that we
are effectively able to filter merges that are not profitable and more importantly it does not omit
profitable merges. The figure also conveys the fact that that in the absence of an accurate area
predicting model like MLP-600, it would be very hard to filter merged accelerators with area losses.

Transforming Loops into Functions One of the transformations in the LLVM infrastructure
is described next. It enables merging at different granularities than function level only.

Merging accelerators exclusively at function level yields different degrees of performance depend-
ing on how well the code has been modularized. To overcome this issue, AccelMerger’s frontend
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Fig. 5. Simple function merging example expressed in high level C-like pseudo-code.

creates new functions that correspond to loops in the original code. Our infrastructure can be run
in two modes: a) operating on the functions present originally in the application, or b) converting
outer loops into functions and replacing them with function calls. The former has the disadvantage
of fewer merging opportunities, but it avoids the extra calling and parameter passing overhead of
working with loop extraction. To achieve the latter, we use the LoopExtraction pass available in
LLVM. The pros and cons of loop extraction are discussed extensively in Section 5 and in [11].

4.2 Function Merging
AccelMerger starts from a high-level application and places accelerator latency and area benefits in
the context of the full application [26]. It takes advantage of the flexible LLVM representation to
produce for the first time, to the best of our knowledge, merged accelerators of arbitrarily large
sizes, constrained of course by the amount of hardware area available. Step B○ Transformation
Pass: Function Merging, in Figure 3 uses the area prediction model generated in the Step A○ to
generate merged functions that when mapped onto hardware with a smaller resource consumption
than the input functions. All the call sites for the input functions are not yet replaced with calls to
the merged functions and this is deferred to step C○ HW/SW Partitioning which will determine the
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final set of merged and non merged functions to accelerate and only calls to the selected merged
functions will be replaced with merged accelerator invocations.

4.2.1 Function Merging Example. Figure 5 illustrates two simple similar functions that we can
transform into a new function that is semantically equivalent to both input functions by using
a flag 𝑓 _𝑠𝑒𝑙 that enables multiplexing non-aligned instructions and operands. In this section we
only discuss how a function merging is realized provided that two functions look similar enough
according to a simple heuristic we will later discuss. Once the merge is performed, we can apply
the models described in Section 4.1 on the input functions and the merged function to determine
with high precision whether the merge is profitable. In this example we discuss how merging is
being performed by following the methodology in [22] with some differences that make Function
Merging amenable for accelerator merging and system design instead of code compression, which
is the focus of the Function Merging related work [22] [21].

Parameter merging Figure 5 shows two input functions that have some similarity regarding
the input parameters. Function Merging starts by merging parameters depending on their types,
not depending on their names. A direct approach is being taken in [22] where for each parameter, in
declaration order, in the first function, a parameter of the same type is being searched, in declaration
order, in the second function. If a match is found, we proceed with trying to match new parameters
and if not, the currently analyzed parameter in the first function will not be merged. Not merging a
parameter means that whenever it is encountered as an operand to a merged instruction, it will
be multiplexed using a 𝑠𝑒𝑙𝑒𝑐𝑡 instruction and the 𝑓 _𝑠𝑒𝑙 flag. For the second parameter in f1, we
proceed with the remaining parameters in f2. [22] has shown this parameter merging approach to
be very effective by intentionally modifying parameter merging taking into account the function
body, and we observe similar area benefits in exploiting parameter merging of about 7%.

Merging function bodies. We see in Figure 5 that f1 and f2 have important similarities. The
aligned instructions are determined using the Needleman-Wunsh (NW) sequence alignment al-
gorithm [18] on the opcodes of the instructions. Since the algorithm NW operates on two strings
and aligns their characters by finding the longest common subsequence (LCS) 2, a linearization
preprocessing of both f1 and f2 is necessary since at the IR level, code is represented as a CDFG.
NW indicates which instructions can be reused and which ones cannot. In this simple example
only slight discrepancies must be settled such as the differing condition for the 𝑖 𝑓 statement at line
24, the discrepancy for the first operand of the addition operation at line 26 and the fact that f1 has
a call not present in f2 at lines 30 and 31. These discrepancies are resolved via 𝑠𝑒𝑙𝑒𝑐𝑡 instructions to
select the right operands and via 𝑖 𝑓 statements for discrepancies not related to operand selection
but whole instructions or groups of instructions that were not aligned across the two functions.
For example the 𝑐𝑎𝑙𝑙 of f3 at the end of f1 is not present in f2 and therefore is only executed when
f12 is called from f1’s call sites.

4.2.2 Accelerator Driven Function Merging. We now describe how we systematically approach the
merging problem in step B○ box 1 of Figure 3, "Transformation Pass: Function Merging".
1. Candidate Ranking. We start the function merging process by ranking function pairs ac-

cording to simple fingerprints that indicate how many shared instructions there are between
two functions. This feature enables merging to scale to large code bases. Then the most similar
candidates are linearized, meaning that we convert the graph structure into a sequential string of
instructions. In AccelMerger we sample different post order (each basic block is visited after all of
its descendants) linearizations in search for a high similarity match. On each of the alignments we

2NW is actually more complex than LCS since it allows to attach weights to the most important instruction types, a very
important feature for accelerator driven function merging.
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apply the NW algorithm that produces the list of aligned instructions used in the Merging Engine
step.

2. Merging Engine. For step B○ box 2 in AccelMerger’s workflow in Figure 3, we generate code
for the merged function for almost all pairs of functions. We filter some function pairs at this step
that align a statistically insignificant number of instructions (i.e. less than 5%). The merging engine
handles mismatching parameters and unaligned IR instructions by introducing overhead branch
instructions and therefore creating new basic blocks for large chunks of unaligned code and for
individual unaligned instructions, select instructions are used as multiplexors for the results of
unaligned instructions with 𝑓 _𝑠𝑒𝑙 as a control flag. Parameters are handled as described earlier in
this section. The most important piece of information used in this step is the alignment computed
in the previous Candidate Ranking.

3. Using area/latency model on opcodes Next, in step B○ box 3 we use the area-predicting
MLP-600 model presented in Section 4.1 to predict with high accuracy the LUT consumption and
the Aladdin per-instruction model. If MLP-600 predicts the resource consumption using the opcode
counts for the merging input functions and the opcode counts of the merging result.

4. Profitability Metrics. In Step B○ box 4 we filter the merged functions that do not have area
wins and the functions with unacceptable latency overhead. In this step we determine if the area
of the merged function 𝑓𝑘1 is smaller than the area of the input functions 𝑓𝑖1 and 𝑓𝑖2 altogether
(i.e. 𝑎𝑟𝑒𝑎𝑓𝑘1 < 𝑎𝑟𝑒𝑎𝑓𝑖1 + 𝑎𝑟𝑒𝑎𝑓𝑖2 ). If a merge passes this test, we check if the resulting accelerator is
acceptable latency-wise.

For each merging input functions we denote their corresponding hardware latenciesℎ𝑤1 andℎ𝑤2,
their software latencies 𝑠𝑤1 and 𝑠𝑤2, and their area consumption 𝑎𝑟𝑒𝑎1 and 𝑎𝑟𝑒𝑎2. The resulting
merged function is denoted with specifications 𝑠𝑤12, ℎ𝑤12, and 𝑎𝑟𝑒𝑎12. In order to establish large
benefits for the merged accelerator, it is necessary that, when there is enough area for the merged
accelerator only, but not for the two input accelerators, the merged accelerator can bring larger
improvements than hardware realization of either of the input functions. Equation 1 describes the
maximum Estimated Profitability (EP).

𝐸𝑃 =
𝑠𝑤1 + 𝑠𝑤2 − ℎ𝑤12 −𝑚𝑎𝑥 (𝑠𝑤1 − ℎ𝑤1, 𝑠𝑤2 + ℎ𝑤2)

𝑇𝑜𝑡𝑎𝑙_𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒
(1)

A profitable EP score is positive and the key insight that makes this equation area agnostic
and useful is that, provided enough area to realize a merged accelerator in hardware, there also
must be enough area available to realize the most profitable of the two parent accelerators. The
maximum time savings benefit corresponding to the input functions is𝑚𝑎𝑥 (𝑠𝑤1 − ℎ𝑤1, 𝑠𝑤2 − ℎ𝑤2)
and the benefit corresponding to the time saved by the merged function is 𝑠𝑤1 + 𝑠𝑤2 − ℎ𝑤12. We
only consider functions with positive EP as second filter after the area reduction check, to further
narrow down the candidates for acceleration.

In the next section we describe the final selection of merged, non-merged and software-executed
functions.

4.3 HW/SW Partitioning
For the hardware/software partitioning formulation we use Mixed Integer Linear Programming
(MIP). We stay consistent with our previous notation 𝑎𝑟𝑒𝑎𝑖 , ℎ𝑤𝑖 , 𝑠𝑤𝑖 . These numerical constants
are the result of the ML-based modeling phase and indicate what would be the area and hardware
execution latency of a function/loop if they were realized in hardware and 𝑠𝑤𝑖 being the latency of
executing each function/loop on the CPU.

Software and hardware selection. The MIP solver determines whether to realize a function
in software or hardware by using the binary variables ℎ𝑤𝑣𝑖 and 𝑠𝑤𝑣𝑖 . These variables are mutually
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Fig. 6. Hours spent in Aladdin to evaluate all possible merging candidates to determine their latency and in
Bambu HLS to evaluate their area. The number of input functions for merging is represented in the x-axis of
the figure. For 40 Functions to Merge, there are approximately 402/2 = 800 merged accelerators to evaluate
for all the possible pairwise merges. Late-DSE techniques struggle to analyze the possible merges of 40
accelerators in less than 22 hours.

exclusive. The objective function in Equation 2 includes these two variables and their associated
constant costs in latency, as well as a communication minimization term. It accounts for the latency
and data transfer cost for transitioning from a software execution to a hardware one. The frontier𝑖 𝑗
variable will be 1 only when, 𝑓𝑖 is realized in software and 𝑓𝑗 , a callee of 𝑓𝑖 , is realized in hardware
according to Equation 6. The amount of area for hardware acceleration is capped by Equation 3.

Handling call graph. In the selection problem we operate both on the functions in the original
program and on the tree of merged functions. To model the hierarchical aspect of coarse-grained
accelerator generation in HLS tools, we take into account the program call graph to include all the
functions called directly and indirectly by each function.

We consider a set 𝐶𝑖 of direct and indirect callees for each function. For each caller-callee pair of
functions 𝑓𝑖 and 𝑓𝑗 there is an associated constant number of dynamic calls from 𝑓𝑖 to 𝑓𝑗 "𝑐𝑎𝑙𝑙𝑠𝑖 𝑗 "
determined with dynamic instrumentation.

Handling merge graph. When two high similarity functions 𝑓𝑖 and 𝑓𝑗 are merged, a new
function 𝑓𝑘 is produced denoted the 𝑐ℎ𝑖𝑙𝑑 of the 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑓𝑖 and 𝑓𝑗 . Since children themselves can
be merged with other functions, a descendant is a function obtained by repeatedly proceeding
from parent to child. For each function of an application we define a set 𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑖 that contains the
children and other recursive descendants of function 𝑓𝑖 . For a given 𝑓𝑖 , 𝑠𝑤𝑣𝑖 and ℎ𝑤𝑣𝑖 can both be
0, meaning that 𝑓𝑖 is not implemented in software or in hardware, since one of its descendants 𝑓𝑗
might have ℎ𝑤𝑣𝑖 = 1. Similarly a function 𝑓𝑘 might not be realized either in software or in hardware
since its ancestors are selected for the final SoC either in software or in hardware. We will call
functions without parents Root nodes.
Equation 4 requires each Root to be realized either in hardware or software. Otherwise its

functionality is covered by one of its descendants. Moreover if a function is realized in hardware,
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Fig. 7. Seconds spent in AccelMerger performing DSE for a large range of functions. For 3000 functions to
merge, there are approximately 4.5 ∗ 106 possible merged accelerators to evaluate for all the possible pairwise
merges. Using accurate accelerator modelling with MIP-based DSE dramatically reduces analysis time.

Fig. 8. Overall speedup for SPEC applications [9] used in the FMSA [22] and the Illinois H.264 [16], for a
25 cycles interconnect latency and an area budget corresponding to the Artix Z-7007S used in DSE related
work [36]. The "sw" bars represent the software baseline where no acceleration is being employed. The other
configurations are described at the beginning of this section. Note the discontinuity in the y-axis used to
represent the largest Speedups in the range 5× to 16.7×. In this range the y-axes are more compressed than
in the lower part of the figure.

all its callees need to be realized in hardware as well but allowing the callee’s functionality to be
covered in hardware by its descendants, as shown in Equation 5.

Using MIP for HW/SW partitioning: In this paper we use the Python-MIP [30] mixed integer
programming package to find solutions to the HW/SW partitioning problem.Using MIP solvers for
Early-DSE has the advantage of finding globally optimal solutions with the aid of high-performance
libraries that exploit modern architectures. We use the Python-MIP package built on some of the
fastest open source solvers, specifically the COIN-OR Branch-and-Cut solvers (CLP-CBC) [1].

EarlyDSE for acceleratormerging faster thanusing Late-DSE exclusively: Figure 6 shows
how the number of merging candidates to evaluate latency-wise would grow quadratically with
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Fig. 9. Overall execution time cost breakdown for 25 cycles interconnect latency and an area budget corre-
sponding to the Artix Z-7007S and Z-7012S used in AccelSeeker. All the applications in this plot are executed
with the "FLE+Merging" configuration.

the number of available input accelerators if we were to take a brute-force approach to coarse-
grained accelerator merging and if every function were synthesizable. With as little as 40 input
functions and loops, Aladdin takes over 15 hours of analysis and HLS takes about 5 hours to
synthesize all the possible merged accelerators. Moreover, for non-synthesizable applications like
the SPEC CPU2006 benchmarks we consider in this work, cycle accurate simulation and high
level synthesis cannot even be applied, due to their expectation of a subset of the C language with
explicit, unambiguous memory accesses and their lack of support for sophisticated computations
with side-effects and recursion. AccelMerger is always able to produce useful SoC design insights
without having to modify the application. The analysis time is short, as illustrated by Figure 7. The
increased variability for larger numbers of accelerable functions to merge is due to the fact that for
a problem with more variables, it is not always the case that the problem takes longer to execute,
since ILP optimization methods can immediately identify obvious candidates depending on the
area budget and the software and hardware characteristics of the analyzed application.

Objective

min
ℎ𝑤𝑣𝑖 ,
𝑠𝑤𝑣𝑖 ,

𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑖 𝑗 ∈{0,1}

( ∑︁
1≤𝑖≤ |𝑃 ′ |

(ℎ𝑤𝑣𝑖 · ℎ𝑤𝑖 + 𝑠𝑤𝑣𝑖 · 𝑠𝑤𝑖 ) +
∑︁
𝑗 ∈𝐶𝑖

𝑐𝑎𝑙𝑙𝑠𝑖 𝑗 · 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑖 𝑗 · 𝑙𝑎𝑡𝑒𝑛𝑐𝑦
)

(2)

Constraints ∑︁
1≤𝑖≤ |𝑃 ′ |

ℎ𝑤𝑣𝑖 · 𝑎𝑟𝑒𝑎𝑖 ≤ 𝑎𝑟𝑒𝑎_𝑏𝑢𝑑𝑔𝑒𝑡 (3)

𝑠𝑤𝑣𝑖 + ℎ𝑤𝑣𝑖 +
∑︁

𝑗 ∈𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑖

𝑠𝑤𝑣 𝑗 + ℎ𝑤𝑣 𝑗 = 1, ∀𝑖 ∈ 𝑅𝑜𝑜𝑡𝑠 (4)

ℎ𝑤𝑣𝑖 + 1 − ℎ𝑤𝑣 𝑗 −
∑︁

𝑘∈𝐷𝑒𝑠𝑐𝑒𝑛𝑑 𝑗

ℎ𝑤𝑣𝑘 ≤ 1∀𝑖 ∈ {1..|𝑃 ′ |}, 𝑗 ∈ 𝐶𝑖 ∩ 𝑅𝑜𝑜𝑡𝑠 (5)

𝑠𝑤𝑣𝑖 + ℎ𝑤𝑣𝑖 − 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑖 𝑗 ≤ 1 , ∀𝑖 ∈ {1..|𝑃 ′ |}, 𝑗 ∈ 𝐶𝑖 (6)
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Fig. 10. The percentage of application execution time spent in initiating and terminating accelerator compu-
tations in a large-latency situation and different merging and granularity scenarios. Note the discontinuity in
the y-axis used to represent the largest Speedups in the range 25% to 50%. In this range the y-axes are more
compressed than in the lower part of the figure.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
Within the scope of our experimental setup we use four configurations FE, FLE,Merging+FE and
Merging+FLE. Function Extraction (FE) corresponds to using the Frontend and the HW/SW
partitioning step in Figure 3 to select functions for hardware realization. This configuration performs
state-of-the-art early-stage accelerator selection [36]. The following three configurations exploit
variable granularity and accelerator merging and represent AccelMerger’s contribution. Function
and Loop Extraction (FLE) is similar to FE but including the possibility of extracting loops as
functions when deemed profitable. This configuration transforms the code to be more programmer
independent in terms of how the code is split into functions and exploits the benefits of diversified
granularity level (both fine and coarse-grained). Merging + FE and Merging + FLE are similar
to FE and FLE respectively, but they perform the intermediate step of accelerator merging from
Figure 3 as well as merging-aware HW/SW partitioning.

5.2 Overall performance improvement
In Figure 8 we showcase the benefits of accelerator merging when placing both the merged
accelerators and the non-merged ones in the context of the whole application.

A variety of applications yield different behavior as a result of varied granularities produced via
merging and loop extraction. For example, performing loop extraction for the milc application
shows almost no benefit (FLE versus FE). However the larger granularity of multiple merged
functions is profitable since FE+Merging and FLE+Merging bring similar performance benefits,
of 1.13× with respect to FE and FLE and of 1.7× with respect to the software version. A similar
effect is occurring in the application, but with even stronger speedups for the configurations with
merging. In perlbench we observe that FE+Merging is even better than FLE+Merging. Extracting
loops into functions introduces too much overhead, a sign that functions are encapsulated well in
perlbench.

sjeng in the Merging+FE configuration, brings smaller benefits than merging after loop ex-
traction even though FLE does not bring significant benefits over FE, raising the speedup from
2.36× for FLE to 3.04× for the FLE+Merging configuration. This indicates that an intermediate
granularity between function and loop level is the most suitable. On average we observe that the
best configuration is FLE+Merging, reaching 3.39× with respect to software executions and 1.91×
w.r.t. the FE configuration.
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Fig. 11. Speedup Geomean w.r.t. software execution across all applications for the FE, FE+Merging, FLE and
FLE+Merging configuration under a wide range of area budgets.

Figure 9 shows that some applications (perlbench, sjeng, milc and lbm) spend most execution
time in software. Other applications, like libquantum, sphinx3, or hmmer can mostly be realized
in hardware at these large area budgets. Since the hardware-software partitioning step is able to
pick either the merged or the non-merged version of a function, it frequently picks the original
functions at larger area budgets. Although they are more costly to realize in hardware, they are
faster than merged counterparts burdened with multiplexing overhead. This effect is most dramatic
in the case of sphinx3, followed by libquantum and sjeng. However in sjeng, since there is much
more left to realize in hardware than what is possible at these particular area budgets, we will see
in Section 5.4 that the benefit gained through merging fluctuates through the range of area budgets.

5.3 Accelerator invocation latency impact
A number of factors can hurt the performance attainable via acceleration. Applications with high
numbers of calls, for the most significant functions, tend to suffer from communication costs, since
for each invocation of an accelerator, the host needs to set up memory-mapped model-specific
registers (MSRs), and the accelerator notifies the host when the accelerated function and all its
callees have finished. Beyond the large gap between memory access time and compute [32], and
system configurations with off-chip FPGAs, long cache flushes are required before offloading
computation onto accelerators [26].

Any of these scenarios can lead to high latency in initiating communication with the accelerator.
In Figure 10, we show the maximum overhead represented by communication across all area,
merging, and granularity configurations in such a high-latency scenario (500 cycles).
In general, we observe a trend for the FLE+Merging configuration to have slightly smaller

overhead compared to the other configurations. For many applications the HW/SW partitioning
algorithm is able to pick acceleration candidates with low overall latency, but for sjeng, perlbench,
H.264 and libquantum, we see that the worst communication latencies can be higher than 10% and
as high as 51.36%. Conversely, applications with few calls to the most representative functions are
impacted the least by latency costs. For example, lbm contains a single call to the most representative
function LBM_performStreamCollide.
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Fig. 12. Bandwidth scenarios for varying granularities and merging configurations with the synthesizable
version of H.264 [16].

We see that for most area budgets and all latencies, merging has a beneficial impact in mitigating
latency. The merged accelerators are able to cover more functions from the original application and
therefore usually there is less switching between CPU computation and accelerator computation.

5.4 Exploring other area budgets
In Figure 11 we see what speedups can be accomplished with different area budgets using the state
of the art in hardware-software partitioning as well as the three new techniques we introduce in
this paper. This graph represents the average over all the applications considered in this work. For
very small area budgets most of the applications run in software and thus the speedups are very
close to 1. Also, most applications have a transition region where more and more functionalities
can be realized in hardware, up to an area budget point when the whole application can be executed
in hardware. Most applications start this transitioning region around 1000 LUTs, and all of them
end it by 1M LUTs. When the area-latency curve has converged for a given application, that’s
equivalent to a monolithic accelerator scenario. perlbench is the most difficult application to fully
realize in hardware. hmmer is the easiest and the least compelling for area-compressing techniques
such as AccelMerger.

Figure 11 contains a superset of the results shown in Figure 8 for the Geomean bars. The average
speedups for the Merging+FE and Merging+FLE is driven by the applications milc, sphinx, H.264,
H.264ref, sjeng and perlbench which have significant performance improvements over the FE
configuration for some considerable area budget ranges. Another observation is that in order
to extract the maximum speedup from the applications, working with the original application
functions limits the maximum achievable speedups, thus encouraging the FLE and Merging+FLE
configurations.

5.5 Bandwidth use-case for H.264
For the synthesizable implementation of the H.264 decoder [16], Figure 12 shows the effects on
performance of varying bandwidth over a wide range of area budgets. For the FE configuration,
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as expected, more bandwidth yields more speedup. For FLE, loop extraction shows greater low
bandwidth tolerance for bandwidths of 1𝐺𝐵/𝑠 and 4𝐺𝐵/𝑠 . Increasing the pool of available functions,
with varying communication requirements, opens fresh hardware acceleration opportunities. The
addition of merging extends tolerance to lower bandwidths by making more functions available.
Moreover, at high area budgets, merging involves less switching between accelerators and the CPU,
so less data movement is required.

6 CONCLUSIONS
Early stage accelerator design through function merging, based on optimized selection of merged
and non-merged, hardware-realized functions and loops, opens an exciting research area that
promises to benefit performance and area/latency trade-offs. AccelMerger can enable lower, system-
level data communication, with a focus on interconnect latency. It allows designers to explore
accelerators of varying granularities without deep application knowledge, as the choice of acceler-
ators is not fixed by the structure of an application’s source code. Experimental results show up
to 16.7× performance improvement over software-only implementations, and 1.91× on average
over state-of-the-art HW/SW partitioning tools. In future work, we plan to extend AccelMerger’s
SoC-level communication analysis, apply it for cross-application merges and add power models to
its repertoire.
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