
acmqueue | november-december 2021 1

recovery

I
t was a warm, late summer afternoon when a long-
time client called. They needed someone to help them
out of a jam—and fast. This client builds embedded
devices found in offices around the world. Their latest
creation had all the right security features, the best

possible given their hardware constraints. These devices
are driven by firmware running on a microcontroller that
delivers robust wireless communications; I knew this was
my kind of job.

The client’s engineers had attempted to build the right
security features into their firmware: a bootloader that
normally can’t be updated, a static root of trust contained
therein, and cryptographically signed binary firmware
updates. They had even hardened their bootloader to
defend against anyone attacking the firmware update
protocol directly—countermeasures against people like
me. The client was proud of how secure the design was;
after all, most consumer products at the time had barely
figured out firmware readout protections.

An unlucky fat-fingering precipitated the current crisis:
The client had accidentally deleted the private key needed

A deleted private key, a looming deadline,
and a last chance to patch
a new static root of trust into the bootloader

PHIL VACHON

1 of 9 TEXT
ONLY

The Keys to the

 Kingdom

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546079&domain=pdf&date_stamp=2022-01-25

acmqueue | november-december 2021 2

recovery

to sign new firmware updates. They had some exciting new
features to ship, along with the usual host of reliability
improvements. Their customers were growing impatient,
but my client had to stall when asked for a release date.
How could they come up with a meaningful date? They had
lost the ability to sign a new firmware release.

Given the sheer number of these devices in the field,
as well as the cost per unit, a replacement program was
the option of absolute last resort. The financial loss
would be huge, and orchestrating such a program would
be incredibly daunting. A reverse-engineering attempt
was the final “Hail Mary” effort before a recall would be
necessary.

The task seemed straightforward: Find a way to
patch a new static root of trust into the bootloader (a
philosophical question: Is it that static?), thereby enabling
the client to sign firmware updates with a new key. Since
the bootloader was hardened (so my client claimed), direct
attacks on the firmware updater were out of the question.

The device in question has multiple serial ports that
expose a variety of complex protocols once the client’s
application starts. The main microcontroller in the design
included an off-the-shelf Arm Cortex-M3 core, with built-
in flash and on-board RAM. This microcontroller had no
hardware root of trust, so the bootloader provided all of
the firmware security features. Notably, there was nothing
to ensure the bootloader wasn’t modified.

The client didn’t have the exact source code for the
firmware shipped on the device, since the entire release
was lost during the fat-fingering. Worse, I could not easily
use a production device to test this (it could be done, but

2 of 9

acmqueue | november-december 2021 3

recovery

would have added a lot of time to the engagement—time
the client could not afford), and the client went to great
lengths to protect the device against firmware read-out,
even disabling the JTAG (Joint Test Action Group) debug
port. To make things even more challenging, release
firmware images would not emit debugging log messages.
One fact worked in my favor, however: The firmware
was built on top of open-source components. Both the
bootloader and the realtime operating system were used
by many such projects.

Since time was of the essence, and static analysis of the
production binary would take a lot of time, I needed to find
a quick path to code execution. All I had was the compiled
release version of the firmware and a new version of the
source code the client wanted to install on the deployed
devices in the field. The new code was a point from which
to hunt for flaws in the communications protocol handling
code; the client claimed this code had not changed
substantially. I was used to working with less.

UARTS KNOW NO BOUNDS
One UART (universal asynchronous receiver/transmitter),
or serial port, exposed a framed command protocol. The
handling logic worked as follows:
3 As bytes arrive, the interrupt handler read out of a FIFO

(first-in, first-out) hardware queue into a buffer until
a FRAME END byte was received. An array of eight of
these buffers was allocated as one contiguous array.
There was no check to make sure the input message did
not exceed the length of one of these buffers.

3 After receiving a FRAME END byte, the interrupt handler

3 of 9

T
o make
things
even more
challeng-
ing, release

firmware images
would not emit
debugging log
messages.

acmqueue | november-december 2021 4

recovery

pushed a pointer to the filled buffer, as well as the length
of the payload (as an unsigned 32-bit integer) into the
protocol handler thread’s work queue. This signaled to
the thread that data was ready to process.

3 The protocol handler thread popped the new work item
from its queue and copied the received bytes into a 1,024-
byte work buffer. The number of bytes to copy was also
not checked against the work buffer size.
There were a couple of interesting flaws. First, the

interrupt handler code did not have logic to check that
bytes were not being written past the end of its active
buffer. Second, the protocol handler thread blindly
accepted a payload length from the input buffer, copying
whatever it was told, without checking. This bug could be
used to copy a malicious message over other data adjacent
to the work buffer.

The next step was to load the released firmware
image onto the standard development kit sold by the
microcontroller’s vendor. I needed to figure out a way to
load my own code. Some quick experimentation showed
that sending an excessively long message—10 KB of the
value 0x4f—caused the device to seize up. Success! But
why did it crash?

THE JUMP OFF 0X4F4F4F4F
Having some version of the source code in hand and another
similar version of the firmware running on a development
kit meant I could start debugging. A quick check showed
the device threw a bus fault when it failed. This happens on
a Cortex-M CPU when trying to read, write, or attempt to
execute instructions from an invalid address. The device’s

4 of 9

acmqueue | november-december 2021 5

recovery

status registers indicated an invalid instruction fetch
occurred at 0x4f4f4f4f. This was good news for me, as I
could now take control of the program counter.

The Cortex-M family of microcontrollers is designed
to be easy to target with ordinary C code, requiring
minimal assembly-language glue. ISRs (interrupt service
routines) are normal C functions that are called directly
by hardware. When handling an interrupt request, logic
built into the CPU core prepares a stack frame on the
running process’s stack. That frame stores the interrupted
process’s registers, as well as information about the
CPU state and the instruction pointer value at the time
of the interrupt. The CPU then switches to a separate
interrupt mode stack pointer, and invokes the ISR. If you
can overwrite the contents of the saved process context—
especially the instruction pointer that was saved on
interrupt entry—then you can tell the CPU to return to
some different code later.

Now, all I needed to do was replace my buffer full of
0x4f bytes with the address of some code I wanted to run.
The next time the process woke up, the CPU would jump
right to the address it read from this saved context.

BOOTLOADER CONTROLS ARE ESSENTIAL
Controlling code execution is one problem, but I also
needed to store the code that rewrites the root of trust
somewhere. Many microcontrollers offer up to 1 MB of
flash memory, a luxurious amount of storage if you’re an
embedded systems developer. RAM is a more precious
commodity—a few tens of KB in many cases. All code on
this device can be run straight from flash, leaving RAM for

5 of 9

acmqueue | november-december 2021 6

recovery

CPU state and data structures. This means, however, that
there isn’t enough memory to hold a complete program
image when performing a firmware update.

Flash memory was split into two partitions on this
device: bootloader memory and application image memory.
Figure 1 depicts the use of flash memory. (Note that the
firmware updater is built into the bootloader and cannot
update itself.) Figure 2 shows the application image

6 of 9

bootloader

application
image

free space

bootloader memory
(not upadated)

application image memory
(can be updated)

FIGURE 1: The use of flash memory in the device

header

code

signature

FIGURE 2: Application image structure

acmqueue | november-december 2021 7

recovery

structure from a legitimate application image update.
Figure 3 shows the application image’s security features,
plus some added code and data.

The updater built into the bootloader erases the entire
application image memory and writes a new image in its
place. Once the full image is ready in flash, the bootloader
checks the signature of the application image, including
the contents of the header, verifying its authenticity. If
the signature check were to fail, the bootloader would
immediately erase the data just downloaded. Modifying
the firmware image was out of the question, because the
signature check would fail. What else could I do?

The updater was simple. As long as you kept feeding it
data, it would write the incoming data to flash.

Reviewing the code of the open-source bootloader that
the client had used showed a bug that could be of use: The
signature check was performed only on the code region
specified in the header. As long as the original header, code,

7 of 9

header

code

signature

extra code + data

region covered
by signature

contains length
of code region,
address of
entry point for
code, etc.

FIGURE 3: The application image’s security features

acmqueue | november-december 2021 8

recovery

and signature were unmodified, the bootloader would
boot the image. A quick test proved this to be the case. An
image with extra data appended booted successfully, with
the extra data being ignored. Since all flash memory on
this device is executable, I could simply jump to extra code
appended to a valid update image.

So much for all that bootloader hardening...

REWRITING THE BOOTLOADER
The last step was to write a payload that would “enhance”
the bootloader to validate application image signatures
using a new public key from the client. My payload was
simple: Erase the original public key from flash and write the
new key in its place. On subsequent reboots, the bootloader
would accept new firmware images signed with the new
key—one the client now keeps in a couple of safe places.

VICTORY!
My client’s “Hail Mary” effort paid off. They soon shipped a
firmware release with new features and fixes. Their clients
were none the wiser that the original signing keys had been
lost and that the new firmware image had been installed
by taking advantage of bugs I found while reverse-
engineering the device. The new firmware release also
included fixes for these bugs.

Would you believe me if I told you that this job was not
unique? I’ve had this very situation play out for at least
three different clients, all of whom were in the same jam.
After delivering my “fix,” I always follow up by advising my
clients how to store and manage firmware signing keys.
Since these are the keys to their devices, they deserve

8 of 9

acmqueue | november-december 2021 9

recovery

to be treated with respect—both for device lifecycle and
security reasons.

Many commodity microcontrollers today offer a static
root of trust, built into a boot ROM in silicon. In this case,
pulling off such a hack would be a lot harder, making it even
more important to protect the keys. Also, had the client’s
design used the memory-protection features offered by
the Cortex-M series, this job would have been even more
challenging.

Fortunately, while I’ve helped many clients with this
problem, none has asked for this type of work more than
once. Lesson learned?

Phil Vachon is a security architecture and engineering
manager with Bloomberg’s Office of the CTO, where he and
his team work on projects related to identity, authentication,
and the application of data science to operational security
challenges. Prior to his current role at Bloomberg, he co-
founded a startup focused on high-speed packet capture
and analysis. He has also developed high-frequency trading
systems, designed and implemented firmware for identity
and security infrastructure devices, built synthetic aperture
radar data-processing tools, and worked on data-plane
traffic engineering for carrier routers. His main interests
are developing threat models that are relevant to business
problems, designing secure embedded systems, and working
to improve individual privacy protections in an increasingly
connected world.
Copyright © 2021 held by owner/author. Publication rights licensed to ACM.

9 of 9

