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I
t was a warm, late summer afternoon when a long-
time client called. They needed someone to help them 
out of a jam—and fast. This client builds embedded 
devices found in offices around the world. Their latest 
creation had all the right security features, the best 

possible given their hardware constraints. These devices 
are driven by firmware running on a microcontroller that 
delivers robust wireless communications; I knew this was 
my kind of job.

The client’s engineers had attempted to build the right 
security features into their firmware: a bootloader that 
normally can’t be updated, a static root of trust contained 
therein, and cryptographically signed binary firmware 
updates. They had even hardened their bootloader to 
defend against anyone attacking the firmware update 
protocol directly—countermeasures against people like 
me. The client was proud of how secure the design was; 
after all, most consumer products at the time had barely 
figured out firmware readout protections.

An unlucky fat-fingering precipitated the current crisis: 
The client had accidentally deleted the private key needed 
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to sign new firmware updates. They had some exciting new 
features to ship, along with the usual host of reliability 
improvements. Their customers were growing impatient, 
but my client had to stall when asked for a release date. 
How could they come up with a meaningful date? They had 
lost the ability to sign a new firmware release.

Given the sheer number of these devices in the field, 
as well as the cost per unit, a replacement program was 
the option of absolute last resort. The financial loss 
would be huge, and orchestrating such a program would 
be incredibly daunting. A reverse-engineering attempt 
was the final “Hail Mary” effort before a recall would be 
necessary.

The task seemed straightforward: Find a way to 
patch a new static root of trust into the bootloader (a 
philosophical question: Is it that static?), thereby enabling 
the client to sign firmware updates with a new key. Since 
the bootloader was hardened (so my client claimed), direct 
attacks on the firmware updater were out of the question.

The device in question has multiple serial ports that 
expose a variety of complex protocols once the client’s 
application starts. The main microcontroller in the design 
included an off-the-shelf Arm Cortex-M3 core, with built-
in flash and on-board RAM. This microcontroller had no 
hardware root of trust, so the bootloader provided all of 
the firmware security features. Notably, there was nothing 
to ensure the bootloader wasn’t modified.

The client didn’t have the exact source code for the 
firmware shipped on the device, since the entire release 
was lost during the fat-fingering. Worse, I could not easily 
use a production device to test this (it could be done, but 
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would have added a lot of time to the engagement—time 
the client could not afford), and the client went to great 
lengths to protect the device against firmware read-out, 
even disabling the JTAG (Joint Test Action Group) debug 
port. To make things even more challenging, release 
firmware images would not emit debugging log messages. 
One fact worked in my favor, however: The firmware 
was built on top of open-source components. Both the 
bootloader and the realtime operating system were used 
by many such projects.

Since time was of the essence, and static analysis of the 
production binary would take a lot of time, I needed to find 
a quick path to code execution. All I had was the compiled 
release version of the firmware and a new version of the 
source code the client wanted to install on the deployed 
devices in the field. The new code was a point from which 
to hunt for flaws in the communications protocol handling 
code; the client claimed this code had not changed 
substantially. I was used to working with less.

UARTS KNOW NO BOUNDS
One UART (universal asynchronous receiver/transmitter), 
or serial port, exposed a framed command protocol. The 
handling logic worked as follows:
3  As bytes arrive, the interrupt handler read out of a FIFO 

(first-in, first-out) hardware queue into a buffer until 
a FRAME END byte was received. An array of eight of 
these buffers was allocated as one contiguous array. 
There was no check to make sure the input message did 
not exceed the length of one of these buffers.

3  After receiving a FRAME END byte, the interrupt handler 
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pushed a pointer to the filled buffer, as well as the length 
of the payload (as an unsigned 32-bit integer) into the 
protocol handler thread’s work queue. This signaled to 
the thread that data was ready to process.

3  The protocol handler thread popped the new work item 
from its queue and copied the received bytes into a 1,024-
byte work buffer. The number of bytes to copy was also 
not checked against the work buffer size.
There were a couple of interesting flaws. First, the 

interrupt handler code did not have logic to check that 
bytes were not being written past the end of its active 
buffer. Second, the protocol handler thread blindly 
accepted a payload length from the input buffer, copying 
whatever it was told, without checking. This bug could be 
used to copy a malicious message over other data adjacent 
to the work buffer.

The next step was to load the released firmware 
image onto the standard development kit sold by the 
microcontroller’s vendor. I needed to figure out a way to 
load my own code. Some quick experimentation showed 
that sending an excessively long message—10 KB of the 
value 0x4f—caused the device to seize up. Success! But 
why did it crash?

THE JUMP OFF 0X4F4F4F4F
Having some version of the source code in hand and another 
similar version of the firmware running on a development 
kit meant I could start debugging. A quick check showed 
the device threw a bus fault when it failed. This happens on 
a Cortex-M CPU when trying to read, write, or attempt to 
execute instructions from an invalid address. The device’s 
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status registers indicated an invalid instruction fetch 
occurred at 0x4f4f4f4f. This was good news for me, as I 
could now take control of the program counter.

The Cortex-M family of microcontrollers is designed 
to be easy to target with ordinary C code, requiring 
minimal assembly-language glue. ISRs (interrupt service 
routines) are normal C functions that are called directly 
by hardware. When handling an interrupt request, logic 
built into the CPU core prepares a stack frame on the 
running process’s stack. That frame stores the interrupted 
process’s registers, as well as information about the 
CPU state and the instruction pointer value at the time 
of the interrupt. The CPU then switches to a separate 
interrupt mode stack pointer, and invokes the ISR. If you 
can overwrite the contents of the saved process context—
especially the instruction pointer that was saved on 
interrupt entry—then you can tell the CPU to return to 
some different code later.

Now, all I needed to do was replace my buffer full of 
0x4f bytes with the address of some code I wanted to run. 
The next time the process woke up, the CPU would jump 
right to the address it read from this saved context.

BOOTLOADER CONTROLS ARE ESSENTIAL
Controlling code execution is one problem, but I also 
needed to store the code that rewrites the root of trust 
somewhere. Many microcontrollers offer up to 1 MB of 
flash memory, a luxurious amount of storage if you’re an 
embedded systems developer. RAM is a more precious 
commodity—a few tens of KB in many cases. All code on 
this device can be run straight from flash, leaving RAM for 

5 of 9



acmqueue | november-december 2021   6

recovery

CPU state and data structures. This means, however, that 
there isn’t enough memory to hold a complete program 
image when performing a firmware update. 

Flash memory was split into two partitions on this 
device: bootloader memory and application image memory. 
Figure 1 depicts the use of flash memory. (Note that the 
firmware updater is built into the bootloader and cannot 
update itself.) Figure 2 shows the application image 
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structure from a legitimate application image update. 
Figure 3 shows the application image’s security features, 
plus some added code and data. 

The updater built into the bootloader erases the entire 
application image memory and writes a new image in its 
place. Once the full image is ready in flash, the bootloader 
checks the signature of the application image, including 
the contents of the header, verifying its authenticity. If 
the signature check were to fail, the bootloader would 
immediately erase the data just downloaded. Modifying 
the firmware image was out of the question, because the 
signature check would fail. What else could I do?

The updater was simple. As long as you kept feeding it 
data, it would write the incoming data to flash. 

Reviewing the code of the open-source bootloader that 
the client had used showed a bug that could be of use: The 
signature check was performed only on the code region 
specified in the header. As long as the original header, code, 
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and signature were unmodified, the bootloader would 
boot the image. A quick test proved this to be the case. An 
image with extra data appended booted successfully, with 
the extra data being ignored. Since all flash memory on 
this device is executable, I could simply jump to extra code 
appended to a valid update image.

So much for all that bootloader hardening...

REWRITING THE BOOTLOADER
The last step was to write a payload that would “enhance” 
the bootloader to validate application image signatures 
using a new public key from the client. My payload was 
simple: Erase the original public key from flash and write the 
new key in its place. On subsequent reboots, the bootloader 
would accept new firmware images signed with the new 
key—one the client now keeps in a couple of safe places.

VICTORY!
My client’s “Hail Mary” effort paid off. They soon shipped a 
firmware release with new features and fixes. Their clients 
were none the wiser that the original signing keys had been 
lost and that the new firmware image had been installed 
by taking advantage of bugs I found while reverse-
engineering the device. The new firmware release also 
included fixes for these bugs.

Would you believe me if I told you that this job was not 
unique? I’ve had this very situation play out for at least 
three different clients, all of whom were in the same jam. 
After delivering my “fix,” I always follow up by advising my 
clients how to store and manage firmware signing keys. 
Since these are the keys to their devices, they deserve 
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to be treated with respect—both for device lifecycle and 
security reasons.

Many commodity microcontrollers today offer a static 
root of trust, built into a boot ROM in silicon. In this case, 
pulling off such a hack would be a lot harder, making it even 
more important to protect the keys. Also, had the client’s 
design used the memory-protection features offered by 
the Cortex-M series, this job would have been even more 
challenging.

Fortunately, while I’ve helped many clients with this 
problem, none has asked for this type of work more than 
once. Lesson learned?

Phil Vachon is a security architecture and engineering 
manager with Bloomberg’s Office of the CTO, where he and 
his team work on projects related to identity, authentication, 
and the application of data science to operational security 
challenges. Prior to his current role at Bloomberg, he co-
founded a startup focused on high-speed packet capture 
and analysis. He has also developed high-frequency trading 
systems, designed and implemented firmware for identity 
and security infrastructure devices, built synthetic aperture 
radar data-processing tools, and worked on data-plane 
traffic engineering for carrier routers. His main interests 
are developing threat models that are relevant to business 
problems, designing secure embedded systems, and working 
to improve individual privacy protections in an increasingly 
connected world.
Copyright © 2021 held by owner/author. Publication rights licensed to ACM.

9 of 9


