
VET5G: A Virtual End-to-End Testbed for 5G Network Security
Experimentation

Zhixin Wen
Department of Computer Science

Binghamton University
Binghamton, New York, USA
zwen7@binghamton.edu

Harsh Sanjay Pacherkar
Department of Computer Science

Binghamton University
Binghamton, New York, USA
hpacher1@binghamton.edu

Guanhua Yan
Department of Computer Science

Binghamton University
Binghamton, New York, USA
ghyan@binghamton.edu

ABSTRACT
As 5G networks are gradually rolled out worldwide, it is important
to ensure that their network infrastructures are resilient against ma-
licious attacks. This work presents VET5G, a new virtual end-to-end
testbed for 5G network security research experiments or training
activities such as Capture-The-Flag competitions. The distinguish-
ing features of VET5G include a home-grown 5G core network
emulator written in Rust to ensure memory and thread safety, inte-
gration of OpenAirInterface’s Radio Access Network emulator and
the official Android emulator to achieve full end-to-end 5G network
emulation, inclusion of a reference P4 software switch to assist with
prototyping of defense mechanisms for 5G data planes, implemen-
tation of Python APIs for easy 5G network experimentation, and
adoption of JupyterHub to support multi-user experimentation. In
our experiments we demonstrate how to use VET5G for two attack
scenarios in 5G networks as well as its performance when it is used
in a 5G hacking project for a Mobile Systems Security course.

CCS CONCEPTS
• Security and privacy→ Network security.

KEYWORDS
5G networks, security testbed, programmable switch, Rust
ACM Reference Format:
Zhixin Wen, Harsh Sanjay Pacherkar, and Guanhua Yan. 2022. VET5G: A
Virtual End-to-End Testbed for 5G Network Security Experimentation. In
Cyber Security Experimentation and Test Workshop (CSET 2022), August 8,
2022, Virtual, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3546096.3546111

1 INTRODUCTION
The decades-long evolution of mobile communications has led us
to today’s 5G systems with the promise of transforming every as-
pect of people’s life. Advanced networking technologies such as
programmability, virtualization, and edgefication have been widely
adopted by 5G networks to enable a variety of application scenar-
ios. The increased complexity of 5G network infrastructures due

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSET 2022, August 8, 2022, Virtual, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9684-4/22/08. . . $15.00
https://doi.org/10.1145/3546096.3546111

to these new changes, however, has also drastically enlarged their
attack surface. The open nature of 5G networks makes them vul-
nerable to threats at various places, including mobile devices (e.g.,
malicious apps), base stations (e.g., rogue small cells), 5G core net-
work functions (e.g., those from untrusted software vendors), and
operational environments (e.g., public clouds with ill-intentioned
co-tenants). Hence, to secure 5G network operations, new defense
techniques are needed that can not only protect them from at-
tacks targeting 5G-specific features such as network slicing and
service-based architectures, but also make them resilient to general
network-level or software-level attacks that have been plaguing
the Internet for decades (e.g., malware and Distributed Denial of
Service (DDoS) attacks).

While deployments of 5G networks are progressing rapidly
worldwide with global 5G subscriptions expected to reach one
billion in 2022 [51], there is a urgent need for testbeds that can as-
sess 5G network security in various attack and/or defense scenarios.
In this work we study how to develop a comprehensive 5G net-
work security testbed for dual purposes of research and education.
On one hand, the testbed should enable researchers to evaluate
the consequences of malicious attacks in a realistic but controlled
environment, or assess the effectiveness of proposed defense mech-
anisms before their deployments in the real world. On the other
hand, the testbed can also be used to host Capture-The-Flag (CTF)-
like competitions where contestants learn and practice penetration
testing techniques against emulated 5G networks without concerns
of causing harm to the real ones in operation.

Although there are a plethora of existing open 5G tools, such as
OpenAirInterface (OAI) [32] and Open5GS [31], they are immature
or inappropriate for such as testbed for the following reasons. First,
there has been lack of end-to-end 5G network experimentation
environments where real-world mobile applications (e.g., Google
map and YouTube) are executed to generate large volumes of re-
alistic 5G traffic. High-density high-fidelity 5G traffic generators
can be extremely useful to those experiments that explore effective
filtering rules to block unwanted packets (e.g., DDoS attack traffic).
Second, existing open 5G tools mostly focus on implementations of
5G network functionalities instead of their security. However, if the
implementations of 5G network functions are too buggy, it would
be trivial for an attacker to perform successful low-level software
attacks (e.g., software crashes due to memory corruption), mak-
ing them inappropriate for CTF-like security experiments1. Third,

1In CTF competitions participants’ skills are assessed based on how quickly they can
successfully exploit the vulnerabilities – which are usually intentionally placed – to
cause undesirable consequences (e.g., disruption of system operations and leakage of
sensitive user data).

19

https://doi.org/10.1145/3546096.3546111
https://doi.org/10.1145/3546096.3546111
https://doi.org/10.1145/3546096.3546111
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546096.3546111&domain=pdf&date_stamp=2022-08-08

CSET 2022, August 8, 2022, Virtual, CA, USA Zhixin Wen, Harsh Sanjay Pacherkar, and Guanhua Yan

programmability, which is a key feature of 5G networks to opti-
mize their operations, has not been fully considered by existing 5G
network emulators. For example, 5G User Plane Functions (UPFs)
can be implemented on programmable switches to support flexible
packet forwarding/routing/inspection rules but code running on
such switches usually has to be written in a custom language (e.g.,
P4 [37]). To the best of our knowledge, none of the existing 5G
network emulators have considered using programmable switches
in the 5G data planes.

Against this backdrop, this work aims to develop a new testbed
called VET5G (a Virtual End-to-End Testbed for 5G Network Secu-
rity Experimentation) that achieves the following design goals:

• Full end-to-end 5G network emulation: To assess re-
silience of 5G networks against various threat vectors,
VET5G is designed to provide a full end-to-end 5G network
experimentation testbed with emulated mobile devices, base
stations, core network functions, and operational environ-
ments mimicking real-world deployments.

• Secure implementation of 5G core: As 5G core network
functions may be deployed on untrusted public clouds, they
create a Pandora’s box for new attacks, which were hard to
achieve for previous generations of mobile networks whose
core network functions were usually implemented by dedi-
cated equipment and operated in closed environments. We
plan to use VET5G to hold CTF-like competitions where
participants are rated by how quickly they can exploit inten-
tionally planted software vulnerabilities in 5G core network
functions. To this end 5G core network functions should be
implemented securely with few accidental exploitable vulner-
abilities, while having the flexibility of inserting intentional
ones for testing contestants’ hacking skills.

• Programmability for prototyping defense mecha-
nisms: Programmability, which is widely deployed by 5G
networks [36], should be reflected in our security-oriented
VET5G testbed to allow easy and fast prototyping of defense
mechanisms. Ideally, the defense solutions tested by VET5G
can be transitioned into real-world deployments with mini-
mal efforts.

• Strong experiment isolation mechanisms: Once de-
ployed, the VET5G testbed can be shared by other re-
searchers to study 5G network security as well as students for
educational purposes. As multiple users can run experiments
simultaneously in the testbed, VET5G should provide strong
isolation mechanisms to prevent unauthorized modifications
of users’ experimentation data.

In a nutshell, we have made the following contributions in the de-
velopment of VET5G: (1) We have implemented essential network
functions of a 5G core network based on 3GPP Release 16 specifica-
tions in Rust, a secure programming language focused on memory
and thread safety to prevent common attacks such as buffer over-
flow attacks. (2)We have integrated Android emulator [1], OAI’s
nrUE for New Radio-based User Equipment (UE) emulation [32],
OAI’s gNodeB (gNB) emulator [28], and our own Rust-implemented
5G core network emulator to achieve full end-to-end emulation of
a standalone 5G network. (3) We have incorporated a reference P4

software switch [2] into VET5G to assist users with developing, test-
ing, and debugging traffic rules for routing/forwarding/inspecting
5G packets. (4)We have designed and implemented a set of Python
APIs to enable VET5G users to configure, control, and monitor
security-related experiments in the testbed. (5) We have deployed
JupyterHub [24] as a frontend for VET5G users to interact with
the testbed while taking advantage of its security mechanisms for
multi-user environments. (6) Using two example attack scenarios
against 5G networks and one course project, we demonstrate the
use of the VET5G testbed deployed on a local cluster machine.

The remainder of the paper is organized as follows. Section 2
summarizes related works. Section 3 introduces the architecture of
VET5G. Section 4 presents the implementation details of VET5G.
Section 5 shows our experimental results with VET5G. Section 6
discusses the limitations of this work. Section 7 makes concluding
remarks and presents our plan for future work.

2 RELATEDWORK
Our work has been inspired by previous efforts on building testbeds
for cybersecurity research, including, but not limited to, Deter [48],
SCADA security testbed [38], PowerCyber [44], and security testbed
for Internet-of-Things (IoT) devices [52]. VET5G fills the vacancy of
open testbeds for 5G network security experimentation. Moreover,
the development of VET5G has also been heavily influenced by
existing mature network emulation platforms and tools, including
but not limited to, EmuLab [3], Mininet [4], PlanetLab [5], and
GENI [6].

There has been a plethora of efforts dedicated to open source
software tools for emulating 5G networks, which have been sum-
marized in a recent comprehensive survey [36]. Some of these
works [7, 28] focus on the Radio Access Network (RAN) part of
5G networks, while others such as Open5GS [31] and free5GC [22]
have implemented the 5G core. Few of existing tools are aimed
at providing full end-to-end 5G network emulation capabilities.
Open5GCore [30] is a mobile core network testbed platform with
rich 5G network features, but based on its project description its fo-
cus seems not to be 5G network security experimentation. OAI [32]
has recently made public its source code for both RAN and 5G core
emulation, but when the development of VET5G started in May
2020, OAI only had a road map for 5G core development. Moreover,
in the National Science Foundation (NSF) Workshop on Next-G
Security held in October 2020 [8], Prof. Florian Kaltenberger from
EUROCOM commented in his talk that security was not the pri-
mary focus for OAI 5G development by its community. In contrast,
VET5G provides various features to facilitate 5G network security
experimentation in a controlled environment, including full end-
to-end 5G network emulation, secure implementation of 5G core,
programmability for prototyping defense mechanisms, and strong
experiment isolation mechanisms.

With the emergence of 5G networks, a number of 5G labs and
testbeds have been set up by various entities for their specific needs,
such as conformance testing, research on wireless technologies,
and cybersecurity evaluation [43]. For instance, the NSF Platforms
for Advanced Wireless Research (PAWR) project has funded four
city-scale advanced wireless testbeds supporting 5G technologies
in New York City (COSMOS) [21], Salt Lake City (POWDER) [33],
Research Triagle (AERPAW) [18], and Central Iowa (ARA) [20].

20

VET5G: A Virtual End-to-End Testbed for 5G Network Security Experimentation CSET 2022, August 8, 2022, Virtual, CA, USA

PLMN 2

Slice 1

Controller Kubernetes

RAN
Core Network

Slice 2

UPF

UDM

Testbed Users

AMF

AMF SMF

SMF

RLC

MAC

PDCP

RLC

MAC

SDAP

RRC

PDCP

NGAP

UE
containers

gNB
container

N2

N3

NAS

AT
commands

Android
Emulator

IP data

nFAPI

Testbed User

RRC

SDAP

JupyterHub

Python scripts

OAI nrUE
OAI gNB

k8s APIs

NSSF SEPP

ADB

PLMN 1
UEs

Container
instance

Host
process

UPF

P4

P4

NRFAUSF

N1

Figure 1: Overall testbed architecture. Rounded boxes marked in blue represents containerized components. The solid arrows
mean normal control/data flows whereas the dashed arrows indicate pod management by Kubernetes.

The ColosseumWireless Network Emulator hosted at Northeastern
University [9] provides an open platform for RAN experimentation.
The Idaho National Laboratory has set up a 5G wireless testbed
with real-world scenarios to test performances of 5G technologies
and develop solutions enhancing 5G security [10]. In contrast to
these projects primarily focused on wireless communications in
5G RANs, VET5G aims to provide a virtual end-to-end emulation
environment for conducting cybersecurity experiments. In our fu-
ture work we plan to investigate potential integration with these
wireless testbeds.

3 TESTBED ARCHITECTURE
This section introduces the architecture of the VET5G testbed,
which is illustrated in Figure 1.

Workflow. The workflow of VET5G is shown in the bottom
part of the figure. VET5G is operated on a Kubernetes cluster [25].
It uses JupyterHub to provide a multi-user experimentation envi-
ronment with isolation protection for users’ code and data. Inside
JupyterHub, each user interacts with the testbed through Python
code calling the testbed’s client-side APIs. These APIs communicate
with the testbed’s controller, a Python-written server. By calling
Kubernetes (k8s) APIs, the controller commands the underlying
Kubernetes cluster to launch experiments and collect logs and/or
network traffic files from their executions. The orchestration of the
testbed will be explained in detail in Section 4.4 and VET5G’s user
APIs are defined in Section 4.5.

Experiments.Within JupyterHub, a user can use VET5G user
APIs to launch experiments, which resemble jobs in supercomputer

environments. In each experiment, a user can create one or more
Public Land Mobile Network (PLMN) instances. Each PLMN in-
stance includes a 5G core network (which consists of various Net-
work Functions (NFs) summarized in Table 1), a RAN (which con-
sists of one or more gNBs), and one or more UEs. These components
are emulated by containerized workloads shown as blue rounded
boxes in Figure 1. A 5G core network is emulated by containerized
5G core NFs with home-grown Rust implementations according to
3GPP Release 16 specifications. A gNB container runs OAI’s gNB
emulator. A UE container integrates a modified Android emulator
with OAI’s nrUE emulator to support transmissions of AT (ATten-
tion) commands in the control plane and IP data in the data plane.
Communications between a UE container and a gNB container
are implemented to follow 5G Network Functional Application
Platform Interface (nFAPI) standards. In Sections 4.1, 4.2, and 4.3,
we shall elaborate on how 5G cores, RANs, and UEs are emulated,
respectively.

Compared with a general-purpose 5G network testbed, VET5G
offers two important features to support 5G network security re-
search. First, VET5G allows a testbed user to control the Android
devices through its user APIs, such as uploading new Android
Application Packages (APKs) and pinging other machines. We im-
plement this feature by exposing relevant Android Debug Bridge
(ADB) commands to the user through the controller, which runs a
separate ADB client instance for every Android device emulated in
the testbed. Second, VET5G supports programmable UPFs which
enable users to customize data plane control using P4, a domain-
specific language for packet processing [37]. VET5G users can thus

21

CSET 2022, August 8, 2022, Virtual, CA, USA Zhixin Wen, Harsh Sanjay Pacherkar, and Guanhua Yan

develop, test, and debug defensive packet-forwarding logic (e.g.,
traffic filtering rules) written in P4 in a controlled environment
before deploying them in real 5G networks.

Result collection. VET5G returns two types of experimental
results to the user: execution logs and network traffic dumped as
pcap files [34]. The latter are transmitted by the controller to the
user’s workspace in JupyterHub once the experiment is finished.
A user can also use ADB commands exposed by the controller to
monitor the state of each Android device directly in an experiment.

4 TESTBED IMPLEMENTATION
This section presents the implementation details of VET5G.

4.1 5G Core Emulation
We chose to implement 5G core NFs from scratch using Rust due
to the following reasons. (1) When the VET5G project started
in May 2020, alternative open source implementations such as
open5GS [31], free5GC [22], and OAI [32] were either incomplete
or not started yet. (2) As our goal is to achieve full end-to-end
emulation of 5G networks, during our own 5G core implementa-
tions we ensure that they comply with 5G specifications strictly
so as to interact with other 5G network components developed
by third parties seamlessly. In contrast, it can be a tedious task to
verify whether an existing 5G core emulator has indeed followed
5G protocol standards. (3) We plan to use the VET5G testbed to
hold CTF-like competitions where vulnerabilities are intentionally
added to assess participants’ hacking skills. Hence we try to avoid
accidental vulnerabilities that are exploitable by the contestants. We
choose Rust over C/C++ (e.g., used by OAI [32] and Open5GS [31])
or Go (e.g., used by free5GC [22]) because its ownership and type
systems can achieve both memory and thread safety efficiently [46].
Without needing expensive runtime garbage collection, Rust’s own-
ership model prevents accidental memory vulnerabilities (e.g., use
after free, null pointer dereference, use of uninitialized memory,
double free, and buffer overflow), which are common to C/C++
programs with manual memory management. Moreover, Rust’s use
of ownership and type checking ensures that many concurrency
errors should be discovered at compile time, effectively avoiding
runtime data races; such vulnerabilities are difficult to detect and
overcome for multi-threaded computing, which is needed by 5G
core NFs to deal with vast parallel sessions. It is noted that, by
using Rust’s Foreign Function Interface (FFI) feature, intentional
vulnerabilities can be added to Rust programs by calling unsafe
modules implemented in other languages [46].

The 5G core network adopts a Service-Based Architecture (SBA),
where NFs communicate with each other as service consumers
or providers via HTTP2 RESTful APIs. Using Rust, we have im-
plemented the following essential 5G core NFs: Network Func-
tion Repository Function (NRF), Network Slice Selection Function
(NSSF), Unified Data Management (UDM), Authentication Server
Function (AUSF), Access andMobilityManagement Function (AMF),
Session Management Function (SMF), UPF, and Security Edge Pro-
tection Proxy (SEPP). Their main features are summarized in Ta-
ble 1.

5G SBA security can be enforced on direct communications
among NFs using token-based authentication, or on indirect

communications among them using a Service Communication
Proxy [35]. Currently VET5G has implemented the former approach
where the NRF acts as an authorization server to grant OAuth 2.0
access tokens [29] to consumer NFs for using services from provider
ones. We plan to implement the latter in our future work.

Specification compliance. 3GPP has chosen OpenAPI 3.0 to
define the interfaces of NFs within the SBA of a 5G core network.
The OpenAPI 3.0 specifications of these APIs for Release 16 have
been archived here [11] in YAML format. From these YAML files, we
use openapi-generator [12] with option rust-server to generate both
client and server code of each NF in Rust. As the generated code
does not support multipart/related MIME [47] which is required
by AMF and SMF, it is enhanced with our own implementation at
places where this MIME is needed.

Abstract Syntax Notation One (ASN.1) is a standard interface
description language for defining data structures that can be seri-
alized and deserialized in a vendor-independent way. It is used by
the NGAP protocol in AMF for its communications with gNBs (i.e.,
N2 interface in Figure 1). The NGAP protocol definition provided
by 3GPP includes ASN.1 code using the Aligned Packed Encoding
Rules (APER) serialization scheme. As we cannot find any existing
ASN.1 library to translate it to Rust code directly, we use Rust’s
FFI feature to incorporate an alternative C library into AMF as
follows. We first use the asn1c tool [13] to generate C code from
the provided NGAP ASN.1 code and then add wrapper code also
written in C around generated encoding and decoding procedures
for certain NGAP messages (e.g. InitiatingMessage). This C code is
further compiled into a static library, which is linked by the final
AMF and SMF executables.

Asynchronous execution. Key 5G network protocols such as
NGAP, NAS, and PFCP need to process large numbers of communi-
cation messages from various other entities, making it a challenge
to achieve high performance. Our implementation takes advantage
of Rust’s async feature as follows. For each incoming request an
asynchronous computation called future is created with a unique
response identifier, which is stored to later identify the correspond-
ing response. The function making the request is then suspended
with its context (e.g., local variables) stored. On the arrival of the re-
sponse the waker handler of the future is used to resume execution
of this function. Such an async feature not only offers great flexibil-
ity to programmers but also increases concurrency to achieve high
performance.

P4 switch. 5G UPFs are responsible for interconnections be-
tween RANs and Data Networks (DNs), packet routing/forward-
ing/inspection, QoS management, and usage reporting. VET5G
allows testbed users to develop customized packet filtering rules
for P4 switches used in UPFs. Our UPF implementation includes
three components: a frontend, a backend, and a translation layer in
between. The frontend handles communications from SMF and con-
verts its instructions into Intermediate Representations (IRs). These
IRs are further forwarded to the translation layer, which translates
them into P4 table entries before sending them to the backend. The
backend can be any P4 switch implementing P4Runtime [14] APIs.
In our implementation we use the P4 BMv2 software switch [15]
as the backend.

22

VET5G: A Virtual End-to-End Testbed for 5G Network Security Experimentation CSET 2022, August 8, 2022, Virtual, CA, USA

Table 1: 5G core network functions implemented in VET5G

NF Features implemented Implementation highlights
NRF NF registration, discovery, notification; access token NRF distributes public keys used by OAuth2 during NF registration
NSSF Slice selection; slice availability update
SEPP TLS security between SEPPs; telescopic Fully Qualified Do-

main Name (FQDN); 3gpp-Sbi-Target-apiRoot header
Support rate limiting to prevent Denial of Service (DoS) attacks

UDM Data retrieval; UE authentication; Subscriber Identity De-
concealing Function (SIDF) with Subscription Concealed
Identifier (SUCI) protection schema A (based on ed25519)

Directly use MongoDB [27] without Unified Data Repository (UDR)

AMF UE (de-)registration, mobility, location, service request,
and UE context management; N1 signaling security; AES,
Snow3G, and ZUC

Asynchronous handling of Non-Access Stratum (NAS) and NG
Application Protocol (NGAP) requests; use ASN.1c for NGAP

AUSF UE authentication Support 5G Authentication and Key Agreement (5G-AKA)
SMF Protocol Data Unit (PDU) session creation, update, and re-

moval; PDU session management
Asynchronous handling of Packet Forwarding Control Protocol
(PFCP) requests; use ASN.1c for NGAP

UPF Packet forwarding with support for PDU Session Anchor
(PSA), Intermediate UPF (I-UPF), and Uplink Classifier (UL-
CL); Quality of Service (QoS) enforcement; packet buffering

Flexible forwarding backend; programmable P4 backend support;
optional support for Carrier Grade Network Address Translation
(CGNAT)

4.2 RAN Emulation
A 5G RAN consists of one or more gNBs. The current implemen-
tation of VET5G uses OAI’s gNB emulator due to its full support
for 5G-NR protocol stack as well as our familiarity with its code
base from our previous projects [40, 41]. OAI’s RAN development is
however still ongoing [28], suggesting that some features we need
for VET5G may not be available or mature. Particularly, its current
RAN code cannot emulate multiple UEs connecting to the same
gNB, which becomes a hurdle when VET5G is used for simulating
large-scale attacks from many mobile devices.

To address this issue, we need to change OAI’s implementation
of 5G nFAPI. 5G nFAPI enables a gNB Virtual Network Function
(VNF) to communicate with multiple Physical Network Functions
(PNFs) based on a standardized interface between the MAC layer
and the PHY layer. As OAI’s gNB emulator supports only one PNF
in its nFAPI implementation, we extended it as follows. Assuming
that each UE is a PNF and the gNB is a VNF according to 5G nFAPI,
communication messages between UEs and the gNB are transmit-
ted directly among their MAC layers without going through the
underlying physical layers (see Figure 1). Inside the gNB emulator,
we add a global context to store states for PNFs connected to the
gNB. Each PNF is uniquely identified by the corresponding UE’s 5G
New Radio (NR) Cell Radio Network Temporary Identifier (C-RNTI).
A message from the VNF (i.e., the gNB) is sent to a PNF (i.e., a UE)
if and only if one of the following conditions is satisfied according
to the current state: the target of this message is unknown, the
identity of this PNF is unknown, or the message’s target matches a
known PNF’s identity. The identity of a PNF is learnt by examining
incoming messages from it within a certain period of time (100 5G
NR slots or 5 frames in our settings). Compared with a straight-
forward implementation that broadcasts the VNF’s messages to
all PNFs, this optimization saves a significant amount of network
bandwidth in our testbed. Currently RAN emulation in VET5G does
not aim to achieve high-fidelity emulation at the physical layer, so

the gain in scalability due to this optimization is favored over the
resulting loss in emulation fidelity.

4.3 UE Emulation
UEs in VET5G are emulated by Android Emulator [1] that runs
Android 11 (or Android API level 30) with 5G support. In mobile
devices, AT commands are commonly used to control their cel-
lular modems such as sending/receiving phone calls and getting
device/manufacturer information. In the official Android emulator,
AT commands are transmitted between the Android Operating Sys-
tem (OS) and its Global System for Mobile Communications (GSM)
Service using a character pipe. In order for the Android OS to com-
municate with the baseband processor emulated by OAI nrUE, we
have modified Android Emulator to support transmission of AT
commands between them. On entering the character pipe towards
the GSM service, AT commands are intercepted and forwarded to
the NAS layer in nrUE’s protocol stack using UDP sockets. The
responses of the AT commands are sent back from OAI nrUE in a
similar way. For data plane connections of Android Emulator, a tun-
nel interface is created inside the UE container on successful PDU
session establishment. This tunnel interface is directly connected to
the SDAP layer of OAI nrUE’s protocol stack. Thus, all data packets
from the Android Emulator are routed via this tunnel interface. As
shown in Figure 1, the NAS layer in OAI nrUE is the entry point
for control plane packets and its SDAP layer is the entry point for
data plane packets.

In VET5G, the native ATCommand handler of anAndroid Virtual
Device (AVD) is switched to OAI nrUE’s AT command handler
implementation. After an AVD successfully registers itself into a
5G network, its screen should show its cellular signal strength and
a 5G logo, denoting that its 5G data connection has been set up.
However, this cannot be achieved if we forward AT commands from
an AVD to OAI nrUE’s AT command handler blindly because of the
following two reasons. First, the network registration procedure
of an AVD differs from that of a regular Android device, whose
network settings such as the initial Access Point Name (APN) for

23

CSET 2022, August 8, 2022, Virtual, CA, USA Zhixin Wen, Harsh Sanjay Pacherkar, and Guanhua Yan

connection are obtained from its service provider. By contrast, such
settings are predefined on an AVD. Second, the AVD sends out AT
commands in a specific order to register telephony service for the
device. Any changes in the responses to these AT Commands can
cause incomplete network registration or no data plane connection.
OAI’s original AT command handler has not provided full support
for all the necessary AT commands sent from the AVD.

To overcome these challenges, we first add a sequence of AT
commands and responses between AVD and nrUE to fulfil the
following workflow: (1) the AVD is initialized with a predefined
APN name and domain; (2) the AVD sends a General Packet Radio
Service (GPRS) service request to the nrUE, which forwards it to
the core network for establishing a new PDU session for the UE; (3)
the AVD obtains the context identifier of the activated APN from
the nrUE, and (4) the AVD obtains the latest Packet Data Protocol
(PDP) context from the nrUE. We also implement more than 20
missing AT commands in OAI nrUE and change the AT command
handler’s responses to some existing AT commands in order for
them to match the values expected by the AVD. After all these
efforts, 5G data connectivity becomes available to the applications
running inside the AVD.

4.4 Testbed Orchestration
VET5G uses Kubernetes to orchestrate containerized components,
including all 5G core NFs, gNBs, and UEs. To ensure experiment
isolation, each PLMN is represented as a unique namespace to
identify all the containerized components in it. Namespaces are
created by the controller and removed after the experiment is done.

5G Core. Each NF instance in the core network includes three
parts in the Kubernetes cluster: a ConfigMap storing its configu-
ration, a StatefulSet with one replica, and a Service referring to
this NF instance. A StatefulSet is chosen because a known fixed
name pattern is used to name this container instead of a random
identifier which is required when constructing a Domain Name
System (DNS) name for this NF. The ConfigMap is used to mount
custom P4 code into UPF containers.

gNB. For each gNB, a ConfigMap storing its OAI configuration
and a StatefulSet is created. As OAI’s gNB configuration only works
with IP addresses instead of domain names, a gNB instance must
be started after the core network so the AMF’s IP addresses can be
passed to it. If there are multiple AMFs in the core network then a
gNB will connect to all of them.

UE. A UE container includes both OAI’s nrUE emulator and an
Android Emulator instance. For each UE container a ConfigMap and
a StatefulSet is created. Since UE containers require the IP addresses
of gNBs, they must be started after gNBs are deployed. Once a UE
container is started, it opens port 5555 for connections from ADB
clients. This allows testbed users to control the UE through ADB
commands, such as installing a new Android APK.

Result collection. We include a statically linked tcpdump bi-
nary in all 5G core NF containers to collect network traffic. For
any NF, an argument can be passed to the container to allow all
its packets to be dumped. For a UPF, in addition to the aforemen-
tioned feature, it is also possible to dump packets specific to a GPRS
Tunnelling Protocol (GTP)-U tunnel or user plane traffic from/to

Table 2: List of Python APIs supported by VET5G

Python API Meaning
create_subscribers Create mobile subscribers within a

PLMN
start_core_network Start a core network instance within a

PLMN
start_дnb Start gNB(s) within a PLMN
start_ue Start UE(s) within a PLMN
execute_shell_command Execute a shell command in an Android

Emulator
install_apk Install an Android APK in an Android

Emulator and return its package name
start_app Start an Android APKwith a given pack-

age name in an Android Emulator
stop_all Stop an experiment and collect results
дet_nf _loд Get logs of an NF instance (it must be

called after stop_all)

the Internet. All traffic files are copied to the user’s local directory
using the kubectl cp command when the experiment is finished.

Logs can be fetched from pods using Kubernetes’ logging APIs
whereas Android system logs can be acquired via ADB commands.

4.5 Testbed User APIs
The Python APIs provided for users to conduct experiments in
VET5G are summarized in Table 2. Listing 1 shows how to use
these APIs to launch a VET5G experiment on slicing attacks. Here
we only explain the skeleton of the Python code while leaving the
details of slicing attacks to Section 5.1.

1 import asyncio
2 from vet5g.client import VET5GClient
3 from vet5g.models import PlmnId
4 async def main() :
5 plmn = PlmnId('208', '99')
6 vet5g = VET5GClient('user1', [plmn], 'slicing-attack-result/')
7 await vet5g.create_subscribers(plmn,
8 cfg_file = 'scenario1_subscribers.yaml')
9 cn_cfg = await vet5g.start_core_network(plmn,
10 cfg_file = 'scenario1_cn.yaml')
11 gnb_cfg = await vet5g.start_gnb(plmn,
12 cfg_file = 'scenario1_gnb.yaml')
13 ue_cfg = await vet5g.start_ue(plmn,
14 cfg_file = 'scenario1_ue.yaml')
15 await asyncio.sleep(10) # wait for 10 seconds
16 await vet5g.stop_all()
17 attack_logs = await vet5g.get_nf_log(plmn,
18 'slicing-attacker')
19 print(attack_logs)
20 if __name__ == '__main__' :
21 loop = asyncio.get_event_loop()
22 loop.run_until_complete(main())

Listing 1: Example Python code for slicing attacks

The code first imports VET5GClient from the vet5g.client module
(Line 2), which serves as the client to interact with the testbed. Next
data structure PlmnId is imported from the vet5g.models module
(Line 3) where all 5G data models are defined. The main function,
which is defined as a Python coroutine, specifies how an experiment
should be performed (Lines 4-19); it is invoked within Lines 20-22.

24

VET5G: A Virtual End-to-End Testbed for 5G Network Security Experimentation CSET 2022, August 8, 2022, Virtual, CA, USA

The experiment starts by defining a PLMN, whose mobile country
code is 208 and mobile network code is 99 (Line 5). It then cre-
ates a VET5G client given username user1, the PLMN just defined,
and a local workspace directory at ./slicing-attack-result/ (Line 6)
where results like pcap dumps are stored. Thereafter instances of
subscribers, a core network, a gNB and a UE are created by calling
their corresponding APIs along with their respective configuration
YAML files (Lines 9-14). By calling asyncio.sleep, the main func-
tion is suspended to wait for the execution of the experiment for
10 seconds (Line 15). The experiment is terminated after calling
vet5g.stop_all (Line 16) and the results related to the PLMN are col-
lected from the testbed by calling vet5g.get_nf_log (Line 17) where
slicing-attacker indicates the name of the NF to collect logs from
(Line 18).

5 EXPERIMENTAL EVALUATION
This section presents our experimental results from VET5G de-
ployed on a local Kubernetes cluster machine with 36 physical
cores (72 logical ones with hyperthreading) and 192GB RAM.

We first show some basic resource usage results when using
VET5G to emulate a PLMN with one core network, one gNB, and
15 Android UEs. We run each experiment 10 times and observe
its mean resource usage as follows: (1) Storage: An UE image,
which contains Android Emulator and OAI nrUE, uses about 5GB
of disk space. The UPF image takes 160MB storage while all other
NF images about 30MB each. (2) Memory: The memory foot-
print of the experiment is about 104.65GB with each UE using
around 7GB RAM. (3) Execution time: Creation of subscribers
(create_subscribers) takes 6.34 milliseconds. It takes 41.18 seconds
to start the core network (start_core_network), 12.07 seconds to start
the gNB (start_gnb), and 38.93 seconds to start each UE (start_ue).
Finally it takes 64.22 seconds to stop the experiment and fetch the
results.

Next we demonstrate how to use VET5G for two attack scenarios
in 5G networks and then present our observations from a course
project where students use hacking tools from Kali Linux to attack
emulated 5G networks.

5.1 Scenario 1: Slicing Attacks
Network slicing, which is a new concept in 5G networks, partitions
the same physical infrastructure to support multiple logical net-
works called slices, each of which is configured for a particular type
of service needs. As shown in Figure 1, two slices can run their
own NFs (e.g., AMF, UPF, and SMF) while sharing some others (e.g.,
UDM, AUSF, NRF, NSSF, and SEPP). NFs in different slices can use
a shared NRF for service authentication in the 5G SBA. Between
two NF instances, which are called Service Consumer and Service
Provider for ease of presentation, NRF acts as an OAuth 2.0 Server
to facilitate service authentication. More specifically, the following
steps are involved. 1○ The Service Consumer registers with the NRF.
2○ The Service Consumer sends an Nnrf_AccessToken_Get request,
which includes a slice identifier, to the NRF. 3○ The NRF checks
whether the slice identifier in the request matches the one stored in
the NFProfile of the Service Provider. 4○ If the check is successful,
an access token is generated by the NRF, which is further sent to
the Service Consumer through an Nnrf_AccessToken_Get response

message. 5○ Finally, the Service Consumer sends a Service Request
message to the Service Provider, which includes the access token
obtained from the NRF.

Attack description. When a Service Provider NF instance is
shared by multiple slices, it may contain slice-specific sensitive
data. However, the NRF-based service authentication scheme, as
described above, does not prevent such data from being leaked to
other slices. Based on this observation, Adaptive Mobile has pub-
lished a few attacks against the service authentication procedures
across different 5G network slices [16]. One such attack is illus-
trated in Figure 2. We assume that a misbehaving NF (attacker)
belongs to Slice 2 and has already established a Transport Layer
Security (TLS) connection with the NRF. A victim NF, in this case
an AMF, is shared by both Slices 1 and 2, but should work on behalf
of Slice 1 (or Slice 2) only if the request comes from the same slice.

The attack is carried out in the following steps. 1○ The misbehav-
ing NF from Slice 2 sends an Nnrf_AccessToken_Get request to the
NRF to access Slice 1 on the victim NF. 2○As the victim NF is shared
by both Slices 1 and 2, the NRF approves the request and generates
a valid token for Slice 1 and the victim NF. 3○ The NRF sends an
Nnrf_AccessToken_Get response to the misbehaving NF, including
the access token just generated. 4○ The misbehaving NF sends a
request for service in Slice 1 with the access token to the victim
NF. In the example shown in Figure 2, the attacker requests the
location information of UE with IMSI 2089900007487. 5○ The victim
NF approves the request because the access token is valid. 6○ The
victim NF responds to the service request from the misbehaving
NF, which may contain sensitive UE data.

Attack simulation. To simulate the slicing attack, the example
Python code shown in Listing 1 is used. Its core network configura-
tion file scenario1_cn.yaml (Line 10) includes the following section
describing a custom NF simulating the slicing attacker:

--- !custom NF section
custom_nfs:
- name: slicing-attacker
image_name: 'slicing-attacker-nf.tar'
image_args: []
slices: # Slices this NF belongs to
- name: 'slice-2'
sst: 1 # Slice/Service Type
sd: '000002' # Slice Differentiator

allowed_slices: null # what slices are allowed
to use NF's resources, use `null` to be the
same as `slices`
dump_pcap: true # To dump pcap file or not
dump_logs: true # To dump NF log or not

In the example, the slicing-attacker NF is instantiated from a
container image named slicing-attacker-nf.tar. To facilitate custom
NF development, VET5G provides a set of scaffolding code written
in Rust as well as container building scripts. The testbed user can
use these resources to implement the aforementioned steps involved
in a slicing attack and build the corresponding container image.

Attack result. Figure 2 presents the Wireshark traffic analysis
in a slicing attack. The two boxes following 1○ and 3○ show that the
attacker successfully obtains an access token from the NRF for the
victim NF shared by Slices 1 and 2. Next the two boxes following
4○ and 6○ demonstrate that this access token is used to obtain the
location of UE with IMSI 2089900007487 which belongs to Slice 1.

25

CSET 2022, August 8, 2022, Virtual, CA, USA Zhixin Wen, Harsh Sanjay Pacherkar, and Guanhua Yan

Slice 2

Attacker

Slice 1

NRF1

2

3

4

6

5

Victim AMF

1
3

4
6

IMSI:2089900007487

Figure 2: Wireshark analysis of slicing attack traffic. The red boxes highlight the attacker’s requests and and blue ones the
responses received. One of the phones in Slice 1 has IMSI 2089900007487 whose location is requested in Step 4○.

Table 3: Attack topics in the 5G hacking course project, where 40 participating students are divided into 15 groups.

Attack Type Description Number of groups
Fuzzing Use tools such as wfuzz and sfuzz to fuzz test 5G core NFs 14

Reconnaissance Use tools such as nmap to find attack targets in 5G networks 9
GTP attack Guess TEIDs (Tunnel Endpoint Identifiers) used by legitimate GTP sessions 3
DDoS attack Use tools such as slowloris to perform DDoS attacks 3

Password attack Use tools such as Hydra to guess passwords 3
MITM attack Use tools such as Bettercap to perform MITM (Man-In-The-Middle) attacks 2
SSH attack Use tools such as metasploit to attack vulnerable SSH services 1

5.2 Scenario 2: Cellular Botnets
A cellular botnet is a collection of cellular devices (e.g., smart phones
and IoT devices) that have been infected by bot malware and can
be controlled by a botmaster remotely through its Command and
Control (C&C) channel. Previous research has shown that cellu-
lar botnets have the potential of impairing operations of cellular
network cores [53], delaying setups of voice or video calls through
paging storm attacks [41], and causing disruption or degradation of
Internet services (e.g., web services) [42]. As 5G networks are not
immune to the attacks from these cellular botnets, it has become
an important research topic to investigate 5G-oriented solutions to
detect and mitigate these threats [49].

Attack description. To demonstrate the use of VET5G for re-
search on cellular botnets, we consider emulation of the Matryosh
Android botnet, which was discovered spreading via open ADB
port 5555 in early 2021 [17]. Our experiment models both the propa-
gation and attack phases of Matryosh-like cellular botnets within a
5G network, as illustrated in Figure 3: 1○ The attacker scans devices
with open port 5555. 2○ If the 5G network deploys CGNAT, scan-
ning packets from the external Internet cannot reach vulnerable
end devices assigned with non-routable private IP addresses. 3○
Otherwise, ADB connections can be established with vulnerable
devices so the attacker can execute shell commands to install bot
malware on them. 4○ The bot malware launches DDoS attacks
against a victim server.

Attack simulation. We develop two Android apps for the at-
tack, one for the botmaster and the other for individual bots. The
botmaster scans for vulnerable devices with TCP port 5555 open,

Botnet

Attacker

UPF RouterCGNAT

1

3 Victim

4

2

Optional

Figure 3: Illustration of a botnet attack via exposed ADB
ports

uploads the bot malware onto any vulnerable device found, and
commands new bot-infected devices to launch an HTTP pipelin-
ing DDoS attack against a server within the same mobile network.
Vulnerable devices are emulated by rooted Android images in UE
containers.

In our experiment, the attack involves six vulnerable UEs. The
botmaster commands the bots to start their DDoS attacks sequen-
tially, separated by the same time intervals of two seconds. The
result of this attack is shown as the red dotted line in Figure 4.

Defense deployed by P4 switch. To defend against this attack
we consider the method proposed in [39] where a modified count-
min sketch data structure is used to detect if the number of UEs
connecting to the same destination exceeds a certain threshold. If
this condition is satisfied then a TrTCM meter [45] is used to limit
the maximum bit rate going to that destination. Such a rate limiting

26

VET5G: A Virtual End-to-End Testbed for 5G Network Security Experimentation CSET 2022, August 8, 2022, Virtual, CA, USA

Figure 4: Rate of HTTP requests received by the victim
server in a botnet attack

Figure 5: CPU and memory usage of the testbed during
the course project

scheme can be implemented with ~100 lines of additional P4 code
and ~40 lines of additional UPF code written in Rust. The defense
effect is shown as the blue solid line in Figure 4. Clearly, after the
defense mechanism is deployed, the traffic rate received by the
victim server is limited to around 40 requests per second.

5.3 5G Hacking Course Project
The VET5G testbed has been used for a 5G hacking project by 40
students who are taking a Mobile Systems Security course in our
university. To foster teamwork, the 40 students form 15 groups,
each of which needs to deliver a final project report summarizing its
findings. In this project, each student can create a separate PLMN
with one 5G core, one gNB, and one UE. In addition to a PLMN,
a student also has access to a container running tools from Kali
Linux to perform offensive attacks against any components inside
the PLMN.

Table 3 summarizes the types of attacks attempted by each team.
Almost all the teams (14/15) have used fuzzing tools to test the 5G
NFs listed in Table 1. Nine teams have used reconnaissance tools
(e.g., nmap and traceroute) to infer the details of 5G networks. Some
teams have also performed specific attacks such as GTP attacks2,
DDoS attacks, password guessing attacks, MITM attacks, and SSH
attacks.

Over the one-month period of the course project (04/14/2022 -
05/13/2022), students have conducted 298 experiments on VET5G.
The duration of these experiments has a mean of 860.24 minutes
and a standard deviation of 1558.61 minutes. Clearly there is large
variation among the lengths of these experiments performed by
the students. Using the measurements from Kubernetes’ Metrics
Server, we derive that the mean and standard deviation of the CPU
usage consumed by each experiment is 0.080 and 0.152 CPU units,
respectively; the mean and standard deviation of the memory usage
by each experiment is 1.390 and 1.589 GiB (Gibibytes), respectively.

Figure 5 presents the CPU and memory usage of the cluster
machine deploying VET5G over the one-month period of the course
project. Recall the cluster machine has 72 logical cores and 192GB
RAM. It is noted that at the beginning of the course project, both

2GTP vulnerabilities are well-known issues for mobile core networks [26, 50]. 5G
networks use GTP on their N2 and N3 interfaces (see Figure 1) and thus inherit the
same security risks. To create fake GTP packets an attacker needs to know TEIDs of
legitimate sessions, which sometimes can be found through brute force attacks.

the CPU and memory usages approached the physical limits of the
cluster machine. This is probably because the students were busy
with learning with how to use VET5G at that time. After the first
few days, CPU usage became low (usually less than 20 CPU units),
but there were a few spikes on memory usage. After examining
the logs, we find that these spikes were caused by the fact that
some students forgot to call stop_all to terminate their experiments
explicitly from their interactive sessions in JupyterHub. Hence,
these inactive experiments did not consume much CPU usage, but
their memory was never released back to the system.

6 LIMITATIONS
The current implementation of VET5G has the following limita-
tions.

First, its RAN emulator, which is based on OAI’s gNB emulator,
ignores the wireless communications at the physical layer, making it
inappropriate to emulate any realistic attack scenarios through the
5G air interface. Due to the same reason, VET5G does not support
wireless communications from real 5G phones, suggesting that it
cannot be used to investigate security issues of these devices.

Second, an attacker may compromise the underlying computing
infrastructure of 5G networks to disrupt their operations. Within
the VET5G testbed a user can attack an emulated 5G network by
exploiting security vulnerabilities of Kubernetes or Docker con-
tainers, but these activities may affect other users because VET5G
has only deployed mechanisms to isolate users’ experiments at the
network instance level, but not at the infrastructure level.

Third, currently VET5G uses the BMv2 P4 software switch [15]
to emulate programmable switches for UPFs. As BMv2 is not a
production-level software switch, it can only be used for developing,
testing, or debugging the P4 code written for UPFs. Any throughput
or latency measurements obtained from the BMv2 software switch
in the testbed do not correctly capture the UPF’s performances in
an operational 5G network where a real P4 switch is used.

Last, although we strive to provide a secure and comprehensive
implementation of 5G core networks according to 3GPP specifica-
tions, due to their complexity as well as our limited staff, the current
implementation of VET5G only includes some basic functions of
the essential 5G core NFs listed in Table 1. Other features that we
have not implemented may impact the fidelity of emulation results
observed from VET5G.

27

CSET 2022, August 8, 2022, Virtual, CA, USA Zhixin Wen, Harsh Sanjay Pacherkar, and Guanhua Yan

7 CONCLUSIONS AND FUTUREWORK
In this paper we present the design and implementation details of
VET5G, a new virtual end-to-end testbed dedicated to 5G network
security experimentation. We also demonstrate the use of VET5G
for two attack scenarios and a Mobile Systems Security course
project.

The VET5G testbed is still under active development. In the fu-
ture we plan to enrich its features and improve its usability. For
example, we plan to integrate Software Defined Radio (SDR)-based
RAN emulators (e.g., OAI gNB [32], srsRAN [7], and ARAMI Call-
box [19]) to enable security experiments conducted through the
5G air interface. We are working towards a UPF implementation
based on a real Tofino-based P4 switch [23]. Once it is ready we
plan to integrate it into VET5G so some cybersecurity experiments
(e.g., DDoS attacks in the data plane) can produce more accurate
measurements of attack effects from the testbed. We will also ex-
plore how to insert intentional vulnerabilities into emulated 5G
networks to support CTF-like competitions. We will investigate
effective yet efficient techniques to automatically validate whether
our Rust-implemented 5G core network is immune to existing or
new software exploitation attacks, or whether it contains any devia-
tions from 3GPP specifications that pose potential security risks.We
also plan to integrate various end devices, such as IoT, VR (Virtual
Reality), and AR (Augmented Reality) devices into VET5G to study
their security issues. Particularly, the inclusion of XR (eXtended
Reality) technologies will enable us to understand limitations of 5G
networks and explore new solutions for 6G and beyond.

VET5G runs on a local cluster machine inside Binghamton Uni-
versity’s campus network. To support access from external users,
we plan to deploy VET5G on a server in the DMZ (Demilitarized
Zone) of the university’s network. More details can be found at the
project’s website: http://cybersec.cs.binghamton.edu/vet5g.

ACKNOWLEDGMENTS
We thank our paper shepherd David Balenson and the anonymous
reviewers for their valuable feedback on this paper. This work is
partially supported by US National Science Foundation under Grant
CNS-1943079.

REFERENCES
[1] [n. d.]. https://developer.android.com/studio/run/emulator.
[2] [n. d.]. https://github.com/p4lang/behavioral-model.
[3] [n. d.]. https://www.emulab.net/.
[4] [n. d.]. http://mininet.org/.
[5] [n. d.]. https://planetlab.cs.princeton.edu/.
[6] [n. d.]. https://www.geni.net/.
[7] [n. d.]. https://www.srsran.com/.
[8] [n. d.]. https://nsf-nextg-security.cs.ucsb.edu/.
[9] [n. d.]. https://www.northeastern.edu/colosseum/.
[10] [n. d.]. https://inl.gov/trending-topic/5g-wireless-technology/.
[11] [n. d.]. https://www.3gpp.org/FTP/Specs/archive/OpenAPI/Rel-16.
[12] [n. d.]. https://github.com/OpenAPITools/openapi-generator.
[13] [n. d.]. https://github.com/vlm/asn1c.
[14] [n. d.]. https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html.
[15] [n. d.]. https://github.com/p4lang/behavioral-model.
[16] [n. d.]. https://info.adaptivemobile.com/5g-network-slicing-security.
[17] [n. d.]. https://blog.netlab.360.com/matryosh-botnet-is-spreading-en/.
[18] [n. d.]. AERPAW: Aerial Experimentation and Research Platform for Advanced

Wireless. https://aerpaw.org/.
[19] [n. d.]. AMARI Callbox Series. https://www.amarisoft.com/products/test-

measurements/amari-lte-callbox/.

[20] [n. d.]. ARA Wireless Living Lab for Smart and Connected Rural Communities.
https://arawireless.org/.

[21] [n. d.]. COSMOS: Cloud Enhanced Open Software Defined Mobile Wireless
Testbed for City-Scale Deployment. https://cosmos-lab.org/.

[22] [n. d.]. free5GC. https://www.free5gc.org/.
[23] [n. d.]. Intel Tofino. https://www.intel.com/content/www/us/en/products/

network-io/programmable-ethernet-switch/tofino-series.html.
[24] [n. d.]. JupyterHub: A multi-user version of the notebook designed for companies,

classrooms and research labs. https://jupyter.org/hub.
[25] [n. d.]. Kubernetes: Production-Grade Container Orchestration. https://

kubernetes.io/.
[26] [n. d.]. The Mobile Core under Attack. https://www.vsec.infinigate.co.uk/hubfs/

A10%20Networks/Resources/A10-WP-21154-EN-White-Paper-the-Mobile-
Core-Under-Attack.pdf.

[27] [n. d.]. MongoDB. https://www.mongodb.com/.
[28] [n. d.]. OAI 5G RAN Project Group. https://openairinterface.org/oai-5g-ran-

project/.
[29] [n. d.]. OAuth 2.0. https://oauth.net/2/.
[30] [n. d.]. open5Gcore. https://www.open5gcore.org/.
[31] [n. d.]. open5GS. https://www.open5gs.org/.
[32] [n. d.]. OpenAirInterface. https://www.openairinterface.org/.
[33] [n. d.]. Powder: the Platform for Open Wireless Data-driven Experimental Re-

search. https://powderwireless.net/5g.
[34] [n. d.]. Tcpdump and libpcap. https://www.tcpdump.org/.
[35] 3GPP. 2021. Security architecture and procedures for 5G system. Technical Specifi-

cation (TS). 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
Version 16.4.0.

[36] Leonardo Bonati, Michele Polese, Salvatore D’Oro, Stefano Basagni, and Tommaso
Melodia. 2020. Open, programmable, and virtualized 5G networks: State-of-the-
art and the road ahead. Computer Networks 182 (2020), 107516.

[37] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review 44, 3 (2014), 87–95.

[38] C. M. Davis, J. E. Tate, H. Okhravi, C. Grier, T. J. Overbye, and D. Nicol. 2006.
SCADA cyber security testbed development. In Proceedings of the 38th North
American Power Symposium. IEEE, 483–488.

[39] Damu Ding, Marco Savi, Federico Pederzolli, Mauro Campanella, and Domenico
Siracusa. 2021. In-network volumetric DDoS victim identification using pro-
grammable commodity switches. IEEE Transactions on Network and Service
Management 18, 2 (2021), 1191–1202.

[40] Kaiming Fang and Guanhua Yan. 2018. Emulation-instrumented fuzz testing of
4G/LTE Android mobile devices guided by reinforcement learning. In European
Symposium on Research in Computer Security. Springer, 20–40.

[41] Kaiming Fang and Guanhua Yan. 2020. Paging storm attacks against 4G/LTE
networks from regional Android botnets: rationale, practicality, and implications.
In Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. 295–305.

[42] Paolo Farina, Enrico Cambiaso, Gianluca Papaleo, and Maurizio Aiello. 2016. Are
mobile botnets a possible threat? The case of SlowBot Net. Computers & Security
58 (2016), 268–283.

[43] Federal Mobility Group. 2020. 5G Framework to Conduct 5G Testing. https:
//www.cio.gov/assets/files/Framework-to-Conduct-5G-Testing-508.pdf.

[44] Adam Hahn, Aditya Ashok, Siddharth Sridhar, and Manimaran Govindarasu.
2013. Cyber-physical security testbeds: Architecture, application, and evaluation
for smart grid. IEEE Transactions on Smart Grid 4, 2 (2013), 847–855.

[45] J. Heinanen and R. Guerin. 1999. A Two Rate Three Color Marker. RFC 2698. RFC
Editor.

[46] Steve Klabnik and Carol Nichols. 2019. The Rust Programming Language (Covers
Rust 2018). No Starch Press.

[47] E. Levinson. 1998. The MIME Multipart/Related Content-type. RFC 2387. RFC
Editor.

[48] Jelena Mirkovic, Terry V Benzel, Ted Faber, Robert Braden, John T Wroclawski,
and Stephen Schwab. 2010. The DETER project: Advancing the science of cy-
ber security experimentation and test. In Proceedings of the IEEE International
Conference on Technologies for Homeland Security (HST). IEEE, 1–7.

[49] Manuel Gil Pérez, Alberto Huertas Celdrán, Fabrizio Ippoliti, Pietro G Giardina,
Giacomo Bernini, Ricardo Marco Alaez, Enrique Chirivella-Perez, Félix J García
Clemente, Gregorio Martínez Pérez, Elian Kraja, Gino Carrozzo, Jose M. Alcaraz
Calero, and Qi Wang. 2017. Dynamic reconfiguration in 5G mobile networks to
proactively detect and mitigate botnets. IEEE Internet Computing 21, 5 (2017),
28–36.

[50] Positive Technologies. 2020. Threat Vector: GTP Vulnerabilities in LTE and 5G
networks 2020. https://www.politico.eu/wp-content/uploads/2020/06/POLITICO-
Positive-Technologies-report-Threat-vector-GTP-June-2020.pdf.

[51] Felix Richter. 2022. Global 5G Adoption to Hit One Billion in 2022 . https:
//www.statista.com/chart/9604/5g-subscription-forecast/.

28

http://cybersec.cs.binghamton.edu/vet5g
https://developer.android.com/studio/run/emulator
https://github.com/p4lang/behavioral-model
https://www.emulab.net/
http://mininet.org/
https://planetlab.cs.princeton.edu/
https://www.geni.net/
https://www.srsran.com/
https://nsf-nextg-security.cs.ucsb.edu/
https://www.northeastern.edu/colosseum/
https://inl.gov/trending-topic/5g-wireless-technology/
https://www.3gpp.org/FTP/Specs/archive/OpenAPI/Rel-16
https://github.com/OpenAPITools/openapi-generator
https://github.com/vlm/asn1c
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://github.com/p4lang/behavioral-model
https://info.adaptivemobile.com/5g-network-slicing-security
https://blog.netlab.360.com/matryosh-botnet-is-spreading-en/
https://aerpaw.org/
https://www.amarisoft.com/products/test-measurements/amari-lte-callbox/
https://www.amarisoft.com/products/test-measurements/amari-lte-callbox/
https://arawireless.org/
https://cosmos-lab.org/
https://www.free5gc.org/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://jupyter.org/hub
https://kubernetes.io/
https://kubernetes.io/
https://www.vsec.infinigate.co.uk/hubfs/A10%20Networks/Resources/A10-WP-21154-EN-White-Paper-the-Mobile-Core-Under-Attack.pdf
https://www.vsec.infinigate.co.uk/hubfs/A10%20Networks/Resources/A10-WP-21154-EN-White-Paper-the-Mobile-Core-Under-Attack.pdf
https://www.vsec.infinigate.co.uk/hubfs/A10%20Networks/Resources/A10-WP-21154-EN-White-Paper-the-Mobile-Core-Under-Attack.pdf
https://www.mongodb.com/
https://openairinterface.org/oai-5g-ran-project/
https://openairinterface.org/oai-5g-ran-project/
https://oauth.net/2/
https://www.open5gcore.org/
https://www.open5gs.org/
https://www.openairinterface.org/
https://powderwireless.net/5g
https://www.tcpdump.org/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://www.cio.gov/assets/files/Framework-to-Conduct-5G-Testing-508.pdf
https://www.cio.gov/assets/files/Framework-to-Conduct-5G-Testing-508.pdf
https://www.politico.eu/wp-content/uploads/2020/06/POLITICO-Positive-Technologies-report-Threat-vector-GTP-June-2020.pdf
https://www.politico.eu/wp-content/uploads/2020/06/POLITICO-Positive-Technologies-report-Threat-vector-GTP-June-2020.pdf
https://www.statista.com/chart/9604/5g-subscription-forecast/
https://www.statista.com/chart/9604/5g-subscription-forecast/

VET5G: A Virtual End-to-End Testbed for 5G Network Security Experimentation CSET 2022, August 8, 2022, Virtual, CA, USA

[52] Shachar Siboni, Vinay Sachidananda, Yair Meidan, Michael Bohadana, Yael
Mathov, Suhas Bhairav, Asaf Shabtai, and Yuval Elovici. 2019. Security testbed
for Internet-of-Things devices. IEEE transactions on reliability 68, 1 (2019), 23–44.

[53] Patrick Traynor, Michael Lin, Machigar Ongtang, Vikhyath Rao, Trent Jaeger,
Patrick McDaniel, and Thomas La Porta. 2009. On cellular botnets: measuring
the impact of malicious devices on a cellular network core. In Proceedings of the
16th ACM conference on Computer and communications security. 223–234.

29

	Abstract
	1 Introduction
	2 Related Work
	3 Testbed Architecture
	4 Testbed Implementation
	4.1 5G Core Emulation
	4.2 RAN Emulation
	4.3 UE Emulation
	4.4 Testbed Orchestration
	4.5 Testbed User APIs

	5 Experimental Evaluation
	5.1 Scenario 1: Slicing Attacks
	5.2 Scenario 2: Cellular Botnets
	5.3 5G Hacking Course Project

	6 Limitations
	7 Conclusions and Future Work
	Acknowledgments
	References

