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Although existing machine reading comprehension models are making rapid progress on many datasets, they
are far from robust. In this paper, we propose an understanding-oriented machine reading comprehension
model to address three kinds of robustness issues, which are over sensitivity, over stability and generalization.
Specifically, we first use a natural language inference module to help the model understand the accurate
semantic meanings of input questions so as to address the issues of over sensitivity and over stability. Then in
the machine reading comprehension module, we propose a memory-guided multi-head attention method that
can further well understand the semantic meanings of input questions and passages. Third, we propose a multi-
language learning mechanism to address the issue of generalization. Finally, these modules are integrated with
a multi-task learning based method. We evaluate our model on three benchmark datasets that are designed
to measure models’ robustness, including DuReader (robust) and two SQuAD-related datasets. Extensive
experiments show that our model can well address the mentioned three kinds of robustness issues. And it
achieves much better results than the compared state-of-the-art models on all these datasets under different
evaluation metrics, even under some extreme and unfair evaluations. The source code of our work is available
at: https://github.com/neukg/RobustMRC.
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1:2 Ren, et al.

1 INTRODUCTION
Machine reading comprehension (MRC) aims to answer questions by reading given passages (or
documents). It is considered one of the core abilities of artificial intelligence (AI) and the foundation
of many AI-related applications like next-generation search engines and conversational agents.
At present, MRC is achieving more and more research attention and lots of novel models

have been proposed. On some benchmark datasets like SQuAD [Rajpurkar et al. 2018] and MS
MARCO [Nguyen et al. 2016], some models like BERT [Devlin et al. 2018] have achieved higher
performance than human. However, recent work [Gan and Ng 2019; Jia and Liang 2017; Liu et al.
2020; Si et al. 2020; Tang et al. 2021; Wu and Xu 2020; Zhou et al. 2020] shows that current MRC test
sets tend to overestimate an MRC model’s true ability to unseen data due to the following reason:
the test set on which an MRC model evaluated is typically randomly selected from the whole set of
data collected and thus follows the same distributions as the training and development sets, while
in real world, it is impossible to ask the unseen data follow such known distributions. Thus it is
very necessary to evaluate MRC models on some unseen test data to reveal their robustness.

In this study, we focus on following three kinds of robustness issues that are defined by [Tang
et al. 2021]. (i) Over sensitivity issue which refers to semantically invariant text perturbations
cause a models’ prediction to change when it should not; (ii) Over stability issue which refers to
input text is meaningfully changed but the model’s prediction does not, even though it should;
(iii) Generalization issue which refers to models usually perform well on in-domain test sets yet
perform poorly on out-of-domain test sets. All these issues are widely existed in real world, and
they will lead to a significant decrease in performance for most of existing state-of-the-art MRC
models [Gan and Ng 2019; Jia and Liang 2017; Liu et al. 2020; Tang et al. 2021; Welbl et al. 2020].
Fig. 1 shows two examples about the issues of over sensitivity and over stability respectively, both
of which are extracted from the DuReader (robust) dataset [Tang et al. 2021] and all the questions
in them are really asked by users in the Baidu search engine.

Existing methods address above issues mainly with a kind of data augmentation based methods
or a kind of adversarial training based methods. For example, Gan and Ng[2019] use a neural
paraphrasing model to generate multiple paraphrased questions for a given source question that is
paired with a set of paraphrase suggestions. Then an MRC model is retrained on the training set
where the paraphrased samples are integrated. However, neither of these two kinds of methods can
truly solve the mentioned issues. Essentially, they still focus on the effort of making a model “see" as
many samples as possible so that the model can make decisions based on the “saw" knowledge. But
both the paraphrased and adversarial questions are “generated", so it is very possible that they may
not be present in real world. Besides, many real questions could not be fully “generated". Taking the
questions in Fig. 1 as examples, for the first one, there are many different ways to express “how old"
or “die” in Chinese. For the second one, there is only ONE different Chinese CHARACTER in the
two questions, but they have completely different semantic meanings. Both examples are difficult
to be addressed by existing data augmentation or adversarial training based methods because of
the following reasons. For the over sensitivity example, there are too many diverse and flexible
expression manners for a same meaning question to be enumerated or paraphrased. As for the over
stability example, it is impossible to paraphrase it because the aim of data augmentation methods
is to generate some paraphrased questions that have the same semantic meaning with the source
question. And it is also impossible to handle this over stability example by the adversarial training
based methods because these methods usually use some context words near a wrong answer
candidate to generate some adversarial examples based on which the models are trained [Gan
and Ng 2019]. Thus these methods do not have capabilities to distinguish the slight perturbations
between two questions that have a significant high string match similarity.
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Over 

Sensitivity 

Document 

史蒂夫.乔布斯，1955 年 2 月 24 日生于美国加利福尼亚洲旧金山，

美国发明家、企业家、美国苹果公司联合创办人。2011 年 10 月 5

日，因胰腺癌病逝，享年 59 岁…… 

(Steve Jobs, born in San Francisco, California on February 24, 1955, is 

an American inventor, entrepreneur and co-founder of apple. In October 

5, 2011, he died at the age of 59 because of pancreatic cancer……) 

Q 

(How old 

did Steven 

Jobs die?) 

乔布斯多少岁去世？ 
Answer: 59 岁 

(59 years old.) 
T 乔布斯多大年纪去世的？ 

乔布斯死于多少岁？ 

乔布斯多大死的？ 
Answer: 胰腺癌 

(pancreatic cancer) 
F 

Over 

Stability 

Document 

水槽的合理宽度是在 430 到 480mm，水槽的深度大于 180mm 比较

合适，这样可以防止水花飞溅，水槽的厚度要适中，以 0.8~1.0mm

为宜，过薄影响水槽的强度，过厚会影响洗涤效果…… 

(The reasonable width of the sink is 430 to 480mm, and the depth of the 

sink is more than 180mm, which can prevent water splashing. The 

thickness of the sink should be moderate, 0.8 ~ 1.0mm is appropriate. 

Too thin will affect the strength of the sink, and too thick will affect the 

washing effect……) 

Q1 
水槽一般多宽比较合理？ 

(How wide is the sink generally reasonable?) Answer: 430 to 

480mm 

(430 to 480mm) 

T 

Q2 
水槽一般多厚比较合理？ 

(How thick is the sink generally reasonable?) 
F 

 

Fig. 1. Examples of over sensitivity and over stability (extracted from DuReader (robust)). The words with the
same color have the same meaning. All the answers are generated by BERT (large).

In contrast, human can handle all above three kinds of robustness issues effectively, the main
reason of which is that human can understand the semantic meanings of the given text precisely.
In fact, the understanding capability is also the key of solving these diverse kinds of robustness
issues [Jia and Liang 2017]. Inspired by this, we propose an understanding-oriented MRC model
that can address the mentioned three kinds of robustness issues well. First, we view both the
issues of over sensitivity and over stability as a semantic meaning understanding problem, which
requires the MRC model have the ability of distinguishing the semantic meanings of a question
and its paraphrased expressions that may have similar or dissimilar semantic meanings with the
source question. To this end, we introduce a nature language inference (NLI) [Ido Dagan 2006]
module to judge whether two input sentences have the same semantic meaning. Second, in the
MRC module, we propose a memory-guided multi-head attention method that can better understand
the interactions between questions and passages. Third, we propose a multi-language learning
mechanism to prevent the model from over-fitting in-domain data and enhance the generalization
ability of the model. We introduce several language-specific MRC datasets to train the model
together, which makes the distributions of training set and test set be completely different. During
training, each dataset can be viewed as an adversarial dataset of others. Accordingly, none of a
dataset can dominant the training process and the model will be pushed to learn more generalized
knowledge for predictions. And these modules are jointly trained with a multi-task learning manner.
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1:4 Ren, et al.

We evaluate the proposed method on three benchmark MRC datasets, including DuReader
(robust) [Tang et al. 2021] and two SQuAD-related datasets [Gan and Ng 2019]. All of these
datasets are designed to measure the capabilities of an MRC model for addressing the issues of
over sensitivity, over stability and generalization. Extensive experiments show that our model
achieves very competitive results on all of these datasets. On DuReader (robust), it outperforms the
compared strong baselines by a large margin and ranks No.3 on the final test set leader-board. On
the other two SQuAD-related datasets, it achieves much competitive results even under two kinds
of extreme and unfair evaluations.

2 RELATEDWORK
Common MRC Research In the early study of MRC, researchers pay much attention to design
diverse attention methods to mine the interactions between questions and passages. These inter-
actions have been proven to be much helpful for improving the performance of an MRC model.
BiDAF [Seo et al. 2016] is one of the most representative work, where the authors design a Context-
to-query and Query-to-context bi-directional attention method. [Yu et al. 2018] and [Clark and
Gardner 2018] also use a BiDAF-style attention method. Besides, researchers also propose many
other kinds of attention methods. For example, [Cui et al. 2017] designs an attention-over-attention
model that uses a 2-dimension similarity matrix between the question and the context words to
compute the weighted query-to-context attention. [Wang et al. 2018c] propose a multi-granularity
hierarchical attention method. [Hu et al. 2019a] use the self-attention based method.

Recently, there are two kinds of research lines that are dominant in the MRC task, both of which
achieve competitive results on many benchmark MRC datasets.

The first one is to imitate some reading patterns used by human when designing an MRC model.
For example, [Sun et al. 2019b] explicitly use three human’s reading strategies in their MRC model,
including: (1) back and forth reading, (2) highlighting, and (3) self-assessment. [Wang et al. 2018a]
imitate human’s following reading pattern: first scans through the whole passage; then with the
question in mind, detects a rough answer span; finally, come back to the question and select the
best answer. [Liu et al. 2018b] design their MRC model by simulating human’s multi-step reasoning
pattern: human often re-read and re-digest given passages many times before a final answer is
found. [Wang et al. 2018b] use an extract-then-select reading strategy. They further regard the
candidate extraction as a latent variable and train the two-stage process jointly with reinforcement
learning. [Peng et al. 2020] design their MRC model by simulating two ways of human thinking
when answering questions, including reverse thinking and inertial thinking. [Zhang et al. 2021]
imitate human’s “read + verify" reading pattern: first to read through the full passage along with
the question and grasp the general idea, then re-read the full text and verify the answer. Some
other researchers [Clark and Gardner 2018; Hu et al. 2019b; Wang et al. 2018c; Yan et al. 2019]
also imitate human’s this “read + verify" reading pattern. There are other kinds of human reading
patterns imitated. For example, [Tian et al. 2020] imitate the pattern of restoring a scene according
to the text, [Malmaud et al. 2020] imitate the pattern of human gaze during reading comprehension,
and [Chen et al. 2020] imitate the pattern of tactical comparing and reasoning over candidates
while choosing the best answer, etc.

The second one is to use diverse large-scale pretrained language models like BERT [Devlin et al.
2018] and lots of its variants including XLNet [Yang et al. 2019], RoBERTa [Liu et al. 2019], and
ALBERT [Lan et al. 2020], etc. These language models have a strong capacity for capturing the
contextualized sentence-level language representations [Zhang et al. 2021]. With these language
models, researchers can design an MRC model very easily because the language models can be used
either as MRC models themselves, or as the encoder part of an MRC model and researchers only
need to focus on designing the decoder part. For example, lots of recent MRC models [Banerjee

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 1, No. 1, Article 1. Publication date: January 2022.



An Understanding-Oriented Robust Machine Reading Comprehension Model 1:5

et al. 2021; Chen and Wu 2020; Gong et al. 2020; Guo et al. 2020a,b; Huang et al. 2020; Li et al.
2020b,a; Long et al. 2020; Luo et al. 2020; Zhang et al. 2020; Zheng et al. 2020] only consist of a
language model based encoder module and a careful designed decoder module.
Robust MRC Research [Jia and Liang 2017] explore the over sensitivity and over stability issues
by testing whether an MRC model can answer paraphrased questions that contain adversarial
sentences. Recently, [Náplava et al. 2021] extensively evaluated several state-of-the-art AI-related
downstream systems including some MRC models with their robustness to input noise. Their
experiments show that there is no published open-source models which are robust to the addition
of adversarial sentences. Thus, the robustness issues in MRC are attracting more and more research
attentions, and lots of novel methods have been proposed. Generally, these existing methods can
be classified into following two kinds.
The first kind is the data augmentation based methods that address the robustness issues by

training a model with additional careful generated training data. For example, [Wang and Bansal
2018] augment the training datasets by incorporating some adversarial examples, and then the
MRC model is trained on the augmented dataset. [Welbl et al. 2020] investigate data augmentation
and adversarial training as defenses. [Liu et al. 2020] propose a model-driven approach to generate
adversarial examples that can attack given MRC models. Then they retrain and strengthen the MRC
model by using the generated adversarial examples. [Li et al. 2021] introduce a new knowledge
distillation method by taking advantage of data augmentation and progressive training on a wide
range of AI-related applications including the MRC task. [Shinoda et al. 2021] focus on question-
answer pair generation to mitigate the robustness issue. But different from most existing methods
that aim to improve the quality of synthetic examples, they try to generate multiple diverse question-
answer pairs to mitigate the sparsity of training sets so as to improve the robustness of a model.
Usually, this kind of methods are simple and effective. However, [Liu et al. 2020] point out that the
augmented datasets are often capable of simulating the known types of adversarial examples, while
ignoring other unobserved types. [Gan and Ng 2019] further point out that the main deficiency in
the data augmentation based methods is that the adversarial examples created are unnatural and
not expected to be present in real world. [Rosenberg et al. 2021] draw similar conclusion that data
augmentation based methods cannot address the robustness issues effectively.
The second kind is the adversarial training based methods that explore to design better MRC

models to improve models’ robustness. For example, [Liu et al. 2018b] average multi-predictions to
improve the model’s robustness. [Min et al. 2018] notice that most questions can be answered by
using only a few sentences and without the consideration of context over entire passage, then they
design a sentence selector to select the minimal set of sentences to the MRC model to answer a
question. Their method reduces the risk of adversarial attacks by reducing passage length, which is
proven to be robust to adversarial inputs. [Baradaran and Amirkhani 2021] investigate the effect
of ensemble learning approach to improve the generalization of MRC models. After separately
training several base models with different structures on different datasets, these base models
are ensembled by using weighting and stacking approaches in probabilistic and non-probabilistic
settings. Conversely, [Hu et al. 2018] train a robust single model based on ensemble ones through
distillation training approach. They first apply the standard knowledge distillation to mimick
output distributions of answer boundaries from an ensemble model, then propose two distillation
approaches to further transfer knowledge between the teacher model and the student model.
[Bartolo et al. 2021] use synthetic adversarial data generation to make MRC models more robust.

Besides, some researchers also explore the methods of introducing extra knowledge to address the
robustness issues. For example, [Wang and Jiang 2019] address the robustness issues by proposing a
data enrichment method that uses WordNet to extract inter-word semantic connections as general
knowledge from each given passage-question pair, then they uses the extracted knowledge to
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1:6 Ren, et al.

assist the attention mechanism in their MRC model. [Zhou et al. 2020] address the over confidence
issue and the over sensitivity issue simultaneously with the help of external linguistic knowledge.
Specifically, they first incorporate external knowledge to impose different linguistic constraints
(entity constraint, lexical constraint, and predicate constraint), and then regularize MRC models
through posterior regularization. Linguistic constraints induce more reasonable predictions for
both semantic different and semantic equivalent adversarial examples, and posterior regularization
provides an effective mechanism to incorporate these constraints. [Wu and Xu 2020] address the
robust issues from two aspects. First, they enhance the representation of the model by leveraging
hierarchical knowledge from external knowledge bases. Second, they introduce an auxiliary unan-
swerability prediction module and perform multi-task learning with a span prediction task. Some
researchers explore to use auxiliary tasks to address the robustness issues. For example, [Chen and
Durrett 2021] propose a MRC model that through sub-part alignment, their basic idea is that if
every aspect of the question is well supported by the answer context, then the answer produced
should be trustable; if not, they suspect that the model is making an incorrect prediction. And the
sub-parts used are predicates and arguments from the results of a Semantic Role Labeling task.
Natural Language Inference Given two sentences, often called as a premise and a hypoth-

esis respectively, Natural Language Inference (NLI), also known as Recognizing Textual Entail-
ment [Ido Dagan 2006], is usually defined as the task of determining whether the premise has a
relation of entailment, neutral, or contradiction with the hypothesis [Ido Dagan 2006; Zhou and
Bansal 2020; Zylberajch et al. 2021]. According to [Ido Dagan 2006], a premise entails a hypothesis
if a human reading the premise would infer that the hypothesis is most likely true. For example,
given a premise “iPhone13 has seen strong sales in China.” and a hypothesis “Strong sales for iPhone13
in China.”, their relation should be entailment. That is, the given premise entails the hypothesis. In
contrast, the relation would be contradiction if the hypothesis is “iPhone13 is not popular in China”,
and the relation would be neutral if the hypothesis is “Strong sales for iPhone13 in Japanese.”.

Recently, there are many large-scale standard datasets released, like SciTail [Khot Tushar 2018],
SNLI [Bowman et al. 2015], Multi-NLI [Williams et al. 2018], etc. These datasets facilitate the study
of NLI greatly, and some state-of-the-art neural models have achieved very competitive performance
on these datasets [Belinkov et al. 2019; Chen et al. 2021b; Jiang et al. 2021; Meissner et al. 2021; Zhou
and Bansal 2020]. From the definition of NLI we can see that it is based on (and assumes) common
human understanding of language as well as common background knowledge, thus it has been
considered by many as an important evaluation measure for language understanding [Bowman
et al. 2015; Ido Dagan 2006; Williams et al. 2018; Zylberajch et al. 2021]. Accordingly, more and
more researchers use the NLI task into diverse downstream applications with the expectation that
NLI would be useful for these downstream applications. For example, [Welleck et al. 2019] use
the NLI models to improve the consistency of a dialogue model where utterances are re-ranked
using a NLI model. [Falke et al. 2019] use the entailment predictions of NLI models to re-rank the
generated summaries of some state-of-the-art models. [Huang et al. 2021] use the NLI models to
improve unsupervised commonsense reasoning. [Koreeda and Manning 2021] use the NLI models
to assist contract review.

Like our method, [Chen et al. 2021a] also use an NLI model in their MRC model. But they aim to
train NLI models to evaluate the predicted answers by an MRC model. Specifically, they leverage
large pretrained models and recent prior datasets to construct powerful question conversion
and decontextualization modules, which can reformulate question-answer instances as premise-
hypothesis pairs with very high reliability. Then, they combine standard NLI datasets with the NLI
examples automatically derived from MRC training data to train the NLI model.
Essentially, our model makes full use of the advantages in diverse existing research lines, but

pays more attention to precisely understanding the semantic meanings of questions and passages.
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0/1 probabilities
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Multi-head 
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Encoding
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Encoding
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L X

Softmax

Add & Norm

Feed Forward

Add & Norm

Memory Guided 
Multi-head Attention

Add & Norm Add & Norm

Multi-head 
Self-Attention

Multi-head 
Self-Attention

N X

Span probabilities

(b)(a) (c)
𝑠𝑠𝑙𝑙 𝑠𝑠𝑟𝑟

Fig. 2. The Architecture of Our Model.

3 METHODOLOGY
In this study, both the issues of over-sensitivity and over-stability are viewed as a semantic meaning
understanding problem. On the other hand, according to the task definition of NLI we can draw
the conclusion that if two sentences have the same semantic meaning, they would always be
assigned an entailment relation. Inspired by this, we convert the traditional NLI task into the task
of judging whether two questions have the same semantic meaning. Concretely, we roughly regard
the entailment relation between two sentences as an equivalent alternative for the relation of having
the same semantic meaning. That is, we think two sentences would have an entailment relation
if they have the same semantic meaning, and they would have a contradiction relation if they do
not have the same semantic meaning. Furthermore, to make our MRC model be sensitive to subtle
semantic changes, the converted NLI task is combined with the MRC task with amulti-task learning
framework. Finally, the architecture of our model is shown in Fig. 2. It has three main modules: (i)
a encoder module (Fig. 2(b)); (ii) an MRC module (Fig. 2(c)); (iii) an NLI module (Fig. 2(a)).
For description convenience, here we first give some basic notations about the MRC module.

Given a passage with 𝑛 tokens (denoted as 𝑝 = {𝑝𝑖 }𝑛𝑖=1) and a question with𝑚 tokens (denoted as
𝑞 = {𝑞 𝑗 }𝑚𝑗=1), an MRC model is to predict an answer a that is constrained as a contiguous span in
𝑝 , i.e., 𝑎 = {𝑝𝑖 }𝑒𝑠 , where 𝑠 and 𝑒 indicate the beginning and ending positions of the answer. The
training set of an MRC task can be denoted as D𝑀 = {(𝑝𝑖 , 𝑞𝑖 , 𝑎𝑖 )}𝑀𝑖=1 where 𝑀 is the number of
samples. In this set, each sample consists of a passage 𝑝 , a question 𝑞 and an answer 𝑎.

3.1 Shared Encoder Module
In our model, we use RoBERTa [Liu et al. 2019] as the shared encoder module to generate repre-
sentations for the inputs of both MRC and NLI. This encoder module will output a context-aware
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1:8 Ren, et al.

representation for each token of the input text. Both NLI and MRC take text pairs as input (NLI
takes question pairs as inputs and MRC takes passage-question pairs as inputs), so for simplicity,
here we use 𝑆𝑙 and 𝑆𝑟 to denote the two text parts of an input text pair and denote the output of
this encoder module as H which is computed by Equation 1.

H = RB( [<𝐶𝐿𝑆> ⊕ 𝑆𝑙 ⊕ <𝑆𝑝> ⊕ 𝑆𝑟 ⊕ <𝑆𝑝>]) (1)

where RB denotes the RoBERTa model, <CLS> is a padding token, <Sp> is a separator token
defined to separate the token sequences of 𝑆𝑙 and 𝑆𝑟 , and ⊕ denotes the concatenation operation.

The padded question representation sequenceH𝑄 = {𝒉𝑞1 , ...,𝒉
𝑞
𝑚,𝒉<𝑆𝑝>, 01, ...0𝑛+1} and the padded

passage representation sequence H𝑃 =
{
01, ...0𝑚+1,𝒉

𝑝

1 , ...,𝒉
𝑝
𝑛,𝒉<𝑆𝑝>

}
are used for the subsequent

operations in the MRC module. Here 0𝑖 is a padded zero vector whose items are all zeros. Obviously,
after the padding operations, H𝑃 and H𝑄 have the same vector dimension.

Note the notations in Fig. 2(b) (like segment encoding, positional encoding, etc) have completely the
same meanings as those defined in the original paper of BERT [Devlin et al. 2018] or RoBERTa [Liu
et al. 2019], so one can read these original papers for detailed information.

3.2 MRC Module
The structure of our MRC module is shown in Fig. 2(c). It consists of 𝑁 identical computation
blocks followed by a multi layer perception (MLP) based output layer. Each computation block
has three components: (i) a multi-head self-attention component that is used to compute a kind of
self-aware representations for the input question and passage, with which the model could “see"
the entire context information; (ii) a “memory-guided interaction mining" component that can mine
richful interactions between question and passage; and (iii) a softmax based output component.

Our MRC module is based on the decoder component in RoBERTa, thus as shown in Fig. 2(c), it
has a similar structure as that in Transformer’s decoder [Vaswani et al. 2017]. The main difference
between our model and the original decoder in Transformer lies in the second component.

Multi-head Self-Attention Component. Here we denote the outputs of this component at
the l-th computation block as R𝑙

𝑄
and R𝑙

𝑃
, which are the generated vector representations of the

input question and passage respectively. And they are computed by the following Equation 2.

R𝑙𝑄 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(H𝑄 ); R𝑙𝑃 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(H𝑃 ) (2)

In above equation, the computation method for the multi-head self-attention operation is the
same as the one in Transformer’s decoder [Vaswani et al. 2017], thus readers can read the original
paper of Transformer for more detailed information if necessary.
Memory-Guided InteractionMiningComponent.Herewe design amemory-guidedmulti-head
attention method to mine the interactions between the input question and passage. Its structure is
shown in the right part of Fig. 3 where “query" and “key" denote the representations of question and
passage respectively. During the interaction mining process, both “query" and “key" are dynamically
updated guided by “value". “value" stores some “memory" information about the input question
and passage, and would keep unchanged during the interaction mining process.

The basic component in this proposed interaction mining method is a “memory-guided attention
unit" whose structure is shown in the left part of Fig. 3. We can see that this component first
computes two kinds of attentions: one is a key-to-query attention (denoted as k2qAtt in Fig. 3),
and the other is a query-to-key attention (denoted as q2kAtt in Fig. 3). Then these two kinds of
attentions are integrated with the “value" part.
Formally, we use use Q, K, and V to denote the vector representations of “query", “key", and

“value" respectively . Then the “memory-guided attention unit" computes the attention with Equation
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𝑆𝑐𝑎𝑙𝑒𝑑 𝐷𝑜𝑡 − 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝑞𝑢𝑒𝑟𝑦 𝑘𝑒𝑦 𝑣𝑎𝑙𝑢𝑒

linear linear linear

Memory Guided Attention Unit

concat

linear

Memory Guided Multi-Head Attention

q2kAtt

SoftMax & Add

Matmul

k2qAtt

𝑞𝑢𝑒𝑟𝑦 𝑘𝑒𝑦 𝑣𝑎𝑙𝑢𝑒

Memory Guided Attention Unit

Fig. 3. Illustration of the Memory-Guided Multi-Head Attention method.

3, where 𝑑 is the scaling factor as the one defined in Transformer.

MemAtt (Q,K,V) = [𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
QK⊤
√
𝑑

)
+ 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
KQ⊤
√
𝑑

)
]V (3)

We denote H = HP + HQ (here “+" is an element-wise add operation, note as described in the
section 3.1, HP and HQ have been padded into the same dimension). Based on H, we define “value"
as HWV. Accordingly, the “memory-guided multi-head attention" at the l-th computation block can
be written with following Equation 4 and 5, where ℎ is the number of the heads (we set ℎ to 8 in
experiments), W𝑄

𝑖
, W𝐾

𝑖 , W
𝑉
𝑖
, W𝑂 are trainable parameter matrices for the 𝑖-th head, and ReLU is

the activation function that is widely used in diverse neural models.

Ol
mrc = 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑐𝑎𝑡 (headl1, ..., headlh)W

𝑂 ) (4)

headli = MemAtt
(
R𝑙𝑄W

𝑄

𝑖
,R𝑙𝑃W

𝐾
𝑖 ,HW

𝑉
)

(5)

From above process we can see that during training, as the computation blocks iterated, both Q
and K are repeatedly updated, while V keeps unchanged and will be reloaded at each iteration.

Compared with the multi-head attention method used in Transformer [Vaswani et al. 2017], there
are two important improvements in our method. First, it computes a kind of cross attentions that
mine interactions from both the directions of “query to key” and “key to query”, which canmine more
richful and comprehensive interactions between questions and passages. This process is somewhat
like a human’s reading pattern that understand the semantic meanings of questions by taking
passages as context, and vice versa. So it would be much helpful for understanding the semantic
meanings of questions and passages. Second, its whole process is guided by a memory cell H where
the original information of the question and passage is stored. This is very necessary for an MRC
task: without H, the mined interactions would “forget" more and more original input information as
the computation blocks iterated. However, the original information is the foundation of interactions,
so “forget" them will increase the risk that the mined interactions are actually irrelevant to what
are needed. In fact, setting a memory cell to store original input information is in line with a
human’s reading pattern that keeping the input text in mind when finding the answer. So our
interaction mining method is superior to existing methods like BiDAF [Seo et al. 2016] or the
original decoder in Transformer [Vaswani et al. 2017] by nature since lots of existing researches
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have proven that imitating human’s reading patterns in an MRC model always brings performance
gains (see previous Related Work section for details).
Output Component. As shown in Fig. 2 (c), the output of the last computation block in the
memory guided interactions mining component will be fed into a feed forward network in each
computation block. We denote this output as ON

mrc. Then we perform two softmax based operations
to predict the probabilities of each token in the passage being the start and end positions of an
answer with following Equation 6, where W𝑠 ,W𝑒 , 𝑏𝑠 , and 𝑏𝑒 are learnable parameters.

𝑃𝑠 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (WsON
mrc + 𝑏𝑠 );

𝑃𝑒 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (WeON
mrc + 𝑏𝑒 )

(6)

Finally, following loss function is defined to train the MRC module, where 𝑎𝑠𝑖 and 𝑎
𝑒
𝑖 denote the

start and end positions for the answer of the 𝑖-th sample.

L𝑀𝑅𝐶 = − 1
2𝑀

𝑀∑︁
𝑖

[𝑙𝑜𝑔(𝑃𝑎
𝑠
𝑖
𝑠 ) + 𝑙𝑜𝑔(𝑃𝑎

𝑒
𝑖
𝑒 )] (7)

3.3 NLI Module
As analyzed above, we convert the traditional NLI task into the task of judge whether two question
have the same semantic meaning. Accordingly, it is a natural way to design a classification based
NLI module here. Specifically, the training set for the converted NLI task can be denoted as
D𝑁 = {(𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖 )}𝑁𝑖=1 where 𝑁 is the number of samples. In this set, each sample consists of
following three items: the first sentence 𝑠1, the second sentence 𝑠2, and the answer 𝑠 (𝑠 ∈ {0, 1})
whose value indicates whether these two sentences have the same semantics meaning or not.

In BERT (or other pre-trained language models like RoBERTa) based models, the embedding
representation of the padding token CLS is believed to contain the global information of the
whole input text. Thus, here 𝒉<𝐶𝐿𝑆> (the context-aware vector representation of <CLS>, see the
descriptions in the 3.1 section) is used as a contextualized sentence-level representations of the
input two questions. Taking 𝒉<𝐶𝐿𝑆> as input, the NLI module uses following affine function to
score the probability of the two input sentences having the same semantic meaning.

𝑦 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (w𝒉<𝐶𝐿𝑆> + 𝑏) (8)

where w and 𝑏 are learnable parameter.
Finally, following loss function is defined to train the NLI module, where 𝑦𝑖 ∈ {0, 1} denotes the

true label for the 𝑖-th sample.

L𝑁𝐿𝐼 = − 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log𝑦𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 )] (9)

3.4 Multi-Task and Multi-Language Learning
We use a multi-task learning framework to train the modules of MRC and NLI simultaneously. The
whole loss function is defined with Equation 10.

L = 𝛼L𝑁𝐿𝐼 (\𝑁 , \𝑆 ) + 𝛽L𝑀𝑅𝐶 (\𝑀 , \𝑆 ) (10)

where 𝛼 and 𝛽 are two hyperparameters which are set to 0.5 and 1 respectively in our experiments,
\𝑆 represents the task-independent parameter set shared by the modules of MRC and NLI, \𝑀 and
\𝑁 are the task-dependent parameter sets for the MRC module and the NLI module respectively.

Besides, as analyzed above that an MRC model tends to perform well on in-domain test sets but
perform poorly on out-of-domain test sets, which is mainly caused by the similar distributions
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Algorithm 1 Algorithm of the Multi-Task and Multi-Language Learning.

Require: the NLI dataset D𝑁 and the mixed MRC dataset D𝑀 ={ D𝑀
𝑙𝑔1

, D𝑀
𝑙𝑔2

, ..., D𝑀
𝑙𝑔𝑘

} where each
sub-dataset corresponds to an MRC dataset of a specific language.

Ensure:
1: Preprocessing: compute a Bernoulli distribution based sampling probability for each sub-dataset

in the mixed MRC dataset according to the ratio of the number of samples in this sub-dataset
to the total number of samples in the mixed MRC dataset.

2: Sampling: randomly select which task to be trained.
If NLI is selected, randomly select a sample from D𝑁 .
Else, select a sample from an MRC sub-dataset according to its sampling probability.

3: Generate a batch: repeat above sampling step until selecting a predefined number of samples
to build up a batch 𝐵.

4: Training: joint train the MRC and NLI modules on 𝐵 with the multi-task learning based method.
5: Iteration: repeat above steps of 2-4 until reaching the predefined training epoch.

between training sets and test sets. To overcome this issue, we generate a mixed MRC training
set which consists of several MRC training sets of different languages. Then the MRC module is
trained based on the samples in this mixed training set. For example, one can form a mixed training
set by combining an English MRC training set with a Chinese MRC training set, but still testing
the MRC model on an English test set (or a Chinese test set). By this way, the distributions of the
training set and the test set will be completely different, which will push the MRC model learn more
generalized knowledge during training because none of a specific language’s training set could
dominant the process of model training. Accordingly, the generalization issue will be alleviated
greatly. We call this new training method as multi-language learning, it is then combined with the
multi-task learning method to form a new multi-task and multi-language learning mechanism.

Specifically, the detailed process of this new learning mechanism is shown in Algorithm 1. The
input of this algorithm includes an NLI dataset and a mixed MRC dataset. In the multi-task learning
mechanism, the samples of different tasks are randomly selected. However, for the mixed MRC
dataset, if its sub-datasets of different languages have the same probability of being used as a data
source to select training samples, the samples in the smaller sub-datasets would be over-trained
while the samples in the larger sub-datasets would be under-trained. To overcome this problem, we
assign different selected probabilities for the sub-datasets of different languages. Our basic idea is
that the larger the number of a sub-dataset, the more possible its samples should be selected. In our
algorithm, we design a Bernoulli distribution based method to compute a sampling probability for
each sub-dataset in the mixed MRC dataset, as shown in the Preprocessing step in our algorithm.
Based on these probabilities, the samples in different sub-datasets in the mixed MRC dataset are
selected and batched with the samples in the NLI dataset, then the batched samples are jointly
trained with the multi-task learning mechanism. To more clearly demonstrate our Algorithm 1, we
further use Fig. 4 to illustrate its whole learning process with some concrete samples.
It should be noted that our multi-language learning does not focus on the effort of making a

model “see” some samples that are expected to be present during testing. Thus it is much different
from existing data augmentation based methods. Beside, our multi-language learning is also much
different from some existing models like the one that uses multi-lingual pre-trained language
models [Hsu et al. 2019] or the one that uses cross-lingual pre-trained language models [Nuo Chen
2022]. Although all of these existing models are trained on datasets of a source language but
tested on datasets of a target language, all of them heavily depend on the pre-trained multi-lingual
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A Training Batch 

 S1: 仙人球什么时候开花？
 (When will the cactus blossom?) 
 S2: 开花的仙人球叫什么？
 (What is the name of a flowering cactus?) 
 Label: 0

NLI
Samples

 Question: 乔丹打了多少个赛季
 (How many season did Jordan play in NBA?)
 Passage: 迈克尔 · 乔丹在 NBA 打了 15 个赛
季 。他在 84 年进入 N BA...
 (Michael Jordan has played in the NBA for 15
seasons. He entered the NBA in 1984)
 Answer:15 个  (15)

Question: When was Nikola Tesla born?
Passage: Nikola Tesla (Serbian Cyrillic:
Никола Тесла; 10 July 1856 7 January 1943)
was a Serbian American inventor
Answer: 10 July 1856

MRC
Samples

(Chinese)

MRC
Samples
(English)

Selected NLI Samples

Selected MRC Samples  
(mixed languages)

Training NLI module

Training MRC module

Selecte MRC samples according
to the sampling probabilities

Select a task randomaly

Fig. 4. Illustration of the multi-task and multi-language learning.

or cross-lingual language models. In contrast, our method does not use any of these kinds of
language models. During training, the tokens of different languages learn their own embedding
representations, while the model parameters are shared among samples of different languages. If a
token could not be found in the vocabulary of a pre-trained language model, it would be regarded
as an out-of-vocabulary token and its embedding would be randomly initialized and updated during
model training. As the study of [Hsu et al. 2019] shows that tokens from different languages might
be embedded into the same space with close spatial distribution. Their study further shows that
even though during the fine-tuning only data of a specific language is used, the embedding of tokens
in another language changed accordingly. These results show that themulti-language learning does
have the capability of pushing the model learn more generalized knowledge during training, which
is much helpful for alleviating the mentioned generalization issue.

4 EXPERIMENTS
4.1 Experimental Settings
MRCDatasets In this study, we evaluate the performance of ourmodel on the following benchmark
MRC datasets, all of which are designed to measure the robustness of an MRC model, including the
abilities of addressing the issues of over sensitivity, over stability and generalization.

(i) DuReader (robust). DuReader (robust) [Tang et al. 2021] is a large benchmark Chinese MRC
dataset released in the MRC Competition of “2020 Language and Intelligence Challenge1" (LIC-2020).
It is a variant of DuReader [He et al. 2018] and is designed to measure an MRC model’s ability
for addressing the issues of over sensitivity, over stability and generalization. Its training and
development sets consist of 15K and 1.4k samples respectively. In these two sets, the questions
are all real questions issued by users in Baidu search engine. The passages are extracted from the
search results of Baidu search engine and Baidu Zhidao (a question answering community).
The test set of DuReader (robust) includes four subsets. (i) In-domain subset: the construction

method and source of this subset is the same as the training set and the development set. (ii) Over
1https://aistudio.baidu.com/aistudio/competition/detail/28
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sensitivity subset: the samples in this subset are randomly sampled from the in-domain subset. The
new samples are constructed by paraphrasing the questions. But the questions generated here are
all real questions asked by users in Baidu search engine. (iii) Over stability subset: the samples in
this subset are sampled from the in-domain subset by rules, but annotated by human experts. The
passages in this subset are all real passages. (vi) Generalization subset: the samples in this subset
have a different distribution from that of the training set. The samples include real questions and
passages extracted from educational and financial passages. There are 1.3K, 1.3K, 0.8K, and 1.6K
samples in these four subsets respectively.

DuReader (robust) divides its test set into two versions. The first one consists of most of samples
in the in-domain subset and a small portion of samples in the other three robustness subsets. And
the second one consists of all the four subsets. For convenience, we denote these two versions’ test
sets as Test1 and Test2 respectively. It should be noted that DuReader (robust) DOES NOT release
its answer labeled test set to avoid models achieve overestimated performance by a test set guided
training. Instead, researchers have to submit their results to the competition organizers so that the
performance of their models can be evaluated.

(ii) SQuAD-related Datasets. To explore the robustness of MRC models, [Gan and Ng 2019]
create two TEST sets consisting of paraphrased questions that are generated by taking some
questions in the development set of SQuAD 1.0 [Rajpurkar et al. 2018] as source questions. The first
test set is a non-adversarial paraphrased set that is generated with a neural paraphrasing model
trained on a dataset where each sample has a tuple form of (source question, multiple paraphrase
suggestions). The paraphrased results in this test set are subsequently verified by human annotators.
The second one is an adversarial paraphrased test set that is generated manually by going through
question and context pairs from the SQuAD development set and re-writing the question using
context words near a confusing answer candidate if such a candidate exists and there are suitable
nearby context words for use in paraphrasing. We denote these two test sets as SQuAD (Non-
Adv-Paraphrased) and SQuAD (Adv-Paraphrased) respectively. The first test set consists of 1,062
questions and the second test set consists of 56 questions.
NLI DatasetHere LCQMC2 [Liu et al. 2018a] is used as the training set for the NLI module. LCQMC
is a dataset that focuses on the intent matching of two sentences. Thus it is suitable to be used to
train our NLI module. Totally, this dataset contains 260,068 question pairs with manual annotations.
And it is divided into three parts: a training set that contains 238,766 question pairs, a development
set that contains 8,802 question pairs, and a test set that contains 12,500 question pairs.
Multi-language Learning Setting In the multi-language learning, we use SQuAD 1.0 as an
auxiliary MRC dataset. SQuAD 1.0 is a widely used large scale English MRC benchmark dataset.
Here we select it mainly due to the following two reasons. First, both SQuAD 1.0 and DuReader
(robust) belong to the single-passage MRC dataset3. Second, the average lengths of passages in both
datasets are close. These two characteristic of SQuAD 1.0 allow us to concentrate on the robustness
issues other than some data preprocessing work. Besides, there are more than 100,000 questions in
SQuAD 1.0, which will make the distributions of the training set and the test set different greatly.
Thus it helps to provide an ideal platform to evaluate the generalization of an MRC model.
Other Settings A Chinese RoBERTa [Cui et al. 2019] is used as the required shared encoder module.
In subsequent sections, for all the mentioned language models, we use their large versions. The
ensemble model is obtained by averaging 4 single models’ prediction probabilities. Extract match
(EM) and F1 are used as evaluation metrics. During training, AdamW [Kingma and Ba 2015] is used

2http://icrc.hitsz.edu.cn/info/1037/1146.htm
3There is a kind of multi-passage (also called multi-document) MRC datasets that provides multiple passages (or documents)
for each question, like DuReader, MS MARCO, TriviaQA (web) [Joshi et al. 2017], etc.
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Table 1. Main Results on DuReader (robust).

Test1
Model F1 EM
BERT (zh) [Devlin et al. 2018] 70.74 54.45
XLNet (zh) [Yang et al. 2019] 68.79 53.70
RoBERTa (zh) [Cui et al. 2019] 73.76 56.75
Our Model (Single) 80.39 66.55
Our Model (Ensemble) 82.70 68.50

Test2
Our Model (Ensemble) 79.45 64.76

Table 2. Ablation Experiments on Test1 of DuReader (robust). “-Memory-Guided Multi-head Attention" means
replacing it with a common multi-head attention method as used in Transformer’s decoder. “zh” denotes the
corresponding model is a Chinese version.

Model F1 EM
Our Model (Single) 80.39 66.55
- NLI module 76.26 60.6
- Multi-language learning 77.47 62.8
- Memory-Guided Multi-head Attention 78.65 64.5

to train our model and word embeddings are not updated. Based on the results on development
sets, the learning rate, batch size, and training epoch are set to 0.001, 16, and 3 respectively.

4.2 Experiments on DuReader (robust)
Main Results The main results on DuReader (robust) are shown in Table 1. On Test1, we can see
that our model achieves much better results than all the compared strong baselines. Especially, our
model achieves much better results than RoBERTa which has achieved much better results than
many existing Chinese pre-trained models (like BERT and ERNIE [Sun et al. 2019a]) on various
natural language processing tasks including several Chinese MRC tasks [Cui et al. 2019]. These
results show that our model is very effective and it can better address the robustness issues.

In fact, we participated in the MRC Competition of LIC-2020. Finally, our model ranked NO.2 on
the test set leader board of Test1. On Test2, our model achieved very competitive results again: it
ranked No.3 on this full DuReader (robust) test set leader board4.

Note that there are no detailed comparison results on Test2. This is because the final competition
results of LIC-2020 were decided by the results on Test2. And LIC-2020 took a closed way to evaluate
an MRC model’s performance: researchers must submit their results within a specified deadline,
and there was a submission limit per system per day. Thus, researchers usually tried to find the best
model based on the results on Test1, and then tried to obtain the best results on Test2 by tuning
the selected model. In other words, there was almost no chance for researchers to compare the
performance of different models on Test2.

Now, the competition of LIC-2020 was closed, thus we could not make more detailed comparisons
with the latest state-of-the-art MRC models. And we leave such comparisons in subsequent sections.

4Here we could not compare our model with the top 2 models, because we could not find any papers about their model
details either in conferences, journals, or on arXiv.
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Single
Task Model

Multi
Task Model

S1:四月份suv销量(April suv sales)
S2:四月份suv销量统计(Suv sales statistics in April)
Label:SAME

Multi-Task and Multi-Language Learning
NLI Data MRC Data MRC Data (Multi lang)

For Q2:100.059万辆 (1.005 million)

For Q1:16.1862万辆 (161.6862 million)

Answer for both questions:16.1862万辆(161.6862 million)

Passage: 4月长安汽车产销量双双下降,其中4月产量为21.4262万辆,同比下滑15.25%;4月销售量为16.1862万辆,同比下滑27.61%。和3月销量

相比,长安汽车4月销量环比下降了49.71%。今年1~4月,长安汽车累计销量达到100.059万辆,和去年同期相比下降了5.79%。
In April, Changan Automobile's production and sales both declined. ... April's sales were 161.6862 million units, a year-on-year decline of 
27.61%. ... From January to April this year, the cumulative sales volume of Changan Automobile reached 1.005 million...

Q1:2017年4月长安汽车销量 (Changan Automobile Sales 
Volume in April 2017)

Q2:2017年4月长安汽车累计销量 (Cumulative sales of 
Changan Automobile in April 2017)

For Q2:16.1862万辆 (161.6862 million)

For Q1:16.1862万辆 (161.6862 million)

Fig. 5. A Case Study (The words with the same color have the same meaning. ).

Ablation Results To demonstrate the contributions of different modules in our model, we conduct
ablation experiments on Test1 and the results are shown in Table 2.
From these results we can draw following conclusions. First, each component of our model is

helpful for improving the performance. Second, NLI plays more roles than the other two modules,
which indicates that the key of developing a robust MRC model is to precisely understand the
semantic meanings of input questions. Third, introducing a completely different language’s MRC
training set is helpful for improving the robustness of an MRCmodel. Fourth, the proposedmemory-
guided multi-head attention is effective for addressing the robustness issues and it performs better
than the traditional multi-head attention method.
Case Study Fig. 5 illustrates a case study of our model. In this example, the semantic meanings of
two questions (Q1 is the source question and Q2 is the paraphrased question) are the same. We can
see that if we do not use the NLI module, the model (“Single Task Model” in Fig. 5) outputs a wrong
answer for the paraphrased question (Q2). In contrast, the full model precisely distinguishes the
semantic meanings of these two questions and outputs correct answers for both of them. These
results further confirm the effectiveness of the proposed model for addressing the robustness issues.

4.3 Experiments on SQuAD-related Datasets
On SQuAD (Non-Adv-Paraphrased) and SQuAD (Adv-Paraphrased), we evaluate the robustness
of our model based on following two kinds of extreme evaluations: (i) testing our model that is
designed for DuReader (robust) on these two English test sets directly; and (ii) comparing an English
version of our model with the models that are retrained by a data augmentation based method.

Obviously, both kinds of evaluations are significant unfair to our model. For the first kind of
evaluation, although there is a multi-language learning mechanism, most of the modules in our
model, including the shared encoder module and the NLI module, are trained on Chinese datasets.
For the second kind of evaluation, our model would not use any additional training data while
some compared baselines would be retrained by the data augmentation based method. However, we
think both kinds of evaluations are very meaningful: the first kind of evaluation provides an ideal
scenario to evaluate the generality ability of an MRC model because the distributions of training
sets and test sets are completely different; and the second kind of evaluation provides an ideal
scenario to evaluate the true potentiality of an MRC model for addressing the robustness issues
because the data augmentation based methods are not always available, especially in some cases
where constructing the augmented data is time-consuming and high-cost.

In subsequent experiments, we use the single version of our model for evaluations, and all the
models marked by † denote their corresponding results are directly copied from [Gan and Ng 2019].
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Table 3. Extreme Evaluations 1 (a): on SQuAD (Non-Adv-Paraphrased). S-Questions and P-Questions refer
to the source questions from SQuAD’s development set and their corresponding paraphrased questions
respectively.

Model
EM F1

S-Questions P-Questions S-Questions P-Questions
BiDAF† [Seo et al. 2016] 67.8 63.84 76.85 73.51
DrQA† [Chen et al. 2017] 67.33 65.25 76.25 74.25
BERT† [Devlin et al. 2018] 83.62 79.85 90.78 87.63
Our Model 77.91 76.90 87.38 85.87

Table 4. Extreme Evaluations 1 (b): on SQuAD (Adv-Paraphrased). S-Questions and A-Questions refer to the
source questions from SQuAD’s development set and their corresponding adversarial paraphrased questions
respectively.

Model
EM F1

S-Questions A-Questions S-Questions A-Questions
BiDAF† [Seo et al. 2016] 75 30.36 81.55 38.3
DrQA† [Chen et al. 2017] 71.43 39.29 81.02 48.94
BERT† [Devlin et al. 2018] 82.14 57.14 89.31 63.18
Our Model 77.36 56.79 85.74 62.22

Extreme Evaluation 1. The results of the first kind of extreme evaluation are shown in Table 3
and 4. We can see that on both test sets, our model achieves very competitive results. First, when
compared with the models that are fully trained under the common settings, our model achieves
significant better results than DrQA and BiDAF. Our model also achieves close results to the well
trained BERT on the robust parts (denoted as P-Questions and A-Questions in Table 3 and 4) of the
two datasets. Second, the source questions (denoted as S-Questions in Table 3 and 4) in SQuAD
(Non-Adv-Paraphrased) and SQuAD (Adv-Paraphrased) form two common MRC datasets, and our
model performs much well on them. These results indicate that our model is effective on both the
robustness datasets and the common datasets even under an extreme and unfair evaluation.

It should be noted that [Hsu et al. 2019] leverage the pre-trained multilingual BERT (multi-BERT)
in cross-lingual zero-shot reading comprehension. That is, multi-BERT is fine-tuned on data of a
language, but is tested on data of another language. Obviously, this zero-shot setting is similar to
the setting of our first kind of extreme evaluation. But here we do not take multi-BERT as a baseline.
This is mainly because we could not provide a fair platform for comparisons: if we fine-tune
multi-BERT on DuReader (robust) but test it on the mentioned SQuAD-related datasets, it would
be unfair for multi-BERT because our model uses the training set of SQuAD in the multi-language
learning while multi-BERT not. This is also the reason why we do not compare our model with
other state-of-the-art MRC models under this kind of extreme evaluation.
Extreme Evaluation 2. Based on the evaluation results on SQuAD (Non-Adv-Paraphrased) and
SQuAD (Adv-Paraphrased), [Gan and Ng 2019] argue that the original training dataset does not
contain sufficiently diverse phrased questions, which leads to the models not learning to respond
correctly to various ways of asking the same question. They further argue that the capabilities
of models for addressing the robustness issues can be improved by a data augmentation based
method. So they use the similar methods as used when creating the mentioned two test sets to
generate two additional training sets: the first one contains 25,000 non-adversarial paraphrased

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 1, No. 1, Article 1. Publication date: January 2022.



An Understanding-Oriented Robust Machine Reading Comprehension Model 1:17

Table 5. Extreme Evaluation 2 (a): performance of different models before and after re-training on SQuAD
(Non-Adv-Paraphrased) (the left part) and on SQuAD (Adv-Paraphrased) (the right part).

Model
EM F1 EM F1

Before After Before After Before After Before After

BERT† [Devlin et al. 2018] 79.85 80.89 87.63 88.62 57.14 69.64 63.18 73.85
DrQA† [Chen et al. 2017] 65.25 67.33 74.25 75 39.29 41.07 48.94 49.86
BiDAF† [Seo et al. 2016] 63.84 66.2 73.51 75.94 30.36 39.24 38.3 47.49
ALBERT-large [Lan et al. 2020] - 83.24 - 89.85 - 69.64 - 74.68
Retro-Reader [Zhang et al. 2021] - 82.20 - 89.40 - 69.64 - 75.04
Our Model 76.90 82.96 85.87 89.78 56.79 76.79 62.22 80.92

Table 6. Extreme Evaluation 2 (b): performance of different models on SQuAD (dev) before and after re-
training. For the baselines marked by †, After1 and After2 denote the results re-trained with additional
Non-Adv-Additional Data and Adv-Additional Data respectively. For other baselines and our model, we use
After1 to denote their English versions.

Model
EM F1

Before After1 After2 Before After1 After2
BERT† [Devlin et al. 2018] 84.02 83.76 83.33 91 90.88 90.49
DrQA† [Chen et al. 2017] 69.04 68.74 67.93 78.38 77.86 77.45
BiDAF† [Seo et al. 2016] 67.67 67.49 66.23 77.46 77.1 76.19
ALBERT-large [Lan et al. 2020] - 84.56 - - 91.63 -
Retro-Reader [Zhang et al. 2021] - 84.09 - - 91.09 -
Our Model 78.42 85.50 - 87.35 92.46 -

questions, and the second one contains 25,000 adversarial paraphrased questions. For simplicity, we
denote these two additional training sets as Non-Adv-Additional Data and Adv-Additional Data, and
denote the original training set and development set of SQuAD as SQuAD (training) and SQuAD
(dev). With these additional data, [Gan and Ng 2019] report following four kinds of comparison
results to demonstrate the effectiveness of the data augmentation method. (i) On SQuAD (Non-
Adv-Paraphrased), the results of models between trained with SQuAD (training) and “SQuAD
(training) + Non-Adv-Additional Data”; (ii) On SQuAD (Adv-Paraphrased), the results of models
between trained with SQuAD (training) and “SQuAD (training) + Adv-Additional Data”; (iii) On
SQuAD (dev), the results of models between trained with SQuAD (training) and “SQuAD (training)
+ Non-Adv-Additional Data”; (iv) On SQuAD (dev), the results of models between trained with
SQuAD (training) and “SQuAD (training) + Adv-Additional Data”. However, [Gan and Ng 2019] do
not release these two additional training sets. So we could not compare the performance of our
model trained with these additional training sets with their reported results directly.
Instead, we make another kind of extreme evaluation by comparing the English version of our

model with the models retrained by using the mentioned two additional training sets. To this end,
we make two modifications on our model. First, we use the Quora Question-pair dataset5 as the
trainign set for the NLI module. Second, we change RoBERTa to its English version. Besides, we
also take several state-of-the-art models as baselines. In experiments, to make a fair comparison,

5https://www.kaggle.com/c/quora-question-pairs/data?select=train.csv.zip
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Table 7. Results of multi-BERT. P-Questions and A-Questions refer to the paraphrased questions in SQuAD
(Non-Adv-Paraphrased) and adversarial questions in SQuAD (Adv-Paraphrased) respectively.

Model
P-Questions A-Questions SQuAD (dev)

EM F1 EM F1 EM F1

multi-BERT 76.65 83.94 58.93 66.26 81.39 88.57
Our Model 82.96 89.78 76.79 80.92 85.50 92.46

we replace the version of AlBERT used in Retro-Reader [Zhang et al. 2021] from xxlarge to large
since as mentioned previously that for all the language models, we use their large versions.

Finally, the comparison results are shown in Table 5 and 6. We can see that the English version of
our model achieves very competitive results again on all these three test sets. First, when compared
with the models that are retrained by the data augmentation based method, we can see that on both
SQuAD (Non-Adv-Paraphrased) and SQuAD (Adv-Paraphrased), the performance of our model is
far better than the models like DrQA or BiDAF. And the results of our model are also better than the
data augmentation retrained BERT. Second, when compared with the models that could not use the
additional training data either, we can see that on both SQuAD (Non-Adv-Paraphrased) and SQuAD
(Adv-Paraphrased), our model achieves much competitive results: its results are the best or very
close to the best. Third, [Gan and Ng 2019] have pointed out that although the data augmentation
based method is usually helpful for models achieve better results on the paraphrased test sets, it
always causes a negligible drop to the performance of models on the original development set.
However, from the results in Table 6 we can see that on SQuAD (dev), a common MRC dataset,
our model achieves better results than all the compared baselines. These results demonstrate an
important merit of our model that although it is designed for addressing the robustness issues,
there is almost no any negative affects to the performance when it is used to handle common MRC
datasets. In a word, our model is a very strong and is competent for diverse application scenarios.
Furthermore, as mentioned above that [Hsu et al. 2019] leverage the pre-trained multi-BERT

in cross-lingual zero-shot reading comprehension, which has a similar scenario settings to the
robustness issues here because both of them aim to evaluate the performance of models when the
distributions of training sets and testing sets are different. Thus there would be a concern that
whether multi-BERT would also perform well on addressing the robustness issues in MRC. To
answer this concern, we further conduct experiments to demonstrate the performance of multi-
BERT6 on these SQuAD-related datasets. Specifically, we fine-tunemulti-BERT on SQuAD (training),
and test it on the mentioned test sets. Here we think it is fair to compare multi-BERT with our
model because both models use SQuAD (training) and some multi-lingual resources. Finally, the
results are shown in Table 7. We can see that our model achieves far better results than multi-BERT
on all datasets. These results indicate that a straightforward multilingual language model based
method could not address the robustness issues in MRC well.

5 CONCLUSIONS
In this study, we propose an understanding-oriented MRC model that can well address the issues of
over sensitivity, over stability, and generalization. We conduct extensive experiments to evaluate it
on three benchmark MRC robustness datasets. Experimental results show that it achieves consistent
better results not only on all of these robustness MRC datasets, but also on some common MRC
datasets. Even on some extreme and unfair evaluations, it still achieves much better results.
6https://github.com/google-research/bert
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The main novelties of our model is summarized as follows. First, to the best of our knowledge, this
is the first work that systematically addresses all three kinds of robustness issues simultaneously
from the model level. Second, we propose a memory-guided multi-head attention method that can
mine better interactions between questions and passages. Third, we propose a multi-task and
multi-language learning based method to integrate the NLI task and the multi-language MRC task
together, which is proven to be much effective for addressing the robustness issues in MRC.
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