
Policies for using Replica Groups and their effectiveness
over the Internet

G. Morgan and P. D. Ezilchelvan
Department of Computing Science

University of Newcastle
United Kingdom
44 191 222 7972

{G raham. Morgan, Paul. Ezhilchelvan} @ ncl.ac, u k

A B S T R A C T
Replication is known to offer high availability in the presence of
failures. This paper considers the case of a client making
invocations on a group of replicated servers. It identifies attributes
that typically characterise group invocation and replica
management, and the options generally available for each
attribute. A combination of options on these attributes constitutes
a policy. The paper proposes an implementation framework
which, by its group-oriented nature, simplifies the task of
supporting these policies. It then considers a client (in UCL,
London) making invocations on a replica group (in Newcastle,
UK) over the Internet. It evaluates the response latencies for four
policies that seem appropriate for this set-up. The evaluation takes
into account the timing of server crashes with respect to client
invocations; both real and virtual failures are considered, the latter
being not uncommon in the Internet environment. The
experiments are carded out using a CORBA compliant system
called NewTop.

K e y w o r d s
Server crashes, group invocation, replica management, total order,
policy attributes, causal precedence, latency, CORBA.

1. I N T R O D U C T I O N
Replication of entities (e.g., objects, processes) is the most
commonly used approach for maintaining high availability of data
despite failures. Managing replicas in a networked environment,
particularly in the asynchronous environment where
communication delays cannot be bounded with certainty, is a
difficult task. The group paradigm (primarily concerned with
application-level fault-tolerance as opposed to IP-multicast) has
proven to be a useful abstraction that simplifies this task [2].
Informally, a group is a collection of distributed entities in which
a member entity communicates with other members by
multicasting to the full membership of the group. A replicated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
NGC "00 11/00 Palo Alto, CA, USA
© 2000 ACM ISBN 1-58113-312.X/00 /0011 . . .$5.00

group refers to a group in which each member manages a copy of
the same data. Building applications based on groups in general
and on replicated groups in particular is considerably simplified if
the members of a group can multicast reliably and have a mutually
consistent view of the order in which events (such as invocations,
membership changes) have taken place. By reliable multicast we
mean that either all the functioning members deliver a given
multicast or none of them does. An additional property required
for replicated groups is total order: all the functioning members
deliver a set of multicasts in the same order that preserves causal
precedence. Total ordering is needed to ensure that the replica
states remain mutually consistent, and that the state changes are
consistent with causal precedence. Design and development of
middleware systems that provide group services such as the
membership service, reliable multicasts with specific ordering
properties, has been an active area of research [1-6]. As
distributed applications are being increasingly designed and
implemented using CORBA middleware services, recent research
efforts have been aimed at enriching CORBA with an object
group service [7-14, 21].

Server Replica •

Figure 1. A client invocation of a server group

Figure 1 depicts the most common mode of invocation on a
replicated group: a single client issues a request to a group of
three server replicas, and waits for a response. If the client and
server replicas are all connected by high-speed, low latency
network, then an efficient way of invoking the replicas would be
for the client to multicast to all the replicas. On the other hand,
existing literature [21] indicates that if the client is separated from
servers by a high latency communication path (e.g., WAN,
Internet), then this method would be unattractive. So, an
alternative method that would help a client avoid unicasting to
each replica would be desirable. Such a method could be for the
client to send its request to only one replica (using a single
unicast), which then forwards the request to all other replicas on
behalf of the client. Depending mainly on the way in which a

119

http://crossmark.crossref.org/dialog/?doi=10.1145%2F354644.354661&domain=pdf&date_stamp=2000-11-01

client request is disseminated into the server group, the server
replicas may wish to process the request in ways that minimise the
response latency. Replicated processing is typically done in two
different ways: in passive replication, where a single server, the
primary, performs processing, the other servers act as backups
providing tolerance to primary crash; in active replication, all
servers process a given request in parallel, a server crash during
processing does not significantly increase the response latency.
When the client directs its request to only one server, making that
server act as the primary (i.e., opting for passive replication)
appears to offer small response times (latencies) if the primary
does not crash until it completes processing the request [21].

We identify in this paper four different aspects or attributes in the
invocation and management of a replicated object group, and
options commonly available for each attribute. A combination of
choices for each attribute will constitute a policy. We observe
some policies (i.e., some choice combinations) to be practically
not sensible, and some others obviously inefficient in certain
environments. The experiments we carried out in [21] provide
some useful insight into the effectiveness of these policies in
terms of service response latencies. These experiments were
carried out in a failure-free environment, and lead us to conclude
that some of the policies that did well for a client that was in the
same LAN as servers include active replication and could
therefore be expected to do equally well masking any server crash
that might occur during processing; however, the policy that did
extremely well for a long-distance Internet client employed
passive replication and dissemination of client request into the
server group through a single server. These choices embody single
points of failures, and when failures do occur the latency will
undoubtedly increase. An objective of this paper is to evaluate,
through experiments, how various policies perform for an Internet
client in a failure-prone environment. The results and analysis
presented here would enable an application developer to choose a
policy that is most appropriate to the expected failure probability
of the application environment.

We achieve the stated objective in a systematic and
comprehensive manner. We first provide a group-oriented
implementation framework that keeps track of causal precedence
that might exist between distinct clients' invocations on the server
group. A support for this tracking considerably simplifies the task
of building applications based on replicated groups, and groups in
general. Regarding failures, we assume them to be crash, i.e., a
replica fails by stopping to function. We evaluate the impact of
failures by considering the timing of their occurrences. Consider
that a server replica has already crashed when a client unicasts its
request. Upon receiving no acknowledgement, the client will
detect the server crash and unicast its response to another server
replica. Thus the failure detection delay is not high. On the other
hand, if the first server crashes after acknowledging the request
and while processing the request, the client can detect the failure
only after the expiry of the timeout it has set to receive the reply.
This increases the failure detection delay and the overall response
latency. We consider both real and virtual failures, the latter are
said to occur when the client incorrectly perceives a server replica
to have crashed only because the server's response got unduly
delayed due to transient partitions or network congestions that are
not uncommon over WAN and Internet. We note here that many
papers in the literature which report on the performance of fault-
tolerant group services rarely consider failures, very rarely virtual

failures; in this regard, the results in our paper represent an
advancement. The experiments were conducted using a long-
distance client in Univ. College London while the server replica
group consisted of three servers on the same LAN in Newcastle,
United Kingdom. The replica management and group invocation
policies were supported by a CORBA compliant object group
service called NewTop, which meets all requirements identified in
our implementation framework.

The paper is organised as follows. The next section lists the
attributes of group invocation and replica management, and the
options generally available for each attribute. Section 3 presents
and motivates the implementation framework that supports
various policies and helps simplify the building of group-based
applications. In the context of this framework, the impact of the
timing of failures (with respect to group invocations) and virtual
failures on the response latencies are discussed. Section 4
provides an overview of the NewTop system, with emphasis on
aspects of its CORBA-compliant implementation that has bearings
on its performance. Section 5 presents and analyses the
performance figures. Conclusions are in section 6.

2. GROUP INVOCATION AND
MANAGEMENT POLICIES
2.1 Invocation Policy Attributes
A client's invocation of an object group is characterised by two
attributes: request dissemination (D) and reply collection (C).
These attributes refer to the way in which a client sends its request
to, and collects the replies from the replicated servers,
respectively. A client can disseminate its request to the server
group, by sending it directly to only one of the server replicas
called the request manager (D1), or directly to all server replicas
of the group (D2). In dealing with the replies generated by the
server replicas, a client can exercise one of the following options:
wait for no reply (CO), wait for one reply (C1), wait for all
replicas' replies (C2), and wait for replies from a majority (C3).
Any combination of the options for D and C can be supported for
a crash fault model, as shown in figure 2 which assumes D1 for
dissemination and a total order protocol within the server group.

i. Receiving client request - A request is sent to the
request manager of the group (figure 2(i)).

ii. Distributing client request - The request manager
multicasts the request within the server group
(figure 2(ii)). This is achieved by the request
manager acting as a client and issuing the incoming
invocation as a new invocation (of the same type,
e.g., wait for first, wait for all).

iii. Receiving server replies - Each member of the
server group multicasts replies within the group
(figure 2(iii)). (Here we assume that all server
replicas process the request, as in active
replication; different types of commonly used
replicated processing are to be discussed shortly).

iv. Returning server replies to client - Server replies -
one, majority or all - are gathered by the request
manager and returned to the client (figure 2(iv)),
depending on whether the client has chosen C1,
C2, or C3 respectively. No reply is sent if CO has
been chosen.

120

l e t
\ , J

(i) Receiving client (ii) Distributing
request cfient request

o /r o ~ ' ~ - i \

, \ , , p j

(iii) Receiving (iv) Returning server
server replies replies to client

Figure 2. Client invocation through request manager

2.2 Replica Management Policy Attributes
Two key issues in replica management are: replication type (R)
and protocol used for total ordering of concurrent requests from
multiple clients (O). In passive replication (R1), only one replica,
called the primary, processes the client request; for every received
request, it multicasts to other replicas (i) the request itself (if
necessary) before processing it, and (ii) the state changes effected
and any response produced due to processing of the request. If
ever the primary crashes, one of the surviving replicas becomes
the new primary and continues with the processing of client
requests. A group of (f+l) replicas can thus provide services
despite at most f replica crashes. Passive replication cannot
therefore meaningfully support result collection options of C2 and
C3. In active replication (R2) all replicas process the request in
parallel, and all options on C can be supported.

There are basically two ways of achieving total order on requests.
In the asymmetric version (O1), one of the members of the replica
group assumes the responsibility for the ordering of requests
directed at the group. Such a member is commonly termed the
sequencer. A member that wishes to multicast a message m will
only unicast m to the sequencer which in turn multicasts m with
relevant ordering information appended. In the symmetric version
(02), all members use the same deterministic algorithm for
ordering: this requires that for a multicast to be ordered, every
member other than the multicast initiator must multicast either an
application message or a protocol specific message. (Figure 3
provides an example). The principles of symmetric ordering were
used in the seminal paper [20] for solving the mutual exclusion
problem in the absence of synchronised global time. It has been
shown that symmetric ordering tends to be more attractive in
situations where all the members are lively, and multicasting
regularly, so the need for making protocol specific multicasts just
for ordering is eliminated, whereas asymmetric protocols are
better in other situations [15].

\ . . j
(i) Receiving client (ii) Ordering client (iii) Ordering client
request request request

(iv) Ordering Client (v) Distributing reply (vi) Returning server
Request and object states

replies to client

Figure 3. Passive Replication with Total Ordering

2.3 Policies and their Cost-Effectiveness
A combination of choices made for attributes D, C, R and O will
constitute a policy for invocation and management of a server
group. Figure 3 depicts the exchange of messages between the
client and server replicas, and also between server replicas when
the policy is {D2, C1, R1, 02} where D2 stands for disseminate
to all, C1 for collect (any) one reply, R1 passive replication, and
02 symmetric ordering. The client multicasts its request to all
replicas (figure 3(i)). For this request to be symmetrically ordered
in the server group, each replica must multicast an ordering
message within the group. This full message exchange (which
actually takes place concurrently) is shown in figures 3(ii) - 3(iv).
Then, the primary (top server replica) alone processes the ordered
request and sends the reply and state updates to other replicas
(figure 3(v)); it then sends the reply to the client.

We already noted that it does not make sense to combine passive
replication with C2 or C3. Thus, ignoring the exceptional cases of
combining R1 with C2 or C3, there are 24 different policies for
getting a service from a replica group. Of course some of these
policies may be inefficient in terms of latency and message cost.
For example, using asymmetric ordering (i.e., using O1 instead of
02) in figure 3 would have been more efficient as it would have
avoided the need for full message exchange and therefore the
multicasts by non-primary replicas (figures 3(iii) and 3(iv)). Thus,
in the absence of failures, it brings performance benefits to
combine R1 with O1, with the same replica acting as both the
primary and the sequencer. When primary fails, R2 can respond
faster than R1 if C2 is not the option. This is because C2 requires
that the client receive replies from all servers that were in the
group when the invocation was made; an intervening server crash
needs to be detected and the client be informed of the reduction in
membership when replies are being sent back. This need to detect
and announce a server crash undermines the failure-masking
potentials of R2. Because of its requirement on full message
exchange for ordering, 02 gets slowed down by the crash of any
member; whereas, O1 slows down only if the sequencer crashes.

Not admitting failures, we conducted in our earlier work [21]
experiments for both Internet and LAN clients. For an Internet
client {D1, C1, R1, O1 } did extremely well in terms of response
latency (nearly as good as an unreplicated server), when the same
server played the role of the request manager (in D1), the primary
(in R1), and the sequencer (in O1). For LAN clients, both {D1,
C1, R1, Ol } and {D2, C1, R2, O1 } did equally well. Over LAN,

121

02 did equally well as O1 when replicas are kept lively, e.g.,
when a large number of clients are simultaneously invoking the
server group. From these results, we make the following
conclusions:

i. The policy { D2, C1, R2, O1 } that performed well for a
LAN client in a failure-free environment, can be
expected to do equally well even in the presence of
failures because of the failure masking potentials of R2.
However, the same cannot be claimed for an Internet
client since the request manager that was also the
primary and the sequencer in {D1, C1, R1, O1},
constitutes a single point of failure; if it fails during
processing or ordering of the received request, the
surviving replicas need to detect this failure and elect a
new request manager before they can respond; this
increases the overall response latency. So, the most
responsive fault-tolerant policy (if one exists at all) for
an Internet client is yet unknown.

ii. It is the client that should decide on the D attribute of a
policy, judging by its proximity to the server group;
and,

iii. It is the servers who should decide on the O attribute of
a policy as they alone can know how lively they are at
any given time.

Note that the liveliness of servers may change with time; so the
servers should switch from O1 to 02, and vice versa, provided
this switching can be done at no extra cost. This is possible if the
underlying object group service supports overlapping groups,
which we argue in subsection 3.2 to be an essential requirement to
simplify the building of group based applications. We believe that
the decision on R should be a subject of negotiation between the
client and servers. If a client insists on C2 or C3, the decision has
to be on R2. On the other hand, if a new client requests on R1
while servers are already doing R2 for existing clients, the new
request for R1 may have to be disregarded as it is simple and
efficient for servers to process all requests by one form of
replication. To illustrate this point, consider a server group (sl, s2,
s3} having to process requests ri, r2, .. rp, .. rn, n >p, in that order.
Say, processing is by R2 except rp needs to be processed by R1
with sl acting as the primary. After processing rp and before
processing rp+l, sl must halt processing, checkpoint its state, and
multicast the checkpoint. The other replicas, after processing rp_~,
must update their states using s~'s checkpoint before continuing
with rp+l.

3. A GROUP-ORIENTED
IMPLEMENTATION FRAMEWORK
3.1 Assumptions
It is left to the server group to nominate the request manager (if
D1 is opted for), the primary (if R1 is opted for), and the
sequencer (for O1). We make two assumptions for reasons of
better performance: within the server group, the same member is
designated to perform the roles of request manager, primary, and
sequencer when required; also, the same member acts as the
request manager for different clients that opt for D1.

Note that, in theory, different members can take up the role of the
request manager, the primary, and the sequencer. But when the
same member plays all these roles, message cost is reduced.

Similarly, different members can act as the request manager for
different clients. For example, if server replicas are geographically
apart, the replica that is closer to a client can act as the request
manager for that client. In this paper, we regard the server replicas
to be on the same LAN; therefore, assigning different managers
for different clients does not appear to bring any obvious
advantages.

3.2 Group Invocations as Group
Communication
Figure 4(i) depicts invocation of a server group gx by clients A
and B. B makes an invocation ml of type D1 and CO. It then
communicates (m2) with A. After processing m2, A invokes gx by
sending m3 to the request manager. Now suppose that A 's
message m3 reaches the request manager before B's ml . If
messages are processed in the received order, causal relation [20]
is violated, as ml causally precedes m3 and must therefore be
processed by gx before m3. It is now left to the application
developer to ensure that the processing of requests respects the
causal precedence. The developer is relieved of this burden when
invocations are made within groups as shown in figure 4(ii) and if
the group management service permits an entity to be a member of
more than one group and satisfies the following message delivery
requirements.

i. multi-group causal precedence: say s is a member of
groups gx and gy in which lax and my are multicast
respectively. If mx causally precedes my, then s delivers
mx before my.

ii. multi-group identical order: say s and s' are members of
groups gx and gy in which mx and my are multicast
respecively, s delivers mx before my if and only if s'
delivers mx before my.

Figure 4(ii) depicts the case when invocations are made as group
communications. B issues ml in gy that is made up of B and the
request manager of the server group gx. Note that gx and gy
overlap as the request manager is a member of both the groups. B
then sends m2 in gz which consists of clients A and B. After
processing of rn2, A issues m3 in gw which overlaps with gx due
to the common membership of the request manager. Property (a)
ensures that the request manager of gx delivers ml first and then
m3.

o m2

(i) ~ . . . ~

~B ~ (ii)

(iii)
Figure 4. (i) Direct Invocations. (ii) Invocations are group

communication. (iii) Simultaneous support for different
ordering protocols.

1 2 2

The Isis system was first to introduce overlapping groups [2]; the
AQuA system [12] also uses overlapping groups in a variety of
ways for replica management. The group communication
protocols used in NewTop have been designed to cope with
overlapping groups in an efficient manner [5]; in particular, they
allow a multi-group member to simultaneously execute symmetric
protocol in one group and the asymmetric protocol in the same or
in another group. This flexibility is exploited to support the
simultaneous executions of both the ordering protocols by server
replicas. In figure 4(iii), clients A and B multicast their
invocations ml and m2 in groups gxl and gx2, repectively.
Suppose that A has preferred the asymmetric total ordering and B
the symmetric ordering. The request manager delivers ml using
NewTop in gx 1. (It should not deliver ml simply upon reception;
otherwise causal relation may not be preserved in cases shown in
fig 4(i).) Having delivered ml, the request manager, acting as the
sequencer, would initiate the asymmetric ordering of ml in gx. At
the same time, all replicas will be executing the symmetric
protocol for ordering m2 multicast in gx2. By property (b) all
replicas are guaranteed to order ml and m2 identically. To be able
to simultaneously execute both protocols in the same group, say
gx, two logical groups, gxa and gxs, are formed in a logical sense
out of the same physical gx, to execute asymmetric protocol in gxa
and symmetric protocol in g,~. By property (b) all members of gx,
present in both g,~ and g,~, are guaranteed to identically order all
messages delivered in gx.

3 ,3 C l i e n t / S e r v e r G r o u p s a n d t h e E f f e c t s o f

F a i l u r e s
A 'down-side' to requiring that client invocations be done as
group communication is that a client should first form a group
with the request manager (in case of D1) or with all servers (in
case of D2). This obviously incurs an overhead in the form of
messages exchanged to form the group which need not be done if
invocations were sent directly as shown in figure 4(i). We,
however, believe this overhead to be small if the client is to
negotiate with the server group on certain policy attributes, as the
information related to group formation can be piggybacked onto
these negotiation messages.

We call the group that contains a client and one or all servers the
client~server group. It is said to be one-inclusive, or simply one-
elusive, if it includes only one server (the request manager) as in
fig 5(i); it is said to be all-inclusive, or simply inclusive, if it
includes all server replicas (see fig 5(ii)).

Member •

..... "-'-i v - ' - \ Client/server

\ ~ . / Server ("~I
""-'-'/" group ~ .)

(i) (ii)

Figure 5. Client/server groups. (i) one-clusive and (ii) inclusive
groups.

In fig 5(i), a failure of the request manager will cause (a) the
surviving servers to deliver a view-change message indicating the
change in the membership of the server group, and (b) the binding
between the client and the request manager to be broken and the

one-elusive group be disbanded. The client has to form another
one-elusive group with the new request manager elected within
the (new) server group. Consider this scenario further. Assume
that the request manager fails as the servers are multicasting their
replies (during the stage depicted in figure 2(iii)). The server
group will be reformed with the request manager removed, and no
reply will be sent to the client. Client retries can be handled by the
new request manager without causing re-execution, provided
retries contain the same call number as the original call and
servers retain the data of the last reply message (enabling the
request manager to resend the reply). These are 'standard'
techniques used in any RPC implementation.

' " - : = " - I

\A\" • ii •
\ \ " o / J \ \ o / j \ . \ • /

\" / t \ ' ~,/ ~ ' - "

(i) (ii) (iii)
Receiving Returning New server and

client request server replies client/server
to client groups

Figure 6. Passive Replication and Failure Handling in
Inclusive groups.

In the inclusive group, server failures do not cause the client to
form any new group; the client only delivers a view-change
message indicating the change in the membership of the client-
server group. Let us revisit Figure 3 which depicts the case of the
client's policy: {D2, C1, R1, 02}. With the client now making its
invocation within the client/server group, only figures 3(0 and
3(vi) change which are shown in figures 60) and 6(ii)
respectively. The client's request (figure 6(i)) and the primary's
reply (figure 6(ii)) are multicast to the full membership of the
client/server group. Suppose that the primary crashes before
multicasting the reply. The new client/server group and the server
group formed are shown in fig 6(iii). When the group
communication service supports virtual synchrony [2], all
members that go on to form the new client/server group are
guaranteed to have delivered an identical set of messages in the
old client/server group view. Thus, the new primary will know
whether or not the client has delivered the reply sent by the old
primary prior to crash. So, the fact that the old primary crashed
before multicasting the reply, is detected and handled; further, the
primary crash increases the response time by the time it takes for
the surviving members of the client/server group to effect the
membership change in the virtually synchronous manner.

Recall that the request manager may constitute a single point of
failure in a one-clusive group, and the timing of its failure with
respect to the client's dissemination of its request is significant in
determining the response latency. Suppose that the request
manager crashes after the formation of the one-clusive group and
before the client multicasts its request in the group. We call this
scenario pre-send. When the client attempts to multicast its
request, the underlying communication service (if it is TCP/IP
connection as is the case with many ORBs) will inform the client
that the multicast is unsuccessful; thus, the failure detection
latency is small. On the other hand, consider the post-send failure
scenario: the request manager crashes after receiving the request
from the client and at some time before returning the reply to the
client (i.e. before stage (iv) in figure 2). The client can suspect the

123

:request manager' s crash only after the expiry of the timeout it had
set for receiving the reply; this may mean a large failure-detection
latency. Thus, a post-send failure may result in a large response
latency which could include the time taken to detect a failure and
to rebind, and the failure-free response latency if the request
:manager had been acting as the primary. The notion of pre- and
post-send failures also exist in the inclusive groups: crash of any
server before and after that server received the client multicast,
respectively. A pre-send or post-send failure in an inclusive group
leads to membership changes in both the client/server and server
groups (i.e. change from fig 6(ii) to 6(iii)) before the request is
sent or while the request is being processed.

3.3.1 Virtual Fa i lures
Three clients A, B and C form one-clusive groups with the server
group gx (see fig 7(i)). Suppose that A is a long-distance client
while B and C are in the same LAN as the server replicas, and that
the reply from the request manager to A gets delayed due to
network congestion over the Internet. A's timeout will expire
leaving A to conclude that the request manager has crashed. That
is, from A's point of view the request manager appears to have
crashed, we call this apparent failure a virtual failure. Having
decided that the manager has crashed, A will then try to form a
new inclusive group, say it succeeds in forming it with the third
server as the next request manager. Now, as seen in fig 7(ii),
different clients do not use the same request manager, which as
indicated in 3.1, degrades the performance. For perfomance
reasons, the third server is programmed to reject the client's
attempt to form the new client/server group with itself, if it sees
the original request manager not crashed; thus A is forced to re-
form the old client/server group which it disbanded by mistake.

. [• i 9
gx ~ _ \ ~ j / c A - - t - ~ c

(i) (ii)

Figure 7: Effect of Virtual Failures in One-clusive groups.

In inclusive groups, the effect of virtual failures depends on how
failure suspicions are acted upon, which can be done in one of
two ways: in stable suspicion model, a member trusts and acts on
another member's suspicion, even though it has not itself
suspected a failure. Systems such as Transis[1, 4], Isis[2], adopt
this model. In refutation model, a member keeps the received
suspicion in abeyance until it independently (with its own
timeout) assesses that it also observes the reported suspicion; if it
finds the received suspicion to be untrue, it refutes the reported
suspicion. A single refutal is enough to suppress a suspicion
groupwide, and thus false suspicions are in effect discarded and
prevented from causing unnecessary membership changes. Since
NewTop permits refutation, a long distance client's incorrect
suspicion (such as A's in the example above) will be refuted by
another server that does not share the same suspicion. So, virtual
failures do not lead to costly membership changes.

4. OVERVIEW OF THE NEWTOP OBJECT
GROUP SERVICE
The NewTop object group service, or NewTop service for short,
itself has been composed of a group communication subsystem
that handles membership and reliable multicasts and an invocation
subsystem. The architecture of the NewTop service is depicted in
figure 8. The function of the invocation layer is to support various
invocation and management policies idenitifed in section 2. The
figure shows how a request-reply interaction between a client and
a server group is handled (only a single server is shown). The
client application makes its request to the NewTop service;
internal to the service, the request is handled by the invocation
layer which then uses the group communication service to send
NewTop specific message to servers; the message then travels up
and down the protocol stack on the server side. The invocation
layer employs the chosen policy to implement request-reply
interactions.

Client Server
Issued I . App l i ca t ion I s s I . Application I I~uea

requests V "r replies replies ~(i[~ requests
NewTop [In.v°caf°n ~ [Itnvoeation Ser~ic.e]
Service I W 'l s I Deliverable Multicast I W ,P Deliverable

orou Com I rep.s I I
Outgoing S e r v i c e • [Incoming Outgoing , Service . Incoming

Figure 8. System architecture

The underlying group communication service has been designed
to be suitable for a wide variety of group based applications;
objects can simultaneously belong to many groups, group size
could be large, and objects could be geographically widely
separated. The service can provide causality preserving total order
delivery to members of a group, ensuring that total order delivery
is preserved even for multi-group objects. Both symmetric and
asymmetric total order protocols are supported, permitting a
member to use say symmetric version in one group and
asymmetric version in another group simultaneously [5].

The failure assumptions made by the NewTop service are as
follows. Processes/objects fail only by crashing, i.e., by stopping
to function. The communication environment is modelled as
asynchronous, where message transmission times cannot be
accurately estimated, and the underlying network may well get
partitioned, preventing functioning members from communicating
With each other. The actual protocols used in the NewTop service
will not be described here, as these details are not directly relevant
to this paper; the interested reader is referred to [5].

The group communication system provides clients (via the
invocation layer interface) with create, delete and leave group
operations and causal and total order multicasts. In addition, it
maintains the membership information (group view) and ensures
that this information is kept mutually consistent at each member.
This is achieved with the help of a failure suspector that initiates
membership agreement as soon as a member is suspected to have
failed. A member can obtain the current membership information
by invoking 'groupDetails' operation. View updates are atomic
with respect to message deliveries, as in virtually synchronous
communication [2]. Message delivery is atomic with two types of
ordering guarantees (causal and causality preserving total order)
and in the case of total order, two types of ordering techniques,
symmetric and asymmetric, are supported.

1 2 4

In a group communication system a member is often required to
stay lively within a group to avoid being suspected by other
members. This usually takes the form of a member periodically
sending "I am alive" or "NULL" messages during periods it has
no application level messages to send. In NewTop, after a member
has neglected to send a message for a period of time, the NewTop
time-silence mechanism will send a "I am alive" message. For
further details, see [13, 21].

4.1 Related Work
NewTop implements group communication services as CORBA
services 'from scratch'. In addition to being CORBA compliant,
the advantage here is that the services are directly available to
application builders so can be used for a variety of purposes. This
approach was first developed in the Object Group Service (OGS)
[7,8], and has been taken in the NewTop service. The NewTop
service offers a more comprehensive set of group management
facilities than OGS. In particular, OGS does not support
overlapping groups.

The service approach we have taken for building NewTop needs
to be contrasted with approaches taken elsewhere, as it has
bearings on the relative system performance. There are two other
ways of incorporating object groups in CORBA (see [7,8] for
details). The integration approach takes an existing group
communication system and replaces the transport service of the
ORB with the group service [9]. Although this is a very efficient
way of incorporating group functionality in an ORB, this
approach is not CORBA compliant, lacking in interoperability.

In the other approach, called the interceptor approach, messages
issued by an ORB are intercepted and mapped on to calls of a
group communication system. Well known examples of this
approach are the Eternal [10,11] and AQuA [12] systems; Eternal
uses the Totem group communication system [6], whereas AQuA
uses the Ensemble group communication system [3]. The need to
intercept calls makes these systems platform dependent. Both
Eternal and AQuA make use of group communication for
supporting object replication only (and not for other uses of group
communication, such as collaborative applications). They do so
by using the inclusive approach, and have been engineered for use
in high speed LAN environments, rather than over the Internet.
Consequently, these systems can efficiently support certain
policies, but cannot be flexible enough to support any given
policy that is deemed efficient in a given setup, say, policies
appropriate for an Internet client.

The NewTop service, being fully CORBA compliant, has to rely
only on the standard ORB message passing mechanisms. Since at
present ORBs only provide one to one communication,
multicasting has to be implemented as multiple unicasts - a thread
is created to handle each synchronous unicast. Using multiple
threads of execution obtains parallelism and prevents client
blocking. Such a measure to prevent blocking will not be required
had the ORB supported asynchronous invocation. A multicast is
more time consuming in NewTop than in Totem [6] or Transis
[1,4] which assume a broadcast network. NewTop can however be
adapted to exploit forthcoming enhancements to ORBs. As part of
the ongoing development of CORBA, the OMG have recently
adopted interceptors, messaging, and fanlt-tolerance
specifications. Availability of ORBs with interceptors will enable
the use of NewTop as a multicast transport service as
demonstrated by the Eternal system. Exploitation of the

messaging service will enable more efficient implementation of
multicasting than is possible now. In certain applications, our
object group service will need to be used in conjunction with
additional subsystems that provide specific functions; for
example, in order to support passive replication, some form of
state transfer facility would have to be implemented. We have
shown elsewhere how a subsystem for replication of transactional
objects (that itself uses the CORBA transaction service) can make
use of the object group service [16].

Although not a CORBA service, the system described in [17] is
worth mentioning. The paper describes a client access protocol for
invoking object replicas, without the need for the client to use
multicasts. We obtain the same functionality by making use of
one-clusive groups.

5. P E R F O R M A N C E EVALUATION
Using the NewTop service, we measure the response latencies for
various policies for an Internet client. As the load on the Internet
is not static, these measurements should not be treated as
'absolute' figures, but rather as an aid to compare the
effectiveness of different policies; for a fair comparison, all
experiments were conducted overnight during which load
fluctuations over the Internet were small. To keep the experiment
space finite, we fix the type of replication to be active (R2) and
the reply-collection to wait for all (C2). Thus, four policies are
possible with D and O as the parameters. To help analyse
performance figures, we present a brief description of the message
passing involved for different policies, giving particular emphasis
on the use of ordered and unordered multicasts - the latter being
delivered straight after reception. Recall that in asymmetric
ordering, a member M that intends to multicast m, actually
unicasts m to the sequencer which then appends the ordering
information and multicasts m. The sequencer can order m as soon
as it decides on the ordering information for m, and any member
(including the sender M) as soon as it receives m from the
sequencer. In the symmetric protocol, however, M multicasts m in
the group; for any member (including M) to deliver m, every other
member M' must perform a multicast in that group. That is, one
fu l l message exchange (FME for short) between members must
happen for m to be delivered. It is particularly costly in a
client/server group because of the presence of long-distance
member(s) (the client for servers, and servers for the client).

P1 One-clusive asymmetric - Referring to figure
5(i), the client issues request to request manager which
is also sequencer for both the server and client/server
groups. Request manager delivers the request preserving
causal precedence in the client/server group, and then
multicasts request in server group. Each server
immediately delivers the received request, and sends the
reply as unordered multicasts within the server group.
Servers ignore other servers' replies they deliver. The
request manager bundles the replies and sends the
bundle to the client (see figure 2(iii) - (iv)).

P2 Inclusive asymmetric - Referring to figure
5(ii), client issues request to request manager which is
also sequencer for the client/server group. Sequencer
appends ordering information onto the received request,
and multicasts it to all members of the client/server
group. Each server immediately delivers the received
request and the client ignores its own request received

125

from sequencer. Servers send their replies as unordered
multicasts in the client/server group. Compared to the
previous policy, the additional cost /xC21 is due to
multicasts having to be carried out in the client/server
group: sequencer additionally carries out a long distance
transmission when it multicasts the ordered request in
the client/server group, and other servers makes one
long-distance send when they multicast their replies in
the client-server group.

P3 One-c lus ive s ymmet r i c - Client issues request
to request manager (see figure 5(i)) which delivers the
request as in policy P1 (one-c lus ive asymmetr ic) . After
delivering the request in the client/server group, request
manager distributes the request in server group by
executing symmetric protocol. After one FME, each
server delivers the request; as in one-clusive asymmetric
case, each server sends its reply as unordered multicasts
within server group and the request manager unicasts
the bundled message to client. The additional message
cost /xC31 over policy P1 is: servers other than the
request manager contributing to FME for symmetrically
ordering the request within server group. Since servers
are all in the same LAN, /xC3~ is expected to be very
small. Both P1 and P3 being one-clusive , they are
equally vulnerable to a single server failure.

P4 Inclus ive s ymmet r i c - Client multicasts
request to all servers using symmetric protocol executed
in the client/server group. After one FME (within the
client/server group), each server delivers the request and
sends its reply as unordered multicasts within
client/server group. As in the other inclusive case, the
client delivers all server replies while the servers ignore
other servers' replies. The additional message cost AC43
over policy P3 is: client making two long-distance
unicasts, each server making one long distance unicast
(to client) for contributing to FME, and servers other
than the request manager, making a long-distance
unicast (to client) when multicasting the result. This
case however has the most masking potential against
server failures.

For each of these policies, we consider both pre-send and post-
send failures and a failure can be real or virtual. A client never
crashes, nor is ever suspected to have crashed by the servers.

A client issues a request to the server group and waits for their
replies. Clients were configured to issue requests as frequently as
possible; as soon as a reply is received, another request is issued.
The server used in the experiment is a CORBA object that simply
returns a pseudo random number when requested to do so by a
client. Client numbers were increased gradually from one to ten.
At each of these increments each participating client is timed for
100 requests, and the average is taken.

5.1 Implementation Details
Communications between clients and servers were enabled via the
Internet. Pentium Linux machines were used as hosts for clients
and servers. The server group was made up of three members
which were on the same LAN in Newcastle (United Kingdom),
and one server was designated to be request manager for one-

clusive options. All clients were located in London. The ORB
used was omniORB2 [19]. C++ was the implementation language.

To aid in ensuring a deterministic approach to request manager
failure, each client request is associated with a sequence number
Rx and the client's unique id Cy. In each experiment,
appropriately marked requests would cause one of four server
failure scenarios: pre-/post-send true/virtual failues; the following
describes the activities involved in measuring latencies with
request numbered Rx from client Cy being marked as:

i. P re - s en d true fa i lu re - the server designated to be
request manager fails after request Rx from client Cy
has been processed by the server group (i.e., Cy receives
reply for Rx). Thus, when Cy makes next request Rx.l,
say at time T, it will encounter a (true) failure. The
period between T and the time when Cy gets two replies
for Rx+l, is noted as the latency.

ii. P o s t - s e n d true f a i l u re - the request-manager designate
falls after successfully receiving Rx from Cy, but before
it sends any subsequent messages to other servers or
clients. The time taken for Cy to obtain two replies for
Rx is noted.

iii. P r e - s e n d vir tual f a i l u re - while receiving Rx from Cy
the request-manager designate closes the network
connection to Cy, causing Cy to catch a network
exception and suspect a failure. The time taken for Cy to
obtain three replies for Rx is noted.

iv. Pos t - send vir tual f a i lu re - after receiving Rx from Cy
the request-manager designate stops sending messages
only to Cy until it receives a message (from another
server) refuting Cy's suspicion. In one-clusive group,
the client will attempt to form a new client/server group
with another server, which will deny client's invitation
(for details, see subsection 3.3.1) by sending refutal

messages to the client and to other servers.

5.2 Non-Replicated Service
To enable comparative analysis of the performance figures, the
CORBA RPC time of a client in London communicating with a
single server in Newcastle without the use of NewTop was
obtained. The average latency was 78 ms.

The experiment was repeated, with invocations being made via
the NewTop service with client numbers I through 10. The
latency figures obtained are shown in graph 1.

G r a p h 1 - N o n R e p l i c a t e d S e r v e r - RPC (mi l l iseconds)

0

0

1 2 3 4 5 6 7 8 9 10

Number of dlsntm

The first observation to be made is that the RPC time of a single
client making a call via the NewTop service is around 10 ms
greater than the performance of a single client making an RPC
without the NewTop service. This drop in performance may be

126

explained by the way the NewTop service handles deliverable
messages; once ordering and delivery guarantees have been
satisfied the NewTop service delivers a message to the application
level via a CORBA RPC. Although the NewTop service is making
this call locally, the messages related to such a call must still pass
through the ORB infrastructure, an expensive procedure due in
part to the unnecessary mechanisms associated to network
communications that the ORB applies (e.g., parameter
marshaling). In the new generation of ORBs, application
developers may by-pass such mechanisms when they are not
required.

1 8 0

1 6 0

140

120

O 1 0 0

80 ¸

60.
4 0

20.

O.

Graph 2 - Replicated Server with no failures - RPC
(milliseconds)

--'0"-- P4, rncluaive lyrm~rk:
,- l l-- P3, COle-elusive symmetric

P2, blolusive asymmetrb
--)(-- PI, Cne-otusive asymrmtrk:

1 2 3 4 5 6 7 8 9 10

Number of clients

Graph 2 presents the latencies in the absence of failures. Consider
first the policies (P1 and P3) with one-clusive option which do
nearly as well as the non-replicated case (graph 1), since the (long
distance) client needs to interact only with the request manager
(which is also the sequence manager in P1). The difference
between them also is marginal as AC31 (due to FME in server
group over LAN) is small. (In later graphs, we do not distinguish
these two policies, as the difference is too small for the scale we
have to choose). The latency for policy P2 (inclusive, asymmetric)
is more than that for P1 due to AC31. This difference increases
with the number of clients, as the sequencer in P2 is dealing with
a larger group that includes a long-distance client, and hence the
load on the NewTop service increases correspondingly. The
policy P4 of inclusive and symmetric is the most message costly
policy. This is reflected on the high latency it yields; however this
high latency, unlike in P2, does not get worse for small numbers
of clients. This is because, as the number of clients increase, the
servers (which get included in each client/server group formed)
become livelier which is good for the symmetric protocol. As a
final observation on graph 2, the difference between the best and
the worst latencies is only about 40 ms.

5.3 True Failures
Graph 3 presents the measurements with the (real) failure of
request-manager designate, occurring just before the client starts
sending its request (pre-send) or after the request is received but
not acted on (post-send). As the request manager constitutes a
single point of failure in P1 and P3, its failure has the most
devastating effect involving failure detection and formation of a
new one-elusive group. The post-send, one-elusive case is slower
than the pre-send, one-elusive case by 100 ms, which is the
timeout used by the client to receive a reply from the request
manager. In fact, compared to the results in the previous graph,
the effectiveness of policies are simply reversed in this graph.

450

4 0 0

3 5 0

3 0 0

nO 2 5 0

m 200

150

1 0 0

5 0

0

Graph 3 - T r u e F a i l u r e s - RPC (milliseconds)

- - * - - P4, we-send

• - i l - - P4, post-send

P1, P3, pre-s~d

P1, P3, post-send

P2, pre-send

--e-- P2, post-send

1 2 3 4 5 6 7 8 9 10

Number of clients

We will make two observations over the latencies for (P2, pre-
send) and (P2, post-send). They are smaller than the latencies for
(P1, pre-send) and (P1, post-send), respectively. This indicates
that the formation of a new group is more time-consuming than
effecting a membership change in an already formed group.
Further, the latencies for (P2, post-send) approach those for (P2,
pre-send) as the number of clients increases. This can be
explained as follows. Consider a single client A. In P2, A sends
its request only to the sequencer and the other two servers in the
client/server group are unaware of this and therefore of the fact
that the sequencer is doing nothing to order A's request. A then
waits on timeout whose expiry alone can lead to failure detection.
Now, introduce the second client B. If the functioning servers are
expecting the sequencer to multicast its result message in the
client/server group for B, then they will detect the failure of the
sequencer and effect a membership change not just in the
client/server for B but also in the client/server for A. Thus A may
detect the failure early because of B's request being processed.
So, the more clients, the larger is the likelihood of rapid failure
detection with respect to a given client in the post-send scenario.
In the limit, the failure detection becomes as rapid as in the pre-
send case.

The convergence of post-send with pre-send is more pronounced
in the case of P4, where rapid detection is helped not just by the
presence of more clients but also by the fact that a client
multicasts its request to all servers. This fact has two implications.
First, by receiving a request (directly) from the client each server
executes symmetric protocol, expecting every server to contribute
to an FME. The prolonged absence of the crashed server will
cause the functioning members to call for a change of membership
in every client/server group. Thus, even if there is only one client,
the failure is suspected well ahead of the expiry of client's
timeout. This explains the latency for (P4, post-send) is better
than the latency for even (P1, pre-send): rapid failure detection in
P4 coupled with costly group formation in P1. The second
implication explains the smaller latencies of (P4, pre-send)
compared to (P2, pre-send), though inclusive client/server group
is used in both cases. Say, there is only one client, A, which first
sends its request at T - by a unicast to sequencer in P2 and by
multicast in P4; let RTTcs be the round trip time between A and
any server, and MC be the time it takes to effect a group
membership change after a failure is first suspected by a
functioning member in the group. In the case of (P2, pre-send), A
can suspect the server failure (through the absence of ack) no
earlier than T + RTFcs; it can know of the new sequencer no
earlier than T+ R'I'F= + MC, and the new sequencer will first

1 2 7

receive client request only by T+ RYl'cs + M C + RT'I'cJ2. With
(P4, pre-send) however, functioning servers receive A's multicast
by T+ RTTd2, effect the membership change by T+ M C +

RTI'd2, and also order the request by that time as the
membership change involves an FME which helps order the
request. That is, processing begins in P4 early by at least RTrcs.

5.4 Virtual Failure
In case of virtual failures, policies (P1 and P3) involving one-
elusive options suffer a double 'blow': the client is rebuffed when
it attempts to form a new client/server group with another server
and then it re-forms the client/server group with the old request
manager. These time consuming activities increase the latencies
for P1 and P3, compared to the previous case where re-formation
does not take place. Apart from P1, P3 and (P2, pre-send), the
measurements are quite similar to graph 2. This is because a
failure suspicion, correct or not, does initiate the protocol for
membership change; when suspicion is incorrect, it is refuted by
an unsuspected member and this refutal terminates the protocol. A
server can refute an incorrect suspicion quickly, if it has been in
contact with the suspect recently, which happens when servers are
kept active either due to a large number of clients accessing them
or because the client's request is sent to all servers through
symmetric protocol. (In NewTop, the suspicion initiator must
indicate the last message it had received from the suspected; any
member that has received from the allegedly crashed member a
later message, can instantly send a refute).

600

500

R 400

0 300

200

100

0

Graph 4 - V i r tua l Fa i lu res - RPC

2 3 4 5 6 7 8 9 10

Number of clients

• --*-- P4, pre-send

P4, post-send
P1, P3, pre-send
P1, P3, post-send

P2, pre-send
--e-- P2, post-send

The under-performance of (P2, pre-send) can be explained as
follows. Here, the client only attempts to unicast its request to the
sequencer, but does not go ahead with the transmission as it
wrongly suspects the sequencer to have failed. So, it engages itself
in an unsuccessful attempt to change the membership and get a
new sequencer. This waste of time is the cause for the under-
performance. Whereas in (P2, post-send), the attempt to change
the membership proceeds in parallel with the ordering and
processing of the request, and hence the client's false suspicion
has no impact on the latency.

5.5 Observations
The measurements and the comparative analysis lead to the
following observations. In the failure-free scenario, the one-
elusive approach performs well, irrespective of the ordering
protocols used. The performance becomes the poorest in the
presence of real/virtual failures. The inclusive symmetric policy
P4 is best suited to failure prone environments, though it under
performs in the absence of failures by a margin of 40 ms which is
about half the round trip time of 83 ms. A long-distance user of a

replicated service has two extreme policy options: P1 and P3 if
failures are deemed rare and the high cost incurred when failures
do occur is acceptable; or, P4 if the user is particular about fault-
tolerance and is willing to pay a small performance penalty when
failures do not happen. Between these two extremes lies P2 except
for the deteriorating performance with increasing number of
clients in the case of pre-send virtual failures. A remedy for this
can be for the client to switch its policy to P4 once it suspects a
failure of the sequencer while it is unicasting its request. Note that
in (P2, pre-send) the request does not get sent to the sequencer;
therefore when the client re-sends its request with P4 option, it is
not duplicating its request. If the servers are programmed to detect
duplicate requests, client can switch from P2 to P4 even in post-
send cases. Of course, a switch from P2 to P4 and back would
require servers to switch between ordering protocols. The
implementation framework presented in section 3.2 identifies the
requirements on the object group service systems to support this
flexibility, and the NewTop service meets these requirements.

6. CONCLUDING REMARKS
We have identified various policies for managing and making
invoctions on a replica server group; the policy attributes and
options on them, which constitute a policy are presented. We then
presented an implementation framework to support these policies.
By being group-oriented and supportive of overlapping groups,
this framework relieves the application developer of having to
track causal dependencies between client requests, and also
provides a flexible support for servers to switch between order
protocols. An overview of the NewTop service, which meets the
requirements identified within this framework, is presented. Using
this system, relative effectiveness of four different policies for an
Internet client was analysed. Experiments allowed both real and
virtual failures, the latter are incorrect suspicions caused typically
by load fluctuations over the Internet. Certain policies did
extremely well (nearly as well as unreplicated server) in the
absence of failures but performed poorly when failures happened,
and vice versa. A compromise between these two extremes is
possible, if a policy shift is done whenever a client suspects a
failure. For this policy shift to be possible, the group membership
service must support servers that can switch between order
protocols - a service which any system, like NewTop, that
supports overlapping groups should be able to provide.

7. ACKNOWLEDGEMENTS
We would like to thank Professor S. K. Shrivastava for his help
and advice during the preparation of this paper. G. Morgan was
supported by EPSRC CASE PhD studentship with industrial
sponsorship from HP Laboratories, Bristol.

8. REFERENCES
[I] Amir, Y., et al, "Transis: A Communication Sub-

system for High Availabil i ty", Digest of Papers,
FTCS-22, Boston, July 1992, pp. 76-84.

[2] K. Birman , "The process group approach to reliable
computing", CACM , 36, 12, pp. 37-53, December
1993.

[3] M. Hayden, ' 'The Ensemble system", PhD thesis, Dept.
of Computer Science, Cornell University, 1998.

128

[4] D. Dolev and D. Malki, "The Transis approach to high
availability cluster communication", CACM, 39 (4),
April 1996, pp. 64-70.

[5] P. Ezhilchelvan, R. Macedo and S. K. Shrivastava,
"NewTop: a fault-tolerant group communication
protocol", 15th IEEE Intl. Conf. on Distributed
Computing Systems, Vancouver, May 1995, pp. 296-
306.

[6] L.E. Moser, P.M. Melliar-Smith et al, ''Totem: a Fault-
tolerant multicast group communication system",
CACM, 39 (4), April 1996, pp. 54-63.

[7] P. Felber, R. Guerraoui and A. Schiper, ''The
implementation of a CORBA object group service",
Theory and Practice of Object Systems, 4(2), 1998, pp.
93-105.

[8] P. Felber, "The CORBA Object Group Service: a
Service Approach to Object Groups in CORBA", PhD
thesis, Ecole Polytechnique Federale de Lausanne,
1998.

[9] S. Maffeis, "Run-time support for object-oriented
distributed programming", PhD thesis, University of
Zurich, February 1995.

[10]P. Narasimhan, L, E. Moser and P. M. Melliar-Smith,
"Replica consistency of CORBA objects in
partitionable distributed systems", Distributed Systems
Eng., 4, 1997, pp. 139-150.

[ll]L.E. Moser, P.M. Melliar-Smith and P. Narasirnhan,
"A Fault tolerance framework for COBRA", Proc. of
29th Symp. On Fault Tolerant Computing, FTCS-29,
Madison, June 1999.

[12] M. Cukier et al., "AQuA: an adaptive architecture that
provides dependable distributed objects", Proc. of 17th
IEEE Symp. on Reliable Distributred Computing
(SRDS'98), West Lafayette, October 1998, pp. 245-
253.

[13]G. Morgan, S.K. Shrivastava, P.D. Ezhilchelvan and
M.C. Little, "Design and Implementation of a CORBA

Fault-tolerant Object Group Service", Distributed
Applications and Interoperable Systems, Ed. Lea
Kutvonen, Hartmut Konig, Martti Tienari, Kluwer
Academic Publishers, 1999, ISBN 0-7923-8527-6, pp.
361-374.

[14]S. Misra, Lan Fei, and Guming Xing, "Design,
Implementation and Performance Evaluation of a
CORBA Group Communication Service", Proc. of
29th Symp. On Fault Tolerant Computing, FTCS-29,
Madison, June 1999.

[15]L. Rodriguez, H. Fonseca and P. Verissimo, "Totally
ordered multicasts in large scale systems", 16th IEEE
Intl. Conf. on Distributed Computing Systems, Hong
Kong, May 1996, pp. 503-510.

[16]M.C. Little and S K Shrivastava, "Implementing high
availability CORBA applications with Java", Proc. of
IEEE Workshop on Internet Applications, WIAPP'99,
San Jose, July 1999.

[17]C. T. Karamanolis and J.N. Magee, "Client access
protocols for replicated services", IEEE Transactions
on Software Engineering, Vol. 25, No. 1, 1999, pp. 3-
22.

[18]G. Morgan, "A middleware service for fault tolerant
group communications", Phd thesis, Dept. of
Computing Science, University of Newcastle upon
Tyne, September 1999.

[19] www.uk.research.att.com/omniORB/omniOB.html

[20] L. Lamport, "Time, Clocks, and Ordering of Events in
a Distributed System", Communications of ACM, 21,
7, July 1978, pp. 558-565.

[21]G. Morgan and S.K. Shrivastava, "Implementing
Flexible Object Group Invocation in Networked
Systems", International Conference on Dependable
Systems and Networks, New York, June, 2000.

129

