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A B S T R A C T  
Replication is known to offer high availability in the presence of 
failures. This paper considers the case of a client making 
invocations on a group of replicated servers. It identifies attributes 
that typically characterise group invocation and replica 
management, and the options generally available for each 
attribute. A combination of options on these attributes constitutes 
a policy. The paper proposes an implementation framework 
which, by its group-oriented nature, simplifies the task of 
supporting these policies. It then considers a client (in UCL, 
London) making invocations on a replica group (in Newcastle, 
UK) over the Internet. It evaluates the response latencies for four 
policies that seem appropriate for this set-up. The evaluation takes 
into account the timing of server crashes with respect to client 
invocations; both real and virtual failures are considered, the latter 
being not uncommon in the Internet environment. The 
experiments are carded out using a CORBA compliant system 
called NewTop. 

K e y w o r d s  
Server crashes, group invocation, replica management, total order, 
policy attributes, causal precedence, latency, CORBA. 

1. I N T R O D U C T I O N  
Replication of entities (e.g., objects, processes) is the most 
commonly used approach for maintaining high availability of data 
despite failures. Managing replicas in a networked environment, 
particularly in the asynchronous environment where 
communication delays cannot be bounded with certainty, is a 
difficult task. The group paradigm (primarily concerned with 
application-level fault-tolerance as opposed to IP-multicast) has 
proven to be a useful abstraction that simplifies this task [2]. 
Informally, a group is a collection of distributed entities in which 
a member entity communicates with other members by 
multicasting to the full membership of the group. A replicated 
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group refers to a group in which each member manages a copy of 
the same data. Building applications based on groups in general 
and on replicated groups in particular is considerably simplified if 
the members of a group can multicast reliably and have a mutually 
consistent view of the order in which events (such as invocations, 
membership changes) have taken place. By reliable multicast we 
mean that either all the functioning members deliver a given 
multicast or none of them does. An additional property required 
for replicated groups is total order: all the functioning members 
deliver a set of multicasts in the same order that preserves causal 
precedence. Total ordering is needed to ensure that the replica 
states remain mutually consistent, and that the state changes are 
consistent with causal precedence. Design and development of 
middleware systems that provide group services such as the 
membership service, reliable multicasts with specific ordering 
properties, has been an active area of research [1-6]. As 
distributed applications are being increasingly designed and 
implemented using CORBA middleware services, recent research 
efforts have been aimed at enriching CORBA with an object 
group service [7-14, 21]. 

Server Replica • 

Figure 1. A client invocation of a server group 

Figure 1 depicts the most common mode of invocation on a 
replicated group: a single client issues a request to a group of 
three server replicas, and waits for a response. If the client and 
server replicas are all connected by high-speed, low latency 
network, then an efficient way of invoking the replicas would be 
for the client to multicast to all the replicas. On the other hand, 
existing literature [21] indicates that if the client is separated from 
servers by a high latency communication path (e.g., WAN, 
Internet), then this method would be unattractive. So, an 
alternative method that would help a client avoid unicasting to 
each replica would be desirable. Such a method could be for the 
client to send its request to only one replica (using a single 
unicast), which then forwards the request to all other replicas on 
behalf of the client. Depending mainly on the way in which a 

119 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F354644.354661&domain=pdf&date_stamp=2000-11-01


client request is disseminated into the server group, the server 
replicas may wish to process the request in ways that minimise the 
response latency. Replicated processing is typically done in two 
different ways: in passive replication, where a single server, the 
primary, performs processing, the other servers act as backups 
providing tolerance to primary crash; in active replication, all 
servers process a given request in parallel, a server crash during 
processing does not significantly increase the response latency. 
When the client directs its request to only one server, making that 
server act as the primary (i.e., opting for passive replication) 
appears to offer small response times (latencies) if the primary 
does not crash until it completes processing the request [21]. 

We identify in this paper four different aspects or attributes in the 
invocation and management of a replicated object group, and 
options commonly available for each attribute. A combination of 
choices for each attribute will constitute a policy. We observe 
some policies (i.e., some choice combinations) to be practically 
not sensible, and some others obviously inefficient in certain 
environments. The experiments we carried out in [21] provide 
some useful insight into the effectiveness of these policies in 
terms of service response latencies. These experiments were 
carried out in a failure-free environment, and lead us to conclude 
that some of the policies that did well for a client that was in the 
same LAN as servers include active replication and could 
therefore be expected to do equally well masking any server crash 
that might occur during processing; however, the policy that did 
extremely well for a long-distance Internet client employed 
passive replication and dissemination of client request into the 
server group through a single server. These choices embody single 
points of failures, and when failures do occur the latency will 
undoubtedly increase. An objective of this paper is to evaluate, 
through experiments, how various policies perform for an Internet 
client in a failure-prone environment. The results and analysis 
presented here would enable an application developer to choose a 
policy that is most appropriate to the expected failure probability 
of the application environment. 

We achieve the stated objective in a systematic and 
comprehensive manner. We first provide a group-oriented 
implementation framework that keeps track of causal precedence 
that might exist between distinct clients' invocations on the server 
group. A support for this tracking considerably simplifies the task 
of building applications based on replicated groups, and groups in 
general. Regarding failures, we assume them to be crash, i.e., a 
replica fails by stopping to function. We evaluate the impact of 
failures by considering the timing of their occurrences. Consider 
that a server replica has already crashed when a client unicasts its 
request. Upon receiving no acknowledgement, the client will 
detect the server crash and unicast its response to another server 
replica. Thus the failure detection delay is not high. On the other 
hand, if the first server crashes after acknowledging the request 
and while processing the request, the client can detect the failure 
only after the expiry of the timeout it has set to receive the reply. 
This increases the failure detection delay and the overall response 
latency. We consider both real and virtual failures, the latter are 
said to occur when the client incorrectly perceives a server replica 
to have crashed only because the server's response got unduly 
delayed due to transient partitions or network congestions that are 
not uncommon over WAN and Internet. We note here that many 
papers in the literature which report on the performance of fault- 
tolerant group services rarely consider failures, very rarely virtual 

failures; in this regard, the results in our paper represent an 
advancement. The experiments were conducted using a long- 
distance client in Univ. College London while the server replica 
group consisted of three servers on the same LAN in Newcastle, 
United Kingdom. The replica management and group invocation 
policies were supported by a CORBA compliant object group 
service called NewTop, which meets all requirements identified in 
our implementation framework. 

The paper is organised as follows. The next section lists the 
attributes of group invocation and replica management, and the 
options generally available for each attribute. Section 3 presents 
and motivates the implementation framework that supports 
various policies and helps simplify the building of group-based 
applications. In the context of this framework, the impact of the 
timing of failures (with respect to group invocations) and virtual 
failures on the response latencies are discussed. Section 4 
provides an overview of the NewTop system, with emphasis on 
aspects of its CORBA-compliant implementation that has bearings 
on its performance. Section 5 presents and analyses the 
performance figures. Conclusions are in section 6. 

2. GROUP INVOCATION AND 
MANAGEMENT POLICIES 
2.1 Invocation Policy Attributes 
A client's invocation of an object group is characterised by two 
attributes: request dissemination (D) and reply collection (C). 
These attributes refer to the way in which a client sends its request 
to, and collects the replies from the replicated servers, 
respectively. A client can disseminate its request to the server 
group, by sending it directly to only one of the server replicas 
called the request manager (D1), or directly to all server replicas 
of the group (D2). In dealing with the replies generated by the 
server replicas, a client can exercise one of the following options: 
wait for no reply (CO), wait for one reply (C1), wait for all 
replicas' replies (C2), and wait for replies from a majority (C3). 
Any combination of the options for D and C can be supported for 
a crash fault model, as shown in figure 2 which assumes D1 for 
dissemination and a total order protocol within the server group. 

i. Receiving client request - A request is sent to the 
request manager of the group (figure 2(i)). 

ii. Distributing client request - The request manager 
multicasts the request within the server group 
(figure 2(ii)). This is achieved by the request 
manager acting as a client and issuing the incoming 
invocation as a new invocation (of the same type, 
e.g., wait for first, wait for all). 

iii. Receiving server replies - Each member of the 
server group multicasts replies within the group 
(figure 2(iii)). (Here we assume that all server 
replicas process the request, as in active 
replication; different types of commonly used 
replicated processing are to be discussed shortly). 

iv. Returning server replies to client - Server replies - 
one, majority or all - are gathered by the request 
manager and returned to the client (figure 2(iv)), 
depending on whether the client has chosen C1, 
C2, or C3 respectively. No reply is sent if CO has 
been chosen. 
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Figure 2. Client invocation through request manager 

2.2 Replica Management Policy Attributes 
Two key issues in replica management are: replication type (R) 
and protocol used for total ordering of concurrent requests from 
multiple clients (O). In passive replication (R1), only one replica, 
called the primary, processes the client request; for every received 
request, it multicasts to other replicas (i) the request itself (if 
necessary) before processing it, and (ii) the state changes effected 
and any response produced due to processing of the request. If 
ever the primary crashes, one of the surviving replicas becomes 
the new primary and continues with the processing of client 
requests. A group of (f+l) replicas can thus provide services 
despite at most f replica crashes. Passive replication cannot 
therefore meaningfully support result collection options of C2 and 
C3. In active replication (R2) all replicas process the request in 
parallel, and all options on C can be supported. 

There are basically two ways of achieving total order on requests. 
In the asymmetric version (O1), one of the members of the replica 
group assumes the responsibility for the ordering of requests 
directed at the group. Such a member is commonly termed the 
sequencer. A member that wishes to multicast a message m will 
only unicast m to the sequencer which in turn multicasts m with 
relevant ordering information appended. In the symmetric version 
(02), all members use the same deterministic algorithm for 
ordering: this requires that for a multicast to be ordered, every 
member other than the multicast initiator must multicast either an 
application message or a protocol specific message. (Figure 3 
provides an example). The principles of symmetric ordering were 
used in the seminal paper [20] for solving the mutual exclusion 
problem in the absence of synchronised global time. It has been 
shown that symmetric ordering tends to be more attractive in 
situations where all the members are lively, and multicasting 
regularly, so the need for making protocol specific multicasts just 
for ordering is eliminated, whereas asymmetric protocols are 
better in other situations [15]. 

\ . . j  
(i) Receiving client (ii) Ordering client (iii) Ordering client 
request request request 

(iv) Ordering Client (v) Distributing reply (vi) Returning server 
Request and object states 

replies to client 

Figure 3. Passive Replication with Total Ordering 

2.3 Policies and their Cost-Effectiveness 
A combination of choices made for attributes D, C, R and O will 
constitute a policy for invocation and management of a server 
group. Figure 3 depicts the exchange of messages between the 
client and server replicas, and also between server replicas when 
the policy is {D2, C1, R1, 02} where D2 stands for disseminate 
to all, C1 for collect (any) one reply, R1 passive replication, and 
02 symmetric ordering. The client multicasts its request to all 
replicas (figure 3(i)). For this request to be symmetrically ordered 
in the server group, each replica must multicast an ordering 
message within the group. This full message exchange (which 
actually takes place concurrently) is shown in figures 3(ii) - 3(iv). 
Then, the primary (top server replica) alone processes the ordered 
request and sends the reply and state updates to other replicas 
(figure 3(v)); it then sends the reply to the client. 

We already noted that it does not make sense to combine passive 
replication with C2 or C3. Thus, ignoring the exceptional cases of 
combining R1 with C2 or C3, there are 24 different policies for 
getting a service from a replica group. Of course some of these 
policies may be inefficient in terms of latency and message cost. 
For example, using asymmetric ordering (i.e., using O1 instead of 
02) in figure 3 would have been more efficient as it would have 
avoided the need for full message exchange and therefore the 
multicasts by non-primary replicas (figures 3(iii) and 3(iv)). Thus, 
in the absence of failures, it brings performance benefits to 
combine R1 with O1, with the same replica acting as both the 
primary and the sequencer. When primary fails, R2 can respond 
faster than R1 if C2 is not the option. This is because C2 requires 
that the client receive replies from all servers that were in the 
group when the invocation was made; an intervening server crash 
needs to be detected and the client be informed of the reduction in 
membership when replies are being sent back. This need to detect 
and announce a server crash undermines the failure-masking 
potentials of R2. Because of its requirement on full message 
exchange for ordering, 02 gets slowed down by the crash of any 
member; whereas, O1 slows down only if the sequencer crashes. 

Not admitting failures, we conducted in our earlier work [21] 
experiments for both Internet and LAN clients. For an Internet 
client {D1, C1, R1, O1 } did extremely well in terms of response 
latency (nearly as good as an unreplicated server), when the same 
server played the role of the request manager (in D1), the primary 
(in R1), and the sequencer (in O1). For LAN clients, both {D1, 
C1, R1, Ol } and {D2, C1, R2, O1 } did equally well. Over LAN, 
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02  did equally well as O1 when replicas are kept lively, e.g., 
when a large number of clients are simultaneously invoking the 
server group. From these results, we make the following 
conclusions: 

i. The policy { D2, C1, R2, O1 } that performed well for a 
LAN client in a failure-free environment, can be 
expected to do equally well even in the presence of 
failures because of  the failure masking potentials of R2. 
However, the same cannot be claimed for an Internet 
client since the request manager that was also the 
primary and the sequencer in {D1, C1, R1, O1}, 
constitutes a single point of failure; if it fails during 
processing or ordering of  the received request, the 
surviving replicas need to detect this failure and elect a 
new request manager before they can respond; this 
increases the overall response latency. So, the most 
responsive fault-tolerant policy (if one exists at all) for 
an Internet client is yet unknown. 

ii. It is the client that should decide on the D attribute of  a 
policy, judging by its proximity to the server group; 
and, 

iii. It is the servers who should decide on the O attribute of 
a policy as they alone can know how lively they are at 
any given time. 

Note that the liveliness of servers may change with time; so the 
servers should switch from O1 to 02,  and vice versa, provided 
this switching can be done at no extra cost. This is possible if  the 
underlying object group service supports overlapping groups, 
which we argue in subsection 3.2 to be an essential requirement to 
simplify the building of group based applications. We believe that 
the decision on R should be a subject of negotiation between the 
client and servers. If a client insists on C2 or C3, the decision has 
to be on R2. On the other hand, if  a new client requests on R1 
while servers are already doing R2 for existing clients, the new 
request for R1 may have to be disregarded as it is simple and 
efficient for servers to process all requests by one form of 
replication. To illustrate this point, consider a server group (sl, s2, 
s3} having to process requests ri, r2, .. rp, .. rn, n >p, in that order. 
Say, processing is by R2 except rp needs to be processed by R1 
with sl acting as the primary. After processing rp and before 
processing rp+l, sl must halt processing, checkpoint its state, and 
multicast the checkpoint. The other replicas, after processing rp_~, 
must update their states using s~'s checkpoint before continuing 
with rp+l. 

3. A GROUP-ORIENTED 
IMPLEMENTATION FRAMEWORK 
3.1 Assumptions 
It is left to the server group to nominate the request manager (if 
D1 is opted for), the primary (if R1 is opted for), and the 
sequencer (for O1). We make two assumptions for reasons of 
better performance: within the server group, the same member is 
designated to perform the roles of  request manager, primary, and 
sequencer when required; also, the same member acts as the 
request manager for different clients that opt for D1. 

Note that, in theory, different members can take up the role of the 
request manager, the primary, and the sequencer. But when the 
same member plays all these roles, message cost is reduced. 

Similarly, different members can act as the request manager for 
different clients. For example, if  server replicas are geographically 
apart, the replica that is closer to a client can act as the request 
manager for that client. In this paper, we regard the server replicas 
to be on the same LAN; therefore, assigning different managers 
for different clients does not appear to bring any obvious 
advantages. 

3.2 Group Invocations as Group 
Communication 
Figure 4(i) depicts invocation of a server group gx by clients A 
and B. B makes an invocation ml  of type D1 and CO. It then 
communicates (m2) with A. After processing m2, A invokes gx by 
sending m3 to the request manager. Now suppose that A 's  
message m3 reaches the request manager before B's  ml .  If 
messages are processed in the received order, causal relation [20] 
is violated, as ml  causally precedes m3 and must therefore be 
processed by gx before m3. It is now left to the application 
developer to ensure that the processing of  requests respects the 
causal precedence. The developer is relieved of this burden when 
invocations are made within groups as shown in figure 4(ii) and if 
the group management service permits an entity to be a member of 
more than one group and satisfies the following message delivery 
requirements. 

i. multi-group causal precedence: say s is a member of 
groups gx and gy in which lax and my are multicast 
respectively. If mx causally precedes my, then s delivers 
mx before my. 

ii. multi-group identical order: say s and s' are members of 
groups gx and gy in which mx and my are multicast 
respecively, s delivers mx before my if and only if s' 
delivers mx before my. 

Figure 4(ii) depicts the case when invocations are made as group 
communications. B issues ml  in gy that is made up of B and the 
request manager of the server group gx. Note that gx and gy 
overlap as the request manager is a member of both the groups. B 
then sends m2 in gz which consists of  clients A and B. After 
processing of rn2, A issues m3 in gw which overlaps with gx due 
to the common membership of  the request manager. Property (a) 
ensures that the request manager of  gx delivers ml  first and then 
m3. 

o m2 

( i )  ~ . . . ~  

~B ~ (ii) 

(iii) 
Figure 4. (i) Direct Invocations. (ii) Invocations are group 

communication. (iii) Simultaneous support for different 
ordering protocols. 
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The Isis system was first to introduce overlapping groups [2]; the 
AQuA system [12] also uses overlapping groups in a variety of 
ways for replica management. The group communication 
protocols used in NewTop have been designed to cope with 
overlapping groups in an efficient manner [5]; in particular, they 
allow a multi-group member to simultaneously execute symmetric 
protocol in one group and the asymmetric protocol in the same or 
in another group. This flexibility is exploited to support the 
simultaneous executions of both the ordering protocols by server 
replicas. In figure 4(iii), clients A and B multicast their 
invocations ml and m2 in groups gxl and gx2, repectively. 
Suppose that A has preferred the asymmetric total ordering and B 
the symmetric ordering. The request manager delivers ml using 
NewTop in gx 1. (It should not deliver ml simply upon reception; 
otherwise causal relation may not be preserved in cases shown in 
fig 4(i).) Having delivered ml, the request manager, acting as the 
sequencer, would initiate the asymmetric ordering of ml in gx. At 
the same time, all replicas will be executing the symmetric 
protocol for ordering m2 multicast in gx2. By property (b) all 
replicas are guaranteed to order ml and m2 identically. To be able 
to simultaneously execute both protocols in the same group, say 
gx, two logical groups, gxa and gxs, are formed in a logical sense 
out of the same physical gx, to execute asymmetric protocol in gxa 
and symmetric protocol in g,~. By property (b) all members of gx, 
present in both g,~ and g,~, are guaranteed to identically order all 
messages delivered in gx. 

3 ,3  C l i e n t / S e r v e r  G r o u p s  a n d  t h e  E f f e c t s  o f  

F a i l u r e s  
A 'down-side' to requiring that client invocations be done as 
group communication is that a client should first form a group 
with the request manager (in case of D1) or with all servers (in 
case of D2). This obviously incurs an overhead in the form of 
messages exchanged to form the group which need not be done if 
invocations were sent directly as shown in figure 4(i). We, 
however, believe this overhead to be small if the client is to 
negotiate with the server group on certain policy attributes, as the 
information related to group formation can be piggybacked onto 
these negotiation messages. 

We call the group that contains a client and one or all servers the 
client~server group. It is said to be one-inclusive, or simply one- 
elusive, if it includes only one server (the request manager) as in 
fig 5(i); it is said to be all-inclusive, or simply inclusive, if it 
includes all server replicas (see fig 5(ii)). 

Member • 

..... "-'-i v - ' -  \ Client/server . . . . . . . . . .  

\ ~ . /  Server ("~I 
""-'-'/" group ~ . )  

(i) (ii) 

Figure 5. Client/server groups. (i) one-clusive and (ii) inclusive 
groups. 

In fig 5(i), a failure of the request manager will cause (a) the 
surviving servers to deliver a view-change message indicating the 
change in the membership of the server group, and (b) the binding 
between the client and the request manager to be broken and the 

one-elusive group be disbanded. The client has to form another 
one-elusive group with the new request manager elected within 
the (new) server group. Consider this scenario further. Assume 
that the request manager fails as the servers are multicasting their 
replies (during the stage depicted in figure 2(iii)). The server 
group will be reformed with the request manager removed, and no 
reply will be sent to the client. Client retries can be handled by the 
new request manager without causing re-execution, provided 
retries contain the same call number as the original call and 
servers retain the data of the last reply message (enabling the 
request manager to resend the reply). These are 'standard' 
techniques used in any RPC implementation. 

' . . . .  " - : = "  - I  . . . . .  

\A\" • ii • 
\ \ " o  / J \ \  o / j  \ . \  • / 

\"  ....... / t \ '  ....... ~,/ ~ ' - "  

(i) (ii) (iii) 
Receiving Returning New server and 

client request server replies client/server 
to client groups 

Figure 6. Passive Replication and Failure Handling in 
Inclusive groups. 

In the inclusive group, server failures do not cause the client to 
form any new group; the client only delivers a view-change 
message indicating the change in the membership of the client- 
server group. Let us revisit Figure 3 which depicts the case of the 
client's policy: {D2, C1, R1, 02}. With the client now making its 
invocation within the client/server group, only figures 3(0 and 
3(vi) change which are shown in figures 60) and 6(ii) 
respectively. The client's request (figure 6(i)) and the primary's 
reply (figure 6(ii)) are multicast to the full membership of the 
client/server group. Suppose that the primary crashes before 
multicasting the reply. The new client/server group and the server 
group formed are shown in fig 6(iii). When the group 
communication service supports virtual synchrony [2], all 
members that go on to form the new client/server group are 
guaranteed to have delivered an identical set of messages in the 
old client/server group view. Thus, the new primary will know 
whether or not the client has delivered the reply sent by the old 
primary prior to crash. So, the fact that the old primary crashed 
before multicasting the reply, is detected and handled; further, the 
primary crash increases the response time by the time it takes for 
the surviving members of the client/server group to effect the 
membership change in the virtually synchronous manner. 

Recall that the request manager may constitute a single point of 
failure in a one-clusive group, and the timing of its failure with 
respect to the client's dissemination of its request is significant in 
determining the response latency. Suppose that the request 
manager crashes after the formation of the one-clusive group and 
before the client multicasts its request in the group. We call this 
scenario pre-send. When the client attempts to multicast its 
request, the underlying communication service (if it is TCP/IP 
connection as is the case with many ORBs) will inform the client 
that the multicast is unsuccessful; thus, the failure detection 
latency is small. On the other hand, consider the post-send failure 
scenario: the request manager crashes after receiving the request 
from the client and at some time before returning the reply to the 
client (i.e. before stage (iv) in figure 2). The client can suspect the 
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:request manager' s crash only after the expiry of the timeout it had 
set for receiving the reply; this may mean a large failure-detection 
latency. Thus, a post-send failure may result in a large response 
latency which could include the time taken to detect a failure and 
to rebind, and the failure-free response latency if the request 
:manager had been acting as the primary. The notion of pre- and 
post-send failures also exist in the inclusive groups: crash of any 
server before and after that server received the client multicast, 
respectively. A pre-send or post-send failure in an inclusive group 
leads to membership changes in both the client/server and server 
groups (i.e. change from fig 6(ii) to 6(iii) ) before the request is 
sent or while the request is being processed. 

3.3.1 Virtual  Fa i lures  
Three clients A, B and C form one-clusive groups with the server 
group gx (see fig 7(i)). Suppose that A is a long-distance client 
while B and C are in the same LAN as the server replicas, and that 
the reply from the request manager to A gets delayed due to 
network congestion over the Internet. A's timeout will expire 
leaving A to conclude that the request manager has crashed. That 
is, from A's point of view the request manager appears to have 
crashed, we call this apparent failure a virtual failure. Having 
decided that the manager has crashed, A will then try to form a 
new inclusive group, say it succeeds in forming it with the third 
server as the next request manager. Now, as seen in fig 7(ii), 
different clients do not use the same request manager, which as 
indicated in 3.1, degrades the performance. For perfomance 
reasons, the third server is programmed to reject the client's 
attempt to form the new client/server group with itself, if it sees 
the original request manager not crashed; thus A is forced to re- 
form the old client/server group which it disbanded by mistake. 

. [ • i . . . .  9 
gx ~ _ \ ~ j /  c A . . . . . . .  - - t -  ...... ~ c 

(i) (ii) 

Figure 7: Effect of Virtual Failures in One-clusive groups. 

In inclusive groups, the effect of virtual failures depends on how 
failure suspicions are acted upon, which can be done in one of 
two ways: in stable suspicion model, a member trusts and acts on 
another member's suspicion, even though it has not itself 
suspected a failure. Systems such as Transis[1, 4], Isis[2], adopt 
this model. In refutation model, a member keeps the received 
suspicion in abeyance until it independently (with its own 
timeout) assesses that it also observes the reported suspicion; if it 
finds the received suspicion to be untrue, it refutes the reported 
suspicion. A single refutal is enough to suppress a suspicion 
groupwide, and thus false suspicions are in effect discarded and 
prevented from causing unnecessary membership changes. Since 
NewTop permits refutation, a long distance client's incorrect 
suspicion (such as A's in the example above) will be refuted by 
another server that does not share the same suspicion. So, virtual 
failures do not lead to costly membership changes. 

4. OVERVIEW OF THE NEWTOP OBJECT 
GROUP SERVICE 
The NewTop object group service, or NewTop service for short, 
itself has been composed of a group communication subsystem 
that handles membership and reliable multicasts and an invocation 
subsystem. The architecture of the NewTop service is depicted in 
figure 8. The function of the invocation layer is to support various 
invocation and management policies idenitifed in section 2. The 
figure shows how a request-reply interaction between a client and 
a server group is handled (only a single server is shown). The 
client application makes its request to the NewTop service; 
internal to the service, the request is handled by the invocation 
layer which then uses the group communication service to send 
NewTop specific message to servers; the message then travels up 
and down the protocol stack on the server side. The invocation 
layer employs the chosen policy to implement request-reply 
interactions. 

Client Server 
Issued I . App l i ca t ion  I s . . . .  s . . . .  I . Application I I~uea 

requests V "r replies replies ~( i[~ requests 
NewTop [In.v°caf°n ~ [ Itnvoeation Ser~ic.e ] 
Service I W 'l s I Deliverable Multicast I W ,P Deliverable 

orou Com  I rep.s I I 
Outgoing S e r v i c e  • [ Incoming Outgoing , Service . Incoming . . . . .  

Figure 8. System architecture 

The underlying group communication service has been designed 
to be suitable for a wide variety of group based applications; 
objects can simultaneously belong to many groups, group size 
could be large, and objects could be geographically widely 
separated. The service can provide causality preserving total order 
delivery to members of a group, ensuring that total order delivery 
is preserved even for multi-group objects. Both symmetric and 
asymmetric total order protocols are supported, permitting a 
member to use say symmetric version in one group and 
asymmetric version in another group simultaneously [5]. 

The failure assumptions made by the NewTop service are as 
follows. Processes/objects fail only by crashing, i.e., by stopping 
to function. The communication environment is modelled as 
asynchronous, where message transmission times cannot be 
accurately estimated, and the underlying network may well get 
partitioned, preventing functioning members from communicating 
With each other. The actual protocols used in the NewTop service 
will not be described here, as these details are not directly relevant 
to this paper; the interested reader is referred to [5]. 

The group communication system provides clients (via the 
invocation layer interface) with create, delete and leave group 
operations and causal and total order multicasts. In addition, it 
maintains the membership information (group view) and ensures 
that this information is kept mutually consistent at each member. 
This is achieved with the help of a failure suspector that initiates 
membership agreement as soon as a member is suspected to have 
failed. A member can obtain the current membership information 
by invoking 'groupDetails' operation. View updates are atomic 
with respect to message deliveries, as in virtually synchronous 
communication [2]. Message delivery is atomic with two types of 
ordering guarantees (causal and causality preserving total order) 
and in the case of total order, two types of ordering techniques, 
symmetric and asymmetric, are supported. 
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In a group communication system a member is often required to 
stay lively within a group to avoid being suspected by other 
members. This usually takes the form of a member periodically 
sending "I am alive" or "NULL" messages during periods it has 
no application level messages to send. In NewTop, after a member 
has neglected to send a message for a period of time, the NewTop 
time-silence mechanism will send a "I am alive" message. For 
further details, see [13, 21]. 

4.1 Related Work 
NewTop implements group communication services as CORBA 
services 'from scratch'. In addition to being CORBA compliant, 
the advantage here is that the services are directly available to 
application builders so can be used for a variety of purposes. This 
approach was first developed in the Object Group Service (OGS) 
[7,8], and has been taken in the NewTop service. The NewTop 
service offers a more comprehensive set of group management 
facilities than OGS. In particular, OGS does not support 
overlapping groups. 

The service approach we have taken for building NewTop needs 
to be contrasted with approaches taken elsewhere, as it has 
bearings on the relative system performance. There are two other 
ways of incorporating object groups in CORBA (see [7,8] for 
details). The integration approach takes an existing group 
communication system and replaces the transport service of the 
ORB with the group service [9]. Although this is a very efficient 
way of incorporating group functionality in an ORB, this 
approach is not CORBA compliant, lacking in interoperability. 

In the other approach, called the interceptor approach, messages 
issued by an ORB are intercepted and mapped on to calls of a 
group communication system. Well known examples of this 
approach are the Eternal [10,11] and AQuA [12] systems; Eternal 
uses the Totem group communication system [6], whereas AQuA 
uses the Ensemble group communication system [3]. The need to 
intercept calls makes these systems platform dependent. Both 
Eternal and AQuA make use of group communication for 
supporting object replication only (and not for other uses of group 
communication, such as collaborative applications). They do so 
by using the inclusive approach, and have been engineered for use 
in high speed LAN environments, rather than over the Internet. 
Consequently, these systems can efficiently support certain 
policies, but cannot be flexible enough to support any given 
policy that is deemed efficient in a given setup, say, policies 
appropriate for an Internet client. 

The NewTop service, being fully CORBA compliant, has to rely 
only on the standard ORB message passing mechanisms. Since at 
present ORBs only provide one to one communication, 
multicasting has to be implemented as multiple unicasts - a thread 
is created to handle each synchronous unicast. Using multiple 
threads of execution obtains parallelism and prevents client 
blocking. Such a measure to prevent blocking will not be required 
had the ORB supported asynchronous invocation. A multicast is 
more time consuming in NewTop than in Totem [6] or Transis 
[1,4] which assume a broadcast network. NewTop can however be 
adapted to exploit forthcoming enhancements to ORBs. As part of 
the ongoing development of CORBA, the OMG have recently 
adopted interceptors, messaging, and fanlt-tolerance 
specifications. Availability of ORBs with interceptors will enable 
the use of NewTop as a multicast transport service as 
demonstrated by the Eternal system. Exploitation of the 

messaging service will enable more efficient implementation of 
multicasting than is possible now. In certain applications, our 
object group service will need to be used in conjunction with 
additional subsystems that provide specific functions; for 
example, in order to support passive replication, some form of 
state transfer facility would have to be implemented. We have 
shown elsewhere how a subsystem for replication of transactional 
objects (that itself uses the CORBA transaction service) can make 
use of the object group service [16]. 

Although not a CORBA service, the system described in [17] is 
worth mentioning. The paper describes a client access protocol for 
invoking object replicas, without the need for the client to use 
multicasts. We obtain the same functionality by making use of 
one-clusive groups. 

5. P E R F O R M A N C E  EVALUATION 
Using the NewTop service, we measure the response latencies for 
various policies for an Internet client. As the load on the Internet 
is not static, these measurements should not be treated as 
'absolute' figures, but rather as an aid to compare the 
effectiveness of different policies; for a fair comparison, all 
experiments were conducted overnight during which load 
fluctuations over the Internet were small. To keep the experiment 
space finite, we fix the type of replication to be active (R2) and 
the reply-collection to wait for all (C2). Thus, four policies are 
possible with D and O as the parameters. To help analyse 
performance figures, we present a brief description of the message 
passing involved for different policies, giving particular emphasis 
on the use of ordered and unordered multicasts - the latter being 
delivered straight after reception. Recall that in asymmetric 
ordering, a member M that intends to multicast m, actually 
unicasts m to the sequencer which then appends the ordering 
information and multicasts m. The sequencer can order m as soon 
as it decides on the ordering information for m, and any member 
(including the sender M) as soon as it receives m from the 
sequencer. In the symmetric protocol, however, M multicasts m in 
the group; for any member (including M) to deliver m, every other 
member M' must perform a multicast in that group. That is, one 
fu l l  message exchange (FME for short) between members must 
happen for m to be delivered. It is particularly costly in a 
client/server group because of the presence of long-distance 
member(s) (the client for servers, and servers for the client). 

P1 One-clusive asymmetric - Referring to figure 
5(i), the client issues request to request manager which 
is also sequencer for both the server and client/server 
groups. Request manager delivers the request preserving 
causal precedence in the client/server group, and then 
multicasts request in server group. Each server 
immediately delivers the received request, and sends the 
reply as unordered multicasts within the server group. 
Servers ignore other servers' replies they deliver. The 
request manager bundles the replies and sends the 
bundle to the client (see figure 2(iii) - (iv)). 

P2 Inclusive asymmetric - Referring to figure 
5(ii), client issues request to request manager which is 
also sequencer for the client/server group. Sequencer 
appends ordering information onto the received request, 
and multicasts it to all members of the client/server 
group. Each server immediately delivers the received 
request and the client ignores its own request received 
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from sequencer. Servers send their replies as unordered 
multicasts in the client/server group. Compared to the 
previous policy, the additional cost /xC21 is due to 
multicasts having to be carried out in the client/server 
group: sequencer additionally carries out a long distance 
transmission when it multicasts the ordered request in 
the client/server group, and other servers makes one 
long-distance send when they multicast their replies in 
the client-server group. 

P3 One-c lus ive  s ymmet r i c  - Client issues request 
to request manager (see figure 5(i)) which delivers the 
request as in policy P1 (one-c lus ive  asymmetr ic ) .  After 
delivering the request in the client/server group, request 
manager distributes the request in server group by 
executing symmetric protocol. After one FME, each 
server delivers the request; as in one-clusive asymmetric 
case, each server sends its reply as unordered multicasts 
within server group and the request manager unicasts 
the bundled message to client. The additional message 
cost /xC31 over policy P1 is: servers other than the 
request manager contributing to FME for symmetrically 
ordering the request within server group. Since servers 
are all in the same LAN, /xC3~ is expected to be very 
small. Both P1 and P3 being one-clusive ,  they are 
equally vulnerable to a single server failure. 

P4 Inclus ive  s ymmet r i c  - Client multicasts 
request to all servers using symmetric protocol executed 
in the client/server group. After one FME (within the 
client/server group), each server delivers the request and 
sends its reply as unordered multicasts within 
client/server group. As in the other inclusive case, the 
client delivers all server replies while the servers ignore 
other servers' replies. The additional message cost AC43 
over policy P3 is: client making two long-distance 
unicasts, each server making one long distance unicast 
(to client) for contributing to FME, and servers other 
than the request manager, making a long-distance 
unicast (to client) when multicasting the result. This 
case however has the most masking potential against 
server failures. 

For each of these policies, we consider both pre-send and post- 
send failures and a failure can be real or virtual. A client never 
crashes, nor is ever suspected to have crashed by the servers. 

A client issues a request to the server group and waits for their 
replies. Clients were configured to issue requests as frequently as 
possible; as soon as a reply is received, another request is issued. 
The server used in the experiment is a CORBA object that simply 
returns a pseudo random number when requested to do so by a 
client. Client numbers were increased gradually from one to ten. 
At each of these increments each participating client is timed for 
100 requests, and the average is taken. 

5.1 Implementation Details 
Communications between clients and servers were enabled via the 
Internet. Pentium Linux machines were used as hosts for clients 
and servers. The server group was made up of three members 
which were on the same LAN in Newcastle (United Kingdom), 
and one server was designated to be request manager for one- 

clusive options. All clients were located in London. The ORB 
used was omniORB2 [19]. C++ was the implementation language. 

To aid in ensuring a deterministic approach to request manager 
failure, each client request is associated with a sequence number 
Rx and the client's unique id Cy. In each experiment, 
appropriately marked requests would cause one of four server 
failure scenarios: pre-/post-send true/virtual failues; the following 
describes the activities involved in measuring latencies with 
request numbered Rx from client Cy being marked as: 

i. P re - s en d  true  fa i lu re  - the server designated to be 
request manager fails after request Rx from client Cy 
has been processed by the server group (i.e., Cy receives 
reply for Rx). Thus, when Cy makes next request Rx.l, 
say at time T, it will encounter a (true) failure. The 
period between T and the time when Cy gets two replies 
for Rx+l, is noted as the latency. 

ii. P o s t - s e n d  true  f a i l u re  - the request-manager designate 
falls after successfully receiving Rx from Cy, but before 
it sends any subsequent messages to other servers or 
clients. The time taken for Cy to obtain two replies for 
Rx is noted. 

iii. P r e - s e n d  vir tual  f a i l u re  - while receiving Rx from Cy 
the request-manager designate closes the network 
connection to Cy, causing Cy to catch a network 
exception and suspect a failure. The time taken for Cy to 
obtain three replies for Rx is noted. 

iv. Pos t - send  vir tual  f a i lu re  - after receiving Rx from Cy 
the request-manager designate stops sending messages 
only to Cy until it receives a message (from another 
server) refuting Cy's  suspicion. In one-clusive group, 
the client will attempt to form a new client/server group 
with another server, which will deny client's invitation 
(for details, see subsection 3.3.1) by sending refutal 

messages to the client and to other servers. 

5.2 Non-Replicated Service 
To enable comparative analysis of  the performance figures, the 
CORBA RPC time of  a client in London communicating with a 
single server in Newcastle without the use of NewTop was 
obtained. The average latency was 78 ms. 

The experiment was repeated, with invocations being made via 
the NewTop service with client numbers I through 10. The 
latency figures obtained are shown in graph 1. 

G r a p h  1 - N o n  R e p l i c a t e d  S e r v e r -  RPC (mi l l iseconds)  
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The first observation to be made is that the RPC time of a single 
client making a call via the NewTop service is around 10 ms 
greater than the performance of  a single client making an RPC 
without the NewTop service. This drop in performance may be 
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explained by the way the NewTop service handles deliverable 
messages; once ordering and delivery guarantees have been 
satisfied the NewTop service delivers a message to the application 
level via a CORBA RPC. Although the NewTop service is making 
this call locally, the messages related to such a call must still pass 
through the ORB infrastructure, an expensive procedure due in 
part to the unnecessary mechanisms associated to network 
communications that the ORB applies (e.g., parameter 
marshaling). In the new generation of ORBs, application 
developers may by-pass such mechanisms when they are not 
required. 
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Graph 2 presents the latencies in the absence of failures. Consider 
first the policies (P1 and P3) with one-clusive option which do 
nearly as well as the non-replicated case (graph 1), since the (long 
distance) client needs to interact only with the request manager 
(which is also the sequence manager in P1). The difference 
between them also is marginal as AC31 (due to FME in server 
group over LAN) is small. (In later graphs, we do not distinguish 
these two policies, as the difference is too small for the scale we 
have to choose). The latency for policy P2 (inclusive, asymmetric) 
is more than that for P1 due to AC31. This difference increases 
with the number of clients, as the sequencer in P2 is dealing with 
a larger group that includes a long-distance client, and hence the 
load on the NewTop service increases correspondingly. The 
policy P4 of inclusive and symmetric is the most message costly 
policy. This is reflected on the high latency it yields; however this 
high latency, unlike in P2, does not get worse for small numbers 
of clients. This is because, as the number of clients increase, the 
servers (which get included in each client/server group formed) 
become livelier which is good for the symmetric protocol. As a 
final observation on graph 2, the difference between the best and 
the worst latencies is only about 40 ms. 

5.3 True Failures 
Graph 3 presents the measurements with the (real) failure of 
request-manager designate, occurring just before the client starts 
sending its request (pre-send) or after the request is received but 
not acted on (post-send). As the request manager constitutes a 
single point of failure in P1 and P3, its failure has the most 
devastating effect involving failure detection and formation of a 
new one-elusive group. The post-send, one-elusive case is slower 
than the pre-send, one-elusive case by 100 ms, which is the 
timeout used by the client to receive a reply from the request 
manager. In fact, compared to the results in the previous graph, 
the effectiveness of policies are simply reversed in this graph. 
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We will make two observations over the latencies for (P2, pre- 
send) and (P2, post-send). They are smaller than the latencies for 
(P1, pre-send) and (P1, post-send), respectively. This indicates 
that the formation of a new group is more time-consuming than 
effecting a membership change in an already formed group. 
Further, the latencies for (P2, post-send) approach those for (P2, 
pre-send) as the number of clients increases. This can be 
explained as follows. Consider a single client A. In P2, A sends 
its request only to the sequencer and the other two servers in the 
client/server group are unaware of this and therefore of the fact 
that the sequencer is doing nothing to order A's request. A then 
waits on timeout whose expiry alone can lead to failure detection. 
Now, introduce the second client B. If the functioning servers are 
expecting the sequencer to multicast its result message in the 
client/server group for B, then they will detect the failure of the 
sequencer and effect a membership change not just in the 
client/server for B but also in the client/server for A. Thus A may 
detect the failure early because of B's request being processed. 
So, the more clients, the larger is the likelihood of rapid failure 
detection with respect to a given client in the post-send scenario. 
In the limit, the failure detection becomes as rapid as in the pre- 
send case. 

The convergence of post-send with pre-send is more pronounced 
in the case of P4, where rapid detection is helped not just by the 
presence of more clients but also by the fact that a client 
multicasts its request to all servers. This fact has two implications. 
First, by receiving a request (directly) from the client each server 
executes symmetric protocol, expecting every server to contribute 
to an FME. The prolonged absence of the crashed server will 
cause the functioning members to call for a change of membership 
in every client/server group. Thus, even if there is only one client, 
the failure is suspected well ahead of the expiry of client's 
timeout. This explains the latency for (P4, post-send) is better 
than the latency for even (P1, pre-send): rapid failure detection in 
P4 coupled with costly group formation in P1. The second 
implication explains the smaller latencies of (P4, pre-send) 
compared to (P2, pre-send), though inclusive client/server group 
is used in both cases. Say, there is only one client, A, which first 
sends its request at T - by a unicast to sequencer in P2 and by 
multicast in P4; let RTTcs be the round trip time between A and 
any server, and MC be the time it takes to effect a group 
membership change after a failure is first suspected by a 
functioning member in the group. In the case of (P2, pre-send), A 
can suspect the server failure (through the absence of ack) no 
earlier than T + RTFcs; it can know of the new sequencer no 
earlier than T+ R'I'F= + MC, and the new sequencer will first 
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receive client request only by T+ RYl'cs + M C  + RT'I'cJ2. With 
(P4, pre-send) however, functioning servers receive A's  multicast 
by T+ RTTd2, effect the membership change by T+ M C  + 

RTI'd2, and also order the request by that time as the 
membership change involves an FME which helps order the 
request. That is, processing begins in P4 early by at least RTrcs. 

5.4 Virtual Failure 
In case of virtual failures, policies (P1 and P3) involving one- 
elusive options suffer a double 'blow': the client is rebuffed when 
it attempts to form a new client/server group with another server 
and then it re-forms the client/server group with the old request 
manager. These time consuming activities increase the latencies 
for P1 and P3, compared to the previous case where re-formation 
does not take place. Apart from P1, P3 and (P2, pre-send), the 
measurements are quite similar to graph 2. This is because a 
failure suspicion, correct or not, does initiate the protocol for 
membership change; when suspicion is incorrect, it is refuted by 
an unsuspected member and this refutal terminates the protocol. A 
server can refute an incorrect suspicion quickly, if it has been in 
contact with the suspect recently, which happens when servers are 
kept active either due to a large number of clients accessing them 
or because the client's request is sent to all servers through 
symmetric protocol. (In NewTop, the suspicion initiator must 
indicate the last message it had received from the suspected; any 
member that has received from the allegedly crashed member a 
later message, can instantly send a refute). 
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The under-performance of (P2, pre-send) can be explained as 
follows. Here, the client only attempts to unicast its request to the 
sequencer, but does not go ahead with the transmission as it 
wrongly suspects the sequencer to have failed. So, it engages itself 
in an unsuccessful attempt to change the membership and get a 
new sequencer. This waste of time is the cause for the under- 
performance. Whereas in (P2, post-send), the attempt to change 
the membership proceeds in parallel with the ordering and 
processing of the request, and hence the client's false suspicion 
has no impact on the latency. 

5.5 Observations 
The measurements and the comparative analysis lead to the 
following observations. In the failure-free scenario, the one- 
elusive approach performs well, irrespective of the ordering 
protocols used. The performance becomes the poorest in the 
presence of real/virtual failures. The inclusive symmetric policy 
P4 is best suited to failure prone environments, though it under 
performs in the absence of failures by a margin of 40 ms which is 
about half the round trip time of 83 ms. A long-distance user of a 

replicated service has two extreme policy options: P1 and P3 if 
failures are deemed rare and the high cost incurred when failures 
do occur is acceptable; or, P4 if the user is particular about fault- 
tolerance and is willing to pay a small performance penalty when 
failures do not happen. Between these two extremes lies P2 except 
for the deteriorating performance with increasing number of 
clients in the case of pre-send virtual failures. A remedy for this 
can be for the client to switch its policy to P4 once it suspects a 
failure of the sequencer while it is unicasting its request. Note that 
in (P2, pre-send) the request does not get sent to the sequencer; 
therefore when the client re-sends its request with P4 option, it is 
not duplicating its request. If the servers are programmed to detect 
duplicate requests, client can switch from P2 to P4 even in post- 
send cases. Of course, a switch from P2 to P4 and back would 
require servers to switch between ordering protocols. The 
implementation framework presented in section 3.2 identifies the 
requirements on the object group service systems to support this 
flexibility, and the NewTop service meets these requirements. 

6. CONCLUDING REMARKS 
We have identified various policies for managing and making 
invoctions on a replica server group; the policy attributes and 
options on them, which constitute a policy are presented. We then 
presented an implementation framework to support these policies. 
By being group-oriented and supportive of overlapping groups, 
this framework relieves the application developer of having to 
track causal dependencies between client requests, and also 
provides a flexible support for servers to switch between order 
protocols. An overview of the NewTop service, which meets the 
requirements identified within this framework, is presented. Using 
this system, relative effectiveness of four different policies for an 
Internet client was analysed. Experiments allowed both real and 
virtual failures, the latter are incorrect suspicions caused typically 
by load fluctuations over the Internet. Certain policies did 
extremely well (nearly as well as unreplicated server) in the 
absence of failures but performed poorly when failures happened, 
and vice versa. A compromise between these two extremes is 
possible, if a policy shift is done whenever a client suspects a 
failure. For this policy shift to be possible, the group membership 
service must support servers that can switch between order 
protocols - a service which any system, like NewTop, that 
supports overlapping groups should be able to provide. 
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