
4

Design of a Novel Information System for Semi-automated
Management of Cybersecurity in Industrial Control Systems

KIMIA AMERI, MICHAEL HEMPEL, and HAMID SHARIF,Department of Electrical & Computer

Engineering, University of Nebraska-Lincoln, USA

JUAN LOPEZ JR. and KALYAN PERUMALLA∗, Oak Ridge National Laboratory, USA

There is an urgent need in many critical infrastructure sectors, including the energy sector, for attaining de-
tailed insights into cybersecurity features and compliance with cybersecurity requirements related to their
Operational Technology (OT) deployments. Frequent feature changes of OT devices interfere with this need,
posing a great risk to customers. One effective way to address this challenge is via a semi-automated cyber-
physical security assurance approach, which enables verification and validation of the OT device cybersecu-
rity claims against actual capabilities, both pre- and post-deployment. To realize this approach, this article
presents new methodology and algorithms to automatically identify cybersecurity-related claims expressed
in natural language form in ICS device documents. We developed an identification process that employs natu-
ral language processing (NLP) techniques with the goal of semi-automated vetting of detected claims against
their device implementation. We also present our novel NLP components for verifying feature claims against
relevant cybersecurity requirements. The verification pipeline includes components such as automated ven-
dor identification, device document curation, feature claim identification utilizing sentiment analysis for con-
flict resolution, and reporting of features that are claimed to be supported or indicated as unsupported. Our
novel matching engine represents the first automated information system available in the cybersecurity do-
main that directly aids the generation of ICS compliance reports.

CCS Concepts: • Computing methodologies → Natural language processing; Lexical semantics; Ma-

chine learning algorithms; • Information systems → Information retrieval;

Additional Key Words and Phrases: Cybersecurity, vetting system, industrial control systems, natural
language processing, CYVET

ACM Reference format:

Kimia Ameri, Michael Hempel, Hamid Sharif, Juan Lopez Jr., and Kalyan Perumalla. 2023. Design of a Novel
Information System for Semi-automated Management of Cybersecurity in Industrial Control Systems. ACM
Trans. Manag. Inform. Syst. 14, 1, Article 4 (January 2023), 35 pages.
https://doi.org/10.1145/3546580

*This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Depart-
ment of Energy (DOE). The publisher acknowledges the U.S. government license to provide public access under the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
This research was funded by the U.S. Dept of Energy through a subcontract from Oak Ridge National Laboratory, Project
No. 4000175929 (Project CYVET).
Authors’ addresses: K. Ameri, M. Hempel, and H. Sharif (corresponding author), Department of Electrical & Computer
Engineering, University of Nebraska-Lincoln, PKI 200, Peter Kiewit Institute, 1110 South 67th Street, Omaha NE 68182,
USA; emails: {kameri2, mhempel, hsharif}@unl.edu; J. Lopez Jr. and K. Perumalla, Oak Ridge National Laboratory, P.O. Box
2008, Oak Ridge TN 37831, USA; emails: {lopezj, perumallaks}@ornl.gov.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
2158-656X/2023/01-ART4 $15.00
https://doi.org/10.1145/3546580

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

https://orcid.org/0000-0003-2879-1871
https://orcid.org/0000-0002-7091-8349
https://orcid.org/0000-0001-6229-2043
https://orcid.org/0000-0001-5083-8627
https://orcid.org/0000-0002-7458-0832
https://doi.org/10.1145/3546580
http://energy.gov/downloads/doe-public-access-plan
mailto:permissions@acm.org
https://doi.org/10.1145/3546580
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546580&domain=pdf&date_stamp=2023-01-16

4:2 K. Ameri et al.

1 INTRODUCTION

Cybersecurity auditing plays an increasingly important role in Operational Technology (OT).
Many critical infrastructure industries, including the energy sector, rely on OT and Industrial

Control Systems (ICS), and therefore a robust and reliable cybersecurity solution is needed for
OT deployments. However, ICS vendors always add new features to their products to incentivize
reasons for system upgrades. Often, these changes are driven by vendors, while customers may
not be aware of these feature changes’ full impact on their cybersecurity posture and regulatory
compliance. Furthermore, the difference between vendor-provided cybersecurity feature claims
and the customer’s expectation for OT cybersecurity can be significant in industries such as the
energy sector [62]. Due to these changes, the workload for dynamic verification shifts from the
energy sector to the customer, and consequently is creating a significant cybersecurity risk. As a
final consideration, the number of research studies into cybersecurity audits for OT is very limited.
Therefore, there is an urgent need for a solution to audit whether vendor-supplied features

(VSF) adhere to cybersecurity requirements as well as standards.
Cybersecurity requirements (CRs) are standardized and codified by industry organizations

and standards bodies in human-readable formats. A VSF can (1) align andmatchwith CRs or satisfy
those requirements, (2) go beyond the related requirements, or (3) contradict and violate related
requirements [62]. In order for operators to determine whether OT devices pose a threat to cyber-
security by weakening security postures, they must interpret vendor claims regarding supported
features, evaluate the features of interest manually to see how well they match vendor features
and reconcile those features with industry needs and requirements. Many industry requirements
and their complexity must be taken into account as well as the wide variety of devices and their
documentation, as well as the associated assessment of Installation Qualification (IQ), Oper-
ational Qualification (OQ), and Performance Qualification (PQ). Traditionally, this work re-
quires specialized expertise and poses a great risk to cybersecurity assurance. Therefore, the result
is subjective to human error and must be repeated periodically [62].

Achieving confidence that the cybersecurity posture of critical infrastructure industries such as
the energy sector meets or exceeds the requirements of that industry to stay ahead of cybersecurity
risks is a vital, yet extremely challenging objective. To aid this process, we are developing aCyber-
Physical Security Assurance Framework for a Semi-automated Vetting system (CYVET)

to address this challenge. CYVET addresses directly the need to improve the current industry
capabilities for operational technology cybersecurity and associated control system infrastructure
validation and verification [62]. Figure 1 shows the overall information flow of the CYVET system.

The end-to-end framework of the vetting engine, which is the core component of CYVET, is
presented in this article. The proposed framework starts with assembling and curating a large
collection of ICS device documents, and performing Natural Language Processing (NLP) sen-
timent analysis in claims sequences to determine features support indicators for each product.
This vetting system provides a vital capability to critical infrastructure operators to ensure that
vendor-claimed device cybersecurity capabilities match industry requirements.

CYVET has broad applicability across all critical infrastructure sectors and beyond, since it is
device- and architecture-independent. OT equipment, software, and the underlying control sys-
tem architecture will be tested and validated using this cybersecurity verification and validation
framework. In this article, we provide details on the framework’s operations, present and discuss
obtained results, and provide an outlook for our future efforts on CYVET.
CYVET and its Tally-Vet engine are a unique new approach. To the best of our knowledge there

is no similar system available or published. We therefore lack the ability to compare our system
with other published efforts. Instead, this article aims to demonstrate the capabilities and results

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:3

Fig. 1. Overall workflow of the CYVET cybersecurity vetting approach.

obtainable with our system using comprehensive results shown and detailed throughout this
article.
The remainder of this article is organized as follows. In Section 2, we briefly introduce back-

ground information related to CYVET vetting system and its components. In Section 3, we briefly
reviews the related work for different components of our framework.
We present our proposed framework, describe the operation of each functional element, and

present results for these elements in Sections 4 and 5, with each subsection also discussing relevant
related results. In Section 5, we also present and discuss our final Tally-Vet engine for feature claims
detection. In Section 6, we present a discussion and analysis our results and compare our methods
with others and, in Section 7, we present the conclusion and future work for this project.

2 BACKGROUND

2.1 A High-level View of CYVET

An effective vetting engine is required to ensure device cybersecurity features meet industry-
standard requirements. A key aspect of this vetting engine is to enhance the industry capabilities
to verify and validate OT infrastructure cybersecurity claims, both pre- and post-deployment. The
primary objectives for this vetting engine are listed below:

• Verification: Analysis and reconciliation of vendor features and standards.
• Validation: Process of generating, executing, and presenting testing scripts of the identified
security features.

In pursuit of these goals, our team is researching a semi-automated cyber-physical security
assurance system we call CYVET [62]. The CYVET vetting system has two primary components:

(1) Tally-Vet: aims to verify VSF claims against the relevant CRs. The verification process uti-
lizes a variety of different NLP techniques to analyze both vendor cybersecurity device claims
and CRs.

(2) Test-Vet: aims to validate the specific set of features identified by Tally-Vet, utilizing an
automated approach involving actual hardware and software targets.

By integrating these two components, it is possible for CYVET to develop a sequence of cyber-
security tests to comprehensively assess and vet the target system, and to ensure that it meets the
customer’s requirements.

2.2 Tally-Vet Overview

Tally-Vet, as shown earlier, is one of the principal components of the CYVET vetting system, and
is responsible for comparing and reconciling the VSFs against the corresponding CRs to detect
matches, extended features, and possible requirement violations. To build this vetting system,
a broad range of documents from ICS vendors is required. These documents are curated and

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:4 K. Ameri et al.

pre-processed prior to extracting textual information via NLP and subsequent parsing of human-
readable text into machine-usable data.
Post-extraction from documents, all the content is stored as structured data in CYVET’s data-

base. This information is then processed by a machine learning classifier to determine and iden-
tify sequences related to the device feature claims. These claims are then reconciled and matched
against the relevant CRs within Tally-Vet. The matching process enables us to identify and resolve
conflicting feature claims and to collate a feature report (Figure 1, the Tally-Vet component). ICS
compliance reporting is thus simplified using Tally-Vet [62].

3 LITERATURE REVIEW

To the best of our knowledge, there is currently no framework available or published with the
capabilities developed for our CYVET system. However, there are works published that share some
similarities with individual components of our framework. In this section, we therefore review
these published works and compare them against our targeted functionality.

3.1 Document Library Curation

The number of scientific publications focused on scraping and classifying web content for domain-
specific areas are limited. Anglin [3],Modi and Jagtap [59], and Luscombe et al. [55]were proposing
NLP and machine learning techniques to scrape web content and a pipeline to classify their con-
tent and documents. The pipelines and methods these authors implemented is highly reliant on
their specific domains, however. For example, Anglin [3] proposed a semi-automated framework
to study local policy variation in school dress codes using web crawlers and NLP techniques. For
web-scraping, the framework used a pre-determined list of schools to scrape their websites and
collect all links leading to documents. The policy-relevant documents then were processed using a
Convolutional Neural Network (CNN) and NLP techniques to identify policy nuances. Varela
et al. [79] summarized different methodologies and terminology used for web scraping in the do-
main of political analysis. In this article, the authors reviewed somemethods and packages used for
extracting political data from text documents available from the internet. Chandrika et al. [13] used
Python to extract and parse unstructured information from the web. Then a relational database
was used to store this extracted data.

All these papers are focused on scraping and crawling websites for domain-specific content,
which does align with our goals. The methodologies and NLP techniques presented in this article
expand upon the approaches presented in the reviewed papers. For our framework, we adopted a
similar approach.We then provided it with novel capabilities to automate the process of identifying
sources for domain-specific content and automated document library curation. Our framework is
furthermore able to utilize multiple search engines to expand and refine its content source list of
ICS vendor names and organizing downloaded documents into different categories.

3.2 Structured Content Extraction

There are many variations in document layout, their sections, elements or even encoding, making
this a highly complex and challenging problem on how to best present essential information to
the reader in a well-structured manner. The analysis of the layout of documents has been used by
numerous researchers to develop techniques for detecting tables, layouts, and sections [5, 6, 18, 22,
23, 25, 27, 30, 34, 77, 89].

The two open-source Python packages, Camelot [57] and Tabula [6] are designed to find tabular
content from PDF documents. However, these two packages cannot successfully find all types of
table formats, especially if the PDF page has a multicolumn format or tables span multiple pages.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:5

For the past decade, table detection, extraction and annotation have been key research areas [17],
leading to a variety of extraction approaches [11, 22, 26, 27, 50, 61, 70, 71, 86]. For example, for table
detection in PDF documents, Hao et al. [30] and Khan et al. [41] and Gilani et al. used deep learning
methods. These recent methods convert PDFs into images and then detect table boundaries and
cells in the PDF page with the help of deep learning models. Hao et al. [30] used a set of pre-
defined rules to compute region proposals. CNN is then used to identify whether these region
proposals belong to tables or not. However, if the table spans across multiple columns, it is unable
to recognize table regions and thus fails to properly localize the regions. Gilani et al. [25] presented
a CNN model to detect table regions in document images. The output of this model includes the
coordinates of bounding boxes of predicted tables. Khan et al. [41] used the CNNmodel introduced
by Gilani et al. [25] to detect table boundaries. For each detected table, they then process the table
image with bi-directional Gated Recurrent Unit (GRU), a type of Recurrent Neural Network, to
find columns and rows. None of these papers discussed the text annotation from these detected
tables.
From our review of published scientific efforts, we could not find any publications that address

the specific needs and challenges of Tally-Vet’s contextualized text extraction process, such as
handling different list levels and tables. To address this shortcoming, our work contributes new
algorithms to intelligently and automatically identify document elements such as lists and tables,
as well as for contextually extracting and annotating sequences from DOCX and PDF documents.

3.3 Claim Detection

By adapting a pre-trained language model for a targeted downstream task, performance can be
significantly improved [39, 42, 53, 75, 81]. These performance improvements can be divided into
pre-training language models and fine-tuning language models process. For pre-training language
models in specific domain, researchers focused on domain-specific corpus to build a specific lan-
guage model such as BioBERT [48] and SciBERT [9], for biomedical language representation and
scientific text, respectively. A number of studies have demonstrated significant enhancements in
downstream tasks, including sentiment analysis [4] and classification [49] by fine-tuning an exist-
ing language model.
Some examples of using language models such as Bidirectional Encoder Representations

from Transformers (BERT) specifically for applications in the cybersecurity domain are fine-
tuning sentences-based BERT sentiment analysis for vulnerability exploitability predic-

tion (ExBERT) [88]. Another example is fine-tuning BERT forName Entity Recognition (NER)

for the cybersecurity domain in English [14, 21, 90], Russian [76], and Chinese [85].
From our review, we could not find any language model tuned for cybersecurity text classifi-

cation tasks. In this article, we used our claim sequence database we developed specifically for
the cybersecurity domain (details discussed in Reference [1]). This database was used to gener-
ate CyBERT, a fine-tuned BERT classifier on cybersecurity sequences to identify feature claims.
These claim sequences and the fine-tuning process we introduced in CyBERT [1] are used in this
article for our cybersecurity vetting engine to verify those features against the published industry
requirements for cybersecurity.

3.4 Sentiment Analysis

Sentiment analysis is the field of study that analyzes opinions, emotions, sentiments, attitudes,
and evaluations from written language [51]. Hutto and Gilbert [35] developed Valence Aware

Dictionary for sEntiment Reasoning (VADER) algorithm, a parsimonious lexicon and rule-
based model for general sentiment analysis. The prior polarity of lexical entries is usually in-
dicated by a sentiment lexicon [84]. A sentiment lexicon refers to a list of lexical features

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:6 K. Ameri et al.

(e.g., words) that are labeled positively or negatively based on their inherent semantic orienta-
tion [52]. A number of studies have been proposed to apply sentiment analysis for text classifica-
tion [28, 43, 45, 58, 60, 64, 72, 83]. Classification methods for sentiment analysis can be divided into
three types: lexicon-based approaches, machine learning approaches, and hybrid approaches [56].
Lexicon-based approaches use a set of words that have been precoded for polarity to identify
sentiments [52]. To predict sentiment polarity, machine learning approaches use both supervised
and unsupervised learning methods [86]. In the hybrid approach, sentiment polarity is detected
through both machine learning and lexicon-based approaches [28]. For this project, we defined
the feature attribution as a text classification problem based on lexicon-based approaches for sen-
timent analysis.
Several studies have used sentiment classification in cybersecurity textual data over the past few

years [24, 28, 45, 72, 73]. Examples of these models using sentiment analysis techniques to interpret
cybersecurity-related texts are shown in Reference [28] for social media sentiment analysis, and
in Reference [24] for analyzing the sentiment expressed in newspapers. Gupta et al. [28] analyzed
the relationship between cybersecurity attitudes of users on Twitter and online financial behaviors.
They hypothesized that users with positive sentiment on cybersecurity will engage in more online
financial transactions andmight disclose sensitive information. The researchers used a hybrid NLP
technique to integrate linguistic and statistical analysis techniques. Based on this hybrid model,
the researchers were able to measure whether users are genuinely concerned about cybersecurity
issues and if that concern impacts their online behavior.
Shu et al. [73] proposed an unsupervised sentiment predictor model to detect cyber attack be-

havior in Twitter users based on sentiment polarity score. In their proposed model, the sentiment
analyzer was connected to a regression model to find relation and correlation between sentiments
of trends in tweets, and the probability of attacks in the real world.
These studies show the benefits of using sentiment analysis in cybersecurity text classification.

However, as we could observe from these related publications on sentiment analysis, their focus
is on evaluating positive/negative emotional sentiment. In our work presented in this article, we
leverage the sentiment analysis paradigm to evaluate supportive/unsupportive sentiment, which
only partially aligns with emotional sentiment and thus required research to be conducted that
culminated in our specialized sentiment analysis approach. In other words, we use the sentiment
polarity score not as an emotional indicator, but rather as an indicator to understand whether the
feature is supported or not supported by the device.

4 PROPOSED TALLY-VET PREPROCESSING METHODOLOGY

The main focus of this article is to present and discuss our framework for CYVET’s Tally-Vet
engine. Figure 2 shows each component and their connections within the Tally-Vet framework.
This framework shows that the process starts with gathering ICS device documents from online
resources, and parsing of human-readable documents (PDFs and DOCXs) to extract information
and represent them in a machine-usable format for CYVET’s remaining processing workflow. A
key aspect to the content extraction aspect is maintaining structural and contextual relationships
between elements extracted from these document resources when they are stored in CYVET’s
database, for example contextually linking information from different rows and columns of tables,
across images, and so on. Additionally, sequences extracted from ICS documents were used to
train a feature claim identifier (CyBERT) [1].With CyBERT’s classifier and NLP techniques, we can
identify sequences related to claims about device features. TheNLP sentiment analysis technique is
then performed on selecting cybersecurity device claim sequences to gauge whether that sequence
expresses support or lack of support for that feature. By aggregating the reports for each feature
across all documents related to a given device, our framework is able to identify conflicting feature

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:7

Fig. 2. Tally-Vet framework components.

claims. The final step in the Tally-Vet framework utilizes that information to compile a report of
features that are being claimed for the device. Test-Vet, the other core component of CYVET, then
can utilize that information to execute a sequence of tests designed to validate each claimed feature
and to check for flaws within that implementation.
As part of our research work, all steps of our framework were implemented in Python 3.8. to

test and verify this semi-automated framework for the Tally-Vet engine of our CYVET system. Thus
far, our CYVETwork focuses on English language-based vendor documents and specifications, but
the same framework could be adapted to work across a range of other languages as well.

4.1 Document Library Curation

As shown in Figure 1, CYVET is built around the availability of relevant documents for its vetting
process. Tally-Vet includes functionality to identify vendors and their product names by scanning
web sites, downloading product documentation accessible on those websites, as well as processing
these documents for classification based on type, language, and device attribution. This curation
of CYVET’s document repository is a vital first step toward its overall functionality, and is the
foundation upon which our NLP and cybersecurity vetting processes are being developed.
Identifying domain-specific information from online sources and document classification is it-

self a challenging task. It requires a generalized and robust approach to identify ICS vendors, an-
alyze websites to determine ICS product offerings, and classify documents based on their con-
tent for relevant product claims. Furthermore, there was no publicly available dataset for training
cybersecurity-related NLP models available for CYVET’s development. Hence, CYVET’s develop-
ment also included the research into establishing a cybersecurity-specific NLP dataset from its
document repository.
In our previous paper [2], we discussed our semi-supervised framework to establish this ICS

device information repository. This framework consists of four main steps, including vendor iden-
tification, homepage classification, vendor classification, and document classification. The process
starts with scanning ICS-Cert’s website for ICS vendor name extraction, and using Google search
to identify each vendor’s homepage. Additionally, we incorporated multiple search engines to
find ICS vendor-related links for vendor and homepage identification using pre-defined keywords.
This process is followed by NLP techniques including Latent Dirichlet Allocation (LDA) topic
modeling [10] and context-dependent scoring metrics applied to the text content of each identi-
fied web site. LDA is an unsupervised Bayesian probabilistic model capable of determining the

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

https://us-cert.cisa.gov/

4:8 K. Ameri et al.

Table 1. ICS Document Repository Entities Statistics

Number of Entities Description

Vendor Identification 1,930 possible
340 vendor names From ICS-Cert website
1,590 links From web searches using

vendors pre-defined keywords

Homepage Classification 1,457 unique
420 links From vendor name queries

websites 1,084 links From keyword-driven queries

Vendor Classification 286 ICS Vendor
578 websites Topic Modelling with LDA on

website text content
850 websites Label websites with context-

dependent scoring metric

Document Classification 12,581 ICS
2,844 Manual NLP techniques to determining

key terms, key elements, key
product-related 7,832 Brochure segments, and key phrases and

match these against a pre-defined
666 Catalog set of important phrases

semantic relationships among words in a corpus. The demonstrated context-dependent scoring
metric algorithms are based on the appearance of defined keywords and phrases in the textual
content of these web pages. These methods require some human supervision for labeling the top-
ics of a vendor’s homepage via LDA and scoring metrics. Through this process, we were able to
train a neural network classifier that can automatically label homepages to minimize such human
interactions. This neural network model is used to identify new ICS vendor websites through an
automated search process.

4.1.1 Document Classification. Tally-Vet then downloads all PDFs from identified vendor web-
sites, extract the textual content from these documents, and determines key phrases, key terms,
and key segments. The NLTK Toolkit [54] Python package was used to pre-process and tokenize
text content, keywords and phrases. The final step in Tally-Vet’s document curation is to apply a
matching algorithm to compare these key elements with a pre-defined set of ICS device informa-
tion. The matching algorithm separates documents containing ICS device information from other
PDF files, such as annual reports. Among all downloaded PDFs, five percent were found to be
scanned documents, three percent were corrupted files, and the remaining 92 percent were reg-
ular documents for CYVET’s processing pipeline. Table 1 presents the ICS document repository
statistics [2].
In our proposed framework, we combined results from keyword searching in multiple search

engines with results from scanning the ICS-Cert’s website. This method ensures we cover a wide
range of vendor names for our database. The other contribution of our framework in comparison
with the other methods mentioned in the literature is the ability to identify ICS vendor websites
with our NN model. The main advantage of our database curation framework is the ability to
classify downloaded documents into four different groups of manual, brochure, catalog, and not
relevant.

4.2 Product Name Scraper

Once our system obtained and curated a comprehensive and relevant document library of vendor
documents related to products, TallyVet’s analysis framework needs the ability to attribute these
documents to individual product names associated with each vendor. Hence, we needed to curate
a library of product names and attribute them to vendors first, before being in a position to process

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

https://us-cert.cisa.gov/

Design of a Novel Information System for Semi-automated Management 4:9

each document associate it to zero, one, or multiple product names. To curate that product name
library, we use a product name scraper.
Automated Web scraping uses computer code to download, extract and organize data from the

web and then utilize it for further analysis [78]. This has become a valuable tool for data collection
in research areas such as information technology [44], public health [67], the financial sector [46],
and cybersecurity [82]. For Tally-Vet, to attribute a vendor’s products to documents, Tally-Vet uses
web scraping of ICS vendor websites to automate the process of identifying product names. The
challenge herein is that there are wide range of vendors, each with unique website styles, formats,
and methods of representing products and their names. To enable Tally-Vet to automatically detect
product names, we developed a customized semi-supervised approach to web scraping, which
focuses on the HTML behind the web content of each ICS vendor.
This algorithm is driven by predefined rules specific to each website. The algorithm is composed

of four major steps:

(1) Link Fetching: Compile a set of links to visit on the vendor website, which are extracted
from the sitemap or a specific product section on the website.

(2) Conditions-based HTML element identification: For each page identified via the
fetched link, find all tags that meet the requirements and conditions, utilizing nesting rules
representing a hierarchy of tags and Boolean logic.

(3) Rules-based text extraction: For each tag identified through the conditionmatching above,
extract text from element.

(4) Pattern testing: In all steps, the applied rules can leverage pattern definitions for processing
extracted information.

The product name scraper algorithm starts with a supervised instruction set, which helps the
script to find the pages to visit, what to look for on each page during these visits, and how to extract
elements-of-interest (product names) from each page. using these instruction sets, the script will be
able to identify conditions-based HTML elements. For each page, it will find all tags that meet the
requirements and parse them to extract product names. An example of this rules-based approach
for product name extraction is presented in Figure 3, using the SEL website for illustration.
These rules are able to, for example, represent the following process in the form of individual

rules that can be applied to numerous web pages from a vendor’s website:

• Analyze a paginated Product Page, including dynamically determining the maximum page
index
– Find a <small> tag within HTML
∗ Needs to have a “translate” property with value “currentPageNofM”
∗ Also needs to be nested INSIDE a <div> tag

· This <div> tag needs to have classes “tab-pane” and “active”
– Extracts the maximum page index from the element’s property “translate-values” to get
field “totalPages” and converts it to integer

– Generates links to each paginated product page using a defined pattern, iterated over for
each page number from 1 to the maximum page index

• Visits each page link generated from the pagination
• On each page it locates tags
– Each span needs to have style classes “tab-pane” and “active”
– It also needs to have an element property with a given value

• From the matched element it extracts the text and matches it against a specific list of product
name patterns

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:10 K. Ameri et al.

Fig. 3. Product name scraper rule-base script example for one website.

• Only pattern-matching product names are accepted and added to the list of extracted product
names

These rules shown above are an example taken from our rule set, and are specific to a given
vendor website. Using rules such as these, Tally-Vet’s product name extractor was able to identify
a total of 264 product names from that vendor’s website. By customizing these rules, we can adapt
the extraction process to any vendor website.

4.3 Sequence Extraction

An important aspect of NLP applies to document content is the ability to extract textual content
in the form of sequences. Additionally, although understanding the structure of a document is
important for many NLP tasks and overall document content analytics, there are also use cases
where the structure does not play an important role, and only the sequences themselves—the raw
text—is needed. The Document Classification, as shown in the earlier Section 4.1.1, is one of the
examples where only the textual information without associated context is relevant and extracted
by the system. For document classification, the focus is on finding key elements and key phrases
in the document. Thus, in these cases, we only focus on raw text directly extracted from PDF
documents, which is a faster process than conducting the full contextual text extraction pathway
detailed in the next subsection (Section 4.4), while providing all relevant information for a full-text
keyword search.
As mentioned above, Tally-Vet provides two pathways for accessing content from documents:

• A direct access to the PDF for simple raw text extraction, and contextual sequence extraction.
• By first converting the PDF to DOCX to make the structure and context accessible, and then
extracting structural sequences from the DOCX representation.

In the following section, we detail our proposed algorithm for contextual sequence extraction
from PDF documents, i.e., the algorithms we use to extract sequences in such a way that it main-
tains the context in which they were present in the document.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:11

Fig. 4. Hierarchical structure in PDF documents.

4.4 Contextual Sequence Extraction from PDF

Due to the PDF document’s challenges in maintaining the context of the presented information
when shown within tables, lists, and so on, the procedure that Tally-Vet employs for content ex-
traction with context representation is complex.
To handle working directly with PDFs, Tally-Vet uses the PyMuPDF [38] Python package to ex-

tract metadata for each PDF document. This metadata is then used in our StructuredSequence
algorithm to extract contextualized sequences from PDF elements, such as paragraphs and table
content. In this section, we describe the details of each stage of Tally-Vet’s StructuredSequence
algorithm. Figure 4 illustrates a hierarchical structure in a PDF document. This hierarchical struc-
ture is the basis for StructuredSequence elements. Algorithm 2 presents a high-level pseudo-code
for Tally-Vet’s StructuredSequence algorithm.
For each page in the PDF, the algorithm groups and orders each text block based on page ori-

entation, using the PaдeOrientation(Paдe) function. This function will use the BBOX tag values
extracted using PyMuPDF to decide if the paper is in portrait or landscape orientation. Page orien-
tation is an important factor that helps us order each element of the page and also to to find the
spatial location that will be used for lists, captions, and headings identification. For image blocks,
it reads the text embedded within the image using Optical Character Recognition (OCR), pro-
vided by the open-source Python-Tesseract (PyTesseract) library [32]. Then, for each text
block the structural type is determined, considering the font size, style, and spatial location. Next,
for each text block content is grouped into headings, regular and captions. Each paragraph and
caption group is then sequentially ordered based on the calculated bounding box of the group and
other information obtained from PyMuPDF’s dictionary.

For regular type elements, the DissectTextReдular function is called to further differentiate the
type of content, detecting for example tables and lists within paragraphs. The contextual sequence
extraction algorithm allows us to use PyMuPDF to obtain the text spans and identify paragraphs,
tables and list. For each text block in each document page, based on spans for each line a list of
bullet point identifiers is determined using regular expressions (ExtractLayouts function). This list
information, combined with the start position for each line, is then used to identify the list level.
The indent and line start positions are also used as an identifier for tables and boxes. Figure 5
shows an example of a PDF used in our contextual sequence extraction algorithm. This algorithm
allows us to group the text content of each PDF into different levels of headings, paragraphs and

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:12 K. Ameri et al.

Fig. 5. Content extraction from PDFs.

captions, and sequential reading order of these groups. Also it can differentiate between lists and
tables and regular text paragraphs.
The DissectTextHeadinд algorithm uses the ExtractLayouts function outputs to sort each ele-

ment of the page based on their font size. Captions are the lines of page that have smaller font size
than the document paragraph font size, whereas headings have font size equal to or larger than
the document paragraph font size. If for any line the font size is equal to the paragraph font size,
then the indent and line start positions can separate paragraphs form headings.

4.5 Document-to-Product Attribution

In the Document Library Curation part (Section 4.1), we showed how we are able to classify down-
loaded documents into manuals, brochures and catalogs. We have also shown in Section 4.2 how
our system is able to automate the collection of product names associated with the various ven-
dors. The combination of having curated a document library and a product name list allows us
then to process each document and attribute it to zero, one, or multiple product names, i.e., de-
scribing which products this document refers to and for which it presents relevant information. In
this section, we thus describe our algorithm that conducts attribution of these documents to spe-
cific products offered by a vendor. A manual, for example, may be focused on a specific product,
whereas a catalog will be attributed to multiple products offered by the vendor. Product attribution
sets the stage for processing only the relevant documents when Tally-Vet extracts feature claims
for a specific product. Product names are collected as described in the Product Name Scraper sec-
tion (Section 4.2). The matching algorithm described herein will result in a product name that we
identified from the content or metadata of a given document. Similarly, we can later produce a list
of documents relevant to a given product.
To match a given product name to a specific document in Tally-Vet’s document library, the algo-

rithmfirst converts the product name to all lower-case, and then extracts all individual components
of the product name. For example, “MyWISE-PaaS” will be represented by the two components
“mywise” and “paas.” Then any variation of these components, including subsets of components,
will be used to curate all combinations of a product name’s sub-words.

This new list of all patterns is subsequently sorted in descending order based on length. For ex-
ample, for the above name, the final pattern represented as a regular expressionwill be [“mywise[â-
z0-9]+paas,” “paas[â-z0-9]+mywise,” “mywise,” “paas”]. The first item in the list will match any
combination of two parts (mywise and paas) connected with any character such as underline and
hyphen. For example, mywise_paas, mywise-paaswill bematchedwith the “mywise[â-z0-9]+paas”

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:13

Fig. 6. An example of the product name search algorithm in a PDF document.

pattern. Algorithm 1 shows the required steps to find all patterns for a given product name. The
objective of this algorithm is to eliminate any possible discrepancies between the product name as
found on a vendor’s website and the product name’s usage in the vendor’s documents. This will
increase the chance of correctly identifying and attributing all documents to all applicable product
names.
Once this process completes and Tally-Vet obtained the permutations of all product names, Tally-

Vet then conducts a search across all sequences extracted from a given document to determine if
any product name permutation appears in the document. Product name permutations are consid-
ered in order as they appear in the list. The algorithmwill therefore first search for all exactmatches
and compile a list from the matches in the list and the document. Only if no exact match of a given
product name is found will the algorithm consider the remaining permutation patterns. Thus, the
algorithm stops when a product name’s permutation is detected and will no longer consider other
permutations of the same product name. Thus, by sorting patterns from longer to shorter length,
we ensure that the algorithm is able to consider the best possible matches first before relaxing
the match requirements. This ensures accuracy and efficiency. An example of the product search
algorithm is shown in Figure 6.

ALGORITHM 1: Find all patterns for a given product name

Input :Product Name N
Output :List of Patterns AllPatterns
keywords = Split product name (N) into its components (letters, underscore, digits)
Variants = Find combinations of each keyword length:
itertools.combinations (keywords, L)
Patterns = All permutations of a given Variant ’s elements (itertools.permutations)
� Sort patterns based on Variant ’s length:
AllPatterns = sorted(Patterns , key=len, reverse=True) return AllPatterns

The output of this algorithm is then stored by Tally-Vet in its database for later retrieval. This
effectively establishes the attribution from product names to documents. It can then be queried in
either direction: for finding all product names attributed to a given document, or for finding all
documents that are related to a given product name. An example output of such a data retrieval is
presented in Figure 7.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:14 K. Ameri et al.

Fig. 7. An example for the product name attribution.

5 PROPOSED TALLY-VET NATURAL LANGUAGE PROCESSING METHODOLOGY

5.1 Rationale

TallyVet is a highly complex system composed of numerous processing steps. Whereas the algo-
rithms and tasks presented in the previous section form a vital preprocessing aspect for TallyVet,
the algorithms described within this section, with their emphasis on NLP, form the core of the
tallying process employed by CYVET.

5.2 Structured Content Extraction from DOCX

The PDF document format has become the industry standard for web-accessible documents due to
its independence from software, hardware, or operating systems. Extracting and analyzing infor-
mation from PDF documents, however, is a complex procedure. PDFs represent rendered content.
Thus, all structural context, such as information being represented in a tabular or list format, are
lost through this process. PDFs do not exhibit the concept of tables, footnotes, or lists. Rather, infor-
mation is represented as character sequences positioned on a page, and drawing objects similarly
applied to a page. Thus, it is exceedingly complicated to detect and process structured informa-
tion directly from PDFs [7]. To increase the reliability of structured text extraction, we decided to
convert PDF documents to DOCX format.

5.2.1 PDF-to-DOCX Conversion. All documents downloaded from ICS vendor websites are in
PDF format. Thus, intelligently converting documents from PDF to DOCX, the Microsoft Word
document format, enables far easier extraction of structured data. Adobe Acrobat Export PDF [8]
is an Acrobat online service to convert PDF files into editable Word, Excel, or Rich Text Format

(RTF) documents. The Adobe PDF Services Application Programming Interface (API) is a
cloud-based tool for PDF manipulation. This API service implementation directly uses a Repre-

sentational State Transfer (REST) interface [20] for both the access control and storage server
APIs. The REST API framework, designed to be stateless and based on HTTP protocols, is context
independent [40]. The REST interface accepts and responds using JSONmessages over the HTTPS
protocol. The API starts with authentication provided by Adobe. For authentication, JSON Web
Tokens (JWT) [36] were adopted to exchange authentication information into an access token.
Using a JWT token for authentication in a stateless REST API architecture is a well-established
technique that is used in many scientific research efforts [12, 16, 20, 29, 40, 69]. Tally-Vet

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:15

successfully employs this approach for utilizing Adobe’s API system. More specifically, it uses
the PyJWT python package [37] for JWT support, to retrieve a request token. This token is then
attached to subsequent requests using a custom HTTP header field. Adobe Acrobat API’s JWT
tokens are only valid for a fixed amount of time. For this reason, Tally-Vet will automatically
check the validity of this token and refresh it after expiration.

ALGORITHM 2: Structured Sequences from PDF document

Input :PDF Paдe
� This function will find regular paragraphs, captions and headings, lists and tables in each PDF page.

� For each caption and heading, it will use PyMuPDF metadata for the font size, indent and line start
positions.
� For each regular paragraph, it will search for text spans from PyMuPDF to identify tables and lists.
� For images it will use PyTesseract to extract text from each image.
Function Contextual Sequence Extraction(PDFDocument):

if Paдe is readable then
� For each page, we need to first detect if this is a readable PDF, otherwise return

Orientation = PaдeOrientation(Paдe)
� For each page, find page orientation using BBOX tag in PyMuPDF. This is used to order different
blocks (images, texts)
Layouts = ExtractLayouts(Paдe)
� Find layout information for the PDF page including font size, text span, and flag identifier with
PyMuPDF.
Taдs = ExtractHeadinдSectionTaдs(Paдe)
� Use Layouts from ExtractLayouts to identify heading, caption and regular text elements.
Positions = ExtractLinePositions(Paдe)
� Find positions for Paragraphs, Lists, an Tables with PyMuPDF identifiers and regular expression.
for Element in Paдe .Elements do

if Element .Type == Image then
yield PyTesseract (Element) � This function extracts raw text from images with
PyTesseract
return

if Element .Type == Text then
for SubElem in Element do

if SubElem.Type == Text then
if Level== 0 then

yield DissectTopLevel (Paдe,Element ,Taдs,Layouts, Positions)
� Takes top level text elements (text blocks), and breaks elements down into
headings (independent of level) and regular text.

for Level >=1 do
if SubElem.Type == Heading Or Caption then

yield DissectTextHeadinд(Paдe,Element ,SubElem,Taдs,Layouts,
Positions)
� This will go through SubElems of each Heading Element type.
� This sorts headings and captions based on their font size.

if SubElem.Type == Regular then
yield DissectTextReдular (Paдe,Element ,SubElem,Taдs,Layouts,
Position)
� This will go through SubElems of each TextElement type.
� This groups text into regular paragraphs, tables, and lists.

else
return

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:16 K. Ameri et al.

Fig. 8. An example list output from python-docx library.

The Tally-Vet document conversion system will retrieve a PDF from its library and automati-
cally submit it to Adobe I/O’s Export API, await its conversion, retrieve the result, and store the
resulting DOCX file back into Tally-Vet’s document library database. This system handles all au-
thentication, conversion, and document management aspects. It automates the process to convert
all PDFs (readable and scanned) in our database into DOCX files and automatically rejects any
corrupted or otherwise unreadable documents obtained from vendor websites.

5.2.2 DOCX Structure. Tally-Vet employs the python-docx library [31] to enable it to work
with DOCX files. This library provides a convenient object representation of the document includ-
ing document paragraphs, table objects, headings and captions objects. We define Algorithm 3 to
parse each DOCX document, creating a tree structure of its elements and parsing them logically.
In the ContextualizeSequence algorithm (Algorithm 3), a high-level pseudo-code for sequence

extraction from documents is presented. This algorithm parses DOCX documents to extract con-
tent from paragraphs, lists, and tables. There are two main challenges for these DOCX document
elements: first is finding the style of lists (decimal, letter, roman numeral, and type of bullet points),
and second is finding the table structure. Table templates define a guideline to extract the se-
quences and content of tables logically.We predefined a group of table templates that provide struc-
tural maps on how to parse tables in a document. These structural maps then will be used in our
ContextualizeSequence algorithm to concatenate sequences from different cells and columns of the
table and make a logical sequence. The python-docx library is able to identify each element in the
paragraph with an specific tag. For example, for a list entry in the document, the numerical value
for the list identifier can be retrieved from the Paragraph._element.pPr.numPr.numId.val tag.
However, this value is not always the exact printable character as it appears in the document.
An example of the text content (text) and ._element.pPr.numPr.numId.val tag value from
python-docx library is shown in Figure 8.

To resolve this problem for lists, our ContextualizeSequence algorithm first iterates over the
list elements of the document. The ListExtract function will find the list’s format, the level for
each entry in a multi-level list and their hierarchical structure within the document. List elements
can appear in any paragraph, whether they are regular paragraphs or paragraphs as part of table
cells and other structural elements. Through its hierarchical parsing, the ContextualizeSequence
algorithm can detect all of them. An example of a page including lists with different formats and
the output of our algorithm is available in Figure 9. The tree structure clearly shows the identifier
tags our algorithm added to each line of the list.
Detecting tables is a crucial step in document analysis, since tables are often used to present

essential information in a structured way to the reader. The main objective in parsing tables is to
render a set of flattened sequences that are composed of the content spanning one or more table
cells, by logically concatenating table cells and column information together. Figure 10 shows
an example specification table from a document. This table contains important information that
needed to be parsed logically to maintain the meaning of sentences.
The python-docx library allows us to access tables and their cells and columns directly. Our

algorithm for table cell content concatenation begins with defining a list of templates for different

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:17

Fig. 9. An example output from a list structure extracted from DOCX documents.

Fig. 10. An example of a specification table.

types of tables contained in a document. This takes advantage of the fact that vendors typically
represent tabulated data in a similar format across their various documents. These templates de-
fine a way to describe how to parse the content of the table and extract sequences from them.
Templates are defined in two main steps; the first step is filtering/matching, and the other is the
data extraction/labeling step. The algorithm identifies a match between the template and the table
only if the labelling passes the filter stage (MatchTemplate function). Figure 11 shows an example
script we defined for a table template. This script starts with defining labels for cells based on their
rows and columns positions, number of spans, and background color. The filter section then will
be used to set up a filter for each label. Filters are used to decide if a template applies to a table or
not. The last section in table template script is responsible for setting up a format section. Formats
are used to produce a sequence as output by pulling content from multiple cells together, based on
their labels; the first Format that works (we find all required sections by labels and search limiters)
wins and the process stops for this cell.

For each table in the document, the ContextualizeSequence algorithm conducts a search for
a suitable table matching template with MatchTemplate function. Each template indicates the
table heading location, sub-heading (if it has any), and so on (for an example see the labeling
section in Figure 11) and enables the algorithm to find the cells and column headings that should
be concatenated to generate a sequence from that content and to identify the table logic direction
(for an example see the filtering section in Figure 11). Table direction here refers to the position
of each heading or sub-heading, whether the headings are located in the first cell of each row
(row-wise) or the top columns (column-wise). The TableExtract function (see Algorithm 3) then
uses this element and the template to go over the table, label elements, extract cell content, and

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:18 K. Ameri et al.

ALGORITHM 3: Contextualized Sequences from DOCX document.

Input :DOCX Element
� This function will find regular and heading paragraphs, list elements, and table elements in

each document.
� For each table element, it will search for cell templates based on their properties (font size,
color, cell spans). Table elements might include list elements and regular paragraphs.
� For each list element, it will search for list style and levels.
Function Flattened Sequences(DOCXDocument):

if Element has a child then

for Child in Element .children do

if Element .Type == Table then
Template=MatchTemplate(Element) � This function will search a predefined set
of table templates for the best match.
� If it finds any matches for the current element, then it will return a label that
specifies the structure behind the element (tables can match different templates
for each cell, and this function can return all the matching labels), otherwise it
will return None
if Template is None then

yield Element .TEXT
else

for SubElem in TableExtract(Element ,Template) do
yield SubElem � Each element might be a list or a regular paragraph.
� Here based on the element type and the returned label for the table
template, it will determine the structure for the contextualized sequence.
return

else

if Element .Type == List then

for SubElem in ListExtract(Element) do
yield SubElem � For each document, the ListExtract function will search
in all list styles that it can find.
� List style definition includes number formatting (decimal, letter, roman
numeral, and type of bullet points)
� List level is defined based on tag identifiers in python-docx library.
return

else
yield (Element .TEXT)

else
yield (Element .TEXT)
return

then concatenate elements together as described by the template (for an example, see the formatter
section in Figure 11). The resulting content is a flattened sequence that, for example, takes the form
HEADING[>> SUBHEADING] : CONTENT for iterable content elements. Figure 12 shows an
example table, the table structure from the table template (TREE VIZ section), and the parsed
flattened sequences produced by our algorithm.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:19

Fig. 11. A table template example script.

The ContextualizeSequence algorithm we proposed in this article is based on python-docx
Python package, and is able to identify levels in lists (Figure 9) and tables (Figure 12), and can
extract and annotate contextualized sequences from DOCX documents. Also, our StructuredSe-
quence algorithm is based on the PyMuPDF Python package and can identify hierarchical levels of
different elements in PDF documents. An output example is shown in Figure 5.

5.3 Claim Detection

One of the primary purposes for Tally-Vet is to identify VSF claims from all ICS device documen-
tation of a given vendor or for a given product. In our previous paper [1], we introduced CyBERT,
a classification model for labeling claims by fine-tuning the BERT-base [19] language model on
our cybersecurity domain dataset. From the ICS device document dataset, as we explained in the
subsection on Document Library Curation (Section 4.1), all sequences were extracted with the
methods and libraries defined in both the contextual sequence extraction and structured content
extraction sections. These sequences are obtained from a wide range of vendors and device docu-
ments, and we manually labeled a subset of these as “Claim” and “NotClaim.” Any sequence that
represents cybersecurity-related claims about features of the product being evaluated was referred
to as “Claim.” The resulting dataset was used to train a classifier that detects any type of claims

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:20 K. Ameri et al.

Fig. 12. An example output of table structure from DOCX documents.

about device features from these documents. Figure 13 illustrated the labeled dataset we used for
Tally-Vet. Tally-Vet uses two classifier, the first classifier we call CyBERT, which focuses only on
identifying “Claim” sequences from others (Figure 13, top row). The claim sequences itself can
further be divided into three types; cybersecurity claims, device claims, and generic claims. Hence,
our second classifier is a claims type classifier (Figure 13, bottom row), and it allows us to differ-
entiate and detect the cybersecurity claims from all other claims. That classifier is applied once a
sequence is determined to be a claim.
For the fine-tuning process of our claim classifier, we conducted extensive experimentation to

optimize hyperparameters, including the learning rate, the number of dense layers and their cor-
responding configuration such as drop-out rate and number of neurons. Fine-tuning all hyperpa-
rameters of the resulting BERT classifier model led to building our CyBERT classifier, which can

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:21

Fig. 13. An illustration of Tally-Vet labeled dataset and classes used to train CyBERT and Claim classifier.

Fig. 14. Normalized confusion matrix for the claim classifier.

detect sequences related to feature claims with a 94.4% accuracy. CyBERT is intended to be used
as a cybersecurity-specific classification model for detecting claim sequences from a large pool of
sequences extracted from ICS device documents.
The trained model has 12 encoders (from BERT-base model) and three dense layers stacked on

top of the encoders. The best learning rate for training our claim classifier model based on this
architecture and dataset was determined to be 4e-06. The Claim classifier’s overall accuracy is
94% with 93% F1 weighted core. This model is able to detect claim sequences with 92% accuracy
(Figure 14). Table 2 shows the detailed classification metric reports for each sequence label. In
Figure 14, we plot the normalized confusion matrix for our claim classifier. A confusion matrix
shows the actual and predicted results (or results for correct and incorrect predictions) of a
classifier [80].
Identifying “Claim” sequences subsequently enables us to not only extract a list of claimed fea-

tures for a device but also to compare feature claims to cybersecurity requirements, which is the
key to our Tally-Vet operation for OT infrastructure vetting. CYVET’s semi-automated vetting
system for ICS cybersecurity auditing relies on this Claim classifier.
When researching our claims classifier for TallyVet, we conducted extensive experiments to

maximize the accuracy of our claims classifier, including the architecture selection, hyperparame-
ter selection, and studying the effects of randomness. We are presenting the details of our findings
in the Analysis and Discussion section (Section 6) further below.

5.4 Feature Attribution Using Sentiment Analysis

In this section, we explain the process Tally-Vet uses for attributing features to products. This pro-
cess broadly involves three steps: We first detect cybersecurity feature claim sequences from each
document attributed to a given product. In the previous section, we described how claim sequences

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:22 K. Ameri et al.

Table 2. Classification Report for the Claim Classifier with

Fine-Tuning BERT

Class Label Precision Recall F1-score Accuracy

Claim 0.92 0.89 0.91
Not a Claim 0.95 0.75 0.96
Weighted Average 0.94 0.94 0.94 0.94

are detected using our CyBERT claim classifier. We next perform an NLP sentiment analysis for
these claim sequences to determine Feature Support Indication: an expression of whether the claim
indicates that the device does or does not support this feature. Finally, we tabulate and reconcile
feature claims across all documents related to a given product, including conflict resolution, which
involves features that in some document are claimed as supported and in others claimed as not
supported.
In the Definition below, we present and define our concept for Feature Support Indication:

Definition 5.1 (Feature Support Indication). A value assigned to an extracted feature in a specific
document sequence that expresses whether the feature is supported or not supported by the device.

Feature Support Indication can be any value between 0 and 1. Values greater than 0.5 indicate
that the sentence evaluation for the specified feature is indicating support, with values approaching
1 indicating higher confidence in this sentiment, whereas values below 0.5 indicate lack of support
for this feature, with values approaching 0 indicating higher confidence in this sentiment. This
valuewas defined as the sentiment of the feature claim sequence. The NLTK Toolkit python library
does support the VADER sentiment analysis algorithm. The VADER sentiment analysis allows us
to update its lexicon dictionary weights based on our project’s definition. The impression behind
each sequence will be expressed as the polarity score of the sequence. For this purpose, we update
the polarity scores for some specified words. With this approach, VADER can contextualize the
use of those terms within the scope and definition of our project [35].

Tally-Vet manages and defines features as a tree structure, with each branch indicating a more
specific interpretation or incarnation of a given feature. This tree structure is a way to group fea-
tures logically. For example, a “server-based authentication” could have “RADIUS” and “LDAP” as
sub-branches. Based on our definition of this feature tree, each sub-feature can also have proper-
ties. For example, a sub-feature “General SSH” can have a property “Generic SSH Support” and
a property “SSH v2 Support.” Here, the “generic” could be used to detect any support of SSH,
irrespective of its version, whereas the “v2” property could be used to specifically indicating sup-
port for SSH v2. Each feature, sub-feature and property is associated with keywords with NLP
techniques. Tally-Vet attributes features using these keywords combined with NLP techniques to
detect them. Additionally, a particular feature uses a name space nomenclature to represent itself.
Tally-Vet compiles them into a feature expression: < f eature>::<sub − f eature>::<property>::
(e.g. “serverauth::LDAP::gen::”).

NLP feature search within extracted sequences targets the identified set of keywords. This NLP
keyword search can be case-insensitive or case-sensitive. The algorithm starts with splitting desig-
nated keywords and search for any exact matches between each partition and sentences. The final
report will be the sequences that match these keyword sets (matches in features, sub-features, and
properties).
For each sequence containing a defined feature, the algorithm then conducts a sentiment anal-

ysis. This assigns this instance of the feature occurrence a Feature Support Indication score. Next,
the algorithm compiles a list of all features that were detected in this document and performs a

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:23

Fig. 15. An output example of feature attribution algorithm.

deconflicting step: If the same feature appears multiple times, with conflicting support indications,
then Tally-Vet decides that a negative feature support indication wins over a positive indication.
Hence, conflicting feature claims resolve as unsupported feature claims. Figure 15 shows an output
example of feature attribution algorithm for a sample PDF. The results show that the sample PDF
does support password authentication feature (pwdauth), with generic sub-feature (gen) and the
strong property, in combination indicating a feature claim of “strong password authentication.”
The other feature support extracted from this PDF is server authentication, with the “LDAP” sub-
feature and the generic property. The last supported feature for the device represented by this PDF
is SSH, with generic sub-feature and property. This sample PDF does not have any claim/sequence
with nonsupporting label.

After processing each document for a given product with our feature attribution algorithm,
Tally-Vet compiles a list of feature claims across these documents, once again applying a decon-
flicting step that resolves Feature Support Indication conflicts across the documents.
In a final processing step to feature attribution, Tally-Vet will use the resulting list of feature

claims and compare them against a list of CRs. These are requirements indicated by industry spec-
ifications that are imposed on devices and customers to obtain necessary cybersecurity compliance
certification. This is especially important for compliance reporting by critical infrastructure sectors
such as the energy sector, and the key application of CYVET.

5.5 CYVET’s use of Feature Claims

The Tally-Vet component of the CYVET system identifies, verifies, and tabulates vendor-claimed
features against requirements provided by relevant industry standards in eight steps, and then
provides the compiled information to the Test-Vet component. Test-Vet focuses on the validation
of specific features identified by the Tally-Vet. Validation encompasses two aspects: (a) validation
of feature availability and (b) validation of correct implementation without the presence of
known flaws. To accomplish either of these aspects, Test-Vet needs to execute actual hardware
test scripts. Hence, Tally-Vet is a vital component in CYVET in general, and in particular in
preparation of performing the Test-Vet functionality. Tally-Vet’s overall processing pipeline steps
can be summarized as shown below:

(1) Product Document Retrieval and Sequence Extraction: In this step, all documents rel-
evant to the vetting of a given product from a given vendor will be retrieved from the data
repository. All sequences for each document then need to be extracted to prepare the data
for the next step.

(2) NLP Feature Search within Extracted Sequences: Tally-Vet then uses NLP techniques
to identify sequences that contain feature expressions to find matches between features and
sequences. The output from this step will be any sequences from the document that match
feature expressions.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:24 K. Ameri et al.

(3) NLP Claims Detection on Feature Sequences: Next, we classify any sequences contain-
ing feature expressions to detect if they appear to be claims about this feature. This utilizes
our CyBERT claim classifier. The result from this step is a set of sequences that indicate
cybersecurity feature claims.

(4) NLP Sentiment Analysis on Feature Claims: The sequences resulting from the previous
step then undergo a sentiment analysis, to obtain the Feature Support Indication, a value that
indicates if the feature is claimed to be supported, or claimed to lack support by the device.
This polarity score assigned to each sequence ranges from 0 (indicating a high confidence
in a lack of the feature) to 1 (indicating a high confidence that the feature is claimed to be
present).

(5) Feature Support Verdict Processing on Feature Sequences: This step is composed of
two aspects: It first compiles a list of claimed features identified within each document, in-
cluding the resolution of conflicting claims related to the same feature. It then further com-
piles a list across all relevant documents that were processed for the given device, again
resolving any conflicts arising from this step. The end result is a list of claimed features and
their support indication for the given device, across all relevant documents available for the
device.

(6) Feature Reporting: This step combines the list from the previous step with the customer
requirement level (CR-Level) provided by the end user for each feature. It reports the fea-
tures that were detected and their required level. These CR-Levels are either “optional” or
“required.”

(7) Feature Support Check: Tally-Vet then compiles a list based on feature support indication
and customer requirements. The resulting report is the primary output of Tally-Vet and a
key component in CYVET’s vetting process. The report output is classifying features into
three lists:

(a) All required and supported features,
(b) All required but not supported features,
(c) All required but not mentioned features.
Devices will pass the feature support check step only if all customer-required features are
in the “required and supported” category.

(8) Compiling required Test-Vet List: For all features that are claimed as supported, we then
compile a list of tests to be executed by Test-Vet. The compiled list of tests includes validation
tests designed to verify that the claimed feature is indeed implemented and also tests that
check for potential flaws in their implementation. Similar to Tally-Vet’s vendor identification
process, a similar process is executed periodically by CYVET to identify known vulnerabili-
ties published to websites such as ICS-Cert. Our system then uses NLP techniques to identify
the defined features within Tally-Vet that these published vulnerabilities are related to. We
thus compile a list of known flaws for each feature. Test-Vet curates a test script library that is
not only used to verify that a claimed feature is available on a given device but also includes
tests written to evaluate whether a feature’s implementation on a given device exhibits one
of these known flaws. The implementation of this feature is part of Test-Vet and our future
work.

In Figure 16, we demonstrate an example of the Tally-Vet processing pipeline. Here, an example
of a report shows the results of each step in the Tally-Vet pipeline for the product RTAC3530
from vendor SEL. There were five documents related to this product in our data repository. Final
results show that the device passes the required features check, with all required features claimed
as supported by the device, and it also provides a list of tests for each feature to verify feature

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

https://us-cert.cisa.gov/

Design of a Novel Information System for Semi-automated Management 4:25

Fig. 16. Tally-Vet processing pipeline example.

presence and detect potential flaws. This list would subsequently be passed to Test-Vet for further
vetting of the device itself.

6 ANALYSIS AND DISCUSSION

As indicated earlier, to the best of our knowledge there is currently no framework available or
published with capabilities similar to those developed for our CYVET system, its unique target
dataset or algorithm collection.
Consequently, we could not find any comparison basis with other approaches, and we thus

focused our analysis efforts on demonstrating and presenting the particular data obtained and
processed by our approach, and the novel insights gained from our approach.
Therefore, within the sections detailing each of our contributed methods and algorithms, we are

presenting the relevant results from our testing to demonstrate their merit and effectiveness.
In the following subsections, we compare the performance of our novel algorithm for sequence

extraction from documents and our sentiment analysis for feature attribution to other related

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:26 K. Ameri et al.

methods. We also discuss the performance improvements of our approaches compared to simi-
lar methods discussed in related works.

6.1 Structured Content Extraction

Data extraction and processing from PDF files has always been challenging. One of the main chal-
lenges here is detecting and extracting tables. Among the required associated techniques, we focus
on table border detection and cell structure recognition [17]. The term “table border detection”
refers to identifying the position of a table via recognition of its borders. The “cell structure recog-
nition” refers to determining logical relationships between cells and their contents inside a table.
Several characteristics of tables make these processes challenging, including the potential absence
of border lines for table and cell borders, merged rows and columns, and the spreading of tables
across multiple pages.
There are three approaches in the literature to handle table detection in documents: conven-

tional rule-based [30, 87], metadata extraction [6, 31, 57], and machine learning and deep learning
approaches [5, 25, 41, 47, 89]. Machine learning approaches and conventional rule-based models
are mainly focuses on table and cell detection. Whereas, the main focus of metadata extraction
Python libraries [6, 31, 57] are on extracting plain text from different elements in a PDF, such as
tables.
In 2016, Hao et al. [30] combined CNN with a set of pre-defined rules to compute region propos-

als. This model fails to detect table regions for merged cells and columns [5, 25]. Gilani et al. [25]
proposed a model based on Faster R-CNN to improve Hao et al. [30] model. Despite outperforming
previous table detection techniques, this technique ignores visible features of the table and fails
to detect cell structures and spanned cells [5]. Arif et al. [5] improved the Faster R-CNN model in-
troduced by Gilani et al. [25] by considering foreground and background features of PDFs. Using
a color-coded and transformed document image, Arif et al. [5] used Region Proposal Networks

(RPNs) followed by fully connected neural networks to detect tabular regions. Khan et al. [41]
used the CNN model introduced by Gilani et al. [25] to detect table boundaries. Zheng et al. [89]
introduced a Global table extractor (GTE) model based on object detector techniques, which
themselves are based on neural networks that analyze document images to find tables and their
structure. Lee et al. [47] formulate tables as planar graphs based on cell regions. By solving a con-
strained optimization problem they calculate vertex confidence maps and line fields based on the
heatmap regression networks.
Although the mentioned methods made progress toward understanding complex structured ta-

bles, several assumptions were made, such as that accurate word bounding boxes were available
and that accurate document text could be used as additional inputs [66].

The Python package Tabula [6] does not identify cell structure correctly when there are no lines
separating cells in the table. It also fails in reading any Scanned PDF. The result of the Tabula is a
data form that can be converted to a CSV or JSON file. It also fails in reading scanned PDFs. The
Python package PyMuPDF [38] also fails to read scanned PDFs. The PyMuPDF package will read the
whole page as an image and utilizes OCR. This is a very strong package with access to meta infor-
mation and links for each page into the PDF, which is very helpful when locating the formatting
and other details for each element within the PDF, such as text and images. The meta information,
such as full position and font information for each text character, is very helpful in terms of finding
lists and tables. However, the PyMuPDF is not able to detect these elements by itself. Camelot [57] is
an open-source Python library focused on extracting tables from PDF files [57]. This tool converts
tabular data into a pandas DataFrame, and can export in multiple formats, such as JSON, Excel,
and HTML. Only tables with distinct cell borders can be parsed by Camelot, however. This tool
fails when extracting content from scanned documents [57]. The python-docx library [31] creates

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:27

Table 3. Comparison of Our Method with other Available Approaches

Model Input Type Output Weakness

Hao et al. (2016) [30] Rule Sets +CNN PDF Table Boundary Detection Fails to detect cell structures
Relies on Templates
Fails to return text

Gilani et al. (2017) [25] Faster R-CNN PDF Table Boundary Detection Fails to detect cell structures
Fails to return text

Arif et al. (2018) [5] Faster R-CNN + PDF Table Boundary Detection Fails to return text
Region Proposal Columns and Rows Detection Fails to detect cell structures
Network (RPN)

Khan et al. (2019) [41] Faster R-CNN + PDF Table Boundary Detection Relies on heuristics
Gated Recurrent Columns and Rows Detection Fails to return text
Unit (GRU) Fails to detect cell structures

Zheng et al. (2021) [89] Object Detector PDF Table Boundary Detection Fails to detect cell structures
+NN Fails to return text

Lee et al. (2021) [47] R-CNN + PDF Table Boundary Detection Relies on heuristics
Graph-based Network Fails to return text

Tabula (2013) [6] Python + Java PDF CSV/JSON File Only readable-PDFs
Fails to detect cell structures

python-docx (2013) [31] Python Word Plain Sentence Only works on DocX
Fails to detect cell structures

PyMuPDF (2015) [38] Python PDF Plain Sentence Fails to detect table boundaries
Fails to detect cell structures

Camelot (2018) [57] Python PDF Plain Sentence/csv Only works for
Readable PDFs
Fails to detect cell structures

Our Algorithm Rule Sets Word/PDF Text Annotation Relies on Templates
+ Python

comprehensive document object representations of elements such as paragraphs, tables, headings,
and caption objects. This python library only works on DOCX documents, however, and therefore
cannot be used directly with PDF content. In our Tally-Vet engine, we therefore need to consider
readable PDFs and scanned PDFs, as well as DOCX documents. The python-docx library also
fails to understand the structure of cells and columns in the table. Hence, it is not able to extract
flattened sequences from tables that represent logical content from the spanned cells of the table.
For comparison of our proposed algorithm with other methods, we conducted a comprehensive

search for the availability and away to evaluate the functionality of thosemethods. To compare the
performance and functionality of these methods against our algorithm and our system’s specific
requirements, we therefore studied the documents and papers associated with each method. In
Tables 3 and 4, we listed the characteristics and features of our proposedmethod with the reviewed
characteristics, respectively.
We unfortunately could not directly evaluate the approaches presented in References [5, 25,

30, 41, 47, 89] using our cybersecurity corpus documents, because their respective implementa-
tions were not available online. Therefore, we focus on the available libraries in python that are
specialized on extracting tables from PDFs and DOCX documents, to compare their results with
our proposed algorithm. Figure 17 shows the results from our proposed novel algorithms and the
Python libraries available for the corresponding task. The green box indicates an example of a
flattened sequence from our algorithm, which connects different parts of the table (orange boxes)
to make an informative sentence as an output. As illustrated in Figure 17, Camelot, PyMuPDF, and
python-docx python libraries produce similar results. All these libraries return the text inside
each cell of the table as a new line. However, Tabula library failed to detect the cell structure of
the example table. The cell structure, the logical relationships between cells and their contents was
not taken into consideration in any of these libraries.
Researchmodels trained on reference datasets such as References [5, 25, 30, 41, 47, 89] often have

difficulties coping with the complexity of real world document layouts [15]. Hence, we focused on

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:28 K. Ameri et al.

Table 4. Comparison of Our Method’s Features Against Other

Available Approaches

T
a
b
le

D
e
te
ct
io
n

C
e
ll
S
tr
u
ct
u
re

R
e
co

g
n
it
io
n

M
e
rg
e
d
C
e
ll
s/
C
o
lu
m
n
s

S
ca
n
n
e
d
P
D
F
s

Id
e
n
ti
fy

L
is
ts

Id
e
n
ti
fy

C
a
p
ti
o
n
s

R
e
a
d
in
g
P
a
ra
g
ra
p
h
s

P
la
in

S
e
n
te
n
ce

F
la
tt
e
n
e
d
S
e
q
u
e
n
ce
s

Hao et al. (2016) [30] × © × × × × ×

Gilani et al. (2017) [25] © × × × × ×

Arif et al. (2018) [5] © × × × × ×

Khan et al. (2019) [41] © © × × × × ×

Zheng et al. (2021) [89] © × × × × ×

Lee et al. (2021) [47] © × × × × ×

Tabula (2013) [6] © × × © × × ×

Python-docx (2013) [31] © × ×

PyMuPDF (2015) [38] × × × × × × ×

Camelot (2018) [57] © © © × × × × ×

Our Algorithm ©

means this feature is supported.
© means this feature is partially supported.
× means this feature is not supported.

defining rule sets to contribute novel algorithms for detecting tables and identifying cell structures
in the cybersecurity corpus. We did this by examining cybersecurity standards and ICS vendor
documents. The defined rule sets facilitate the development of templates that extract flattened
sequences from ICS vendor documents.

6.2 Claim Detection

Claim detection is a crucial step for our Tally-Vet engine. This step led to a set of sequences that
indicate cybersecurity feature claims. These claim sequences are very important for the rest of our
vetting engine. If the classifier fails to detect a claim, then it will negatively impact all other steps
in our framework. Therefore, we focus on building a classifier with highest accuracy.
Adapting a pretrained language model can significantly improves downstream task perfor-

mance. A pre-trained language model refers to NLP model that was trained unsupervised using a
large corpus of text representing a general domain of language. There are several well-established
pre-trained language models, including Embeddings from LanguageModels (ELMo) [63],Uni-
versal Language Model with Fine-Tuning (ULMFiT) [33], BERT [19], and the Generative

Pre-Training (GPT) model [65].
The Table 5 compares the accuracy for all language models obtained using the test set from our

cybersecurity NLP dataset. For each model, the highest accuracy is reported based on extensive
experimentation we have conducted to determine optimal hyperparameters and the overall archi-
tecture [1]. As we show in Table 5, our model CyBERT has highest accuracy, F1 score and Area

Under the ROC curve (AUC) value, which means CyBERT has the best performance when it

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:29

Fig. 17. An output from available libraries in python specialized on extracting tables from PDFs and DOCX

document and our proposed novel algorithm.

comes to identifying cybersecurity claim sequences as compared with all other language models
we evaluated.

6.3 Feature Attribution

The main focus for feature attribution is to perform an NLP sentiment analysis to determine
whether the claim sequence does or does not express support of the feature indicated for the
device, i.e., shows a positive or negative sentiment. For the purpose of this project, we defined a
specialized sentiment analysis based on VADER from the NLTK Toolkit python library. We op-
timized the VADER lexicon dictionary weights based on our project’s definition. Using our claim
sequence database, we evaluated our new model by comparing sentiment and polarity scores ob-
tained from our specialized VADER implementation to those obtained from standard VADER and
a transformer-based sentiment analysis model derived from DistilBERT [68]. This variant of Dis-
tilBERT intended for sentiment analysis was specifically fine-tuned on the Stanford Sentiment

Treebank v2 (SST2) [74].
Sentiment analysis models assign a label to the input sentence based on the detected sentiment,

and the polarity scores here show the confidence score for the detected sentiment. Comparing our
CYVET sentiment analysis model with standard VADER (Table 6), we observe an improvement

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:30 K. Ameri et al.

Table 5. Comparison Across All Tested Language Models

Model Architecture Accuracy Macro AUC Trainable

Weighted F1 Parameters

Our approach 12 Encoder
0.954 0.93 0.948 108,647,026

(CyBERT) [1] 3 Dense
BERT 12 Encoder

0.76 0.72 0.773 109,482,240
Classifier 1 Dense

GPT2-Small
12 Decoder

0.9 0.87 0.908 125,444,134
1 Dense

ELMo+NN 2 Dense 0.91 0.9 0.910 295,554

ELMo+CNN
1 Convolution

0.92 0.9 0.912 16,778,242
2 Dense

ELMo+LSTM
1 LSTM

0.90 0.88 0.916 19,785,410
2 Dense

ELMo+BiLSTM
1 BiLSTM

0.91 0.89 0.897 15,854,274
2 Dense

ULMFiT 3 AWD-LSTM 0.91 0.91 0.902 62,652

on the sentiment assignment for sentences and sequences extracted from our dataset of ICS
vendor documents. For a simple sentence such as “Assign individual user and role-based account
authentication and strong passwords,” the DistilBERT Sentiment Analysis and our optimized
VADER approach detect the correct intention of the sentence. However, our model’s confidence
score is higher than that of the DistilBERT model. For the complex sequence example of “User
Security: Assign individual user and role-based account authentication and strong passwords; use
Lightweight Directory Access Protocol (LDAP) for central user authentication.” DistilBERT
fails to assign a correct sentiment to the sentence. The Standard VADER confidence score for both
sequence complexity types are in the middle of the range of [0,1], which indicates that it does
not have enough confidence in the assigned sentiment label. Furthermore, the standard VADER
assigned sentiment for both examples are incorrect.

7 DATASET AVAILABILITY

At the conclusion of our research project the authors are planning to make a curated dataset pub-
licly available from our repository containing over 12,000 product documents from ICS websites,
including 2,844 manuals, 7,832 brochures, and 666 catalogs for ICS products. Curated from these
documents, our ICS sequence database currently contains over two million sequences.

8 CONCLUSIONS AND FUTURE WORK

In this article, we proposed a novel framework for a semi-automated vetting system (CYVET) for
ICS devices. CYVET’s goal is to provide its users with detailed insights into the cybersecurity
features claimed by device vendors and the impact those features may have on their cybersecurity
posture. For that purpose, CYVET audits the devices of interest using two primary components:
Tally-Vet and Test-Vet. In this article, we are detailing the framework and toolset underpinning
Tally-Vet, which is CYVET’s component that processes vendor documents about the devices of
interest to extract feature claims and vet those against customer requirements.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

Design of a Novel Information System for Semi-automated Management 4:31

Table 6. Comparison of Sentiment Analysis Using Example Sequences

Example Sentence (1):

“Assign individual user and role-based account authentication and strong passwords.”

Model Sentiment Confidence Score

Our Specialized VADER Positive 0.8834

Standard VADER Neutral 0.5106
DistilBERT Sentiment Analysis Positive 0.802

Example Sentence (2):

“Assign individual user and role-based account authentication and strong passwords.”

Model Sentiment Confidence Score

Our Specialized VADER Positive 0.8834

Standard VADER Neutral 0.5106
DistilBERT Sentiment Analysis Positive 0.802

Example Sentence (3):

“The RTAC also supports central authentication through your existing LDAP server.”

Model Sentiment Confidence Score

Our Specialized VADER Positive 0.586

Standard VADER Neutral 0.737
DistilBERT Sentiment Analysis Negative 0.939

Example Sentence (4):

“User Security: Assign individual user and role-based account authentication and strong passwords;
use Lightweight Directory Access Protocol (LDAP) for central user authentication.”

Model Sentiment Confidence Score

Our Specialized VADER Positive 0.979

Standard VADER Neutral 0.690
DistilBERT Sentiment Analysis Negative 0.99

Tally-Vet is composed of several complex processing steps, all shown in this article, includ-
ing sample results. It first extracts sequences from ICS documents located in CYVET’s document
repository. Then, NLP techniques are used to search for features of interest within all extracted
sequences. Those sequences were then processed by our claim classifier to detect sequences that
represent claims. Those claims are analyzed with our sentiment analysis algorithm to identify sup-
ported or unsupported features within documents. The feature support processing finds any pos-
sible conflicts for feature claims in all documents for each device. The final check in the Tally-Vet
pipeline is the customer requirements level check for each feature. Devices only pass the feature
support check if all of their required features are claimed as supported by the vendor. The Tally-Vet
pipeline is able to verify compatibility between device feature claims and customer requirements.
In this article, we demonstrated that this framework is novel and able to gather and parse all

components required for the Tally-Vet pipeline in the CYVET system. Our proposed algorithms
can successfully extract structured sequences from ICS device documents, identify claim sequences
and their features, evaluate the intention behind our claim sequence detection approach to identify

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

4:32 K. Ameri et al.

sequences indicating support of a feature or lack thereof, as well as resolve any conflicting feature
claims among the set of documents for each device.
Tally-Vet is able to provide a list of hardware tests based on known reported flaws for each

feature. This list will be passed to Test-Vet, the other key component of CYVET, to verify these
feature claims through conducting actual hardware tests. Our future work focuses on the Test-Vet
functionality of CYVET, specifically:

• Discovering known vulnerability reports and automatic attribution to features.
• Automating Test-Vet script generation and selection for hardware tests.
• End-to-End Integration of CYVET’s automated vetting system and its report generation
functionality.

REFERENCES

[1] Kimia Ameri, Michael Hempel, Hamid Sharif, Juan Lopez Jr., and Kalyan Perumalla. 2021. CyBERT: Cybersecurity
claim classification by fine-tuning the BERT language model. J. Cybersecur. Privacy 1, 4 (2021), 615–637.

[2] Kimia Ameri, Michael Hempel, Hamid Sharif, Juan Lopez Jr., and Kalyan Perumalla. 2021. Smart semi-supervised
accumulation of large repositories for industrial control systems device information. In Proceedings of the 16th Inter-

national Conference on Cyber Warfare and Security. Academic Conferences Limited, 1.
[3] Kylie L. Anglin. 2019. Gather-narrow-extract: A framework for studying local policy variation using web-scraping

and natural language processing. J. Res. Edu. Effect. 12, 4 (2019), 685–706.
[4] Dogu Araci. 2019. Finbert: Financial sentiment analysis with pre-trained language models. Retrieved from https://

arXiv:1908.10063.
[5] Saman Arif and Faisal Shafait. 2018. Table detection in document images using foreground and background features.

In Proceedings of the Digital Image Computing: Techniques and Applications (DICTA’18). IEEE, 1–8.
[6] Manuel Aristarán and Mike Tigas. 2013. Introducing Tabula - Features - Source: An OpenNews project. Retrieved

December 2, 2014 from https://source.opennews.org/en-US/articles/introducing-tabula/.
[7] Abderrahim Ait Azzi, Houda Bouamor, and Sira Ferradans. 2019. The finsbd-2019 shared task: Sentence boundary

detection in pdf noisy text in the financial domain. In Proceedings of the 1st Workshop on Financial Technology and

Natural Language Processing. 74–80.
[8] Donna L. Baker and Tom Carson. 2008. Adobe Acrobat 6: The Professional User’s Guide. Apress.
[9] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A pretrained language model for scientific text. Retrieved

from https://arXiv:1903.10676.
[10] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet allocation. J. Mach. Learn. Res. 3 (2003),

993–1022.
[11] Ángela Casado-García, César Domínguez, Jónathan Heras, Eloy Mata, and Vico Pascual. 2020. The benefits of close-

domain fine-tuning for table detection in document images. In Proceedings of the InternationalWorkshop on Document

Analysis Systems. Springer, 199–215.
[12] Jack Chan, Ray Chung, and Jack Huang. 2019. Python API Development Fundamentals: Develop a full-stack Web Ap-

plication with Python and Flask. Packt Publishing.
[13] G. Naga Chandrika, Somula Ramasubbareddy, K. Govinda, and E. Swetha. 2020. Web scraping for unstructured data

over web. In Embedded Systems and Artificial Intelligence. Springer, 853–859.
[14] YuXuan Chen, Jianwei Ding, Dashuang Li, and Zhouguo Chen. 2021. Joint BERT model based cybersecurity named

entity recognition. In Proceedings of the 4th International Conference on Software Engineering and Information Man-

agement. 236–242.
[15] Igor Cherepanov, Andrey Mikhailov, Alexey Shigarov, and Viacheslav Paramonov. 2020. On automated workflow for

fine-tuning deepneural network models for table detection in document images. In Proceedings of the 43rd Interna-

tional Convention on Information, Communication and Electronic Technology (MIPRO’20). IEEE, 1130–1133.
[16] Sean B. Cleveland, Anagha Jamthe, Smruti Padhy, Joe Stubbs, Michale Packard, Julia Looney, Steve Terry, Richard

Cardone, Maytal Dahan, and Gwen A. Jacobs. 2020. Tapis API development with Python: Best practices in scientific
RESTAPI implementation: experience implementing a distributed streamAPI. In Practice and Experience in Advanced
Research Computing. 181–187.

[17] Andreiwid Sheffer Corrêa and Pär-Ola Zander. 2017. Unleashing tabular content to open data: A survey on PDF
table extraction methods and tools. In Proceedings of the 18th Annual International Conference on Digital Government

Research. 54–63.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

https://arXiv:1908.10063
https://source.opennews.org/en-US/articles/introducing-tabula/
https://arXiv:1903.10676

Design of a Novel Information System for Semi-automated Management 4:33

[18] Hervé Déjean and Jean-Luc Meunier. 2006. A system for converting PDF documents into structured XML format. In
Proceedings of the International Workshop on Document Analysis Systems. Springer, 129–140.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. Retrieved from https://arXiv:1810.04805.

[20] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based Software Architectures. University
of California, Irvine.

[21] Chen Gao, Xuan Zhang, and Hui Liu. 2021. Data and knowledge-driven named entity recognition for cyber security.
Cybersecurity 4, 1 (2021), 1–13.

[22] Liangcai Gao, Yilun Huang, Hervé Déjean, Jean-Luc Meunier, Qinqin Yan, Yu Fang, Florian Kleber, and Eva Lang.
2019. Icdar 2019 competition on table detection and recognition (ctdar). In Proceedings of the International Conference

on Document Analysis and Recognition (ICDAR’19). IEEE, 1510–1515.
[23] Liangcai Gao, Xiaohan Yi, Yuan Liao, Zhuoren Jiang, Zuoyu Yan, and Zhi Tang. 2017. A deep learning-based formula

detection method for PDF documents. In Proceedings of the 14th IAPR International Conference on Document Analysis

and Recognition (ICDAR’17), Vol. 1. IEEE, 553–558.
[24] Piyush Ghasiya and Koji Okamura. 2020. Comparative analysis of Japan and the US cybersecurity related newspaper

articles: A content and sentiment analysis approach. In Proceedings of the International Conference on Advanced

Information Networking and Applications. Springer, 431–443.
[25] Azka Gilani, Shah Rukh Qasim, Imran Malik, and Faisal Shafait. 2017. Table detection using deep learning. In Pro-

ceedings of the 14th IAPR International Conference on Document Analysis and Recognition (ICDAR’17), Vol. 1. IEEE,
771–776.

[26] Max Göbel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi. 2012. Amethodology for evaluating algorithms for table
understanding in PDF documents. In Proceedings of the ACM Symposium on Document Engineering. 45–48.

[27] Max Göbel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi. 2013. ICDAR 2013 table competition. In Proceedings of

the 12th International Conference on Document Analysis and Recognition. IEEE, 1449–1453.
[28] Babita Gupta, Shwadhin Sharma, and Anitha Chennamaneni. 2016. Twitter sentiment analysis: An examination of

cybersecurity attitudes and behavior. Proceedings of the Pre-ICIS SIGDSA/IFIP WG8 3 (2016).
[29] Muhamad Haekal et al. 2016. Token-based authentication using JSON web token on SIKASIR RESTful web service.

In Proceedings of the International Conference on Informatics and Computing (ICIC’16). IEEE, 175–179.
[30] Leipeng Hao, Liangcai Gao, Xiaohan Yi, and Zhi Tang. 2016. A table detection method for PDF documents based on

convolutional neural networks. In Proceedings of the 12th IAPR Workshop on Document Analysis Systems (DAS’16).
IEEE, 287–292.

[31] S. Hoffstaetter, M. Lee, J. Bochi, and L. Kistner. Python-docx. A Python library for creating and updating Microsoft
Word (.docx) files—python-docx 0.8.5 documentation. Retrieved from https://python-docx.readthedocs.io/en/latest/.

[32] S. Hoffstaetter, M. Lee, J. Bochi, and L. Kistner. 2014. pytesseract. https://pypi.org/project/pytesseract/. (2014). https://
pypi.org/project/pytesseract/.

[33] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text classification. Retrieved
from https://arXiv:1801.06146.

[34] Yilun Huang, Qinqin Yan, Yibo Li, Yifan Chen, Xiong Wang, Liangcai Gao, and Zhi Tang. 2019. A YOLO-based table
detection method. In Proceedings of the International Conference on Document Analysis and Recognition (ICDAR’19).
IEEE, 813–818.

[35] Clayton Hutto and Eric Gilbert. 2014. Vader: A parsimonious rule-based model for sentiment analysis of social media
text. In Proceedings of the International AAAI Conference on Web and Social Media, Vol. 8.

[36] M. Jones, J. Bradles, and N. Sakimura. May 2015. RFC 7519: JSON web token (JWT). Tech. Rep., Internet Engineering
Task Force. Retrieved from http://www.ietf.org/rfc/rfc7515.txt.

[37] M. Jones, J. Padilla, and J. Lindsay. pyJWT: A Python implementation of RFC 7519. Retrieved from https://pypi.
python.org/pypi/pyjwt.

[38] M. Jones, J. Padilla, and J. Lindsay. 2016. PyMuPDF. Retrieved from https://github.com/pymupdf/PyMuPDF.
[39] Heejung Jwa, Dongsuk Oh, Kinam Park, Jang Mook Kang, and Heuiseok Lim. 2019. exbake: Automatic fake news

detection model based on bidirectional encoder representations from transformers (bert). Appl. Sci. 9, 19 (2019), 4062.
[40] Klara Kaleb, AlexWarwick Vesztrocy, Adrian Altenhoff, and Christophe Dessimoz. 2019. Expanding the orthologous

matrix (OMA) programmatic interfaces: REST API and the OmaDB packages for R and Python. F1000Res. 8 (2019).
[41] Saqib Ali Khan, Syed Muhammad Daniyal Khalid, Muhammad Ali Shahzad, and Faisal Shafait. 2019. Table struc-

ture extraction with bi-directional gated recurrent unit networks. In Proceedings of the International Conference on

Document Analysis and Recognition (ICDAR’19). IEEE, 1366–1371.
[42] Vivek Khetan, Roshni Ramnani, Mayuresh Anand, Shubhashis Sengupta, and Andrew E. Fano. 2020. Causal BERT:

Language models for causality detection between events expressed in text. Retrieved from https://arXiv:2012.05453.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

https://arXiv:1810.04805
https://python-docx.readthedocs.io/en/latest/
https://pypi.org/project/pytesseract/
https://pypi.org/project/pytesseract/
https://arXiv:1801.06146
http://www.ietf.org/rfc/rfc7515.txt
https://pypi.python.org/pypi/pyjwt
https://github.com/pymupdf/PyMuPDF
https://arXiv:2012.05453

4:34 K. Ameri et al.

[43] Hannah Kim and Young-Seob Jeong. 2019. Sentiment classification using convolutional neural networks. Appl. Sci.
9, 11 (2019), 2347.

[44] Jan Kinne and Janna Axenbeck. 2018. Web mining of firm websites: A framework for web scraping and a pilot study
for Germany. ZEW-Centre for European Economic Research Discussion Paper 18-033 (2018).

[45] Judith L. Klavans. 2015. Cybersecurity—What’s Language got to do with it? Technical Report.
[46] Vlad Krotov andMatthew Tennyson. 2018. Research note: Scraping financial data from the web using the R language.

J. Emerg. Technol. Account. 15, 1 (2018), 169–181.
[47] Eunji Lee, Jaewoo Park, Hyung Il Koo, and Nam Ik Cho. 2021. Deep-learning and graph-based approach to table

structure recognition. Multimedia Tools Appl. (2021), 1–22.
[48] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2020.

BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36,
4 (2020), 1234–1240.

[49] Jieh-Sheng Lee and Jieh Hsiang. 2019. Patentbert: Patent classification with fine-tuning a pre-trained bert model.
Retrieved from https://arXiv:1906.02124.

[50] Xiao-Hui Li, Fei Yin, and Cheng-Lin Liu. 2020. Page segmentation using convolutional neural network and graphical
model. In Proceedings of the International Workshop on Document Analysis Systems. Springer, 231–245.

[51] Bing Liu. 2012. Sentiment analysis and opinion mining. Synth. Lectures Hum. Lang. Technol. 5, 1 (2012), 1–167.
[52] Bing Liu et al. 2010. Sentiment analysis and subjectivity. Handbook Natur. Lang. Process. 2, 2010 (2010), 627–666.
[53] Chao Liu, Xinghua Wu, Min Yu, Gang Li, Jianguo Jiang, Weiqing Huang, and Xiang Lu. 2019. A two-stage model

based on BERT for short fake news detection. In Proceedings of the International Conference on Knowledge Science,

Engineering and Management. Springer, 172–183.
[54] Edward Loper and Steven Bird. 2002. Nltk: The natural language toolkit. Retrieved from https://cs/0205028.
[55] Alex Luscombe, Kevin Dick, and KevinWalby. 2021. Algorithmic thinking in the public interest: Navigating technical,

legal, and ethical hurdles to web scraping in the social sciences. Qual. Quant. (2021), 1–22.
[56] Diana Maynard and Adam Funk. 2011. Automatic detection of political opinions in tweets. In Proceedings of the

Extended Semantic Web Conference. Springer, 88–99.
[57] Vinayak Mehta. 2018. Camelot. https://pypi.org/project/camelot-py/. Retrieved from https://pypi.org/project/

camelot-py/.
[58] Prem Melville, Wojciech Gryc, and Richard D. Lawrence. 2009. Sentiment analysis of blogs by combining lexical

knowledge with text classification. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 1275–1284.
[59] Sangita S. Modi and Sudhir B. Jagtap. 2018. Multimodal web content mining to filter non-learning sites using NLP.

In Proceedings of the International Conference on Computer Networks, Big Data, and IoT. Springer, 23–30.
[60] K. Mouthami, K. Nirmala Devi, and V. Murali Bhaskaran. 2013. Sentiment analysis and classification based on tex-

tual reviews. In Proceedings of the International Conference on Information Communication and Embedded Systems

(ICICES’13). IEEE, 271–276.
[61] Anssi Nurminen. 2013. Algorithmic Extraction of Data in Tables in PDF Documents. Master’s thesis.
[62] Kalyan Perumalla, Juan Lopez, Maksudul Alam, Olivera Kotevska, Michael Hempel, and Hamid Sharif. 2020. A novel

vetting approach to cybersecurity verification in energy grid systems. In Proceedings of the IEEE Kansas Power and

Energy Conference (KPEC’20). IEEE, 1–6.
[63] MatthewE. Peters,MarkNeumann,Mohit Iyyer,Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.

2018. Deep contextualized word representations. Retrieved from https://arXiv:1802.05365.
[64] Qiao Qian, Minlie Huang, Jinhao Lei, and Xiaoyan Zhu. 2016. Linguistically regularized lstms for sentiment classifi-

cation. Retrieved from https://arXiv:1611.03949.
[65] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are

unsupervised multitask learners. OpenAI Blog 1, 8 (2019), 9.
[66] Sachin Raja, Ajoy Mondal, and C. V. Jawahar. 2020. Table structure recognition using top-down and bottom-up cues.

In Proceedings of the European Conference on Computer Vision. Springer, 70–86.
[67] Stuart Rennie, Mara Buchbinder, Eric Juengst, Lauren Brinkley-Rubinstein, Colleen Blue, and David L. Rosen. 2020.

Scraping the web for public health gains: Ethical considerations from a “big data” research project on HIV and
incarceration. Public Health Ethics 13, 1 (2020), 111–121.

[68] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a distilled version of BERT:
Smaller, faster, cheaper and lighter. Retrieved from https://arXiv:1910.01108.

[69] Bagus Satria, Ari Kusyanti, and Widhi Yahya. 2018. Implementasi algoritme Blake2s pada JSON web token (JWT)
sebagai algoritme hashing untuk Mekanisme Autentikasi Layanan REST-API. Jurnal Pengembangan Teknologi Infor-

masi dan Ilmu Komputer e-ISSN 2548 (2018), 964X.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

https://arXiv:1906.02124
https://cs/0205028
https://pypi.org/project/camelot-py/
https://pypi.org/project/camelot-py/
https://arXiv:1802.05365
https://arXiv:1611.03949
https://arXiv:1910.01108

Design of a Novel Information System for Semi-automated Management 4:35

[70] Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Dengel, and Sheraz Ahmed. 2017. Deepdesrt: Deep learning
for detection and structure recognition of tables in document images. In Proceedings of the 14th IAPR International

Conference on Document Analysis and Recognition (ICDAR’17), Vol. 1. IEEE, 1162–1167.
[71] Alexey Shigarov, Andrey Mikhailov, and Andrey Altaev. 2016. Configurable table structure recognition in untagged

PDF documents. In Proceedings of the ACM Symposium on Document Engineering. 119–122.
[72] Han-Sub Shin, Hyuk-Yoon Kwon, and Seung-Jin Ryu. 2020. A new text classification model based on contrastive

word embedding for detecting cybersecurity intelligence in twitter. Electronics 9, 9 (2020), 1527.
[73] Kai Shu, Amy Sliva, Justin Sampson, and Huan Liu. 2018. Understanding cyber attack behaviors with sentiment

information on social media. In Proceedings of the International Conference on Social Computing, Behavioral-Cultural

Modeling and Prediction and Behavior Representation in Modeling and Simulation. Springer, 377–388.
[74] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher

Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing. 1631–1642.
[75] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert for text classification? In Proceedings

of the China National Conference on Chinese Computational Linguistics. Springer, 194–206.
[76] Mikhail Tikhomirov, N. Loukachevitch, Anastasiia Sirotina, and Boris Dobrov. 2020. Using bert and augmentation

in named entity recognition for cybersecurity domain. In Proceedings of the International Conference on Applications

of Natural Language to Information Systems. Springer, 16–24.
[77] Tuan Anh Tran, Hong Tai Tran, In Seop Na, Guee Sang Lee, Hyung Jeong Yang, and Soo Hyung Kim. 2016. A

mixture model using random rotation bounding box to detect table region in document image. J. Visual Commun.

Image Represent. 39 (2016), 196–208.
[78] Seppe vanden Broucke and Bart Baesens. 2018. Practical Web Scraping for Data Science: Best Practices and Examples

with Python. Apress.
[79] Noel Varela, Omar Bonerge Pineda Lezama, and Milvio Charris. 2021. Web scraping and Naïve Bayes classification

for political analysis. In Proceedings of International Conference on Intelligent Computing, Information and Control

Systems. Springer, 1–8.
[80] Sofia Visa, Brian Ramsay, Anca L. Ralescu, and Esther VanDer Knaap. 2011. Confusionmatrix-based feature selection.

MAICS 710 (2011), 120–127.
[81] Inna Vogel and Meghana Meghana. 2020. Detecting fake news spreaders on Twitter from a multilingual perspective.

In Proceedings of the IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA’20). IEEE, 599–
606.

[82] ShengyeWan, Yue Li, and Kun Sun. 2019. PathMarker: Protectingweb contents against inside crawlers.Cybersecurity
2, 1 (2019), 1–17.

[83] Jenq-Haur Wang, Ting-Wei Liu, Xiong Luo, and Long Wang. 2018. An LSTM approach to short text sentiment clas-
sification with word embeddings. In Proceedings of the 30th Conference on Computational Linguistics and Speech

Processing (ROCLING’18). 214–223.
[84] Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. 2005. Recognizing contextual polarity in phrase-level sentiment

analysis. In Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural

Language Processing. 347–354.
[85] Bo Xie, Guowei Shen, Chun Guo, and Yunhe Cui. 2021. The named entity recognition of Chinese cybersecurity using

an active learning strategy.Wireless Commun. Mobile Comput 2021. (2021).
[86] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. 2020. Layoutlm: Pre-training of text

and layout for document image understanding. In Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. 1192–1200.
[87] Burcu Yildiz, Katharina Kaiser, and Silvia Miksch. 2005. pdf2table: A method to extract table information from

PDF files. In Proceedings of the Indian International Conference on Artificial Intelligence (IICAI). Citeseer, 1773–
1785.

[88] Jiao Yin, MingJian Tang, Jinli Cao, and Hua Wang. 2020. Apply transfer learning to cybersecurity: Predicting ex-
ploitability of vulnerabilities by description. Knowl.-Based Syst. 210 (2020), 106529.

[89] Xinyi Zheng, Douglas Burdick, Lucian Popa, Xu Zhong, and Nancy Xin RuWang. 2021. Global table extractor (GTE):
A framework for joint table identification and cell structure recognition using visual context. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision. 697–706.
[90] Shieheng Zhou, Jingju Liu, Xiaofeng Zhong, and Wendian Zhao. 2021. Named entity recognition using BERT with

whole world masking in cybersecurity domain. In Proceedings of the IEEE 6th International Conference on Big Data

Analytics (ICBDA’21). IEEE, 316–320.

Received 26 October 2021; revised 2 June 2022; accepted 24 June 2022

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 4. Publication date: January 2023.

