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ABSTRACT
Efficient end-to-end processing of continuous and streaming signals
is one of the key challenges for Artificial Intelligence (AI) in par-
ticular for Edge applications that are energy-constrained. Spiking
neural networks are explored to achieve efficient edge AI, employ-
ing low-latency, sparse processing, and small network size result-
ing in low-energy operation. Spiking Recurrent Neural Networks
(SRNNs) achieve good performance on sample data at excellent
network size and energy. When applied to continual streaming
data, like a series of concatenated keyword samples, SRNNs, like
traditional RNNs, recognize successive information increasingly
poorly as the network dynamics become saturated. SRNNs process
concatenated streams of data in three steps: i) Relevant signals have
to be localized. ii) Evidence then needs to be integrated to classify
the signal, and finally, iii) the neural dynamics must be combined
with network state resetting events to remedy network saturation.

Here we show how a streaming form of attention can aid SRNNs
in localizing events in a continuous stream of signals, where a
brain-inspired decision-making circuit then integrates evidence
to determine the correct classification. This decision then leads
to a delayed network reset, remedying network state saturation.
We demonstrate the effectiveness of this approach on streams of
concatenated keywords, reporting high accuracy combined with
low average network activity as the attention signal effectively
gates network activity in the absence of signals. We also show that
the dynamic normalization effected by the attention mechanism
enables a degree of environmental transfer learning, where the same
keywords obtained in different circumstances are still correctly
classified. The principles presented here also carry over to similar
applications of classical RNNs and thus may be of general interest
for continual running applications.
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1 INTRODUCTION
Many observational tasks are inherently of an intermittent and con-
tinuous nature: while one has to continuously observe surroundings
for dangers, the proverbial tiger is fortunately present most spar-
ingly. In a more applied context, keyword spotting requires a similar
continuous, or streaming, environmental monitoring with relevant
stimuli appearing relatively rarely. In each case, a proper balance
has to be found between the false alarm rate (seeing a tiger where
there is none) and the false reject rate (overlooking the tiger).

Continuous online processing of streaming information is a par-
ticular challenge in energy-constrained situations such as appli-
cations running on battery-operated devices. Event-based neural
networks like spiking neural network are explored as a means to
achieve both low-latency and sparse neural processing, and Spiking
Recurrent Neural Networks (SRNNs) in particular achieve good
performance on sample data at excellent network size and energy.
When continually applied on streaming data however, for example
a series of concatenated keyword samples with or without extended
pauses, SRNNs, like traditional RNNs, recognize successive infor-
mation increasingly poorly as the network dynamics become satu-
rated [2]. For RNNs, including modern transformer-based variants
like the Conformer [5], solutions have been sought in periodically
resetting the internal state of the network, where resetting is typi-
cally done using empirical measures tuned for the task at hand [2].

Here, we take inspiration from biology to dynamically reset
compact SRNNs to process concatenated continuous streams in
continually. For this, we introduce an efficient form of self-attention
to localize relevant signals, which also gates information to be
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integrated into the decision-making circuit to obtain a classification
of the detected event. The actual classification is then used as a
trigger for resetting the SRNN network state.

We show that compact spiking recurrent neural networks trained
on single samples integrated into such extended circuitry can then
successfully classify sequences of concatenated keywords. More-
over, they can do this without signal buffers or additional post-
processing, demonstrating an efficient and compact end-to-end
event-based solution. We also show that the dynamic normalization
effected by our attention mechanism enables a degree of environ-
mental transfer learning, where the same keywords obtained in
different circumstances are still correctly classified.

2 BACKGROUND
Current approaches to continuous and streaming keyword spot-
ting include three independent steps [18]. First, a stream is typi-
cally chunked into segments, for example, using Voice-Activation-
Detection algorithms [2]. Second, each segment is processed using
a set of overlapping fixed windows on the signal into a set of fea-
ture maps. Third, the concatenated features maps are processed to
determine a classification label. Single windows can be processed
into feature maps with learned approaches, such as Convolutional
Neural Networks (CNNs), trained on single labeled samples. CNN’s
outputs are then converted into a sequence of labels using, for
example, recurrent neural networks trained on the Connectionist
Temporal Classification loss (CTC) [3]. These RNNs can also be re-
placed by modern transformers [5, 14] which improve performance
but are still applied to segmented utterances. In each of these exam-
ples, a post-processing stage transduces observed signal sequences
into a labeled sequence.

In [15], a spiking neural network (SNN) version of a CNN is
applied to single keyword samples, demonstrating competitive per-
formance with the equivalent non-spiking CNN. The WaveSense
model [12] is derived from the classical WaveNet network [9] and
is shown to effectively process single samples from various bench-
marks up to 5s in length.

Still, these approaches rely on pre-processing to obtain segments
and buffering to map sequences into labels. For energy-constrained
continuous-monitoring applications, there is a need for continual
running end-to-end SNN solutions that minimize pre- and post-
processing and have minimal memory and processing requirements.

3 ATTENTIVE SPIKING RECURRENT
NEURAL NETWORKS

We are specifically interested in continual online keyword recogni-
tion and localization in recurrent spiking neural networks, where
the network omits buffering and only has access to the current
information. To achieve this, we turn to a form of “attention” to
help guide the recurrent spiking neural network in localizing and
classifying utterances compatible with continual running.

Attention has been at the center of current Transformer models,
where initially attention was introduced to learn long-range depen-
dencies on image classification and Natural Language Processing
(NLP) tasks [10]. In the context of limited or no buffering, attention
in recurrent spiking neural networks only allows forms of local
and causal self-attention without relying on long-term temporal

dependencies. We observe that a straightforward measure of cur-
rent signal-variability (Temporal Intensity ) resembles a temporally
local attention-like signal with the potential for localizing speech
patterns in a sequence.

We define a specific version of Temporal Intensity based on the
Mel-frequency spectrum representation of the signal, which is also
the input to the network.We define a temporal average over a single
time-step as µt = |xt + xt−1 |/2 and associated signal variability as
σt = |xt − xt−1 | based on current input xt . The real-time Temporal
Intensity tvart is then derived from µt and σt and rescaled to [0,1]
by the tanh function:

tvart = tanh(ησt µt ), (1)

where η is a hyperparameter we emperically set to η = 4 in all
experiments.

We further define a smoothed Temporal Intensity tvar st as
tvar st = tvar st−1+(1−ϕ)(tvart−tvar

s
t−1)whereϕ = exp(−1/τtvar )

determines the smoothness. This smoothed Temporal Intensity is
used to facilitate the process of evidence accumulation along speech
as the the curve of tvart tends to be discontinuous (illustrated in
Fig 1). In contrast to advanced attention models, our tvar st directly
localizes speech patterns in ongoing speech sequences, is parameter
free, and can be computed in an online manner.

The tvart and tvar st measures are illustrated on several key-
words speech audio samples and corresponding MFCC representa-
tion in Fig. 1: in the samples, we see that both measures map closely
to the envelope of the signal.

SRNNs. To implement continual running spike-based RNNs, we
use Adaptive Spiking Recurrent Neural Networks, SRNNs, as devel-
oped in [16], comprised of adaptive spiking neurons[1, 16]. Here,
the SRNNs are comprised of an input layer converting the input
spectrum into spikes. This input layer is densely connected to a
single recurrent layer, where the tvar st is also added as an input
to the recurrent layer. The final layer is comprised of leaky inte-
grators to generate the prediction probabilities, pit for the ith class
at a timestep t . The structure is illustrated in Fig 1, described as a
structure of 512D-(512+1)R-(12/36+1)I, where the number of output
neurons (12 or 36) is task-dependent, and D denotes a dense layer,
R the recurrent layer, and I the layer of integrators. The network
omits any bias units as they proved detrimental for continual run-
ning. As illustrated in Fig 1, the SRNN reads the spectrum row by
row at each time step, where we call each row a frame; the SRNN
thus makes an online prediction at each time step.

We train the parameters of the SRNN using BPTT[16], with some
modifications. In the continual running model, the SRNN needs
to extract a class-probability label at every timestep. This means
that also when learning, the SRNN needs to assign a label to each
timestep. For pre-segmented samples however, in many cases only
the label for the whole segment is given, and while the actual signal
is somewhat centered, it is often flanked by silence or noisy frames.
When trained on such pre-segmented samples, the ASRNN ideally
only learns from the actual signal and not from the silent or noisy
flanks. To achieve this, we introduce an instantaneous Temporal
Intensity -gated loss-function between prediction ŷt and target y
for the labeled sample:

lt = loss(y, ŷt ) ∗ tvar
s
t . (2)
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Figure 1: a) Continual running as decision-making vs single sample training; note the pauses in the speech signal where no
utterance is present. b) Example of speech audio data and correspondingMFCC figure. The red and green curves correspond to
the Temporal Intensity and smoothed Temporal Intensity measures. c) End-to-end decision-making procedure. The Temporal
Intensity measures and MFCC spectrum are continually computed in an online manner. For each frame t , the smoothed
Temporal Intensity and MFCC spectrum are fed into the SRNN, resulting in class probability outputs ptj . These outputs are
integrated in the decision-making action value nodes atj and associated gated values ātj . Once a threshold θ is reached, themost
activated action is selected and the other action values are suppressed. Once the action value for the selected action falls below
a set threshold again, at the end of the utterance typically, the label is assigned and the network state is reset. The decision
duration T̂ i = t is , ts+1, ..., t ir represents the period between the starting time of decision collection t is and the reset timestep t ir .
accif is the framewise accuracy and accip is the prediction accuracy for the sample i

As the Temporal Intensity calculates an envelope of the signal (i.e.,
Fig. 1b), this loss helps the network to learn primarily from actual
signal data.

4 STREAMING DECISION MAKING
When a network continually generates class predictions for ev-
ery frame, the challenge is to concatenate this sequence of class
predictions into a sequence of predicted labels. Complex methods
like the CTC exploit interdependence between frames or segments
combined with implicit sequence modeling to determine the most
likely sequence interpretation. However, in an online setting of con-
catenated keywords and silence/noise parts, labels are independent
and temporally sparse, and the task is more closely related to se-
quential decision-making. We take inspiration from neural models
of decision-making [4, 17], and introduce a decision-making cir-
cuit with dynamic resetting modeled after the Basal Ganglia brain
structure, which is specifically involved in decision-making and
context-dependent gating.

The decision-making circuit is shown in Fig. 1c, in the grey box:
it accomplishes action selection by integrating class-probability
inputs pit for class i , where actions correspond to labels. An action
is selected when a pre-defined threshold θ is reached, and results in
the temporary inhibition of other actions. Resetting of the network
is triggered when the integrated evidence falls below the threshold
again while the Temporal Intensity signal is also rapidly declining
at the same time (the effect of this latter condition is that in Fig. 2,
for dynamic resetting, the third sample is correctly classified even
though initially the wrong action/label is selected).

Action selection. The activity of the action selection system is
modeled as a leaky integrator where a leak time-constant τρ is
associated with the typical duration of each action [17]. In the
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Figure 2: An example of the different decision-making process on concatenate speech audio sequence. Top: MFCC spectrum
of four concatenated speech utterances. Next is plotted the Temporal Intensity as directly calculated and framewise classifi-
cation probabilities pt and resulting classifications (green: correct label, red: incorrect label). The plot below, ‘Periodic Reset’,
demonstrates the effect of smoothing the Temporal Intensity (tvar st ), the resulting firing rate (f r ) and gated action value (āt ),
and resulting framewise classifications given fixed periodic resets. The ‘Dynamic Reset’ plot illustrates what happens when
resets instead are triggered by the decision-making circuit, and additionally winning actions inhibit other actions. Vertical
black arrows denote the time of resets.

circuit, the action value ait of class i at time t is computed as:

ait+1 = ait + (1 − ρ)(uit − ait )

where uit = −w−
z I

i
t +w

+
z

n∑
j,i

I
j
t ,

(3)

and where the input I it = p
i
t and ρ = exp(−dt/τρ ). As in [4, 17] the

balance between disinhibition and inhibition is chosen asw+z /w−
z =

1/n, where n is the number of classes and τρ = 20, chosen to match
the average speech length.

To pick up the prediction of the network only on the data, we
use a gated action value as a conditional prediction probability or
confidence to determine when speech is present. The gated action
value is calculated as āit = tanh(tvar st a

i
t ) for class i . The frame-wise

class label for each timestep is derived from the gated action with
minimal value (maximal disinhibited) as well as

zkt =


1, if k = arg min

i ∈1,2, ...n
(āit ) ∧ min

i ∈1,2, ...n
(āit ) < −θ .

0, otherwise.
(4)

where we use a default value θ = 0.3. Note that the same measure
can be used as an indicator for speech/no-speech at time t .

Action Inhibition. Once an action (class label) is selected, all other
classes are inhibited (where z jt = 0, j , i) when speech is first
detected at time t . Inhibition is implemented by providing negative
inputs to the non-selected action values in the action selection
system: an exponentially decaying inhibitory current is added at
timestep t ′ as follows:

Ikt ′ =

{
pkt ′ , if zkt = 1.
− exp

(
t ′−t
τϕ

)
pkt ′ , otherwise.

(5)

where τϕ controls the leaky speed of the inhibition current for un-
selected classes. We empirically set τϕ = 20 to match the average
speech length.

Network resetting. To counter the state saturation problem asso-
ciated with continual running in RNNs, network state resets are
one solution [2, 5], where the challenge is to determine when to
reset the network state. Here, we reset the network as a function
of when a decision is made and when the following empirically
derived criterion is satisfied:

• min(āit ) < −θ
• tvar st is decreasing and tvar st − tvar st−1 < 0.1.
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We see the effect of this condition in the ‘Dynamic Resetting’ bottom
row in Fig. ??, where the initially incorrect framewise classification
in the third sample does not result in a reset, and the sample is
correctly classified according to the accp measure. Resetting is only
applied in the continual running inference phase and not during
training.

Metrics. For network accuracy, we measure two metrics: the
framewise accuracy accf and the prediction accuracy accp .

The framewise accuracy for a single sample i is computed as the
average accuracy during the network decision process as well:

accif =
1

t ir − t is

t ir∑
t=t is

δ (ŷit ,y
i ), (6)

where ŷit is the prediction at timestep t ∈ T̂ i ,yi the correct label for
the sample i , and δ (ŷit ,y

i ) the Kronecker delta. The average frame-
wise accuracy accf is computed as the average over all samples,
1
N

∑N
i accif .

For a sample i , the prediction accuracy accip is calculated as:

accip = δ (ŷitr ,y
i ) iff |T̂ i | > 10, (7)

where T̂ i represents the evidence collection duration calculated
as the difference between starting time t is and reset time step t ir
in sample i , as in Fig. 1. The average prediction accuracy over N
samples accp is calculated as accp = 1

N
∑N
i accip .

Summary. In Algorithm 1, we illustrate the details of the decision-
making procedure, including network initialization, network pre-
diction computation, action value calculation based on inhibitory
input, dynamic resetting, and metric evaluation.

5 EXPERIMENTS
Dataset. We trained our SRNN on both single training samples

from the Google speech dataset v1 (GSCv1) or v2 (GSCv2) [11]. Ad-
ditionally, we trained a conventional GRU network with an equal
number of parameters augmented with the same Temporal Intensity
-gating and decision-making structures to provide baseline perfor-
mance – the GRU network was made up of two densely connected
GRU layers with 256 units each. We evaluated these networks by
training them to classify all 10 keywords in the GSCv1 and 35 key-
words in the GSV2 dataset. Each dataset also contains an additional
class for “unknown”, and GSV1 also contains a “silence” class. In
GSCv1, there are 22,236 training samples and 3,081 test samples,
GSCv2 dataset comprises 36,923 training samples and 11,005 test
samples. The raw audio is pre-processed via MFCC bandpass filters:
each audio sample is passed through 40 2nd order bandpass filters
distributed along the Mel-scale between 20Hz and 4kHz. We rescale
the response of 40 bandpass filters at each timestep by dividing by
the standard deviation across the spectrum. Each keyword sample
is converted to a sequence of 101 timesteps in a 40-by-3 matrix
representing the spectrum at each time step.

Direct, single sample performance is measured on the respec-
tive test datasets. We evaluate the continual running of both the
SRNN and GRU on long sequences comprised of concatenations
of keywords. To evaluate the network performance on single key-
word prediction, we define prediction accuracy accp by comparing

the prediction and the target when the speech pattern disappears
and the network is reset (see also Fig. 1c). We also measure the
network performance on long sequences by comparing average
frame-wise accuracy accf as measured over the whole sequence
length. To evaluate the networks’ robustness to noise, we applied
background noise to each speech audio. Different levels of synthetic
noise were applied on the first 10 filter bandpass filters. The noise
was generated as Gaussian, rN(0, 1) where r is the noise ratio.

5.1 Results
Performance on single samples. We evaluated the networks
on single speech audio samples. For this, we evaluated the GRU
network including the Temporal Intensity gating and the decision-
making circuit. Then, we compared it to SRNN networks with or
without Temporal Intensity gating. Results are shown in Fig. 3:
we find that the SRNN with Temporal Intensity gating slightly
outperforms the other networks in terms of classification accuracy,
including the GRU network, for GSCv1 (Fig. 3a) and GSCv2 (Fig. 3b).
Compared to the literature, in [16] ASRNNs achieve 92.14% on
GSCv1, slightly better than our dynamic SRNN (89.98%), while the
GSCv2 accuracy (87.31%) represents new State-of-The-art (SoTa),
exceeding the 79.6% reported in [13].

Noting average activity in the network (Fig. 3c,d), we see that
using Temporal Intensity gating lowers the required number of
spikes by some 50% for both GSCv1 and GSCv2 tasks. We also
find that 68% of spikes in the networks are on average generated
during the “active” parts where Temporal Intensity exceeds the
signal threshold θ .

Effect of Threshold θ . The parameter θ distinguishes between
noise/quiet and speech patterns. Smaller θ will result in noise being
more likely treated as part of the speech pattern, while larger θ will
cause the network to not identify more words in the recognition
process. As such θ directly controls the false positive and false
negative rates. In Fig. 4, we plot how θ influences keyword detection
as measured in terms of average framewise accuracy accf . We see
that indeed, as θ increases, the number of missed words grows, and
accuracy improves.

Continual running: long sequences. The same networks are
also evaluated in the continual-running setting, carrying out con-
tinuous inference on speech sequences over longer periods of time.
In Table 1, we note the SRNN and GRU networks’ performance on
concatenated sequences of commands, ranging from a single key-
word to 128 concatenated keywords from either GSCv1 or GSCv2.
For easy comparison, we report average frame-wise accuracy accf
when tvar st > θ for raw output of the network, networks with
periodic resetting, and networks with dynamic resetting.

We make several observations from Table 1: first, without reset-
ting both, GRU and SRNN networks saturate, and recognition per-
formance suffers dramatically. Including a periodical reset resolves
this issue for the SRNN network (and also for the GRU network,
not shown). We then see that our dynamic resetting scheme based
on the action selection circuit provides essentially equal (GSCv1)
or even slightly better (GSCv2) accuracy.

We also find that with the dynamic resetting mechanism, adding
longer silences between concatenated speech samples does not
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Figure 3: Single sample performance. a) Classification accu-
racy accp and average framewise accuracy accf for various
baseline networks for GSCv1, and b) for GSCv2. c) average
network activity (spike probability per timestep) for GSCv1
and d) GSCv2.

Figure 4: Effect of threshold θ on frame-wise accuracy and
% of missing words. The calculation of framewise accuracy
only accounts upon detected words.

affect the framewise classification accuracy; an example of such
added silence is shown in Fig. 5.

To further quantify the quality of dynamic resetting, we calculate
the editing distance [7], both for the GRU and for the SRNN, on
concatenated sequences of samples that are correctly classified
when presented as single samples. In Fig. 6a, we plot the average
number of editing operations needed when evaluating a sequence
of 1000 concatenated samples on GSCv2: we find that for both GRU
and SRNN, the dynamic reset outperforms the fixed periodic reset

�

Figure 5: Effect of long salience on SRNN. Label “-1” denotes
the added silence audio patches.
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Figure 6: (a) Average editing distance and (b,c) distribution
shift robustness computed as percentage of accuracy on the
original distribution.

(159 vs 158 for GRU and 112 vs 70 for SRNN); we also find that the
SRNN network substantially outperforms the GRU network (70 vs
158 operations).

Temporal Intensity compensates distribution shift. While typical
speech benchmarks are comprised of clean samples recorded un-
der essentially ideal conditions, new recordings processed under
different circumstances may result in a shifted frequency distri-
bution leading to degraded performance. For example, in [11] a
standard CNN model was trained on either of the two versions of
GSC datasets and then assessed on both datasets. Depending on
the type of CNN, performance was more or less degraded when a
network trained on one dataset was evaluated on the other.

Here, we optimized RNNs on either GSCv1 and GSCv2, and eval-
uated their performance on both datasets. As shown in Fig. 6, we
find that standard GRU networks, not gated by Temporal Intensity,
show substantial susceptibility to distributions shifts, as average
performance drops by 9% (GSCv1 vs. GSCv2) and 7% (GSCv2 vs.
GSCv1). For SRNN networks not gated by Temporal Intensity, we
find a similar issue; SRNNs with Temporal Intensity -based atten-
tion, however, prove to not be sensitive to distribution shift and
maintain accuracy (GSCv1 vs. GSCv2) or even improve accuracy
(GSCv2 vs. GSCv1, due to the larger training dataset).

6 DISCUSSION
We demonstrated how the inclusion of a local signal-detection mea-
sure combinedwith brain-inspired decision-making circuitry allows
compact and high-performance SRNNs to be applied to continual
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Dataset Model T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128

GSC V1

GRU raw output 84.31 60.96 47.72 41.37 40.67 37.86 27.98 35.10
GRU Dynamic Reset 84.31 84.45 83.28 83.74 84.02 82.84 83.07 82.86
SRNN raw output 83.85 59.54 40.10 27.10 21.28 16.82 15.42 15.03
SRNN periodicc reset 83.85 83.31 83.07 83.05 82.95 82.98 82.92 82.84
SRNN action selection
with dynamic resetting 84.10 84.09 83.34 83.09 83.03 82.77 82.99 82.88

GSC V2

GRU raw output 80.82 55.25 44.46 39.95 37.59 35.73 35.30 33.02
GRU Dynamic Reset 80.82 79.58 80.11 79.46 79.77 79.85 79.94 79.82
SRNN raw output 79.39 48.53 31.45 21.58 15.62 13.49 12.24 11.70
SRNN periodic reset 79.42 79.38 79.03 79.02 79.31 78.98 78.93 78.88
SRNN action selection
with dynamic resetting 81.73 80.54 80.36 80.12 79.98 80.39 80.05 80.35

Table 1: Average frame-wise accuracy accf when min āit < −θ for different concatenated sequence lengths.

running scenarios. For signals comprised of concatenated keywords,
this results in constant-accuracy continual running. Importantly,
Temporal Intensity -gating resulted in much reduced average ac-
tivity in the SRNNs, potentially improving energy consumption.
Measured in terms of editing distance, we find that dynamic re-
setting results in substantially better accuracy, where the SRNN
networks outperform GRU networks. We also showed how the
decision-making criteria enable the trading-off of false alarms ver-
sus missed keywords. A next step will be to evaluate SRNNs on
real-world continual running scenarios, which we omitted for lack
of a current suitable public benchmark to use and compare to.

We observed furthermore that the Temporal Intensity -gated
SRNNs are insensitive to a distribution shift, as measured in terms
of environmental transfer performance from GSCv1 to GSCV2 and
vice versa. We find this observation somewhat curious, but as noted,
similar observations have been made for CNN architectures where
some architectures are more or less susceptible to distribution shift.

The absolute classification performance achieved by the SRNN
networks is compelling and approaches or exceeds state-of-the-art
for SNNs. Still, we believe that the accuracy of the SRNNs can likely
be further improved by, for instance, replacing the MFCC features
with custom learned ones [8], and optimizing circuit parameters like
reset intensity, decision thresholds, and action-selection triggered
via lateral inhibition for class specificity. Furthermore, more com-
plex SRNNs can additionally improve sample recognition rates [16],
potentially at the expense of increased computational complexity.

Our results open new possibilities in the design of always-on
keyword-spotting devices such as the one presented in [6]. This
device exploits switched ring oscillators for generating event-based
frequency outputs from audio streams. Today, these outputs are
processed in a frame-based way using a GRU network. By replacing
the frame-based GRU network with SRNNs that directly process
event-based features, it will be possible to compute on-demand on
the streamed frequency output features, thus further reducing the
overall system’s power and latency [16] while increasing accuracy.
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Algorithm 1: Dynamic resetting
1 Variables:
2 is_rest – network has been reset(1) or not(0)
3 ht – networks’ hidden states
4 accf – framewise accuracy
5 accp – prediction accuracy
6 ts – start point
7 tr – reset time
8 Initialization:
9 h0 = reset(SNN )

10 is_rest=1, accf = accp = 0
11 for t = 0 to T do
12 // tvar information:
13 µt = ∥xt + xt−1∥/2, σt = ∥xt − xt−1∥

14 tvart = tanh(ησt µt )
15 tvar st = tvar st−1 + (1 − ϕ)(tvart − tvar st−1)

16 dtvart = tvar st − tvar st+1 – derivative of smoothed tvar
17 //Network prediction:
18 pt = SNN (xt , tvar

s
t ,ht )

19 //Action selection:
20 for i = 1 to n do
21 // Inhibition current : if detected class is k at t0
22 if is_reset ==0 and i = k then
23 I it = p

i
t

24 end
25 if is_reset ==0 and i , k then
26 I it = − exp

(
t−t0
τϕ

)
pit

27 end
28 // Action value:
29 uit = −w−

z I
i
t +w

+
z
∑n
j,i I

j
t

30 ait+1 = ait + (1 − ρ)(uit − ait )

31 āit = tanh(tvar st a
i
t )

32 end
33 Prediction: zt = arg min

i ∈1,2, ...n
(āit )

34 // Decision making:
35 if min(āt ) < −θ and dtvart > 0 and is_rest ==1 then
36 // Start decision collection, detected class k at t0
37 // rest statue
38 is_reset = 0 ; ts = t
39 end
40 // Framewise Accuracy: compare current prediction zt and target label y
41 if is_reset ==0 then
42 accf + = (zt == yt )

43 end
44 if min(āt ) < −θ and dtvart < 0 and is_rest ==0 then
45 // End decision collection and reset hidden states
46 ht = reset(SNN )

47 if (T̂ = t − ts ) > 10 then
48 // Prediction Accuracy: compare final prediction zt and target label y
49 accp+ = (zt == yt )

50 end
51 // rest statue
52 is_reset = 1
53 end
54 end
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