
HAL Id: lirmm-03737597
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03737597

Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-Chip Learning with a 15-neuron Digital Oscillatory
Neural Network Implemented on ZYNQ Processor

Madeleine Abernot, Thierry Gil, Aida Todri-Sanial

To cite this version:
Madeleine Abernot, Thierry Gil, Aida Todri-Sanial. On-Chip Learning with a 15-neuron Digi-
tal Oscillatory Neural Network Implemented on ZYNQ Processor. ICONS 2022 - International
Conference on Neuromorphic Systems, Jul 2022, Knoxville, Tennessee (hybrid), United States.
�10.1145/3546790.3546822�. �lirmm-03737597�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03737597
https://hal.archives-ouvertes.fr


On-Chip Learning with a 15-neuron Digital Oscillatory Neural

Network Implemented on ZYNQ Processor ∗

Madeleine Abernot
LIRMM, Univ. of Montpellier,

CNRS
madeleine.abernot@lirmm.fr

Thierry Gil
LIRMM, Univ. of Montpellier,

CNRS
thierry.gil@lirmm.fr

Aida Todri-Sanial
LIRMM, Univ. of Montpellier,

CNRS
aida.todri@lirmm.fr

Abstract

Real-time on-chip learning is an important fea-
ture for current neuromorphic computing to enable
smart embedded systems capable of learning. Neu-
romorphic computing based on Oscillatory Neural
Networks (ONNs) are networks of coupled oscil-
lators computing with phase information. ONNs
with fully-connected connections can perform auto-
associative memory applications when trained with
unsupervised learning rules. In this paper, we
propose for the first time an architecture to per-
form on-chip learning with a digitally implemented
ONN. We implement the digital ONN with pro-
grammable logic of a ZYNQ processor and we per-
form learning on the processing system of the same
chip. We validate our solution on a 15-neuron ONN
trained with either Hebbian or Storkey learning
rules up to three patterns. We report a stable re-
source utilization for both learning rules and timing
from 119 µs (Hebbian) to 163 µs (Storkey). Addi-
tionally, accuracy is equal to the off-chip learning
implementation.

Keywords— O scillatory Neural Networks, Auto-

associative Memory, On-chip Learning, Pattern Recog-

nition

∗This work was supported by the European Union’s Hori-
zon 2020 research and innovation program, EU H2020 NEU-
RONN project under grant n. 871501 (www.neuronn.eu)

Figure 1: A) An oscillatory neural network repre-
sentation with AAM type of computation, showing
B) the learning task, and C) the implementation in
the digital design.

1 Introduction

Neuromorphic computing aims to emulate biolog-
ical neural networks and provide massive paral-
lelism and energy efficient computing which can
be a game-changer for deploying Artificial Intel-
ligence (AI) at the edge. The human brain can
easily and quickly solve complex problems by learn-
ing new information continuously. Meanwhile, deep
neuromorphic models can also solve complex prob-

1



lems but require a tremendous amount of time, en-
ergy and resources for training. Such learning al-
gorithms are not adapted for edge implementation.
Though with the proliferation of edge devices, there
is an increasing need to process data at the edge
with energy efficient hardware and online learning
algorithms [1].

Oscillatory Neural Networks (ONNs) are novel
neuromorphic architecture enabling low-power
computing suitable for edge applications [2–6]. By
default, ONN is an analog computing paradigm
based on coupled oscillators with phase-encoded in-
formation. Using ONNs as a fully-connected re-
current architecture, it can solve Auto-Associative
Memory (AAM) problems [7]. For example, ONNs
can learn patterns, such as images, and retrieve
them from corrupted versions of the pattern in a
few cycles, see Fig. 1. AAM tasks are typically
solved using unsupervised learning algorithms, such
as Hebbian or Storkey learning rules.

In this work, we propose a first on-chip learning
architecture using a digital ONN design performing
AAM. We use the digital ONN design from [8] and
implement it in the Programmable Logic (PL) of a
ZYNQ processor, see Fig. 2. Learning algorithms
are implemented in the Processing System (PS),
and PS controls the ONN for learning and infer-
ence. ONN receives input information or weights
from PS, depending on inference or learning steps,
respectively, and ONN returns its output to PS af-
ter inference computation. We implement a 5x3
ONN and two learning algorithms to test and val-
idate our architecture. We report on resource uti-
lization and computation time, as well as accuracy
performances. In addition, we compare accuracy
and resource utilization with [8] obtained on the
same task with the same digital design without on-
chip learning. Our contributions can be summa-
rized as 1) design of a new architecture for on-chip
learning with ONNs, 2) implementation of on-chip
learning with a digital ONN using an SoC with a
processing system, and 3) validation of the pro-
posed architecture on several applications on a 5x3
ONN for pattern recognition.

Section 2 describes the ONN computing
paradigm and how it performs AAM. Section 3 ex-
plains the proposed architecture to enable on-chip
learning with the digital ONN design. Section 4
presents results of our proposed architecture. And
Section 5 discusses the advantages and limitations

Figure 2: Global view of the on-chip learning ar-
chitecture with our digital ONN design.

of such architecture, as well as our future explo-
rations.

2 Oscillatory Neural Net-
works

ONNs are brain-inspired computing paradigms us-
ing the physical interaction among coupled oscilla-
tors to perform parallel computation. ONNs use
oscillators as neurons and coupling as a synapse
to compute with phase information, see Fig. 1.A).
Information is contained in the phase difference
among oscillators, so computation starts by initial-
ization of each oscillator phase (to represent the
input information). Then, coupling determines os-
cillators dynamics and evolution until stabilization,
and measurement of the final phase states gives the
output information.

ONNs with fully-connected recurrent architec-
ture configured with specific coupling have been
demonstrated to show AAM behavior [7]. AAM
networks can memorize patterns and retrieve them
from corrupted input information. For example,
suppose one configures ONN to perform an AAM
task with memorized patterns. In that case, one
initializes ONN with a corrupted pattern and lets
it evolve till ONN stabilizes to retrieve one of
the memorized patterns, see Fig. 1.A). Memorized
patterns, also called learning patterns, are stored
in the synaptic weight couplings among oscilla-
tors. The learning step constitutes determining the
synaptic weights and configuring the couplings, see
Fig. 1.B).

State-of-the-art works perform AAM tasks with
networks trained by unsupervised learning algo-
rithms, such as Hebbian [9] or Storkey [10] learning

2



rules. These unsupervised learning algorithms only
need learning patterns to compute the weights and
configure the couplings among oscillators. In liter-
ature, so far, the reported ONN implementations
do not perform on-chip learning [3]. They are usu-
ally pre-trained, and weights are computed using
software algorithms and mapped inside the ONN,
depending on the implementation [11]. Here, we
propose for the first time an architecture that con-
tains a digital ONN implementation and the learn-
ing algorithms to perform on-chip learning.

3 Methods

Our proposed architecture uses a ZYNQ processor
consisting of PL and PS. We implement the digital
ONN design using PL and the learning algorithms
using PS. This section presents the digital ONN
design implemented on PL, the different learning
algorithms implemented on PS, the global architec-
ture implementation, and the application we use to
validate our design.

3.1 Digital ONN Design

The digital ONN design was presented in [8] as a
proof of concept of the ONN as AAM for image
recognition tasks. We implement this design in our
architecture using the PL of a ZYNQ processor.
In the design, oscillators are phase-controlled digi-
tal oscillators, oscillating between a logic ’0’ and a
logic ’1’ within a 16-clock cycle period. Thus, phase
input information varies from 0 corresponding to
0o phase, up to 8 corresponding to 180o phase, al-
lowing for grayscale input images. Synapses are
5-bits signed registers, supporting integer weights
between -15 and +15, see Fig. 1.C). In [8], weights
are computed off-chip using unsupervised Hebbian
and Storkey algorithms implemented on Matlab
and then normalized and integrated into the dig-
ital design registers.

3.2 Learning Algorithms

To train ONN for AAM tasks, we apply unsu-
pervised learning algorithms. Such algorithms are
sorted into biologically plausible through two pa-
rameters: the locality and the incrementality. A lo-
cal algorithm only needs information from neurons

on both sides of the synapse to update its synap-
tic weight. An incremental algorithm learns pat-
terns one by one, using the previous weight values
as prior knowledge. Additionally, weight symme-
try is a necessary criterion for ONN, as coupling
between two neurons is bidirectional.

The most popular learning algorithm is the Heb-
bian learning rule [9]. However, it has limited mem-
ory capacity, so other algorithms with higher capac-
ity were proposed, such as Storkey [10] and Pseudo-
inverse [12]. Both Hebbian and Storkey are lo-
cal and incremental and compute symmetric weight
matrices. However, Pseudo-inverse is neither local
nor incremental. Thus, we implement only Hebbian
and Storkey learning rules in our architecture.

3.3 Architecture

We implement our architecture on the Zybo-Z7 de-
velopment board [13]. The Zybo-Z7 development
board is based on a ZYNQ processor [14]. The
ZYNQ contains a dual-core Cortex-A9 processor
and programmable logic equivalent to an Artix-7
FPGA. We use PL to implement the digital ONN
as described in [8]. However, instead of control-
ling the ONN directly with PL using the Zybo-Z7
interface, we control the ONN from PS by connect-
ing Zybo-Z7 interfaces to PS. PS also integrates
the learning algorithms to update weights when a
learning command is active.

In the ZYNQ processor, communication between
PS and PL uses AXI4 parallel communication pro-
tocol. In our design, we use the AXI4-Lite variant
to communicate between PS and PL, using PS as
master and PL as a slave, see Fig. 3. AXI4-Lite
transmits data words of 32-bits. PS receives in-
put information during inference and sends it to
ONN through AXI4-Lite. ONN computes and re-
turns its output to PS. PS receives the learning
command during training and uses the current in-
put information as a new pattern to memorize. The
learning algorithm computes the new weight matrix
and transmits weights to PL. In PL, ONN deacti-
vates computation to store the new weight values.
After the weights update, ONN returns into infer-
ence mode until a novel training command appears
in PS. Note that each AXI4-Lite communication
sends 32-bits at a time. In the digital ONN design,
weights are encoded with 5 bits so that we can send
weights 6 by 6. With a 5x3 ONN of 15 neurons, the

3



Figure 3: Architecture of the on-chip learning ap-
plication with digitally implemented ONN trained
by PS implemented unsupervised learning algo-
rithms.

weight matrix contains 225 weight values. Thus, 38
AXI-Lite transmissions are necessary.

3.4 Application

We use the proposed architecture to perform real-
time learning for pattern recognition with a 5x3
ONN trained with up to 3 patterns. We consider
the same testbench as in [8], with three learning
patterns representing digits from 0 to 2, and 15
grayscale test images. Test images are the clear
learning patterns with four additional corrupted
images for each pattern, see Fig. 4.

We reproduce experiments from [8], using
switches to send input images and LEDs to repre-
sent the output pattern. Note, switches and LEDs
are connected to PS in our work, while it was con-
nected to PL in [8]. We initialize all weights to
zeros and press a button as the learning command
to start a learning process. So, when we push the
training button, the PS starts processing the new
weights using the current input image. After pro-
cessing, all 225 weights are sent through AXI4-Lite
to the ONN on the PL. During experiments, we
train our model with the three training patterns
one by one and we test all 15 test images to assess
the accuracy.

Figure 4: Training patterns and test set related to
digit ’0’.

4 On-Chip Learning: Results

This section reports on the performances and char-
acteristics of our on-chip learning solution with
ONN. We extract the PL resources necessary for
our design, measure the time needed to learn pat-
terns one by one, and assess the accuracy of the
5x3 digits recognition application. Additionally, we
compare resources and accuracy obtained with the
digital ONN design without on-chip learning [8].

Table 1 displays resources, accuracy, and tim-
ing characteristics of our on-chip learning solution
for the two implemented learning rules. Table 1
also highlights resources and accuracy obtained for
the same application without on-chip learning [8].
Note, we report and compare accuracy after learn-
ing the 3 memorized patterns.

Table 1 shows our solution highly increases PL
resource utilization in comparison with the off-chip
learning solution due to the weight variation avail-
ability. However, in our case, the learning algo-
rithm does not influence resource utilization. Fur-
thermore, accuracy with on-chip or off-chip learn-
ing is equal for this specific application. So, we do
not lose precision with our on-chip learning archi-
tecture. Finally, we highlight the learning compu-
tation and transmission time. Computation time
changes from one learning rule to another depend-
ing on the calculation complexity. However, the
transmission time is stable because the number of
weights sent to PL depends on ONN size (stable
in this case). We report a transmission time of 86
µs to send the 225 weight values, and computation
time of 33µs for the Hebbian learning rule, and 77µs
for the Storkey learning rule. Note that increasing
the ONN size will increase the computation and

4



Table 1: Performances and characteristics of the
on-chip learning architecture for 5x3 digits recogni-
tion application compared to the off-chip design [8].

Hebbian Storkey
Resources (our work)
- LUTs 8203 (15.42%) 8203 (15.42%)
- Flip-Flops 3305 (3.11%) 3305 (3.11%)
Resources [8]
- LUTs 958 (1.8%) 800 (1.5%)
- Flip-Flops 721 (0.68%) 721 (0.68%)
Accuracy (our work) 93.33% 93.33%
Accuracy [8] 93.33% 93.33%
Learning time 119 µs 163 µs
- Computation 33 µs 77 µs
- Transmission 86 µs 86 µs

transmission latency.

5 Discussion

This paper presents for the first time an architec-
ture to implement on-chip learning with a digital
ONN design implemented on a ZYNQ processor.
We show that the proposed architecture can ef-
ficiently perform on-chip learning for AAM tasks
with a 5x3 ONN reaching equal accuracy as with-
out on-chip learning implementation.

The proposed architecture uses a large amount
of resources that can be problematic for larger
scale ONN using this architecture. The amount of
synaptic connections increases quadratically with
the number of neurons, so a larger ONN size with
on-chip learning capability can rapidly reach PL re-
source limitations. Yet, one advantage comes from
the stability of the resource utilization when chang-
ing the learning algorithm. So, more complex learn-
ing algorithms can be implemented easily without
influencing the amount of resources.

Additionally, learning needs to be fast to allow
real-time weight updates depending on the appli-
cation. In this paper, we demonstrate that our ar-
chitecture efficiently process on-chip learning with
a simple application using the Zybo-Z7 interfaces.
If we consider a real-case image processing example
treating images from a camera stream, real-time re-
quirements are given by the camera. Usually 30 im-
ages per second, so 33 ms per image. In the case of

small-scale ONN, such as our 15-neuron implemen-
tation, we could treat images from a camera stream
in real-time. But latency will scale linearly with
the number of synapses, which increases quadrat-
ically with the number of neurons. Thus, an ad-
ditional study of the latency depending on ONN
size should be addressed to clearly assess real-time
properties of our architecture. Meanwhile, we still
can improve latency of our architecture with vari-
ous optimizations. For example, we can reduce the
computation latency by optimizing software algo-
rithms and decreasing the amount of sequential op-
erations. Also, as the weight matrix is symmetric,
we could send only half of the weight values to re-
duce by 2 the transmission latency. Finally, reduc-
ing the weight precision could allow sending more
weights at a time and reduce the final transmission
latency. Note that reduction of weight precision
will negatively impact the accuracy, thus, there is
a tradeoff between latency and accuracy with our
implementation. Our future work will study the
scalability of our solution with the ONN size.

6 Conclusion

We present for the first time an architecture to al-
low on-chip learning on a digital ONN configured
for AAM tasks. In addition, we demonstrated its
efficiency with a 15-neuron ONN trained with up
to 3 patterns. The proposed architecture uses a
digital ONN design implemented with the PL of a
ZYNQ processor. In addition, we use the PS to
control the ONN - send input information and re-
quest output information - and to implement two
learning algorithms, Hebbian and Storkey learning
rules. We use the AXI4-Lite protocol to commu-
nicate between PS and PL. We demonstrate the
on-chip learning efficiency of our architecture with
a 15-neuron ONN case study, trained with up to
3 patterns. We obtain equal accuracy in compari-
son with off-chip learning solutions. However, the
new architecture necessitates a large amount of re-
sources, limiting the implementation of larger scale
ONNs. Furthermore, learning a 15-neuron pattern
in this architecture takes a hundred microseconds,
from 119 µs with Hebbian to 163 µs with Storkey.
This respects real-time requirements for various ap-
plications, such as image recognition from a camera
stream. This work proposes a solution to perform

5



real-time on-chip learning with small-scale ONN.

References

[1] Dennis Valbjørn Christensen and al. 2022
roadmap on neuromorphic computing and en-
gineering. Neuromorphic Computing and En-
gineering, 2022.

[2] Tetsuro Endo and Kazuhiro Takeyama. Neu-
ral network using oscillators. Electronics and
Communications in Japan (Part III: Funda-
mental Electronic Science), 75(5):51–59, 1992.

[3] Gyorgy Csaba and Wolfgang Porod. Coupled
oscillators for computing: A review and per-
spective. Applied physics reviews, 7:011302,
2020.

[4] Aida Todri-Sanial, Stefania Carapezzi,
Corentin Delacour, Madeleine Abernot,
Thierry Gil, Elisabetta Corti, Siegfried F.
Karg, Juan Nüñez, Manuel Jiménèz, Maŕıa J.
Avedillo, and Bernabé Linares-Barranco. How
frequency injection locking can train oscilla-
tory neural networks to compute in phase.
IEEE Transactions on Neural Networks and
Learning Systems, pages 1–14, 2021.

[5] Juan Núñez, Maŕıa J. Avedillo, Manuel
Jiménez, José M. Quintana, Aida Todri-
Sanial, Elisabetta Corti, Siegfried Karg, and
Bernabé Linares-Barranco. Oscillatory neural
networks using vo2 based phase encoded logic.
Frontiers in Neuroscience, 15, 2021.

[6] Nikhil Shukla, Wei Yu Tsai, Matthew Jerry,
Michael Barth, Vijayakrishan Narayanan, and
Suman Datta. Ultra low power coupled oscilla-
tor arrays for computer vision applications. In
2016 IEEE Symposium on VLSI Technology,
pages 1–2, 2016.

[7] Frank C. Hoppensteadt and Eugene M. Izhike-
vich. Pattern recognition via synchronization
in phase-locked loop neural networks. IEEE
Transactions on Neural Networks, 11(3):734–
738, 2000.

[8] Madeleine Abernot, Thierry Gil, Manuel
Jiménez, Juan Núñez, Maŕıa J. Avellido,
Bernabé Linares-Barranco, Théophile Gonos,

Tanguy Hardelin, and Aida Todri-Sanial. Dig-
ital implementation of oscillatory neural net-
work for image recognition applications. Fron-
tiers in Neuroscience, 15:1095, 2021.

[9] Richard G.M. Morris. D.o. hebb: The orga-
nization of behavior, wiley: New york; 1949.
Brain Research Bulletin, 50(5):437, 1999.

[10] Amos Storkey. Increasing the capacity of
a hopfield network without sacrificing func-
tionality. In Artificial Neural Networks —
ICANN’97, volume 1327, pages 451–456.
Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1997.

[11] Corentin Delacour and Aida Todri-Sanial.
Mapping hebbian learning rules to coupling re-
sistances for oscillatory neural networks. Fron-
tiers in Neuroscience, 15:1489, 2021.

[12] Yue Wu, Jianqing Hu, Wei Wu, Yong Zhou,
and K.L. Du. Storage Capacity of the Hopfield
Network Associative Memory. In 2012 Fifth
International Conference on Intelligent Com-
putation Technology and Automation, pages
330–336, Zhangjiajie, Hunan, China, January
2012. IEEE.

[13] Digilent company. Zybo z7 reference manual.

[14] AMD company Xilinx. Zynq: Socs with hard-
ware and software programmability.

6


