
Machine-Learning-Based Self-Optimizing Compiler Heuristics∗

Raphael Mosaner
raphael.mosaner@jku.at

Johannes Kepler University
Linz, Austria

David Leopoldseder
david.leopoldseder@oracle.com

Oracle Labs
Vienna, Austria

Wolfgang Kisling
wolfgang.kisling@jku.at

Johannes Kepler University
Linz, Austria

Lukas Stadler
lukas.stadler@oracle.com

Oracle Labs
Linz, Austria

Hanspeter Mössenböck
hanspeter.moessenboeck@jku.at

Johannes Kepler University
Linz, Austria

ABSTRACT
Compiler optimizations are often based on hand-crafted heuristics
to guide the optimization process. These heuristics are designed
to benefit the average program and are otherwise static or only
customized by profiling information. We proposemachine-learning-
based self-optimizing compiler heuristics, a novel approach for fitting
optimization decisions in a dynamic compiler to specific environ-
ments. This is done by updating a machine learning model with
extracted performance data at run time. Related work—which pri-
marily targets static compilers—has already shown that machine
learning can outperform hand-crafted heuristics. Our approach is
specifically designed for dynamic compilation and uses concepts
such as deoptimization for transparently switching between gen-
erating data and performing machine learning decisions in single
program runs. We implemented our approach in the GraalVM, a
high-performance production VM for dynamic compilation. When
evaluating our approach by replacing loop peeling heuristics with
learned models we encountered speedups larger than 30% for sev-
eral benchmarks and only few slowdowns of up to 7%.

CCS CONCEPTS
• General and reference→ Performance; Empirical studies; • Soft-
ware and its engineering→ Just-in-time compilers; Dynamic
compilers; • Computing methodologies → Neural networks.

KEYWORDS
Dynamic Compilation, Optimization, Heuristics, Loop Peeling, Per-
formance, Machine Learning, Neural Networks
ACM Reference Format:
Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler,
and Hanspeter Mössenböck. 2022. Machine-Learning-Based Self-Optimizing
Compiler Heuristics. In Proceedings of the 19th International Conference on
Managed Programming Languages and Runtimes (MPLR ’22), September
14–15, 2022, Brussels, Belgium. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3546918.3546921
∗This research project is partially funded by Oracle Labs.

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

MPLR ’22, September 14–15, 2022, Brussels, Belgium
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9696-7/22/09.
https://doi.org/10.1145/3546918.3546921

1 INTRODUCTION
Dynamic compilation [3] has surpassed static compilation when it
comes to aggressiveness of optimizations and input-specific com-
pilation strategies. This is facilitated by profiling-based specula-
tion [3, 14], where optimization decisions are based on profiling
information which is gathered prior to compilation. For example,
conditional branches can be omitted under the assumption that they
are never entered, if this is indicated by the branch probabilities
measured during profiling [27]. If assumptions are invalidated dur-
ing execution, deoptimization [21, 44] followed by a re-compilation
can produce a new compilation with updated assumptions.

The benefits of such data-driven approaches [27, 44, 46] are ev-
ident but they are still not widely used. State-of-the-art dynamic
compilers [47] still rely heavily on human-crafted heuristics to
guide the optimization process. These heuristics are based on many
years of development effort and compiler expertise to perform
well on the average program. Nevertheless, they mainly reflect the
benchmarks which were used by compiler experts for performance
optimizations and fine-tuning. Tailoring heuristics for specificwork-
loads or hardware environments would be infeasible. Thus, profiling
information is often the only knob in these otherwise static and
one-size-fits-all heuristics.

Another challenge in compiler construction is that optimizations
can have impacts on each other and the trade-offs to be made are
not always clear. For example, a loop peeling transformation [4]
can prevent loop vectorization [4] in a later optimization stage.
Modeling such circumstances in heuristics is hard, and so are deci-
sions which do not negatively affect more important optimizations
later on. The unsolved phase-ordering problem [1, 24] indicates
that optimal holistic compilation decisions are still sought. In the
meantime, carefully designed heuristics consider at least some in-
teractions. For example, the GraalVM compiler [47] checks if a loop
can be vectorized and if so, omits the application of partial loop
unrolling [27]. Again, the assumption that vectorization is more
beneficial than partial unrolling holds only for the average program
and might be invalid for a particularly important user application.

In static compilation, machine learning has already been shown
to outperform human-crafted compiler heuristics [2, 7, 31, 43]. How-
ever, there is significantly less research regarding the usage of ma-
chine learning in dynamic compilation and we are not aware of
any state-of-the-art dynamic compiler that is learning compilation
decisions at run time to fit the current environment.

In order to solve above problems we propose machine-learning-
based self-optimizing compiler heuristics: an end-to-end approach to

98

https://doi.org/10.1145/3546918.3546921
https://doi.org/10.1145/3546918.3546921
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3546918.3546921
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546918.3546921&domain=pdf&date_stamp=2022-11-30

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

learn compilation decisions at run time from dynamically extracted
performance metrics. We tune our model in recurring phases, with
the variably sized batch of data collected since the last update or
program start: In the data generation phase we are using a recently
established technique called compilation forking [33], which pro-
duces comparable performance data to determine the impact of
optimization decisions based on observed code features. This data is
used in the learning phase to train a machine learning model, which
can predict the best optimization decision for a given piece of code.
In the prediction phase, this model is deployed and previously com-
piled functions are deoptimized and re-compiled using the model
decisions. Our approach happens dynamically while the program is
being executed. This allows us to customize the compiler to specific
programs or hardware without the assistance of compiler engineers.
Furthermore, our approach can be used to assist compiler engineers
to improve existing heuristics, as proposed in [32].

We implemented our approach in the GraalVM compiler, to
evaluate it in one of the most highly optimizing Java compilers.
Improving GraalVM’s performance provides confidence that our
approach is beneficial for real-world production systems. Further-
more, GraalVM’s polyglot nature [45] is an optimal target for tun-
ing generic, language-agnostic optimizations towards specific lan-
guages, such as JavaScript. This is possible, by directly workingwith
GraalVM’s graph-based intermediate representation (IR) [13, 15]
rather than source code. As a sample optimization for this paper
we chose loop peeling because of its interplay with other optimiza-
tions such as loop inversion, vectorization or guard optimizations.
This interplay often makes designing heuristics for when to apply
peeling a non-trivial task. Our approach is similarly applicable to
any other optimization. For example, we are also experimenting
with optimizations such as unrolling and vectorization which—for
brevity—are not part of this paper. We learned models for each
benchmark in the DaCapo [5], DaCapo Scala [38], JetStream [36]
and Octane1[9] suites. Especially on the JetStream suite, towards
which the GraalVM compiler was not tuned, our approach discov-
ered significant speedups ofmore than 30% formultiple benchmarks.
The largest slowdown over all benchmarks was 7%. Our research
contributes

• a novel approach for learning optimization heuristics at run
time in a dynamic compiler,

• an implementation of this approach in a dynamic compiler
that is among the most highly optimizing Java compilers on
the market

• a quantitative experiment where a loop peeling decision is
learned at run time, which outperforms heuristics by up to
30+% on well-known benchmark suites

• a qualitative experiment where a machine learning model is
improved with new data at run time

The remainder of this paper is structured as follows. Section 2
gives an overview of related work and briefly explains compilation
forking and loop peeling. Section 3 provides an outline of our ap-
proach. Thereafter, Section 4 explains implementation details in
the GraalVM whereas Section 5 summarizes our machine learning
pipeline. Section 6 shows our evaluation methodology and results.
Finally, Section 7 discusses limitations and future work.

1https://github.com/chromium/octane

2 BACKGROUND
We first give an overview of a recently introduced technique called
compilation forking which we use for generating performance data
of different compilation decisions in single program runs. Then, we
discuss related work in the area of machine learning in compilers.
Finally, we give insight into loop peeling which was used as a sample
optimization for evaluating our approach.

2.1 Compilation Forking
Compilation forking [33] is a novel approach for evaluating the
performance impact of local optimization decisions in a dynamic
compiler. It requires only a single program run to evaluate mu-
tually exclusive optimization decisions and can therefore be used
transparently for generating data.

Concepts, such as iterative compilation [6], can hardly be applied
in dynamic compilation where profiling, deoptimization or memory
and timing thresholds may lead to different compilations for the
same function in different runs. Compilation forking faces these
problems by creating copies (called forks) of the state of an interme-
diate compilation right before the optimization—whose impact has
to be measured—is applied. These forks are compiled with different
optimization parameter values and are instrumented for perfor-
mance measurements. This ensures that forks share the same com-
pilation history, up to the point where the measured optimization
is applied. All forks are then recombined into a dispatch function
which transparently executes one fork per invocation. Therefore,
compilation forking is also related to multi-versioning [48], as mul-
tiple versions of the same code are executed in the same run. These
versions are executed alternatingly or in a random order to average
out measurement noise caused by the environment. This reduces
the CPU and OS stability requirements and allows for making
consistent measurements without full control of the surrounding
system. For the remainder of this paper we will use the term fork
as one version of a code produced by compilation forking.

2.2 Related Work
There is an extensive set of research in the domain of machine
learning for compilers [2, 43]. However, our approach combines
multiple aspects which we are not aware of being found together
in a sole research. It (1) learns or (2) updates—(3) at run time—a
machine learning model which replaces an (4) optimization heuristic
in a (5) dynamic compiler. We therefore address related work which
is similar in one of these aspects to our approach.

Our approach is related to iterative compilation [6, 17, 18, 26]
and multi-versioning [16, 25, 48]. In iterative compilation, functions
are compiled multiple times with different sets of optimization pa-
rameters to converge on a near optimal compilation in terms of
execution performance [6, 17]. This is not the goal of our approach
which employs compilation forking [33] to create multiple non-
optimal versions of a function to infer speedups or slowdowns of
local optimization decisions, e.g. peeling of a particular loop. The
knowledge of local optimization decisions is then used to create
a machine learning model. Multi-versioning [16, 25, 48] is an ap-
proach related to iterative compilation, where multiple versions
of a function or code snippet are deployed into an executable. At
run time, the code which is best optimized towards the current

99

https://github.com/chromium/octane

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

input is selected. Our approach differs from multi-versioning as
the versions—forks in our notation—are only alive temporarily dur-
ing data generation before re-compiling a function using learned
decisions.

Tartara and Crespi Reghizzi [40] proposed continuous learning of
compiler heuristics, which is a holistic approach for finding a set of
optimization heuristics in a static compiler. They defined a grammar
from which new heuristics can be inferred based on a pre-defined
set of program features. For the composition of heuristics and a
particular compilation plan they used genetic algorithms [8, 10, 40].
Their approach outperformed GCC O3 on the selected benchmarks
which is impressive keeping its holistic nature in mind. However,
this approach needs a controlled environment andmultiple program
runs to compare the performances and update heuristics in the static
compiler. By utilizing compilation forking [33], our approach is
capable of updating a learned model within a single program run
for any dynamically compiled program. Furthermore, we replace
heuristics by neural networks which are universal approximators
to arbitrary functions compared to a limited search space spanned
by the grammar as defined in [40].

Sanchez et al. [37] used machine learning in the IBM Testarossa
JIT compiler to predict an optimal compiler phase plan. They use
deoptimization to support data generation by re-compiling methods
with different phase plans after a measurement interval has passed.
Our approach executes different method versions alternatingly to
average out measurement noise if the execution environment or
program usage changes over time. Furthermore, Sanchez et al. [37]
followed a traditional approach with a clear distinction between
data generation and model usage, which both happen transparently
in a single program run in our approach. They used support vec-
tor machines[11] in contrast to our research where we propose
updating neural networks incrementally.

Improving loop related compiler optimizations has been the
subject of various research in the past [19, 29, 30, 34, 39]. In a
recent study, Mammadli et al. [30] investigated source-to-source
transformations of loops prior to compilation to improve the com-
pilation stability and the performance of the compiled programs.
They are using a neural network for predicting the performance
impact of source-to-source transformations on a subsequent compi-
lation, which outperforms the used baseline significantly. However,
their approach happens fully offline and provides yet another static
heuristic specific to the compiler configuration which was used for
creating the training data.

Wang et al. [42] present SuperSonic, a tool for automatically tun-
ing hyper-parameters to optimize reinforcement learning (RL) [22]
architectures for the domain of code optimization. After deploy-
ment, the reinforcement learning client can be further refined with
unseen data. However, this task requires the storage of execution
data across multiple runs, compared to the fully transparent model
update in single runs as we propose in our work. SuperSonic out-
performs existing auto-tuners, such as OpenTuner or CompilerGym,
but it is not evident if these frameworks could work in a dynamic
compilation environment.

An additional area of application where we envision our ap-
proach to be useful is in compiler optimization construction and
tuning. Therein, self-optimizing compiler heuristics can be used

offline by compiler engineers to evaluate heuristics under develop-
ment and find weakpoints, without deploying any machine learn-
ing in the final product. This has already been proposed in the
past [32, 41], however, without taking highly domain specific mod-
els into account. Recently, Cummins et al. [12] proposed Compiler-
Gym, a framework opens up compiler research to machine learning
experts. Their framework makes compiler tasks, such as phase or-
dering for LLVM or GCC flag tuning, available to performing AI
research in an easily accessible way. This includes automatically
obtaining benchmark data and providing AI algorithms or APIs for
hyper-parameter tuning.

2.3 Loop Peeling
Loop peeling [4] is a transformation which moves the first or last
few loop iterations out of the loop. Listing 1 shows a loop which
when peeling the first iteration results in the code shown in Listing
2.

1 for (in t i = 0 ; i < l i m i t ; i ++) {
2 / / l o o p body
3 }

Listing 1: Loop before peeling the first iteration.

1 i f (0 < l i m i t) {
2 / / l o o p body
3 }
4

5 for (in t i = 1 ; i < l i m i t ; i ++) {
6 / / l o o p body
7 }

Listing 2: Loop after peeling the first iteration.

The if-check might be removed since we know that i==0 at this
point. Depending on the loop body, further optimizations can be
enabled using the knowledge about i. Thus, loop peeling is called
an enabling optimization, as performance improvements are not
directly caused by peeling but indirectly by enabled follow-up opti-
mizations. For example, loop peeling may allow for removing re-
dundant checks or assignments caused by special cases in first loop
iterations. This is shown in Listing 3, where the variable redundant
is assigned in each loop iteration, although being always i-1 after
the first iteration.

1 in t redundant = 0
2 for (in t i = 0 ; i < 1 0 0 ; i ++) {
3 d s t [i] = s r c [i] + redundant ;
4 redundant = i ;
5 }

Listing 3: Loop with redundant variable.

After peeling the loop, the redundant variable can be omitted, as it
can be statically inferred that for i >= 1 its value is always i-1.
The resulting code is shown in Listing 4.

1 d s t [0] = s r c [0] + 0 ;
2 for (in t i = 1 ; i < 1 0 0 ; i ++) {
3 d s t [i] = s r c [i] + (i − 1) ;
4 }

Listing 4: Peeled loop with redundant variable removed.

100

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

In a dynamic compiler, profiling information and assumptions can
enable more aggressive optimizations after peeling. Listing 5 con-
tains two nested loops, where limit1 and limit2might be subject
to assumptions.

1 for (in t i = 0 ; i < l i m i t 1 ; i ++) {
2 in t r e s u l t = 0 ;
3 for (in t j = 0 ; j < l i m i t 2 ; j ++) {
4 / / s i d e − e f f e c t − f r e e c ompu t a t i o n s
5 r e s u l t += . . .
6 }
7 i f (i != 0) p r o c e s s (r e s u l t) ;
8 }

Listing 5: Nested loop.

If limit1 is assumed to be 1, peeling the outer loop would lead to
the whole code being never executed.

1 i f (0 < 1) {
2 in t r e s u l t = 0 ;
3 for (in t j = 0 ; j < l i m i t 2 ; j ++) {
4 / / s i d e − e f f e c t − f r e e c ompu t a t i o n s
5 r e s u l t += . . .
6 }
7 i f (0 != 0) p r o c e s s (r e s u l t) ;
8 }
9 for (in t i = 1 ; i < 1 ; i ++) {
10 in t r e s u l t = 0 ;
11 for (in t j = 0 ; j < l i m i t 2 ; j ++) {
12 / / s i d e − e f f e c t − f r e e c ompu t a t i o n s
13 r e s u l t += . . .
14 }
15 i f (i != 0) p r o c e s s (r e s u l t) ;
16 }

Listing 6: Peeled outer loop before further optimizations.

In the peeled code in Listing 6, the compiler can see that the result
computed by the inner loop is never used and can remove the code
that computes it. The remaining loop, starting with i == 1, can be
removed as well, since the upper bound is already reached. Such
cases can have tremendous positive impacts on overall program
performance, but they rare in practice and incorporating them in
static heuristics is difficult. On the other side, loop peeling may also
hinder other optimizations. For example, loop vectorization might
be only applied if there is a certain number of loop iterations in a
counted loop. If this number is decreased by peeling, the beneficial
vectorization of the loop can be prevented. In contrast, peeling a
loop may also enable vectorization. Loop peeling, despite being a
seemingly small transformation, can have large impacts on program
performance due to its nature as an enabling optimization.

In the GraalVM compiler, loop peeling can only remove the first
iteration of a loop. Therefore, for the remainder of this paper, we
will be using peeling synonymously to peeling the first loop iteration.
This implies that peeling decisions are boolean decisions indicating
whether the first iteration should be peeled (=true) or not (=false).

3 APPROACH
In this section, we present machine-learning-based self-optimizing
compiler heuristics. This novel approach facilitates replacing heuris-
tics in a dynamic compiler with learned models which are tuned
with actual data at run time. It therefore automatically considers
peculiarities of the user domain including different hardware or

different types of programs. For small yet static domains, overfit-
ting can be exploited to make optimal decisions, similarly to iter-
ative compilation [6, 17]. However, there are multiple advantages
compared to iterative compilation: First, peculiarities of dynamic
compilation are taken into account by considering the compilation
history when measuring the impact of a compilation decision. Sec-
ond, our approach enables learning local compiler optimization
decisions rather than optimizing compiler flags used for whole
programs. Third, by automatically storing learned decisions in a
model, this model can be re-used for similar domains on the fly.
Using a machine learning model as knowledge base facilitates both
using a pre-trained model and refining the model if new data is
acquired. This is a significant advancement over the state-of-the-
art, where machine learning models are deployed as unchangeable,
static heuristics. Exceptions are found in recent research regarding
reinforcement learning in static compilation [12, 41, 42].

Our approach consists of three phases, two of which correspond
directly to how the dynamic compilation is performed. These are the
data generation phase, the learning phase and prediction phase. They
can be iterated multiple times (see Figure 1), which enables iterative
refinement or adjustment to new data or circumstances. Figure 1
shows the life-cycle of a method foo throughout these phases. It
starts with exploring the impact of different optimization decisions
by employing compilation forking [33] in the data generation phase.
After a learning phase, where either a new model is created or an
existing model is updated, foo is deoptimized and re-compiled with
the model decision replacing the human-crafted heuristic. We now
discuss these phases in detail.

3.1 Data Generation Phase
In the data generation phase, feature data and performance metrics
of program snippets are collected. The performance metrics deter-
mine how a code, which is described by the feature data, needs to be
optimized. Features have to be extracted at compile time whereas
performance metrics need to be measured at run time.

Feature Extraction. In a machine learning context, features are
the input to a model. They describe the code snippet for which an
optimization decision has to be made. Examples of features for the
loop peeling model are the loop depth and the number of branches
in the loop (see Section 5.3). It is essential to extract feature data
at compile time as close to the monitored compilation decision as
possible. For example, when compiling a function with multiple
loops which can be peeled, the feature extraction for loopB needs to
take place after loopA has been processed. Otherwise, the extracted
features for loopB would not account for changes made by peeling
loopA. In related work, feature data is often extracted either before
compilation or before the optimization phase is started. We extract
features during fork creation at compile time and write them to a
shared storage.

Performance Data Extraction. The performance data which is
required to identify beneficial or disadvantageous decisions needs
to be extracted at run time. For extracting comparable performance
measurements from dynamically compiled programs, several chal-
lenges need to be taken into account: (A) The outcome of multiple
decisions needs to be measured in a single program run, (B) the

101

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

void foofork1 ()
 if (0 < limit) {
 // loop body
 }
 for (int i = 1 ; i < limit; i++) {
 // loop body
 }
}

void foo ()
 for (int i = 0 ; i < limit; i++) {
 // loop body
 }
}

void foo ()
 if (_mode != DATA_GEN) deopt();

 switch (version++ % nrVersions)
 case 0:
 for (int i = 0 ; i < limit; i++) {
 // loop body
 }
 break;
 case 1:
 if (0 < limit) {
 // loop body
 }
 for (int i = 1 ; i < limit; i++) {
 // loop body
 }
 break;
}

void foofork0 ()
 for (int i = 0 ; i < limit; i++) {
 // loop body
 }
} void fooMLPeeling()

 if (0 < limit) {
 // loop body
 }
 for (int i = 1 ; i < limit; i++) {
 // loop body
 }
}

slow

fast

fast

Data Generation Phase Learning
Phase Prediction Phase

warmup (slow) peak performance (fast)

ML
Model

forking

recombination

Figure 1: Overview of our approach applied to an example function.

impact of different decision outcomes needs to be measured based
on the same compilation history prior to the decision, and (C) noise
introduced by different program states or function parameters has
to be handled. These requirements are met by using compilation
forking [33] which we discussed in Section 2.1. It enables extracting
aggregated performance data for multiple versions (forks) of a code
with different compilation decisions and outputs tuples of kind

(𝐼𝐷, 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒, 𝑖𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠,𝑚𝑖𝑛,𝑚𝑎𝑥)

They contain how often a fork has been executed (invocations) and
the total execution time (run time) aggregated from all invocations.
min and max are the minimum and maximum execution time from
all invocations of a fork. Aggregated performance data reduces
the statistical capabilities which would be possible if performance
data were stored per invocation. However, forks might be executed
millions of times in one program run. Storing performance data for
each invocation would introduce a huge overhead. The aggregated
data is stored and updated locally in the dynamic runtime until
the data generation phase is ended. The data generation phase
ends after a specified period of time or after enough data has been
collected. The dynamic runtime disables further data generation
and persists the aggregated performance data in a shared storage.

3.2 Learning Phase
In the learning phase, the machine learning pipeline is invoked to
either create a new a machine learning model from the gathered
data or to refine an existing model. When training a new model,
overfitting will likely occur as only data from one program run is
used for training. We discuss overfitting in Section 7.2. The phases
in the machine learning pipeline can be subdivided into data pre-
processing, data filtering and model training. Data pre-processing
associates the feature data with the performance data and creates

a labelled data set. For example, in a loop peeling scenario the
label for each set of features would be either true|1 or false|0
depending on whether peeling the loop described by the given
features reduced the function’s execution time or not. The created
data set can be filtered, to remove data points which are likely
subject to measurement noise or to remove features which should
be excluded from the training process. This is discussed in greater
detail in Section 5.2. If few data points remain after filtering, a
data augmentation phase creates additional data to have enough
data for later training. The model training phase will fit a model of
pre-defined type and structure to the labeled data (see Section 5.4).
Depending on the problem at hand, the machine learning model
produces one or multiple predicted values from the input features.
For example, in a loop peeling scenario the model would output
either a 1 or a 0 as prediction whether to apply peeling or not. In
Section 5.4 we describe the structure and hyper-parameters of the
neural networks which were trained for each benchmark.

A serialized version of this model is written to a shared storage
along with an ordered list of features which need to be used as its
input. The model and the definition of the input features can then
be fetched by the dynamic compiler which switches to prediction
mode. This triggers deoptimization of all functions which were
compiled and instrumented in the data generation phase during
their next execution.

3.3 Prediction Phase
In the prediction phase, the previously trained or refined machine
learning model is deployed in the dynamic compiler. The dynamic
compiler in prediction mode uses the model to replace human-
crafted compilation heuristics or decisions. All functions which
were compiled and instrumented in the data generation phase are
deoptimized and re-compiled using the model. This can be seen in

102

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

Figure 1. After another—deferred—warm-up period, the program
reaches a stable state of peak performance, where certain optimiza-
tions were subject of learned decisions. The prediction phase can
be used without a preceding model training, if an already trained
model is available before program start.

4 IMPLEMENTATION
We will now present the details of our reference implementation
in the GraalVM [47] and discuss the machine learning pipeline in
Section 5. GraalVM uses a graph-based intermediate representation
(GraalIR) [13, 15] which is a superposition of data flow graph and
control flow graph. By directly operating on the IR graph and by
extracting features from the graph rather than source code, our
implementation can optimize programs from any programming
language which is supported by GraalVM’s polyglot framework
Truffle [45].

4.1 Architecture
Our system architecture for implementing machine-learning-based
self-optimizing compiler heuristics in the GraalVM is shown in Fig-
ure 2. We decided to use a client-server model to retain flexibility of

Observations
● features
● perf. data

Dynamic Runtime

Learning
Server

Model
● ML model
● input features

Shared Storage

Dynamic Compiler

Data Generation Mode

Prediction Mode

Local
Perf. Data
Storage

Mode
Switcher
Thread

Compiled
Methods

features

pe
rfo

rm
an

ce

data

Figure 2: System architecture.

where the potentially GPU-supported training process is executed.
The dynamic runtime is capable of executing dynamically compiled
programs. This includes starting the execution in an interpreter,
invoking the dynamic compiler for hot methods and switching from
interpreted to compiled methods after compilation or vice-versa
after deoptimization. The dynamic compiler applies several opti-
mizations in fixed order to the compiled method before emitting
code. While we were using a method-based compiler, any compiler
which applies optimizations in a deterministic order is suitable for
implementing our approach. In data generation mode, the compiler
emits feature data of program parts that are subject to an optimiza-
tion. Furthermore, it explores multiple optimization variants by
employing compilation forking [33] and extracts performance mea-
surements for each variant. This performance data is stored locally
in the dynamic runtime where total execution time and number
of invocations can be updated efficiently during data generation.
In prediction mode, the compiler uses a machine learning model to
make compilation decisions. The mode switcher thread is a back-
ground thread in the dynamic runtime which triggers the transition

between the two compiler modes. This includes communicating the
feature and performance data to the learning server, awaiting its
response, providing the trained model to the compiler and changing
the compiler mode flag to prediction mode.

We use a shared storage for passing data between the dynamic
runtime and the learning server. If the learning server runs locally,
this is more efficient than sending large files with features or mod-
els. One section in the shared storage holds the feature and the
performance data which was created in the data generation phase.
The other section holds the machine learning model after training
has finished, along with a description of the input features.

The learning server contains a pipeline (Section 5) for training
or updating machine learning models.

4.2 Compilation Forking
In order to reduce the state space when creating forks for peeled
loops, we configured compilation forking to process loops indepen-
dently. This means that for a function with three loops four forks
will be created. One fork has no loop peeled and is considered as
the baseline. In all other forks exactly one loop is peeled. If a fork
outperforms the baseline it is inferred that peeling the respective
loop was beneficial. Peeling of nested loops might violate the as-
sumption of independence and produce inaccurate data points for
training. We accepted this as trade-off to make our approach more
applicable by keeping the state space feasible.

4.3 Deopt Instrumentation
In addition to the instrumentation added for performance mea-
surement and fork recombination, we introduced a check of the
compiler mode flag at the start of each recombined function. This
conditional is only added by the compiler in the data generation
mode. If the compiler mode is set to prediction mode, the function
is deoptimized and re-compiled at its next invocation. This instru-
mentation is added to the compiler IR graph - Figure 1 depicts it in
pseudo-code.

4.4 Mode Switching
In the current implementation, the data generation phase ends
after a fixed period of time, which is specified as dynamic runtime
parameter. As part of future work, we plan to make this fixed time
interval dynamic, based on the progress of the program warm-up.
This can be solved by tracing the compilation frequency, which
is already implemented in the GraalVM compiler. After the data
generation phase has ended, the aggregated performance data is
written into a as json-file and moved to the shared storage. The
feature data has already been written into the shared storage at
compile time.

The learning server is invoked via a socket connection by send-
ing either a learn or an update request. These requests also include
the paths to the feature and performance data. The response con-
tains the path to the model in the shared storage or a forwarded
error message if training was not successful. After changing the
compiler mode to prediction mode, the dynamic compiler replaces
the optimization phase, which supported forking with a version
which fetches the ML model from the shared storage location.

103

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

5 MACHINE LEARNING FRAMEWORK
According to the state-of-the-art, we implemented our machine
learning pipeline in Python and used PyTorch [35] for training
neural networks. We created an extensible framework to adapt to
new optimizations by configuring the filters and learning pipeline
like a plug-in system. Themodel architecture and hyper-parameters
have been chosen empirically for the experiments conducted in the
paper and might be refined in the future.

5.1 Data Pre-processing
Data Merging. The feature data and the performance data are

written to the shared storage at compile time and at program exe-
cution, respectively. Figure 3 depicts the feature data for a sample
function on the right and the performance data of the same func-
tion and its two forks on the left. During compilation forking an
artificial identifier is introduced for each fork by attaching the fork
number to the original compilation identifier. This is necessary to
distinguish multiple compilations of the same function. The first
step in the pipeline is to merge the feature and the performance
data using this compilation identifier as a key.

 {"method": "Clazz.method(Clazz.java:123)",
 "compID": "Compilation-10027_Fork0",
 "invocations": "171571",
 "time": "36553828",
 "min": "40",
 "max": "16816"}
 ,
 {"method": "Clazz.method(Clazz.java:123)",
 "compID": "Compilation-10027_Fork1",
 "invokations": "171562",
 "time": "36945844",
 "min": "40",
 "max": "19416"}

 {"method": "Clazz.method(Clazz.java:123)",
 "compID": "Compilation-10027_Fork0",
 "context": "peeling",
 “features": {
 "size": "26",
 "depth": "1",
 "nrChildren": "0",
 "hasParent": "false",
 "nrBackedges": "1",
 "nrExits": "1",
 "counted": "true",
 "isVectorizable": "true",
 (...)}

Figure 3: Performance data (left) and feature data (right).
Shape Unification. Typical features are the counts of specific

nodes in Graal’s IR, e.g. #AddNodes or #IfNodesInLoop. To reduce
the memory footprint, feature extraction only dumps non-zero
node counts. During data pre-processing, however, the feature
space needs to be expanded to a uniform shape, including also the
features with zero counts.

Labeling. The output produced by compilation forking (see Fig-
ure 3) consists of aggregated execution times for each function. This
success metric has to be turned into labels for training the machine
learning model. For loop peeling, this label is created using the
logarithmic average speedup compared to a baseline where peeling
is disabled for the particular loop. This is shown in the following
equation.

𝑝𝑒𝑒𝑙 =

{
1 𝑙𝑜𝑔𝑆𝑝𝑒𝑒𝑑𝑢𝑝 ≥ log(1 + 𝜖)
0 𝑙𝑜𝑔𝑆𝑝𝑒𝑒𝑑𝑢𝑝 < log(1 + 𝜖)

𝑙𝑜𝑔𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = log(𝑎𝑣𝑔𝑇𝑖𝑚𝑒𝑛𝑜𝑃𝑒𝑒𝑙

𝑎𝑣𝑔𝑇𝑖𝑚𝑒𝑝𝑒𝑒𝑙
)

The 𝜖 value can be used to label peeling decisions with only minor
performance benefits as no peel to avoid a code size increase for
very small performance gains. This label strategy implies that we
see loop peeling as a classification problem with only 1 (= peel) or
0 (= no peel) as outputs. It is also possible to model the task as a
regression problem and use the avgSpeedup as label. This would
require a threshold for the predicted speedup in the compiler above

which a peeling is applied. While part of the data pre-processing,
labeling happens after the data filtering. This allows applying filters
based on the measured performance values.

5.2 Data Filtering
Data pre-processing turns the data into a format that is understand-
able for a machine learning model. Data filtering manipulates the
data set to reduce noise and improve the overall data quality and
feature relevance. First, we apply filters which remove observations,
i.e. features and respective labels, as a whole. Then, we apply filters
which remove feature columns for all observations and reduce the
dimensionality of the model input. After all filters have been ap-
plied, data augmentation will increase the remaining data set size
if necessary.

AvgRuntimeFilter. This filter removes data points if the average
run time is below or above a specified threshold. Functions with
a very small run time are more easily subject to noise and are
therefore excluded from training. We did not set an upper limit
for the average run time, as especially long-running functions are
desirable to be optimized.

MinInvocationsFilter. The premise of compilation forking is that,
when executing different optimization variants in one program run,
differences in execution time caused by the environment or param-
eters will cancel out across many invocations. Therefore, functions
with only few invocations are removed as their measurements are
not stable enough.

AbsoluteDifferenceFilter. This filter addresses the label ambiguity
caused by measurement noise. If the absolute difference of the
average execution time of the baseline and the optimized version are
closer than the assumed measurement inaccuracy, the observation
is removed as the classification label cannot be identified correctly.

SkewednessFilter. In the absence of separate performance mea-
surements per execution, we implemented this filter to remove data
points with few large outliers. If removing the maximum execution
time has a noticeable impact on the average execution time, the
filter will remove the data point.

𝑆𝑘𝑒𝑤𝑒𝑑𝑛𝑒𝑠𝑠𝐹𝑖𝑙𝑡𝑒𝑟 =
𝑎𝑣𝑔𝑇𝑖𝑚𝑒

(𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒−𝑚𝑎𝑥
𝑖𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠−1)

> 1 + 𝜖

FeatureDiversityFilter. This filter removes features with little in-
formation. A feature is the more informative, the more different
values are found in all observations. Therefore, the filter computes
a histogram of all values for each feature. If the most frequent value
occurs in more than 95% of the data, say, the feature is removed.
This has an especially high impact on rare node types, whose fre-
quencies are zero in most functions. However, the filter can only be
applied when training a new model because the number of features
for an existing model is fixed.

Data Augmentation. Data augmentation is the process of creat-
ing new data points from existing ones. It can be useful if little data
is available in order to reduce overfitting. If our approach is used
to train new models from single program runs, data augmentation
will automatically be applied if the number of data points is below
a threshold. In our domain, the implications of changing feature

104

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

values are unclear and therefore unsuited for creating correct data
points. Thus, we perform data augmentation by adding data points
with identical features but slightly changed performance values.
This can result in data points with very small performance dif-
ferences to produce new data points with opposite classification
labels.

5.3 Features
Table 1 shows a list of all extracted features for loop peelingwich are
based on the loop features presented in [33]. The features are either
boolean features—with the suffix "?"—or integer features and are
divided into seven categories. Values in brackets are placeholders
and summarize multiple features.

As GraalVM uses a graph-based intermediate representation
(IR) [13, 15] many features are graph-related. For example, the size
of the loop corresponds to the number of its IR nodes and the node
cost [28] is a GraalVM heuristic for estimating the execution time
for a set of nodes. There are six types of edges in the IR which,
together with their origin and destination, lead to 18 edge features.
Due to the large number of different node types, there can be up to
1000 features before reduction. However, many node types appear
very rarely or never in certain phases of the compilation. Thus, the
number of selected features in our experiments varied between 150
and 200, depending on the FeatureDiversityFilter.

Table 1: Features for loop peeling, based on [33]
Loop General Loop Nodes Loop Operands

size #fixedNode #objectStamps
depth #floatingNodes #intStamps
node cost #PhiNodes #floatStamps
#children #ProxyNodes #volatileFieldAccess
#backedges #IfNodes #staticFieldAccess
#exits #[IRNodeType] Loop Edges
counted? Graph #[EdgeType]IntoLoop
can ends safepoint? node cost #[EdgeType]InLoop
vectorizable? #loops #[EdgeType]OutOfLoop

Loop Parent max loop depth Loop Execution
hasParent? #branches frequency
parent size #[IRNodeType] constant max trip count?
parent node cost has exact trip count?

can overflow?

5.4 Model Training
There are many different types of machine learning models and
hyper-parameters for configuring them. In our approach we are
using neural networks, which are easy to update if the Data Gen-
eration Phase and the Learning Phase are executed repeatedly or a
pre-trained model needs to be refined. For the loop peeling mod-
els we used residual neural networks [20] with full pre-activation
residual blocks. Residual networks include skip-connections, which
improves training large networks with little data. Figure 4 depicts
the three types of layers which were used in the networks. The
input block consists of three linear layers followed by rectified
linear units (ReLU). Its number of inputs depends on the feature
reduction process. To counter overfitting, a batch normalization
and a dropout layer (probability = 0.2) are added. The output block

uses four linear layers and produces in case of loop peeling exactly
one output which indicates whether to apply the transformation or
not. Between input and output blocks there are five residual blocks
with full pre-activation, as shown in the top center of Figure 4. The
resulting deep residual neural network and its skip-connections are
summarized in the bottom of Figure 4. While this architecture has
provided good results, we assume that other network structures
could perform similarly. We used Adam [23] as optimizer with a
learning rate of 3e−3 and a weight decay of 5e−5. As loss function
we used binary cross entropy (BCE).

Linear
512

ReLu

ReLu

Dropout
p=0.2

BatchNorm

Linear
1024

BatchNorm

BatchNorm

ReLu

ReLu

Linear
256

Linear
256

ReLu

Dropout

Linear
512

Linear
256

ReLu

ReLu

Linear
256

ReLu

Linear
128

ReLu

Linear
1

input layer (I)
output layer (O)

residual block (R)

I R1 R2 R5 O … residual network

Figure 4: Residual network blocks and network structure.

Loss Scaling. When training a classifier, the actual performance
impact of an optimization is lost after labeling data points with
either peel or noPeel. Thus, equal emphasis is put on learning less
impactful and more impactful decisions, during training. We im-
plemented a scaled version of the binary cross-entropy loss, which
reduces the loss for less important data points and assigns a higher
loss for data points with large performance impacts. This way, we
shift the focus of the trained model towards predicting more im-
pactful decisions correctly, at the cost of incorrectly predicting less
impactful decisions. The scaled BCE loss was implemented using a
double Gaussian curve as a filter function.

6 EVALUATION
We established two major claims regarding our approach, which
are manifested in two hypotheses that need to be tested.

Hypothesis 1. Machine-learning-based self-optimizing compiler
heuristics can improve the peak performance of dynamically com-
piled programs by replacing a compiler heuristic with a learned
model at run time.

Hypothesis 2. Machine-learning-based self-optimizing compiler
heuristics can be used to refine a pre-trained machine learning
model and tune it towards a specific environment during dynamic
compilation.

105

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

To test these hypotheses, we implemented our approach in the
GraalVM compiler [47], which is among the most highly optimiz-
ing Java compilers on the market2. We replaced the loop peeling
optimization with a learned model and evaluated the two hypothe-
ses using benchmarks from the well-known benchmark suites Da-
Capo [5], DaCapo Scala [38], JetStream [36] and Octane [9]. Hy-
pothesis 1 is addressed in a quantitative experiment in Section 6.2
whereas Hypothesis 2 is addressed in a qualitative experiment in
Section 6.3.

6.1 Experimental Setup
All experiments where executed on an Intel I7-4790K at 4.4GHz
with 20GB main memory and two GeForce GTX 1070, which were
used for model training. Hyper-threading, frequency scaling and
network access were disabled.

Warm-up. The experiments in Section 6.2 and Section 6.3 report
the impact on the benchmark peak performance which excludes
the preceding warm-up time. The total warm-up time is the sum of
1) the data generation time including forking, 2) the model training
time and 3) the warm-up time for re-compiling previously forked
functions using the learned model. Therefore, traditional metrics
for evaluating the program warm-up time, such as the number of
warm-up iterations, are not applicable for our approach. The data
generation time and the model training time are based on hyper-
parameters which can be freely chosen. For example, we defined
the data generation time to be 5 minutes for each DaCapo and Da-
Capo Scala benchmark, 7.5 minutes for each Octane benchmark and
10 minutes for each JetStream benchmark. These numbers were
conservative estimates to maximize the number of methods which
could be compiled with forking and to aggregate plenty of per-
formance measurements for each fork. Automatically minimizing
the data generation time for particular programs based on the pro-
gram warm-up is subject to future work. In addition, we empirically
evaluated that model training would take less than a minute on
our system. Thus, the number of benchmark warm-up iterations
was increased to fit the data generation time, the model training
time and the default warm-up time for the re-compilations. For
reproducibility, Table 2 shows the factors by which the default
GraalVM warm-up was increased in our experiments. For example,
the JetStream hash-map benchmark is very short running and had
to be increased by a factor of 120 to fit the selected data genera-
tion time. Finding a distinct way for evaluating the warm-up and
further minimizing it will be an interesting part of future work,
which is discussed in Section 7.4. Subsequently shown performance
numbers refer to the peak performance of the program which is
measured after the warm-up.

6.2 Training New Models
We investigated Hypothesis 1 with a quantitative experiment us-
ing all benchmarks from suites DaCapo [5], DaCapo Scala [38],
JetStream [36] and Octane [9]. For each benchmark execution we
created a new model for replacing the loop peeling heuristic using
the approach as described in Section 3. Despite measures, such as
batch normalization, the small amount of training data caused some

2https://renaissance.dev/

Table 2: Factors, by which the initial benchmark warm-ups
are increased.

DaCapo D. Scala JetStream Octane
avrora 12 apparat 30 bigfib 45 box2 25 raytrace 25

fop 30 factorie 4 container 12 code-load 25 regexp 4
h2 3 kiama 30 dry 50 crypto 12 richards 25

jython 4 scalac 7 float-mm 80 deltablue 25 splay 25
luindex 25 scaladoc 14 gcc-loops 35 earley-b. 25 typescript 4
lusearch 15 scalap 30 hash-map 120 gbemu 25 zlib 8

pmd 15 scalariform 35 n-body 18 mandreel 12 zlib-dim. 8
sunflow 6 scalatest 18 quicksort 33 navier-st. 12

xalan 18 scalaxb 30 towers 75 pdfjs 8
tmt 10

overfitting. However, for achieving the best performance this can
be desirable.

Figures 5 (JetStream), 6 (DaCapo), 7 (DaCapo Scala) and 8 (Oc-
tane) show the performance impact of our approach (abbreviated as
GraalML) compared to the default GraalVM heuristics. Each bench-
mark has been executed 10 times, creating 10 different models in
the process. All benchmark results are normalized to the median of
the default GraalVM performance and the medians are displayed
in the center of the boxplots.

For the JetStream benchmarks (see Figure 5), six out of nine
benchmarks show significant speedups for the majority of trained
models, with themedian speedup for gcc-loops being close to a factor
of two. Figure 5 indicates that the performance of benchmarks
which are run with our machine-learning-based approach often
have high variance. There are multiple reasons for this instability
when training models with little data. Before training, the extracted
data is randomly split into a training data set and a validation
data set. This random split can affect the model if important data
points are moved to the validation data set and are thus omitted
during training. Overfitting can also cause problems in small data
sets if code is compiled differently in multiple runs. If dynamic
compilation produces different data in the data generation phase
and in the prediction phase, an overfitted model can be confused
by the non-fitting data.

The DaCapo benchmarks (see Figure 6) show similar or slightly
worse performance (up to 4%) for the GraalML configuration com-
pared to the default heuristics. We identified two major reasons for
this. First, DaCapo is one of the benchmark suites which was used
for optimizing the GraalVM heuristics. Thus, the GraalVM heuris-
tics are already tuned towards the DaCapo benchmarks. Second, as
mentioned in Section 4.2, compilation forking is implemented in a
way where loops are assumed to be independent of each other. For
nested loops this assumption might fail and can produce misleading
performance results which is not the case for the default GraalVM
heuristics.

For DaCapo Scala (see Figure 7) one large speedup could be
measured (scalatest) - most other benchmarks perform similarly
to the default heuristics. The slowdown for tmt is caused by the
deoptimization before switching to prediction mode; using the ML
model from the start would lead to similar results as with the default
GraalVM heuristics.

For the Octane suite (see Figure 8) multiple speedups of more
than 5% were measured and few minor slowdowns of less than 2%,
with only typescript having a more significant slowdown of 4%.

106

https://renaissance.dev/

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

bigfib.cpp
1.00

1.05

1.10

S
p

ee
du

p

container.cpp

0.98

1.00

1.03

dry.c

1.00

1.50

float-mm.c
1.00

1.02

gcc-loops.cpp
1.00

1.50

2.00

hash-map
1.00

1.20

S
p

ee
du

p

n-body.c
1.00

1.25

1.50

quicksort.c
0.98

1.00

1.03

towers.c
0.90

0.95

1.00 GraalVM Heuristics

GraalML

Figure 5: JetStream peak performance. Higher is better.

avrora

0.98

1.00

S
p

ee
du

p

fop

0.98

1.00

h2

0.98

1.00

1.03

jython

0.90

1.00

luindex

1.00

1.05

lusearch

1.00

1.05

S
p

ee
du

p

pmd
0.98

1.00

sunflow
0.95

1.00

xalan

0.99

1.00

1.01 GraalVM Heuristics

GraalML

Figure 6: DaCapo peak performance. Higher is better.

apparat
0.98

1.00

1.03

S
p

ee
du

p

factorie

0.90

1.00

1.10

kiama
0.95

1.00

scalac
0.98

1.00

1.02

scaladoc
0.98

1.00

1.02

scalap
0.99

1.00

1.01

S
p

ee
du

p

scalariform
0.98

1.00

scalatest
1.00

1.03

1.05

scalaxb

1.00

1.02

tmt

0.95

1.00

Figure 7: DaCapo Scala peak performance. Higher is better.

The presented quantitative experiments have shown that our ap-
proach can outperform existing heuristics with multiple speedups
of more than 30% compared to few regressions of up to 7%. This
supports Hypothesis 1. Especially, if models are trained for single
programs overfitting can produce extremely good results. However,
it also increases the performance variance and reduces general-
ization. This is further discussed in Section 7.2. Our approach is
able to to compete with of one of the most highly optimizing com-
pilers when it comes to benchmarks towards which its heuristics
were specifically tuned. However, automatically learning heuristics
with similar performance for new domains, programs or hardware
without additional engineering effort can be considered a huge
advantage over hand-crafted heuristics.

6.3 Self-optimizing Model
An advantage of our approach over static heuristics—human-crafted
or learned—is the continuous evolution of the model to fit the
current environment or data. We conducted a qualitative exper-
iment to test Hypothesis 2 by showing how a pre-trained model
for one benchmark optimizes itself to fit another benchmark. We
hand-picked two benchmarks from different suites: xalan (DaCapo)
and gcc-loops (JetStream). DaCapo benchmarks are Java programs
whereas JetStream benchmarks are JavaScript programs. Thus, we
expected that a model trained on the one would perform poorly on
the other. All configurations contain 20 measurement runs which
are normalized to the median of the default GraalVM performance
for the respective benchmark.

107

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

box2d
0.98

1.00

1.03

S
p

ee
du

p

code-load0.90

1.00

crypto

1.00

1.05

deltablue

1.00

1.03

earley-boyer

0.95

1.00

S
p

ee
du

p

gbemu

0.98

1.00

1.03

mandreel
0.98

1.00

1.03

navier-stokes

1.00

1.05

pdfjs

0.98

1.00

S
p

ee
du

p

raytrace
0.95

1.00

regexp

0.90

1.00

richards

0.98

1.00

splay

1.00

1.10

S
p

ee
du

p

typescript
0.95

0.98

1.00

zlib

1.00

1.10

zlib-deminified

1.00

1.10

Figure 8: Octane peak performance. Higher is better.

The left part of Figure 9 compares the xalan benchmark with
the default GraalVM configuration with an implementation of our
approach in Graal (abbreviated as GraalML). For each GraalMLmea-
surement a new new model was created. GraalML produces similar
results for the xalan benchmark compared to the default GraalVM
heuristics. However, the variance of the xalan performance is also
increased because the models are trained in a slightly different way
depending on the extracted data. Figure 10 shows the performance

GraalVM Heuristics GraalML ML (after gcc-loops)

0.98

1.00

1.03

S
p

ee
du

p

xalan

Figure 9: xalan (DaCapo) peak performance. Higher is better.

of the gcc-loops benchmark. For the ML (xalan) configuration the
gcc-loops benchmark was executed in the prediction phase solely,
using each previously trained xalan model in a separate run. This
shows that the xalan models achieve similar performance to the
default GraalVM heuristics for the gcc-loops benchmark. Some of
the xalan models performed significantly better. This can be due to
lucky "guessing" because the gcc-loops data is unknown to themodel.
The third configuration (GraalML) shows the gcc-loops performance
when refining the xalan models at run time using our approach.
The performance improvements for the gcc-loops benchmark are
significant but slightly worse as when training a new model with
data from gcc-loops only (c.f. Figure 5). This suggests thatHypothesis
2 holds in that machine-learning-based self-optimizing compiler

GraalVM Heuristics ML (xalan) GraalML

1.00

2.00

S
p

ee
du

p

gcc-loops

Figure 10: gcc-loops (JetStream) peak performance. Higher
is better.

heuristics can be used to tune pre-trained models to new bench-
marks. For completeness, the model, after being updated with data
from gcc-loops, is tested for the xalan benchmark which is shown
in the right part of Figure 9. The performance of xalan has slightly
increased and the performance variance has decreased. This make
sense as more data was used to train the model. Some data points
extracted from the gcc-loops benchmark may have been useful for
the xalan benchmark as well.

7 DISCUSSION
We have shown that machine-learning-based self-optimizing com-
piler heuristics can improve compiler optimizations in one of the
most highly optimizing Java compilers on the market. This section
addresses limitations which—if not inherent—will be subject to
future work in order to further improve our approach.

7.1 Limitations of Forking
Compilation forking [33] has some limitations. It is not supposed
to be used for exhaustive explorations of large optimization spaces.
For example, a function with 10 consecutive loops would produce
210 = 1024 forks if all combinations of peeling decisions were taken

108

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

into account. By considering loops in isolation [33] the number
of forks can be reduced to 11 but at the cost of ignoring potential
impacts between multiple peeled loops. Depending on the number
of forks, the enormously increased compile time can be a limiting
factor for our approach as well: If the compile time of a forked
function exceeds the time allocated for the data generation phase,
no performance data is produced for this function. In general, the
program’s run time has to be sufficiently large to profit from our
approach, which makes it especially suited for long-running server
applications.

7.2 Overfitting
To reduce overfitting, our neural networks employ batch normaliza-
tion and dropout layers. Nevertheless, when training a new model
with data from only one program run, overfitting is very likely
to occur. This can be deliberately taken into account, to create an
optimization strategy tailored to a specific program, similar to iter-
ative compilation. However, the potentially overfitted model can
be re-used in future runs of this program, in contrast to iterative
compilation. The more different the data is when incrementally
updating a model, the more general the model becomes with a
potential degradation for some programs compared to an overfit-
ted model. This is seen when comparing the performance of the
gcc-loops benchmark with a model that was only trained with this
benchmark (median speedup factor 1.983, c.f. Figure 5) versus a
model that was trained with xalan data before (median speedup
factor 1.729, c.f. Figure 10). Overfitting is also likely to produce high
performance variance if dynamic compilation compiles functions
differently which results in predicting decisions for unknown data.

7.3 Updating a Model
Section 6.3 shows how an existing model can be updated with the
newly fetched data as shown in Section 6.3. Long-running programs
can also contain multiple learning phases to adapt to a changing
environment. The new data is automatically pre-processed to match
the model’s feature set, which is fixed after the first training phase.
This can lead to important features in the new data being ignored.
It might therefore be beneficial to evaluate the importance of the
features to be omitted and to automatically train a new model if
necessary.

The more data an existing model has seen, the less it changes
with new data. For updating a model more aggressively, the server
can be configured to adapt the learning rate in order to escape
(local) optima derived from old data.

7.4 Warm-up
As discussed in Section 6.1, evaluating the warm-up of our approach
is different from traditional work in compilers. The total warm-up
time is the sum of 1) the data generation time including forking, 2)
the model training time and 3) the warm-up time for re-compiling
previously forked functions using the learned model. The warm-up
time of forking highly depends on how many forks need to be
created for each function in a program and can vary a lot [33]. For
generating data it is also not necessary to compile all functions
with forking. This is controlled by the data generation time hyper-
parameter which can be chosen to end the data generation in the

midst of program warm-up and just use the data collected up to that
point. Automatically evaluating the progress of the program warm-
up during forking and setting the data generation time accordingly
is subject to future work. Similar trade-offs can be made to impact
the model training time. Longer training time will fit a model more
towards the recently provided data. This produces better results
for the currently compiled programs at the cost of larger warm-up
due to increased training time.

7.5 End-to-end Approach
Our approach does not require human interaction after deploy-
ment. However, there are some steps necessary prior to deploy-
ment: Compilation forking needs to be implemented for the opti-
mization to be learned. This includes defining the features to be
extracted. Currently, we have various sets of features which can be
re-used if the domain is similar (e.g. loop-related optimizations). Ad-
ditionally, hyper-parameters for the machine learning models and
pre-processing steps have to be defined which are suitable for the
predictive task. The learning framework provides a set of configura-
tion options, which simplifies this setup. However, if the predictive
task is very different from existing tasks, manual additions to the
framework might be necessary. Lastly, the data generation time
has to be set in accordance to the program run time and warm-up
time. As part of future work, we will add an automated inference
of smallest sufficient data generation time, based on an automated
detection of the program’s warm-up state.

7.6 Holistic Approach
Compilation forking can analyze the interplay of optimizations by
employing nested forking which creates versions according to a
grid search over multiple compilation decisions. In our approach,
we only addressed learning single optimization decisions at run
time. An offline approach would only require some data to be pro-
duced per data generation run, as there will be numerous programs
executed which produce much data for creating a model with good
generalization. In our approach, where data from only one pro-
gram run can be used for creating a new model, investigating the
interplay of multiple optimizations (i.e. >3) would be infeasible
due to the limitations of compilation forking when it comes to an
increased state space.

8 CONCLUSION
We have presented machine-learning-based self-optimizing compiler
heuristics: an end-to-end approach to learn compilation decisions
at run time from dynamically extracted performance metrics. It
uses neural networks as knowledge base to update the learned
compilation decisions at run time with new data. We showed in
quantitative experiments that our approach can outperform human-
crafted heuristics, especially for programs towards which these
heuristic were not tuned. This eases deployment of compilers to
new environments without investing additional engineering ef-
fort. Furthermore, our approach can be used to assist compiler
experts when creating or evaluating new heuristics. Future work
will address the discussed limitations and explore concepts such as
"compilation-as-a-service" or "prediction-as-a-service" which are
facilitated by the client-server architecture we proposed.

109

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

REFERENCES
[1] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W.

Reeves, Devika Subramanian, Linda Torczon, and Todd Waterman. 2004. Find-
ing Effective Compilation Sequences. In Proceedings of the 2004 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (Washington, DC, USA) (LCTES ’04). Association for Computing Machinery,
New York, NY, USA, 231–239. https://doi.org/10.1145/997163.997196

[2] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina
Silvano. 2018. A Survey on Compiler Autotuning Using Machine Learning. ACM
Comput. Surv. 51, 5, Article 96 (Sept. 2018), 42 pages. https://doi.org/10.1145/
3197978

[3] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and Brian N.
Bershad. 1996. Fast, Effective Dynamic Compilation. SIGPLAN Not. 31, 5 (may
1996), 149–159. https://doi.org/10.1145/249069.231409

[4] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler Transfor-
mations for High-Performance Computing. ACM Comput. Surv. 26, 4 (Dec. 1994),
345–420. https://doi.org/10.1145/197405.197406

[5] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In Proceedings of the 21st Annual ACM
SIGPLANConference on Object-Oriented Programming Systems, Languages, and Ap-
plications (Portland, Oregon, USA) (OOPSLA ’06). Association for Computing Ma-
chinery, New York, NY, USA, 169–190. https://doi.org/10.1145/1167473.1167488

[6] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike OBoyle, and Erven Rohou.
1998. Iterative compilation in a non-linear optimisation space. Workshop on
Profile and Feedback-Directed Compilation (03 1998). https://hal.inria.fr/inria-
00475919/document

[7] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon.
2020. Compiler-Based Graph Representations for Deep Learning Models of Code.
In Proceedings of the 29th International Conference on Compiler Construction (San
Diego, CA, USA) (CC 2020). Association for Computing Machinery, New York,
NY, USA, 201–211. https://doi.org/10.1145/3377555.3377894

[8] John Cavazos and Michael F. P. O’Boyle. 2005. Automatic Tuning of Inlining
Heuristics. In Proceedings of the 2005 ACM/IEEE Conference on Supercomputing
(SC ’05). IEEE Computer Society, USA, 14. https://doi.org/10.1109/SC.2005.14

[9] Stefano Cazzulani. 2012. Octane: The JavaScript benchmark suite for the modern
web. https://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-
for.html retrieved May 25 2022.

[10] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999. Optimizing
for Reduced Code Space Using Genetic Algorithms. SIGPLAN Not. 34, 7 (May
1999), 1–9. https://doi.org/10.1145/315253.314414

[11] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Mach.
Learn. 20, 3 (sep 1995), 273–297. https://doi.org/10.1023/A:1022627411411

[12] Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir
Gomez, Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, Yuandong Tian, and
Hugh Leather. 2022. CompilerGym: Robust, Performant Compiler Optimization
Environments for AI Research. In Proceedings of the 20th IEEE/ACM International
Symposium on Code Generation and Optimization (Virtual Event, Republic of
Korea) (CGO ’22). IEEE Press, 92–105. https://doi.org/10.1109/CGO53902.2022.
9741258

[13] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon, Christian Wim-
mer, and Hanspeter Mössenböck. 2013. Graal IR: An Extensible Declarative Inter-
mediate Representation. In Proceedings of the Asia-Pacific Programming Languages
and Compilers Workshop. 1–9. https://ssw.jku.at/General/Staff/GD/APPLC-2013-
paper_12.pdf

[14] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Specula-
tion without Regret: Reducing Deoptimization Meta-Data in the Graal Compiler.
In Proceedings of the 2014 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools
(Cracow, Poland) (PPPJ ’14). Association for Computing Machinery, New York,
NY, USA, 187–193. https://doi.org/10.1145/2647508.2647521

[15] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug
Simon, and Hanspeter Mössenböck. 2013. An Intermediate Representation for
Speculative Optimizations in a Dynamic Compiler. In Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate Languages (Indianapolis, Indiana,
USA) (VMIL ’13). Association for Computing Machinery, New York, NY, USA,
1–10. https://doi.org/10.1145/2542142.2542143

[16] Peng fei Chuang, Howard Chen, Gerolf F. Hoflehner, Daniel M. Lavery, and Wei
chung Hsu. 2007. Dynamic profile driven code version selection. In the 11th
Annual Workshop on the Interaction between Compilers and Computer Architec-
ture. https://www.researchgate.net/publication/228952289_Dynamic_Profile_
Driven_Code_Version_Selection

[17] Grigori Fursin, Albert Cohen, Michael O’Boyle, and Olivier Temam. 2005. A Prac-
tical Method for Quickly Evaluating Program Optimizations. In High Performance

Embedded Architectures and Compilers, Nacho Conte, Tomband Navarro, Wen-
mei W. Hwu, Mateo Valero, and Theo Ungerer (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 29–46. https://doi.org/10.1007/11587514_4

[18] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Ayal Zaks,
Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather, Chris Williams,
Michael O’Boyle, Phil Barnard, Elton Ashton, Eric Courtois, and François Bodin.
2008. MILEPOST GCC: machine learning based research compiler. In Proceedings
of the GCC Developers’ Summit 2008. https://hal.inria.fr/inria-00294704

[19] Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste
Asanovic, and Ion Stoica. 2020. NeuroVectorizer: End-to-End Vectorization with
Deep Reinforcement Learning. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization (San Diego, CA, USA) (CGO
2020). Association for Computing Machinery, New York, NY, USA, 242–255.
https://doi.org/10.1145/3368826.3377928

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Map-
pings in Deep Residual Networks. In Computer Vision – ECCV 2016, Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer International Publishing,
Cham, 630–645. https://doi.org/10.1007/978-3-319-46493-0_38

[21] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging Optimized
Code with Dynamic Deoptimization. In Proceedings of the ACM SIGPLAN 1992
Conference on Programming Language Design and Implementation (San Francisco,
California, USA) (PLDI ’92). Association for Computing Machinery, New York,
NY, USA, 32–43. https://doi.org/10.1145/143095.143114

[22] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. 1996. Re-
inforcement Learning: A Survey. J. Artif. Int. Res. 4, 1 (May 1996), 237–285.
https://doi.org/10.1613/jair.301

[23] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-
tion. International Conference on Learning Representations (12 2014).

[24] P.A. Kulkarni, D.B. Whalley, G.S. Tyson, and J.W. Davidson. 2006. Exhaustive
optimization phase order space exploration. In International Symposium on Code
Generation and Optimization (CGO’06). IEEE Computer Society, 13 pp.–318. https:
//doi.org/10.1109/CGO.2006.15

[25] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. 2006. Online
Performance Auditing: Using Hot Optimizations without Getting Burned. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Ottawa, Ontario, Canada) (PLDI ’06). Association for
Computing Machinery, New York, NY, USA, 239–251. https://doi.org/10.1145/
1133981.1134010

[26] Hugh Leather and Chris Cummins. 2020. Machine Learning in Compilers: Past,
Present and Future. In 2020 Forum for Specification and Design Languages (FDL).
IEEE Computer Society, 1–8. https://doi.org/10.1109/FDL50818.2020.9232934

[27] David Leopoldseder, Roland Schatz, Lukas Stadler, Manuel Rigger, Thomas
Würthinger, and Hanspeter Mössenböck. 2018. Fast-Path Loop Unrolling of
Non-Counted Loops to Enable Subsequent Compiler Optimizations. In Proceed-
ings of the 15th International Conference on Managed Languages & Runtimes (Linz,
Austria) (ManLang ’18). Association for Computing Machinery, New York, NY,
USA, Article 2, 13 pages. https://doi.org/10.1145/3237009.3237013

[28] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon,
and Hanspeter Mössenböck. 2018. Dominance-Based Duplication Simulation
(DBDS): Code Duplication to Enable Compiler Optimizations. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization (Vienna,
Austria) (CGO 2018). Association for Computing Machinery, New York, NY, USA,
126–137. https://doi.org/10.1145/3168811

[29] Shun Long and Michael O’Boyle. 2004. Adaptive Java Optimisation Using
Instance-Based Learning. In Proceedings of the 18th Annual International Confer-
ence on Supercomputing (Malo, France) (ICS ’04). Association for Computing Ma-
chinery, New York, NY, USA, 237–246. https://doi.org/10.1145/1006209.1006243

[30] Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel. 2021. Learn-
ing toMake Compiler OptimizationsMore Effective. In Proceedings of the 5th ACM
SIGPLAN International Symposium on Machine Programming (Virtual, Canada)
(MAPS 2021). Association for Computing Machinery, New York, NY, USA, 9–20.
https://doi.org/10.1145/3460945.3464952

[31] Charith Mendis, Alex Renda, Dr.Saman Amarasinghe, and Michael Carbin. 2019.
Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation us-
ing Deep Neural Networks. In Proceedings of the 36th International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 97), Ka-
malika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 4505–4515. http:
//proceedings.mlr.press/v97/mendis19a.html

[32] Raphael Mosaner. 2020. Machine Learning to Ease Understanding of Data Driven
Compiler Optimizations. In Companion Proceedings of the 2020 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (Virtual, USA) (SPLASH Companion 2020). Association
for Computing Machinery, New York, NY, USA, 4–6. https://doi.org/10.1145/
3426430.3429451

[33] Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler, and
Hanspeter Mössenböck. 2022. Compilation Forking: A Fast and Flexible Way
of Generating Data for Compiler-Internal Machine Learning Tasks. The Art,
Science, and Engineering of Programming 7 (06 2022). https://doi.org/10.22152/

110

https://doi.org/10.1145/997163.997196
https://doi.org/10.1145/3197978
https://doi.org/10.1145/3197978
https://doi.org/10.1145/249069.231409
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/1167473.1167488
https://hal.inria.fr/inria-00475919/document
https://hal.inria.fr/inria-00475919/document
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1109/SC.2005.14
https://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html
https://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html
https://doi.org/10.1145/315253.314414
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1109/CGO53902.2022.9741258
https://doi.org/10.1109/CGO53902.2022.9741258
https://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.pdf
https://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.pdf
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1145/2542142.2542143
https://www.researchgate.net/publication/228952289_Dynamic_Profile_Driven_Code_Version_Selection
https://www.researchgate.net/publication/228952289_Dynamic_Profile_Driven_Code_Version_Selection
https://doi.org/10.1007/11587514_4
https://hal.inria.fr/inria-00294704
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1145/143095.143114
https://doi.org/10.1613/jair.301
https://doi.org/10.1109/CGO.2006.15
https://doi.org/10.1109/CGO.2006.15
https://doi.org/10.1145/1133981.1134010
https://doi.org/10.1145/1133981.1134010
https://doi.org/10.1109/FDL50818.2020.9232934
https://doi.org/10.1145/3237009.3237013
https://doi.org/10.1145/3168811
https://doi.org/10.1145/1006209.1006243
https://doi.org/10.1145/3460945.3464952
http://proceedings.mlr.press/v97/mendis19a.html
http://proceedings.mlr.press/v97/mendis19a.html
https://doi.org/10.1145/3426430.3429451
https://doi.org/10.1145/3426430.3429451
https://doi.org/10.22152/programming-journal.org/2023/7/3
https://doi.org/10.22152/programming-journal.org/2023/7/3

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

programming-journal.org/2023/7/3
[34] Eunjung Park, John Cavazos, and Marco A. Alvarez. 2012. Using Graph-Based

Program Characterization for Predictive Modeling. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization (San Jose, Cali-
fornia) (CGO ’12). Association for Computing Machinery, New York, NY, USA,
196–206. https://doi.org/10.1145/2259016.2259042

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019), 8026–8037. https:
//dl.acm.org/doi/10.5555/3454287.3455008

[36] Filip Pizlo. 2014. JetStream Benchmark Suite. http://browserbench.org/JetStream/
retrieved May 25 2022.

[37] Ricardo Nabinger Sanchez, Jose Nelson Amaral, Duane Szafron, Marius Pirvu,
and Mark Stoodley. 2011. Using Machines to Learn Method-Specific Compilation
Strategies. In Proceedings of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization (CGO ’11). IEEE Computer Society, USA,
257–266. https://doi.org/10.1109/CGO.2011.5764693

[38] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. 2011. Da
Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java
Virtual Machine. In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications (Portland, Oregon,
USA) (OOPSLA ’11). Association for Computing Machinery, New York, NY, USA,
657–676. https://doi.org/10.1145/2048066.2048118

[39] Mark Stephenson and Saman Amarasinghe. 2005. Predicting unroll factors using
supervised classification. In International Symposium on Code Generation and
Optimization. IEEE Computer Society, 123–134. https://doi.org/10.1109/CGO.
2005.29

[40] Michele Tartara and Stefano Crespi Reghizzi. 2013. Continuous Learning of
Compiler Heuristics. ACM Trans. Archit. Code Optim. 9, 4, Article 46 (Jan. 2013),
25 pages. https://doi.org/10.1145/2400682.2400705

[41] Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski,
and David Li. 2021. MLGO: a Machine Learning Guided Compiler Optimizations
Framework. CoRR abs/2101.04808 (2021). arXiv:2101.04808 https://arxiv.org/abs/
2101.04808

[42] Huanting Wang, Zhanyong Tang, Cheng Zhang, Jiaqi Zhao, Chris Cummins,
Hugh Leather, and Zheng Wang. 2022. Automating Reinforcement Learning

Architecture Design for Code Optimization. In Proceedings of the 31st ACM SIG-
PLAN International Conference on Compiler Construction (Seoul, South Korea)
(CC 2022). Association for Computing Machinery, New York, NY, USA, 129–143.
https://doi.org/10.1145/3497776.3517769

[43] Zheng Wang and Michael O’Boyle. 2018. Machine Learning in Compiler Op-
timization. Proc. IEEE 106, 11 (Nov 2018), 1879–1901. https://doi.org/10.1109/
JPROC.2018.2817118

[44] Christian Wimmer, Vojin Jovanovic, Erik Eckstein, and Thomas Würthinger.
2017. One Compiler: Deoptimization to Optimized Code. In Proceedings of the
26th International Conference on Compiler Construction (Austin, TX, USA) (CC
2017). Association for Computing Machinery, New York, NY, USA, 55–64. https:
//doi.org/10.1145/3033019.3033025

[45] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-Optimizing
Runtime System. In Proceedings of the 3rd Annual Conference on Systems, Pro-
gramming, and Applications: Software for Humanity (Tucson, Arizona, USA)
(SPLASH ’12). Association for Computing Machinery, New York, NY, USA, 13–14.
https://doi.org/10.1145/2384716.2384723

[46] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer.
2017. Practical Partial Evaluation for High-performance Dynamic Language
Runtimes. In Proceedings of the 38th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). As-
sociation for Computing Machinery, New York, NY, USA, 662–676. https:
//doi.org/10.1145/3062341.3062381

[47] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Du-
boscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. 2013.
One VM to Rule Them All. In Proceedings of the 2013 ACM International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming & Software
(Indianapolis, Indiana, USA) (Onward! 2013). Association for Computing Machin-
ery, New York, NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581

[48] Mingzhou Zhou, Xipeng Shen, Yaoqing Gao, and Graham Yiu. 2014. Space-
Efficient Multi-Versioning for Input-Adaptive Feedback-Driven Program Opti-
mizations. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications (Portland, Oregon,
USA) (OOPSLA ’14). Association for Computing Machinery, New York, NY, USA,
763–776. https://doi.org/10.1145/2660193.2660229

111

https://doi.org/10.22152/programming-journal.org/2023/7/3
https://doi.org/10.1145/2259016.2259042
https://dl.acm.org/doi/10.5555/3454287.3455008
https://dl.acm.org/doi/10.5555/3454287.3455008
http://browserbench.org/JetStream/
https://doi.org/10.1109/CGO.2011.5764693
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1109/CGO.2005.29
https://doi.org/10.1109/CGO.2005.29
https://doi.org/10.1145/2400682.2400705
https://arxiv.org/abs/2101.04808
https://arxiv.org/abs/2101.04808
https://arxiv.org/abs/2101.04808
https://doi.org/10.1145/3497776.3517769
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1145/3033019.3033025
https://doi.org/10.1145/3033019.3033025
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2660193.2660229

	Abstract
	1 Introduction
	2 Background
	2.1 Compilation Forking
	2.2 Related Work
	2.3 Loop Peeling

	3 Approach
	3.1 Data Generation Phase
	3.2 Learning Phase
	3.3 Prediction Phase

	4 Implementation
	4.1 Architecture
	4.2 Compilation Forking
	4.3 Deopt Instrumentation
	4.4 Mode Switching

	5 Machine Learning Framework
	5.1 Data Pre-processing
	5.2 Data Filtering
	5.3 Features
	5.4 Model Training

	6 Evaluation
	6.1 Experimental Setup
	6.2 Training New Models
	6.3 Self-optimizing Model

	7 Discussion
	7.1 Limitations of Forking
	7.2 Overfitting
	7.3 Updating a Model
	7.4 Warm-up
	7.5 End-to-end Approach
	7.6 Holistic Approach

	8 Conclusion
	References

