
Features, Believe It or Not!∗
A Design Pattern for First-Class Citizen Features on Stock JVM

Francesco Bertolotti
Computer Science Department
Università degli Studi di Milano

Milan, Italy
bertolotti@di.unimi.it

Walter Cazzola
Computer Science Department
Università degli Studi di Milano

Milan, Italy
cazzola@di.unimi.it

Luca Favalli
Computer Science Department
Università degli Studi di Milano

Milan, Italy
favalli@di.unimi.it

Abstract
Modern software systems must fulfill the needs of an ever-growing
customer base. Due to the innate diversity of human needs, soft-
ware should be highly customizable and reconfigurable. Researchers
and practitioners gained interest in software product lines (SPL),
mimicking aspects of product lines in industrial production for
the engineering of highly-variable systems. There are two main
approaches towards the engineering of SPLs. The first uses macros—
such as the #ifdefmacro in C. The second—called feature-oriented
programming (FOP)—uses variability-aware preprocessors called
composers to generate a program variant from a set of features and
a configuration. Both approaches have disadvantages. Most notably,
these approaches are usually not supported by the base language;
for instance Java is one of the most commonly used FOP languages
among researchers, but it does not support macros rather it relies on
the C preprocessor or a custom one to translate macros into actual
Java code. As a result, developers must struggle to keep up with the
evolution of the base language, hindering the general applicabil-
ity of SPL engineering. Moreover, to effectively evolve a software
configuration and its features, their location must be known. The
problem of recording and maintaining traceability information is
considered expensive and error-prone and it is once again handled
externally through dedicated modeling languages and tools. Instead,
to properly convey the FOP paradigm, software features should
be treated as first-class citizens using concepts that are proper to
the host language, so that the variability can be expressed and ana-
lyzed with the same tools used to develop any other software in the
same language. In this paper, we present a simple and flexible de-
sign pattern for JVM-based languages—dubbed devise pattern—that
can be used to express feature dependencies and behaviors with
a light-weight syntax both at domain analysis and at domain im-
plementation level. To showcase the qualities and feasibility of our
approach, we present several variability-aware implementations

∗The title pays homage to the American franchise Ripley’s Believe It or Not! https:
//www.ripleys.com/. It wants to emphasize the obviousness that in this work we will
talk about features.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’22, September 12–16, 2022, Graz, Austria
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9443-7/22/09. . . $15.00
https://doi.org/10.1145/3546932.3546989

of a MNIST-encoder—including one using the devise pattern—and
compare strengths and weaknesses of each approach.

CCS Concepts
• Software and its engineering→ Software design engineer-
ing; Software product lines.

Keywords
Software product lines, variability modeling, design patterns
ACM Reference Format:
Francesco Bertolotti, Walter Cazzola, and Luca Favalli. 2022. Features, Be-
lieve It or Not!: A Design Pattern for First-Class Citizen Features on Stock
JVM. In 26th ACM International Systems and Software Product Line Confer-
ence - Volume A (SPLC ’22), September 12–16, 2022, Graz, Austria. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3546932.3546989

1 Introduction
Product lines are a staple in industrial production for the creation
of highly-variable systems. Following the same concepts, software
product lines (SPLs) [27] are an increasingly popular technology to
support feature reuse and system variability. Ideally, software prod-
uct line engineering (SPLE) should provide variability mechanisms
to accommodate the introduction and removal of crosscutting and
non-crosscutting features, as well as their transformation without
invasive changes and ripple effects. State-of-the-art SPL develop-
ment environments—such as FeatureIDE [24, 39]—can cope with
all the aspects of the development of a SPL, including construc-
tion, management of software artifacts, configuration and product
derivation. However, such tools and techniques are not natively
supported by the base language and thus the developers have to
struggle to keep up with the evolution of the base language—for in-
stance, Java has a 6-month release cycle sinceMarch 2021. Moreover,
there is no general consensus on how the composition mechanism
should be performed, thus the source code of the core application
and its features are structured differently depending on the chosen
composer tool. Composer tools are preprocessors that translate
feature-oriented code into Java code with regards to a chosen con-
figuration. Possible composers are FeatureHouse [39], AHEAD [3],
Antenna1 and AspectJ [25]. However, it is usually possible to avoid
using preprocessors thanks to the Java Virtual Machine (JVM) ab-
stractions [12]. To change a composer is usually unfeasible as the
SPL has to be rewritten. The tool chain may not support the new
composer so the developers have to learn new syntax, tools and a
specific development environment. A closely related problem is that
of feature traceability: recording and maintaining the potentially
1http://antenna.sourceforge.net

https://orcid.org/0000-0002-4652-8113
https://orcid.org/0000-0001-7452-2440
https://www.ripleys.com/
https://www.ripleys.com/
https://doi.org/10.1145/3546932.3546989
https://doi.org/10.1145/3546932.3546989
http://antenna.sourceforge.net
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546932.3546989&domain=pdf&date_stamp=2022-09-12

SPLC ’22, September 12–16, 2022, Graz, Austria Francesco Bertolotti, Walter Cazzola, and Luca Favalli

scattered locations of features in the software artifacts for evolution
and maintenance purposes is tedious and error-prone [1] especially
when changes to the specification cause changes to the implemen-
tation and vice versa. While several feature location and variability
mining strategies have been proposed [10, 11, 30] and evaluated [22]
in the literature, they must be complemented by ad-hoc refactoring
strategies to evolve software into a variability-aware SPL. These
problems may obstacle the adoption of SPLs as a more wide-spread
engineering technique [16] and solving them requires dealing with
their inherent complexity. SPLE involves aspects of domain analysis
and implementation, requirements analysis and product derivation;
the possible configurations are exponential in the number of fea-
tures and SPLs, e.g., the Linux kernel [37] has several thousands of
features whereas the Neverlang.JS implementation of Javascript [7]
has hundreds of language features.

As Larry Tesler stated in an interview for Dan Saffer [31]’s «De-
signing for Interaction» book: «Systems have an inherent amount
of complexity that cannot be reduced». This is known as the law
of conservation of complexity and leaves one question open with
regards to complexity: if it cannot be reduced or hidden, then who
should be exposed to such a complexity? In this paper, we present
an approach in which managing the complexity of software vari-
ability is a matter of design rather than a matter of tooling. In this
approach, software features are modeled through concepts the soft-
ware developers are familiar with, such as composition, inheritance
and design patterns. Feature development and their recording are
the same development activity, so that tracing is done with the
same tools used to analyze normal code: Eclipse and JetBrains’ In-
telliJ IDEA, as well as most other modern Java IDEs support finding
usages of classes and methods, and class hierarchy inspection and
refactoring—including any external dependencies. Most developers
are already familiar with these tools: using the same abstractions to
implement both features and normal classes makes their expertise
applicable to FOP at no additional cost. Should the development
environment be changed, the same code can be reused with no
changes. The same approach can be used as a refactoring frame-
work to complement variability mining techniques or to avoid the
feature location activity by explicitly declaring the variability points
when a SPL is developed from scratch. To show the applicability
of this approach, we present a design pattern for FOP—dubbed de-
vise pattern—and a variability-aware MNIST-encoder implemented
using an implementation of this pattern.

The remainder of this paper is structured as follows. Sect. 2
presents background terminology and concepts. Sect. 3 presents
the essence of the devise pattern. Sect. 4 shows how the pattern can
be customized with additional semantics and used to implement
a variability-aware MNIST-encoder application. Sect. 5 reviews
related work. Finally, in Sect. 6 we draw our conclusions.

2 Background
In this section, we overview background information and terminol-
ogy that is relevant to this work, including basic concepts SPLs and
FOP, and neural networks for the MNIST-encoder case study.

2.1 Software Product Lines
Following the ideas of product line engineering in industrial pro-
duction, SPLE strives to ease the development of variable software
systems, introducing the concepts of software variants and soft-
ware families. Following the feature-oriented programming (FOP)
paradigm [28], software products can be described in terms of the
features they provide. Similar software products that share com-
monalities but differ for a subset of their features are called soft-
ware variants. A collection of software variants is usually called
software family. The goal of SPLE is to ease the deployment of
software families through formalisms such as the Feature Model
(FM) [17]. Given a FM, a software variant is identified through a
configuration—i.e., a collection of active features. The validity of a
configuration is determined by analyzing the FM with regards to
active and inactive features: the FM structure determines feature
dependencies by defining mandatory features, optional features, or
groups, and alternative features, as well as, the simple parent-child
relationship, since a feature can be active only if its parent is also
active. Dependencies can also be explicitly defined using cross-tree
constraints—i.e., Boolean expressions among features of the FM.
If the truth value of any cross-tree constraint is false for a config-
uration then that configuration is invalid. Feature dependencies
may cause anomalies such as atomic-sets—i.e., sets of features that
must either be all active or all inactive at the same time—and dead
features—that can never be active in any valid configuration. Such
anomalies can be detected and refactored to improve the quality
of a FM; this is an active research area and includes structural [5]
and behavioral [4] approaches. In addition to FOP, other paradigms
for SPLE such as aspect-oriented programming (AOP) [15] and
delta-oriented programming (DOP) [32] exist.

2.2 MNIST-encoder
Neural Networks (NNs) are computational graphs with trainable
parameters designed to solve specific tasks. When trained, these
parameters are optimized so that a loss function is minimized. By
minimizing the loss, the NN can learn specific patterns that are
useful to solve the intended task. NNs are highly-customizable
software systems: the type of the architecture and of the loss func-
tion, as well as the number of trainable parameters, are all factors
that can substantially affect the NN performance. NNs learn hid-
den internal representations of the data on which they are trained.
These representations can be explicitly trained to satisfy certain
properties. For example, contrastive learning [8] is a technique in
which a NN is trained so that semantically similar data points have
close hidden representations. This can be achieved by means of
a well-designed loss function. Contrastive learning can be both
supervised and self-supervised. In the first case, semantically close
data points are known in advance and the NN is trained so that their
hidden representation is also close. For example, data points with
the same label are trained to be close to each other, whereas data
points with different labels are trained to be far apart. In the latter
case, semantically close data points are not known beforehand and
are instead generated using augmentation pipelines. These kinds
of architectures are usually referred to as encoders. In this work,
we trained a set of NN encoders using contrastive learning on the
popularMNIST dataset [19]. It contains 60, 000 gray scale images

Features, Believe It or Not! SPLC ’22, September 12–16, 2022, Graz, Austria

of 28 × 28 pixels. Each image represents a numerical digit from 0
to 9. For this reason, we called this application MNIST-encoder.

3 Devise Pattern
To properly frame this contribution, we went back to Prehofer [28,
29]’s work and the origin of FOP. FOP is a model for object-oriented
programmingwhich generalizes inheritance. Instead of using a rigid
class structure, features are similar to mixins [6] and implement
services that can be used by other objects. Therefore, objects be-
haviors are implemented by leveraging the aggregation of several
features whereas more modern software composition tools such as
FeatureHouse [2] give up aggregation in favor of superimposition—
i.e., the process of composing software artifacts by merging their
substructures. In this work, we remain true to the original vision
of FOP while taking a more naïve approach, in which classes are
the result of feature aggregation. This process is eased by changes
recently introduced in object-oriented programming languages—
such as lambdas in Java 8. We propose the devise pattern, designed
to achieve the following FOP goals:
• separation of concerns—the modeling code is separated from the
implementation code;

• light on the domain analyst—the modeling code of a feature
and of the FM is minimal, it contains no semantics and can be
automatically generated if the FM is already available;

• light on the developers—the implementation code of a feature
takes little to no boilerplate code (the samemagnitude of a #ifdef
macro in C);

• flexibility—the implementation code of feature behavior can ei-
ther be embedded in the application or separated from it to sup-
port information hiding and reuse;

• statically-checked—both the modeling code and the implementa-
tion code are checked by the stock language compiler.

The devise pattern, its participants and its application are structured
following Gamma et al. [13]’s work on design patterns.

Purpose and Scope. The devise pattern is a class behavioral
pattern. It deals with the relationship among classes implementing
crosscutting concerns (features) and with how these classes and
their instances (feature actions) interact and set responsibility.

Intent. Explicitly express the variability points of an algorithm
at source level so that they can later be traced and refactored. Keep
the FM and its implementation aligned by means of the compiler.
Plan the feature semantics ahead and defer their execution until
they are ensured to be active in a valid configuration. Render the
main application unaware of the underlying configuration.

Motivation. Consider a variability-awaremachine learning appli-
cation inwhich two different loss functions can be used: Triplets [33]
and InfoNCE [26]. These two specific loss functions are not inter-
changeable and choosing one over the other in a configuration af-
fects the preparation of the training set and the graph of the model
to be trained. In both cases, the code is scattered across the main
application. The loss function is then a crosscutting concern and
can be modeled as a feature. Different features may have constraints
with each other: no loss function is needed if the model is restored
from memory. Otherwise, either one of them must be active, but
not both in the same configuration. At each point of the execution

in which a configuration choice is relevant, the main application
must explicitly declare a variability point and any dependencies
among features which the variability point is concerned with. To
summarize, to solve the problem of variability of loss functions
it means to solve four sub-problems: to declare the cross-cutting
concerns (features declaration), to declare a variability point in the
application (variability points declaration), to declare constraints
among features (constraints declaration), and to configure prod-
uct variants (configuration management). A solution to the feature
declaration problem is to separate the class hierarchy of the main
application from the feature hierarchy, so that class instances (ob-
jects) and feature instances (feature actions) can be combined at
will through aggregation. With this structure, cross-cutting con-
cerns can be identified simply by inspecting the class hierarchy. In
our example, each of the two loss functions will inherit from the
same Feature abstract class. Any other class that does not inherit
from Feature will not be identified as a cross-cutting concern. A
common solution to the variability point declaration problem is the
usage of conditional compilation with #ifdef macros [20]. While
this solution is extremely simple, it is usually considered error-
prone due to the low level of abstraction. To maintain the benefits
of an #ifdef while improving the abstraction, a solution would be
to separate the declaration of a variability point from its implemen-
tation. For example, both Triplets and InfoNCE are implemented in
their own classes and the main method only declares the variability
point in which one of the two must be chosen in a configuration. A
common problem with constraints declaration is that feature con-
straints are usually declared at FM level, so it is hard to ensure
that dependencies expressed in the source code align with those
declared in the FM. A solution to this issue would be to declare the
feature constraints directly at source level: the alignment between
the representation at FM level and the implementation can then be
checked automatically. For instance, the alternative nature between
Triplets and InfoNCE that we discussed earlier should be expressed
both at FM level and at source level. Any inconsistencies can be
revealed by analyzing the source code against the FM. To solve
the configuration management problem, the application needs an
activation mechanism that handles the execution of each feature:
feature actions must be executed if and only if the corresponding
feature is active in the current configuration. In this example, the
main application is a client for two possible services provided by
the alternative Triplets and InfoNCE features. The service that is
actually provided when the application is run is determined by a
configuration, whose validity is checked against the FM.

Applicability. The devise pattern should be used to manage
the variability of SPLs without preprocessors, as discussed in the
motivational example above. In particular, the devise pattern can
explicitly declare variability points in an application and untangle
code from different concerns by refactoring them into features. The
scattered locations of features implemented with the devise pattern
can be retrieved automatically with common tools such as an IDE.
The devise pattern can also be used to defer the execution of a block
of code until the validity of a configuration is checked. Finally,
the devise pattern offers a viable solution whenever configuration
choices are subject to complex constraints.

SPLC ’22, September 12–16, 2022, Graz, Austria Francesco Bertolotti, Walter Cazzola, and Luca Favalli

FeatureModel

RootFeature

AbstractFeature

FeatureSpecificOperation1()

ConcreteFeature1

FeatureSpecificAttribute

ConcreteFeature2 ConcreteFeature3

FeatureSpecificOperation2()

Configuration

isActive(feature) : Boolean

Feature

body: Routine

does(action) : Feature
doit()

ConcreteConfiguration

0..n 1

1

Figure 1: Essential class diagram of the devise pattern.

Structure and Participants. Fig. 1 shows the class diagram of
an essential implementation of the devise pattern, representing
the hierarchy of the feature classes. Each feature class is used by a
client application (not shown in the diagram). There are five main
participants to the devise pattern.
• Feature—the root of the feature hierarchy. The semantics of a
feature action are devised using the does method and stored in
a body field. The does method also returns the feature action
to allow method call chains. The execution is deferred until the
doit method is called.

• Abstract and Concrete Features—sub-classes of the Feature class
determine the FM of the SPL. Each direct subclass of Feature
(RootFeature in Fig. 1) is the root of a FM. The complete FM is
equivalent to the sub-hierarchy of RootFeature, with abstract
classes being abstract features and concrete classes being con-
crete features. Each feature can be enriched with feature-specific
attributes (FeatureSpecificAttribute in Fig. 1) and operations
(such as FeatureSpecificOperation1 in Fig. 1). Notice that fea-
ture attributes are used to support the extended FM formalism.

• Configuration—declares an interface to determine if features are
active or inactive, i.e., whether their devised action should be
executed when its doit method is called.

• ConcreteConfiguration—implements the isActive interface. It
stores the activation status of features, checks the validity of a
variant and preempts the execution of inactive features.

• Variant (Application)—creates feature actions by instantiating
features, defines the variability points and the dependencies be-
tween feature actions.

Collaborations. Fig. 2 shows the sequence diagram of an exem-
plary variability-aware application implemented with the devise
pattern. The participants are the same as in Fig. 1, with the addition
of the Variant main application and a PreMain. The main method
stored in the Variant is unaware of the current configuration

1 new Hello()
2 .does(() -> System.out.println("Hello"))
3 .implies(new World().does(() -> System.out.println(" World")))
4 .doit();

Listing 1: Declaring constraints among feature actions.

which is set by the PreMain. In this example, ConcreteFeature1
is inactive and ConcreteFeature2 is active. Then, the PreMain

launches the actual Variant main. The Variant declares two vari-
ability points, one for each of the two concrete features. In the
case of ConcreteFeature1, the execution is devised and deferred
to a later time whereas a feature action for ConcreteFeature2 is
devised and executed sequentially by calling the does and doit

methods respectively. When the doit method is called, each fea-
ture action messages the Configuration to check if it is active. In
this example, only ConcreteFeature2 is active and therefore ex-
ecuted, whereas ConcreteFeature1 is not executed. Notice that
the Variant only has to devise the semantics of ConcreteFeature1
and ConcreteFeature2 whereas their execution or preemption is
entirely handled by the Configuration.

Consequences. The devise pattern has the following benefits (+)
and drawbacks (-).
+ It leads to an inverted control structure referred to as the Holly-

wood principle [38]: the Configuration handles the execution of
the Variant and preempts the execution of inactive features and
invalid configurations.

+ It makes the variability points of the application explicit: given a
configuration, an active feature action could be replaced with its
body without changing the semantics.

+ Feature actions are predictable and their body is a function that
cannot cause side effects over out-of-scope variables.

+ Devising feature actions eliminates the need for conditional state-
ments because alternative behaviors are selected based on the
configuration; for instance, an alternative group is equivalent to
a switch statement with a break on each case. For this reason,
there is no need for binary flags in source code to control the
execution flow.

+ Moves feature-specific attributes and methods from the classes’
source code to the features’ source code.

- Features increase the number of classes in an application: each
feature is an additional class and the body of each feature action
is translated into a class by the Java compiler.

- The code of the feature action’s body is embedded in the main
application, thus the resulting code may be hard to comprehend
and analyze. As we will show later in this section, extracting a
feature action requires additional abstractions.

Implementation and Sample Code. So far, we provided an
overview of the essence of the devise pattern and its participants.
However, several implementation-specific improvements can be
made to vary the base interface described in Fig. 1. We identified
and applied five possible improvements. The resulting interface of
the improved implementation is shown in Fig. 3.

Abstractions to express feature dependencies. In our implemen-
tation, we chose to enrich the Feature class with one method for

Features, Believe It or Not! SPLC ’22, September 12–16, 2022, Graz, Austria

PreMain

PreMain

Variant

Variant

ConcreteFeature1

ConcreteFeature1

ConcreteFeature2

ConcreteFeature2

Configuration

Configuration

ConcreteFeature2 is active

main()

new ConcreteFeature1(attr).does(action)

return instance C1

new ConcreteFeature2().does(action).doit()

is ConcreteFeature2 active?

ConcreteFeature2 is active

run the devised action() semantics

C1.doit()

is ConcreteFeature1 active?

ConcreteFeature1 is not active

do nothing

Figure 2: Sequence diagram of an exemplary variability-aware application devising two feature actions: one instance of
ConcreteFeature1 (which is inactive) and one of ConcreteFeature2 (which is active). In both cases, the execution is deferred until
the doit method is called. Configuration preempts the execution of inactive feature actions (ConcreteFeature1 in this example).

1 void main() {
2 new Hello.does(() ->
3 System.out.println("Hello")
4).implies(
5 new WorldAction()
6).doit();
7 }
8 @Action
9 public class WorldAction extends World {
10 public WorldAction() {
11 this.does(() -> System.out.println(" World"))
12 }
13 }

Listing 2: Embedded and refactored feature actions.

FeatureModifiers

Action Mandatory

OrGroup AlternativeGroup

Configuration

isActive(feature: Class<?>) : Boolean
isValid() : Boolean
activate(feature: Class<?>) : Configuration
deactivate(feature: Class<?>) : Configuration

Feature
T

body: Supplier<Optional<T>>

does(action: Supplier<T>) : Feature<T>
does(action: Runnable) : Feature<T>
doit() : Optional<T>
and(other: Feature<T>) : Feature<T>
or(other: Feature<T>) : Feature<T>
not(other: Feature<T>) : Feature<T>
xor(other: Feature<T>) : Feature<T>
implies(other: Feature<T>) : Feature<T>
isFeature() : Boolean

0..n 1

Figure 3: Extended class diagram of the devise pattern.

each of the most common Boolean relations, which are often used
to declare cross-tree constraints in FMs: and, or, not, implies, xor.
An example of usage of this API is shown in Listing 1. In this exam-
ple, if the Hello feature is active, then the World feature must also
be active. This constraint can be expressed by using the implies
method. This is possible because the execution is deferred until all

actions and their dependencies have been devised—i.e., when the
doit method is called (on line 5).

Refactor embedded code out of the main application. In most cases
it is beneficial to decouple the declaration of the variability point
and its implementation, otherwise the devise pattern acts identically
to #ifdef macros. In our implementation, we chose to provide an
@Action annotation and an isFeaturemethod that returns false if
the class is annotated, so that annotated classes are not considered
as part of the FM and instead their activation status is determined
based on their super-class. Consider refactoring Listing 1 so that the
implementation of the World feature action is decoupled from the
variability point declaration. The result of the refactoring is shown
in Listing 2, in which the embedded feature action for the World
feature was moved to the WorldAction annotated class. Thanks to
this refactoring, the main method is unaware of the World feature
implementation and the refactored WorldAction can also be reused
in different parts of the application without code duplication. This
was not possible in Listing 1.

Extended features parametrization. To implement extended fea-
tures and their parameters, consider using configuration methods
instead of constructors: non-default constructors must be overrid-
den by child classes, causing unnecessary overhead for the domain
analyst writing the model. In Listing 3, Hello1 and Hello2 are de-
vised with the same semantics, but the second one does not require
sub-classes to override the non-default constructor.

Non-void feature actions. Listing 1, 2 and 3 show void feature
actions, implemented using the Runnable interface. A more flex-
ible implementation may allow feature actions to return values.
In our implementation, the body of a feature action returns an
Optional type. Feature actions can be devised by providing ei-
ther a Supplier (with return value) or a Runnable (without return
value). In the latter case, executing the feature action will return
an Optional.empty() value.

Related Patterns. A builder [13] can greatly benefit from us-
ing the devise pattern to configure the creation of complex object
variants. The doit method of the Feature class is structured as a

SPLC ’22, September 12–16, 2022, Graz, Austria Francesco Bertolotti, Walter Cazzola, and Luca Favalli

Autoencoder

Logging

Checkpoining Plot TrainStepLogging DebugVariables SaveEncodings

Prepare

Train

TripletsLoss

TripletsModel

TripletsCNN TripletsMLPMixer TripletsMLP

TripletsDataset

TripletsWithLabels TripletsWithoutLabels

InfoNCELoss

InfoNCEDataset

InfoNCEWithoutLabels InfoNCEWithLabels

InfoNCEModel

InfoNCECNN InfoNCEMLP InfoNCEMLPMixer

Restore

Reducer

Strategy

Umap Index Tsne

Dimensions

Reduction3D Reduction2D

Legend:

Abstract Feature

Concrete Feature

Mandatory

Optional

Or Group

Alternative Group

Figure 4: FM of the MNIST-encoder software family.

1 void main() {
2 new Hello1(42).doit();
3 new Hello2().config(42).doit();
4 }

6 public class Hello1 extends Feature {
7 private int param;
8 public Hello(int param) { //Must be overridden by subclasses!
9 this.param = param;
10 this.does(() ->
11 System.out.println(param + " is the answer")
12);
13 }
14 }

16 public class Hello2 extends Feature {
17 private int param;
18 public Hello2 config(int param) { //No need to override
19 this.param = param;
20 return this.does(() ->
21 System.out.println(param + " is the answer")
22);
23 }
24 }

Listing 3: Configuring extended features.

template method [13]. The separation between the feature abstrac-
tions and their implementation through a Runnable or a Supplier
functional interface is akin to a bridge pattern [13]. The enforce-
ment of the same configuration across all features and the main
application can be achieved with a singleton object [13].

4 Case Study: MNIST-encoder
In this section, we will discuss three different implementations of
the MNIST-encoder in which the variability is handled at source
level without using external preprocessors: using JSON configura-
tion files, the Variability Modules in Java (VMJ) [35] architectural
pattern, and the devise pattern.

4.1 Application Overview
The design of deep learning applications often offers huge chal-
lenges in terms of variability. Several aspects of NNs, including
architecture, training procedure and dataset, can be modeled differ-
ently to achieve different results. SPLE represents a valuable asset
to model the variability of this kind of applications and to produce
a family of related but different NNs. In this work, we embraced
this approach to develop a family of MNIST-encoders (see Sect. 2.2).
First, we analyzed the application domain and produced the FM
presented in Fig. 4. The FM shows that theMNIST-encoder SPL has
to deal with several variability concerns.

• Logging: tweak the output information that is provided to the
user during training, including the value of debug variables, the
loss and the model checkpoints; logging can also optionally plot
the resulting encodings.

• NN architecture: we consider three kinds of architectures. The
multi-layer perceptron (MLP) [14], the convolutional neural net-
work (CNN) [14] and the MLP mixer [40]. All these NNs can be
trained according to different loss functions. We consider only
the Triplets [33] and the InfoNCE [26] loss functions.

• Supervised or self-supervised learning: depending on the approach,
a different dataset has to be generated.

• Dimensionality reduction techniques: usually, hidden NN represen-
tations are high dimensional vectors. To visualize these vectors
in 2D scatter plots, it is necessary to project them into a low-
dimensional space. This can be achieved with various techniques
such as t-SNE [21] and UMAP [23]. Instead, when the hidden rep-
resentation is already low dimensional, it can directly be plotted
without projection.

Overall, the FM contains 34 features, 15 of which are extended
features that can be parameterized, allowing for additional cus-
tomization options. In this work, we considered and evaluated 8 out
of the total 55,296 valid configurations. Each variant was trained
and used to produce the encodings of 10,000 data points from the
MNIST dataset. We chose eight specific variants for a better compar-
ison: we kept a shared base configuration and only changed a few
features to better showcase the effect that each feature has on the
results. The results are shown in Fig. 5. Each color represents a data
point labeled with a different digit (from 0 to 9). All variants learned
a meaningful representation: data points with the same label are
generally clustered together. The first two rows are NN variants
using the CNN architecture; the last two rows are NN variants
using the MLP architecture. Odd rows use a dataset for supervised
learning whereas even rows use a dataset for self-supervised learn-
ing. The left column shows NN variants in which dimensionality
reduction is performed using t-SNE. On the right column those in
which dimensionality reduction is performed using UMAP. Notice
that the CNN variants show better clustering on average.

4.2 Variability-aware Encoders
In this section, we overview the three approaches that we chose
to turn the base MNIST-encoder implementation into a SPL that
is aware of the variability concerns discussed earlier. Since we
are focusing on approaches that do not require external tools, the
configuration is performed manually by the developer in all these
implementations. However, consider that the generation of config-
uration files can be automated with additional tooling.

Features, Believe It or Not! SPLC ’22, September 12–16, 2022, Graz, Austria

x

y

label
0
1
2
3
4
5
6
7
8
9

(a) Convolutional neural network, supervised, t-SNE.

x

y

(b) Convolutional neural network, supervised, UMAP.

x

y

(c) Convolutional neural network, self-supervised, t-SNE.

x

y

(d) Convolutional neural network, self-supervised, UMAP.

x

y

(e) Multi layer perceptron, supervised, t-SNE.

x

y

(f) Multi layer perceptron, supervised, UMAP.

x

y

(g) Multi layer perceptron, self-supervised, t-SNE.

x

y

(h) Multi layer perceptron, self-supervised, UMAP.

Figure 5: Embeddings obtained by eight variants of the MNIST-encoder using the InfoNCE loss. The legend reported in Fig. 5a
maps each color to the label of the 10,000 data points.

SPLC ’22, September 12–16, 2022, Graz, Austria Francesco Bertolotti, Walter Cazzola, and Luca Favalli

1 SameDiff engine =
2 new Restore<>().does(// #ifdef RESTORE
3 Model::load
4).xor(new Train<>().does(// #elif defined(TRAIN)
5 SameDiff::create
6)).doit(); // #endif

Listing 4: Restore and Train are alternative features.

JSON. The Javascript object notation (JSON) is commonly used
for serialization and deserialization of objects; it is also used as a
format for configuration files. In this version of theMNIST-encoder,
the JSON configuration files are deserialized into factories [13]. The
MNIST-encoder can be customized by editing one or more of the
configuration files: a different JSON configuration will instantiate
a different factory and eventually a different variant.

VMJ Pattern. VMJ [35] is an architectural pattern for the gener-
ation of SPLs. VMJ is based on the DOP paradigm in which features
are expressed as deltas over a core module. Each delta is imple-
mented as a decorator [13]. In VMJ a product is expressed using
factories that instantiate a core module and all the required deltas
depending on the configuration. Feature selection happens in a
module declaration that lists all its requirements. Configurations
are expressed as different main methods in which the core modules
are configured by applying all the necessary deltas. Please refer
to [35] for a complete overview.

Devise Pattern. The MNIST-encoder implementation based on
the devise pattern follows the framework discussed in Sect. 3. Each
feature in the FM from Fig. 4 is a Java class that directly or indirectly
inherits from Feature. The effects that the activation of each feature
has on a variant are expressed as feature actions—i.e., instances of
feature classes—whose semantics are devised by passing executable
code to the doesmethod. For instance, Listing 4 shows two features:
Restore and Train, which are part of an alternative group—only
one of them can be active at the same time. If both are active or
both are inactive, the configuration is considered invalid. This is
expressed at source level using the xor method. When Train is ac-
tive the differentiation engine is created as a clear instance. Instead,
when Restore is active the differentiation engine is instantiated
by loading a previously saved model. In this case, the semantics
are devised using Java method references. Using the devise pattern,
creating a new configuration should be as effortless and reusable
as possible. TheMNIST-encoder uses a BaseConfiguration class
as a template for all eight aforementioned NN variants and lever-
ages inheritance to minimize the required changes. For instance,
Listing 5 shows a DerivedConfigurationwhich is obtained by acti-
vating seven additional features over the BaseConfiguration. The
effort of creating a new configuration is minimized by sticking to
a declarative approach in which active and inactive features are
simply listed with no mention of the control flow of the application.
This implementation is based on the extended version of the de-
vise pattern interface shown in Fig. 3, supporting all the modeling
techniques provided by mainstream feature modeling tools:
• cross-tree constraints are expressed using Boolean operators over
feature actions (and, or, not, xor and implies methods);

1 public class DerivedConfiguration extends BaseConfiguration {
2 public DerivedConfiguration() {
3 super();
4 this.activate(
5 InfoNCELoss.class,
6 InfoNCEDataset.class,
7 InfoNCEModel.class,
8 Reduction2D.class,
9 Tsne.class,
10 InfoNCEMLP.class,
11 InfoNCESupervised.class);
12 }
13 }

Listing 5: Creating a DerivedConfiguration is eased by extend-
ing the BaseConfiguration class.

• alternative (xor) groups are expressed by an @AlternativeGroup

annotation as a feature class modifier;
• or groups are expressed by an @OrGroup annotation as a feature
class modifier;

• mandatory features are expressed by a @Mandatory annotation
as a feature class modifier.

The BaseConfiguration class collects all this information with
regards to each feature class in the feature hierarchy and evaluates
its validity before running the main application. The execution is
preempted if the configuration is invalid with respect to the FM.
The full implementation of the devise pattern and its application is
available at Zenodo:

https://doi.org/10.5281/zenodo.6624848

Summary. In JSON the variability is handled using configuration
files and factories. In VMJ the variability is handled by applying
different decorators over the base component class. In the devise
pattern the variability is handled by declaring variability points
and devising feature actions and managed by a configuration class.

4.3 Comparison: Non-Functional Properties
The semantics of each of the eight considered variants of theMNIST-
encoder do not change depending on the mechanism used to ex-
press the variability: JSON, VMJ or devise pattern. However, the
three approaches are substantially different with regards to their
non-functional properties. In this evaluation, we identified 13 non-
functional properties supported by at least one of the approaches.
Then, we classified each non-functional property into one of four
categories. The feature dependencies category collects all proper-
ties dealing with the expressiveness with regards to the base FM
formalism: alternative groups, or groups, mandatory features and
cross-tree constraints. The implementation extension category col-
lects the properties dealing with the capability of changing the
behavior of an existing class [35]: adding and removing fields and
methods. TheOther FM formalisms category collects properties deal-
ing with the expressiveness with regards to variants of the base FM
formalism: the extended FM formalism and the multi-dimensional
FM. The Quality of life category collects all other properties that
can improve the usability of the approach by providing support
to the verification and maintenance of SPLs: static checking capa-
bilities, configuration inheritance, traceability of feature location,
separation between modeling code and implementation code, and

https://doi.org/10.5281/zenodo.6624848

Features, Believe It or Not! SPLC ’22, September 12–16, 2022, Graz, Austria

Property JSON VMJ Devise

Alternative groups # #
Or groups # #
Mandatory features #

Feature
dependencies

Cross-tree constraints # # H#

Add fields & methods # H#Implementation
extension Remove fields & methods # #

Extended features FM
formalisms Multi-SPL H# H#

Statically checked # H#
Configuration inheritance # H#
Traceability support #
Model and implementation # #

independence
Quality of life

Intercompatibility

Table 1: Support to VM modeling in different approaches.
#: not supported, H#: partially supported, : fully supported.
compatibility with other approaches. This section discusses each
of the 13 properties. Table 1 summarizes this discussion.

Feature Dependencies. In most common variability modeling
frameworks, such as FeatureIDE, the FM formalism can be properly
expressed by enriching features with additional information—i.e.,
if features are either optional or mandatory and if siblings are part
of an alternative group or an or group. JSON cannot express any of
these feature dependencies. VMJ can properly support mandatory
features by combining module requirements and well-designed
factories. However, to the best of our knowledge, it is not possible
to declare different deltas as part of an or group or an alternative
group, because each delta is modeled as a decorator over the same
base component class. In our implementation of the devise pattern,
mandatory features, alternative groups and or groups are expressed
as simple annotations and checked by the configuration abstraction.
Instead, the devise pattern supports cross-tree constraints only
partially, because feature dependencies are expressed at source level
and evaluated when the feature action is instantiated; therefore any
invalidity with regards to cross-tree constraints is captured, but
only at runtime. Statically detecting cross-tree constraints would
require an external control flow analysis tool.

Extension of a Base Implementation. The VMJ approach na-
tively supports addition and removal of both fields and methods.
Addition is simply performed by decorators. Removal of methods
is done by throwing a runtime exception in the overridden method.
Similarly, removal of fields is done by overriding their getters and
setters. Notice that this is possible only if the removed fields are
private and never accessed through reflection. The devise pattern
can only emulate the addition of fields and methods through ag-
gregation and does not support fields and methods removal. JSON
does not support any of the above.

Other FM Formalisms. All three approaches fully or partially
support the variants of the base FM formalism: extended feature
model and multi-product lines. The parameters of extended features
are implemented as fields but are handled differently depending on
the approach: in JSON, the fields are simply added to the factories
and are deserialized when the configuration is loaded; in VMJ,
the parameters are added as fields of the decorator classes and

Modeling effort JSON VMJ Devise

Variability 597 1528 1066
Configuration (1 configuration) 43 112 109
Configuration (8 configurations) 344 896 293

Table 2: Modeling effort in terms of LoC required to turn
a core implementation into a variability-aware one using
different approaches. Also the effort to create the first con-
figuration and all the eight configurations from Fig. 5.

then set by the factory methods called by the main; in the devise
pattern, parameters are static fields of the classes from the feature
hierarchy. Multi-product lines can be partially achieved in JSON by
nesting configurations and in the devise pattern by using multiple
configuration classes in the same product which are combined
through aggregation; only VMJ directly addresses the problem of
multi-product lines and it is designed to fully support the formalism.

Quality of Life. Finally, we consider the aspect of quality of
life for variability modeling. This includes the capability of stati-
cally checking SPLs and their configurations, the support to the
extension of existing configurations, the traceability of feature im-
plementations and the compatibility with other approaches. In the
devise pattern all elements of variability are statically checked:
mandatory features, or and alternative groups; all product variants
coexist and are checked by the compiler, including any return types
of the feature actions. VMJ can only check the validity of manda-
tory features using modules. However, decorators over the base
module are applied using reflection that can fail at runtime if types
mismatch. Similarly, access to removed fields and methods raise
runtime exceptions that can cause failures if not properly handled.
Both the devise pattern and VMJ support the extension of existing
configurations. However, this can be achieved natively with the
devise pattern using the Configuration class, whereas changing
a configuration in VMJ requires refactoring of the existing prod-
uct. Most notably, removing a delta may not be feasible depending
on the ability to remove decorators from a component. Finally,
in both VMJ and the devise pattern the feature traceability issue
is trivialized by mapping features and their implementations to
language-specific abstractions which usages can be easily traced
by any commonly used IDE. However, only the devise pattern can
properly separate the model from its implementation, whereas in
VMJ the deltas are expressed in the decorator classes together with
their implementation. None of the above quality of life improve-
ments are directly supported in JSON. However, it should be noted
that the three approaches to variability modeling are not mutually
incompatible and can be combined at will depending on the sce-
nario to stem and complement their issues. We argue that this point
represents the main advantage of using an in-language approach to
variability modeling over external preprocessors: software artifacts
that can be handled by a specific preprocessor are usually incom-
patible other preprocessors, therefore migration between different
preprocessors can be hard or unfeasible.

4.4 Comparison: Modeling Effort
For each of the three implementations of theMNIST-encoder, we
analyzed the effort—in terms of lines of code (LoC)—required to

SPLC ’22, September 12–16, 2022, Graz, Austria Francesco Bertolotti, Walter Cazzola, and Luca Favalli

model the variability and generate new products. All implementa-
tions depend on a variability-unaware core application of 2236 LoC.
Table 2 reports the results of our analysis.

• Modeling the variability in JSON required the factory classes
discussed earlier, for a total of 597 LoC; then each configuration
can bewritten in JSON for a total of 43 LoC for each configuration.
Deploying the eight configurations from Fig. 5 costs 344 LoC.

• Modeling the variability in VMJ required adding the component
and decorator classes, as well as the same factories used by JSON,
for a total of 1528 LoC; then each configuration can be written
in a Java main class for a total of 112 LoC for each configuration.
Deploying the eight configurations shown in Fig. 5 costs 896 LoC.

• Modeling the variability using the devise pattern required adding
one class for each feature of the FM and a variability-aware
main class, for a total of 1066 LoC; writing the first configuration
requires creating the BaseConfiguration abstract class (86 LoC)
and a concrete configuration subclass (23 LoC), for a total of
109 LoC. Deploying the remaining 7 configurations shown in
Fig. 5 costs 23 additional LoC for each configuration: the total
configuration effort is 293 LoC.

The modeling effort among the three approaches is fairly similar:
JSON has a slight advantage in terms of both variability modeling
and configuration modeling, but it should be noted that the JSON
approach does not express the FM formalism and its constraints.
Conversely, VMJ and the devise pattern face an initial overhead to
introduce the variability with the advantage of expressing feature
constraints. Between the two, each feature written in the devise
pattern takes slightly less LoC than the respective feature in VMJ,
for a total of 1066 LoC vs 1528 LoC. Finally, configuration inheri-
tance in the devise pattern introduces an initial overhead on the
first configuration but then the first configuration can be reused to
model subsequent configurations, reducing the configuration effort
substantially in the long run.

4.5 Threats to Validity
The validity of our results may be threatened by our lack of exper-
tise with the VMJ architectural pattern; our implementation was
not reviewed by the original authors [35] and we may have applied
the pattern incorrectly, which may lead to different results in Ta-
ble 2. To stem this issue we applied the same black-box approach
to the usage of the devise pattern: the implementation of the devise
pattern library and its usage for the development of the MNIST-
encoder were performed separately by different contributors of
this work. To the best of our knowledge the three variability-aware
implementations of the MNIST-encoder should be semantically
equivalent, but this is hard to properly verify due to the random
nature of the learning process in DeepLearning4J2—different runs
may result in different NNs. In this regard, we separated the core
library that implements most of the functionalities used by each
implementation, so that each approach is only concerned with
the variability modeling aspect. Our implementation of the devise
pattern is written in Java and may not be applicable to other lan-
guages. However, the pattern should at least be applicable to any

2https://deeplearning4j.konduit.ai/

object-oriented language, as we tested by developing minimal im-
plementations in Scala and Kotlin3. We do not compare against
composers and preprocessors from the literature—they may provide
better abstractions for variability modeling. As discussed in Sect. 1,
we argue that a direct comparison is not applicable because the two
approaches to variability modeling tackle different problems.

5 Related Work
SPLs are very popular and a variety of approaches to support their
definition have been proposed by researchers [3, 18, 25]. However,
all these approaches are based on preprocessors and, to the best of
our knowledge, there has been little research on design patterns
in the context of modeling and implementation of SPLs besides
our work. The most similar work is the VMJ architectural pattern
based on variability modules and DOP [35] that we discussed in
Sect. 4 and in which each feature is implemented through decora-
tors [13] over the base implementation. Seidl et al. [34] presented a
generative SPL development method using variability-aware ver-
sions of the observer, strategy, template method and composite [13]
patterns and introduced the Family Role Model as a notation to
capture constraints on the variable application. Shatnawi and Cun-
ningham [36] addressed the difficulty of specifying and maintaining
feature models due to the SPLE tools requiring specific knowledge
and skills and they proposed to encode FMs using JSON. Their
contribution share with our the choice of using mainstream tech-
nologies to develop SPLs. On a similar note, Chimalakonda and
Lee [9] discussed the inconsistency and incompatibility of tools and
methods in SPLs and the need for the introduction of standards in
their development. They argue that the diversified range of tools
and methods is one of the primary hindrances to the adoption of
SPLs in the industry, since artifacts developed with one suite are
not compatible nor reusable with other ones.

6 Conclusions
In this paper, we introduced the devise pattern as a novel technique
for modeling and implementing SPLs. It can express all aspects of
the extended FM formalism using tools that are familiar to software
developers and with a syntax similar to the #ifdef macros in C.
Feature actions can also be refactored using dedicated abstractions
to avoid the #ifdef hell problem and code duplication. The devise
pattern prevents the need for feature location techniques because
variability points are explicitly declared in the application and can
be used to complement variability mining techniques. Our con-
tribution is a description of the pattern following Gamma et al’s
template. We demonstrated its applicability on the development of a
variability-awareMNIST-encoder application. Finally, we compared
this application to other two variability-aware alternatives imple-
mented using JSON configurations andVMJ decorators respectively.
Our contribution resulted more expressive and can model all as-
pects of the FM formalism; the validity of the configurations can be
checked statically and deploying multiple configurations is eased.
We believe that it can ease the adoption of SPLs in the industry
and research by reducing the barrier to enter associated with the
complexity of dedicated tools and environments.

3The Scala and Kotlin implementations are not discussed due to space constraints.

https://deeplearning4j.konduit.ai/

Features, Believe It or Not! SPLC ’22, September 12–16, 2022, Graz, Austria

Acknowledgments
This work was partially funded by the MUR project “T-LADIES”
(PRIN 2020TL3X8X).

References
[1] Hadil Abukwaik, Andreas Burger, Berima Kweku Andam, and Thorsten Berger.

2018. Semi-Automated Feature Traceability with Embedded Annotations. In
Proceedings of the 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME’18), Foutse Khomh and David Lo (Eds.). IEEE, Madrid,
Spain, 529–533.

[2] Sven Apel, Christian Kästner, and Christian Lengauer. 2009. Language-
Independent, Automated Software Composition. In Proceedings of the 31st In-
ternational Conference on Software Engineering (ICSE’09). IEEE, Vancouver, BC,
Canada, 221–231.

[3] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. 2004. Scaling Step-Wise
Refinement. IEEE Transactions on Software Engineering 30, 6 (June 2004), 355–371.

[4] Maurice H. ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco Mazzanti,
and Luca Paolini. 2021. Efficient Static Analysis and Verification of Featured
Transition Systems. Empirical Software Engineering 27, 10 (Oct. 2021).

[5] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (Sept. 2010), 615–636.

[6] Gilad Bracha and William Cook. 1990. Mixin-Based Inheritance. In Proceedings
of the European Conference on Object-Oriented Programming on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA/ECOOP’90), Akinori
Yonezawa (Ed.). ACM, Ottawa, Canada, 303–311.

[7] Walter Cazzola and Luca Favalli. 2022. Towards a Recipe for Language Decom-
position: Quality Assessment of Language Product Lines. Empirical Software
Engineering 27 (April 2022). https://doi.org/10.1145/3514232

[8] Ting Chen, SimonKornblith, andMohammedNorouzi. 2020. A Simple Framework
for Contrastive Learning of Visual Representations. In Proceedings of the 37th
International Conference on Machine Learning (ICML’20), Emtiyaz Daumé III and
Po-ling Loh (Eds.). PMLR, Vienna, Austria, 1597–1607.

[9] Sridhar Chimalakonda and Lee Dan Hyung. 2016. On the Evolution of Software
and Systems Product Line Standards. ACM SIGSOFT Software Engineering Notes
41, 3 (May 2016), 27–30.

[10] Daniel Cruz, Eduardo Figueiredo, and Jabier Martinez. 2019. A Literature Review
and Comparison of Three Feature Location Techniques Using ArgoUML-SPL.
In Proceedings of the 13th International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS’19), Guilles Perrouin and Danny Weyns (Eds.).
ACM, Leuven, Belgium, 16:1–16:10.

[11] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denis Poshyvanyk. 2013.
Feature Location in Source Code: A Taxonomy and Survey. Journal of Software:
Evolution and Process 25, 1 (Jan. 2013), 53–95.

[12] David Flanagan. 2005. Java in a Nutshell. O’Reilly Media.
[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
Ma, USA.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[15] Iris Groher and Markus Völter. 2009. Aspect-Oriented Model-Driven Software
Product Line Engineering. Transactions on Aspect-Oriented Software Development
4 (2009), 111–152.

[16] José Miguel Horcas Aguilera, Mónica Pinto, and Lidia Fuentes. 2019. Software
Product Line Engineering: A Practical Experience. In Proceedings of the 23rd
International Systems and Software Product Line Conference (SPLC’19), Laurence
Duchien and Thomas Thüm (Eds.). ACM, Paris, France, 164–176.

[17] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Carnegie Mellon University, Pittsburgh, Penn-
sylvania, USA.

[18] Jonathan Koscielny, Sönke Holthusen, Ina Schaefer, Sandro Schulze, Lorenzo
Bettini, and Damiani Ferruccio. 2014. DeltaJ 1.5: Delta-Oriented Programming
for Java 1.5. In Proceedings of the 2014 International Conference on Principles and
Practices of Programming on the Java platform: Virtual machines, Languages, and
Tools (PPJ’14), Bruce Childers (Ed.). ACM, Cracow, Poland, 63–74.

[19] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
Based Learning Applied to Document Recognition. Proceedings of the IEEE 86, 11
(Nov. 1998), 2278–2324.

[20] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-Based Soft-
ware. In Proceedings of the 32nd International Conference on Software Engineering
(ICSE’10), Jeff Kramer, Judith Bishop, Prem Devanbu, and Sebastian Uchitel (Eds.).
IEEE, Cape Town, South Africa, 105–114.

[21] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data Using
t-SNE. Journal of Machine Learning Research 9, 86 (Nov. 2008), 2579–2605.

[22] Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi, Jairo Aponte,
Eduardo Figueiredo, and Marco Tulio Valente. 2018. Feature Location Benchmark
with ArgoUML SPL. In Proceedings of the 22nd International Systems and Software
Product Line Conference (SPLC’18), Thorsten Berger and Paulo Borba (Eds.). ACM,
Gothenburg, Sweden, 257–263.

[23] Leland McInnes, John Healy, and James Melville. 2018. UMAP: Uniform Man-
ifold Approximation and Projection for Dimension Reduction. arXiv e-prints
arXiv:1802.03426 (Feb. 2018).

[24] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[25] Mira Mezini and Klaus Ostermann. 2004. Variability Management with Feature-
Oriented Programming and Aspects. In Proceedings of the 12th international
Symposium on Foundations of Software Engineering (FSE’04), Matthew B. Dwyer
(Ed.). ACM, New Port Beach, CA, USA, 127–136.

[26] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning
with Contrastive Predictive Coding. arXiv e-prints arXiv:1807.03748 (July 2018),
1–13.

[27] Klaus Pohl, Klaus Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[28] Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects.
In Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP’97) (Lecture Notes in Computer Science 1241), Mehmet Akşit and Satoshi
Matsuoka (Eds.). Springer, Helsinki, Finland, 419–443.

[29] Christian Prehofer. 2001. Feature-Oriented Programming: A New Way of Object
Composition. Concurency and Computation: Practice and Experience 13, 6 (May
2001), 465–501.

[30] Abdul Razzaq, Asanka Wasala, Chris Exton, and Jim Buckley. 2019. The State
of Empirical Evaluation in Static Feature Location. Transaction on Software
Engineering and Methodology 28, 1 (Jan. 2019), 1–58.

[31] Dan Saffer. 2010. Designing for Interaction: Creating Innovative Applications and
Devices. New Riders.

[32] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. 2010. Delta-Oriented Programming of Software Product Lines. In Proceed-
ings of the 14th International Software Product Line Conference (SPLC’10) (Lecture
Notes on Computer Science 6287), Jan Bosch and Jaejoon Lee (Eds.). Springer, Jeju
Island, South Korea, 77–91.

[33] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A
Unified Embedding for Face Recognition and Clustering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), David
Forsyth, Ivan Laptev, Deva Ramanan, and Aude Oliva (Eds.). IEEE, Salt Lake City,
UT, USA, 815–823.

[34] Christoph Seidl, Sven Schuster, and Ina Schaefer. 2017. Generative Software
Product Line Development Using Variability-Aware Design Patterns. Computer
Languages, Systems and Structures 48 (June 2017), 89–111.

[35] Maya Retno Ayu Setyautami and Reiner Hähnle. 2021. An Architectural Pattern
to Realize Multi Software Product Lines in Java. In Proceedings of the 15th Interna-
tional Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS’21), Paul Grünbacher, Christoph Seidl, Deepak Dhungana, and Helena
Łovasz-Bukvova (Eds.). ACM, Krems, Austria, 9:1–9:9.

[36] Hazim Shatnawi and H. Conrad Cunningham. 2021. Encoding Feature Models
Using Mainstream JSON Technologies. In Proceedings of the 2021 ACM Southeast
Conferance (ACM-SE’21), Eric Gamess (Ed.). ACM, USA, 146–153.

[37] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2010. Variability Model of the Linux Kernel. In Proceedings of the
4th International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS’10), David Benavides, Don S. Batory, and Paul Grünbacher (Eds.). ACM,
Linz, Austria, 45–51.

[38] Richard E. Sweet. 1985. The Mesa Programming Environment. ACM Sigplan
Notice 20, 7 (July 1985), 216–229.

[39] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An Extensible Framework for Feature-
Oriented Software Development. Science of Computer Programming 79, 1 (Jan.
2014), 70–85.

[40] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai,
Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszko-
reit, Mario Lucic, and Dosovitskiy. 2021. MLP-Mixer: An all-MLP Architecture
for Vision. In Processing of the 35th Conference on Neural Information Processing
Systems (NeurIPS’21), Marc’Aurelio Ranzato, A. Beygelzimer, Y. Dauphin, P. S.
Lian, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., Virtual,
24261–24272.

https://doi.org/10.1145/3514232
http://www.deeplearningbook.org

	Abstract
	1 Introduction
	2 Background
	2.1 Software Product Lines
	2.2 MNIST-encoder

	3 Devise Pattern
	4 Case Study: MNIST-encoder
	4.1 Application Overview
	4.2 Variability-aware Encoders
	4.3 Comparison: Non-Functional Properties
	4.4 Comparison: Modeling Effort
	4.5 Threats to Validity

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

