
Using Software Product Lines to Create Blockchain Products:
Application to Supply Chain Traceability
Nicolas Six

nicolas.six@univ-paris1.fr
Université Paris 1 Panthéon-Sorbonne

Paris, France

Nicolas Herbaut
nicolas.herbaut@univ-paris1.fr

Université Paris 1 Panthéon-Sorbonne
Paris, France

Roberto Erick Lopez-Herrejon
roberto.lopez@etsmtl.ca

École de Technologie Supérieure
Montreal, Canada

Camille Salinesi
camille.salinesi@univ-paris1.fr

Université Paris 1 Panthéon-Sorbonne
Paris, France

ABSTRACT
In recent years, blockchain has been growing rapidly from a niche
technology to a promising solution for many sectors, due to its
unique properties that empower the design of innovative applica-
tions. Nevertheless, the development of blockchain applications
is still a challenge. Due to the technological novelty, only a few
developers are familiar with blockchain technologies and smart
contracts. Others might face a steep learning curve or difficulties
to reuse existing code to build blockchain applications. This study
proposes a novel approach to tackle these issues, through software
product line engineering. To support the approach, a web platform
to configure and generate a blockchain application for on-chain
traceability is introduced. First, a feature model has been designed
to model core features of the chosen domain, based on the existing
literature. Then, a configurator has been implemented to support
the feature selection phase. Finally, a generator is able to ingest
such configurations to generate on-the-shelf blockchain products.
The generalizability of the contribution is validated by reproduc-
ing on-chain traceability applications proposed in the literature by
using the platform. This work provides the first evidence that the
implementation of blockchain applications using software product
lines enhances the quality of produced applications and reduces
the time to market.

CCS CONCEPTS
• Software and its engineering→ Software product lines; Soft-
ware notations and tools; Patterns; • Computer systems orga-
nization → Peer-to-peer architectures.

KEYWORDS
blockchain, software product line, code generation

1 INTRODUCTION
While blockchain’s popularity growth coupled with its unique capa-
bilities has attracted many companies to start blockchain projects,
the road going from their drive to innovate to the materialization
into production-ready applications remains challenging. Three is-
sues hinder the adoption of blockchain: organizational, legal, and
technological [29]. For the latter, one reason is the difficulties met
by software developers along the software engineering process.
The design of the application can be tedious due to the novelty

of components employed inside, such as smart contracts, or cryp-
tographic wallets. A bad design can lead to higher operation and
maintenance costs at best and vulnerabilities and flaws at worst
(e.g. The DAO attack [25]).

Reusing existing code is one solution to solve this issue (so-called
clone-and-own) and is a common practice in the blockchain field
[8]. Some of these solutions have even been formalized as design
patterns to ease their reuse. For instance, as smart contracts cannot
query data from outside the blockchain, developers have to apply a
design pattern named Oracle pattern [39]. An oracle includes two
components: a smart contract capable of emitting an event when
new data is required, and an off-chain service listening to these
events to inject fresh data when needed.

This reuse of existing code is a first step in addressing the diffi-
culties of implementing a blockchain application, but it could be
further systematized with a software product line (SPL) approach.
Software product line engineering (SPLE) is based on the reuse of
various software artifacts (e.g., requirements, models, code, and
tests) designed for this purpose, to create (software) products that
have common elements [28]. By leveraging an SPL approach, devel-
opers could easily configure and generate blockchain applications
by reusing existing knowledge and artifacts. First, by reusing do-
main requirements to guide the selection of features in a feature
model (introduced in Section 4). Then, by reusing design artifacts,
such as existing design patterns or models. Finally, by reusing con-
figurable code (in this case, templates) that may also implement
the aforementioned design patterns. Instead of using the "clone-
and-own" strategy, configurable code can be tailored to fit into the
project systematically. Yet, the combination of SPL and blockchain
technology is still an unexplored area. This study attempts to high-
light the relevance of coupling SPLs and blockchain by addressing
the following research questions:

• RQ1 - Is SPLE applicable to the blockchain field?
• RQ2 - Do blockchain applications created following a stan-
dard software development engineering differs from appli-
cations derived from a SPL?

To answer these questions, this contribution proposes the cre-
ation from scratch of an SPL for blockchain applications. It results
in a web platform that allows the configuration and the generation
of a blockchain product. The generation is performed by assembling
code templates (e.g., smart contracts), based on the configuration

ar
X

iv
:2

20
8.

01
49

7v
1 

 [
cs

.S
E

] 
 2

 A
ug

 2
02

2



Nicolas Six, Nicolas Herbaut, Roberto Erick Lopez-Herrejon, and Camille Salinesi

given by the user. A feature model guides the configuration process,
by describing existing features and their constraints with others.
This feature model has been devised by extracting features found in
studies of a specific domain, that is, blockchain-based traceability.
We evaluated the capacity to generalize our approach by repro-
ducing existing blockchain-based traceability applications using
exclusively the web platform. Also, the source code of the web
platform and the templates is available on Github1

The paper is organized as follows: Section 2 introduces back-
ground on blockchain technologies, then Section 3 discusses related
works on blockchain code generation and variability. Section 4 and
5 introduce the platform, with describing the construction of the
feature model and its reuse through the web platform. An evalua-
tion is performed in Section 6, and Section 7 discusses those results
along with lessons learned and open research challenges. Finally,
Section 8 concludes the paper.

2 BACKGROUND
In this section, some background on blockchain technologies and
smart contracts is given. A blockchain is a data structure where
each block is linked to the previous one with a cryptographic hash.
Each block also contains a list of transactions that represent user-
to-blockchain interactions. A network of peers, known as nodes, is
in charge of adding new blocks to the blockchain. First-generation
blockchains, such as Bitcoin [27], only had the purpose of cryp-
tocurrency exchange between users. Nevertheless, the release of
Ethereum [38] in 2015 allowed its usage in a wider range of use
cases through Turing-complete smart contracts.

A smart contract (also called DApp) is a computer program that
executes predefined actions when certain conditions within the
system are met. Blockchain smart contracts can be deployed and
interacted with through transactions. The nodes responsible for the
inclusion of new transactions into the blockchain are responsible for
executing the smart contract with provided parameters. Each smart
contract is constituted of two distinct parts: its state, and its logic.
By interacting with smart contract functions using transactions, it
is possible to alter the state of a smart contract.

The usage of smart contracts combined with blockchain allows
the development of applications that differ from conventional soft-
ware engineering. These applications benefit from blockchain de-
centralization, as there is no central actor to control the network.
Smart contract data are also immutable by nature, as it is theoreti-
cally impossible to alter a block after its addition into the network.
Finally, full transparency of the application is possible, allowing
the traceability of its data and usages. Many usages of blockchain
have already been explored in the literature. For instance, Tian et
al. propose to use blockchain for transparent and trustable trace-
ability of supply chain [34]. Decentralized finance (DeFi) leverages
blockchain to exchange value between users without any intermedi-
ary [30]. Blockchain can also be used as a platform for peer-to-peer
systems, such as smart grids [26].

3 RELATEDWORK
Several works in the literature have been proposed to assist practi-
tioners in designing, generating, and deploying blockchain-based
1https://github.com/harmonica-project/BANCO

solutions, starting from low-level code generation tools to Model-
driven Engineering (MDE) and proposals that take blockchain vari-
ability into account.

3.1 Smart Contract Code Generation
The most recent blockchain solution supports general-purpose
programming languages, such as Java/Kotlin for Corda [16], or
Go/Node.js/Java for Hyperledger Fabric [2]. Yet, the vast majority
of the literature presenting blockchain-based solutions still rely on
Ethereum and its specific languages (e.g. Solidity) to demonstrate
the feasibility of their proposal. For this reason, several papers focus
on helping developers write smart contracts with Ethereum.

Wöhrer et al. propose a Contract Modeling Language (CML) to
simplify the writing of smart contracts [37]. CML defines contract-
specific concepts such as Party, Asset, or Event, and decorators to
indicate the usage of blockchain-based design patterns in specific
functions. A parser is also proposed for CML-to-Solidity conversion.
However, this approach requires developers to become proficient
in CML in addition to Solidity, as only learning CML might limit de-
velopers in the development of smart contracts. Other approaches
in the literature focus on reusing existing models to generate code.
For instance, Zupan et al. propose a framework to generate smart
contracts based on Petri nets [40]. The generation of code is made
through their translation engine, which is able to convert Petri
nets into Solidity smart contracts. López-Pintado et al. use Business
Process Model and Notation (BPMN) to generate a suite of Solidity
smart contracts, that are able to run the corresponding business
process on the blockchain with a solution called Caterpilar [22].
Generated smart contracts are used to start business process in-
stances, manage business process activities, and handle the business
process workflow. Choudhury et al. use a different model for smart
contract generation composed of an ontology with classes linked
together, and constraints expressed as a set of rules [9].

3.2 Blockchain and Model-Driven Engineering
Smart contract code generation is useful for use cases where all
the processed data happens to be on the blockchain. However,
these approaches fall short when dealing with the integration of
other domain-specific components into the blockchain solution at
different architectural levels. Several authors propose relying on
MDE to help grasp the complexity of integrating blockchain-based
solutions within information systems.

Lu et al. propose a tool called Lorikeet that extends the BPMN
modeling capabilities already proposed in Caterpillar with the sup-
port of asset registry management [23]. Both business process mod-
eling and asset registry modeling are used to generate smart con-
tracts making the developers more productive, the operators able to
monitor smart contracts execution, and the domain experts capable
of understanding how their ideas are represented in the system. De
Sousa et al. present MDE4BBIS, a framework to incorporate MDE
in the development of Blockchain-based IS [12]. They demonstrate
their solution to support cross-organizational business processes.
Górski et al. propose new UML stereotypes in a UML profile for
distributed ledger deployment and incorporated their solution in a
modeling tool to automate the deployment to Corda [14].

https://github.com/harmonica-project/BANCO


Using SPLs to Create Blockchain Products: Application to Supply Chain Traceability

3.3 Blockchain and SPL
Finally, a few proposals have been made to use SPLs for blockchain.
Kim et al. present a feature model to allow organizations to build
their blockchain platform by selecting its features (e.g., smart con-
tract language, consensus algorithm, etc.) [18]. They present a fea-
ture model for blockchain platforms allowing the selection of the
desired features, without, however, supporting feature binding or
code generation. Liaskos et al. introduce a meta-model for the
derivation of specialized blockchain network simulators, emphasiz-
ing the importance of SPLE and MDE [21]. As we have seen from
this section, even if code generation and MDE have been proposed
to support the creation of blockchain applications, this paper is the
first attempt at building an SPL for blockchain applications.

4 FEATURE MODEL DESIGN
The first step in the SPLE process is the domain analysis [10], where
the result is often a feature model. A feature model (FM) is a widely
adopted notation to describe allowed variability between products
of the same family and feature dependencies [32]. The main ad-
vantage of using a FM is the increased ease of reusing existing
features, with an accurate mapping that can be shared between
stakeholders. In this study, the FM has been created following the
standard feature model notation with FeatureIDE, an open-source
framework [33]. It is composed of different notation elements. It
allows the definition of concrete/abstract features that can be op-
tional or mandatory. It also supports and- and xor- decomposition
of features, to either select multiple subfeatures (but at least one)
among a given set linked to a feature, or select only one subfeature
in the selection. Finally, FMs include constraints between features,
preventing for instance the selection of two conflicting features.
The standard FM has been chosen as it satisfies our needs for the
construction of an on-chain traceability FM.

4.1 Construction Method
The construction of a FM requires extensive knowledge of its as-
sociated domain. In this study, this knowledge has been extracted
from 5 different works that propose on-chain traceability solutions,
called foundational set, shown in Table 1 [3, 6, 13, 19, 36]. From
these papers, the features that were at least present twice (2-of-5)
were included in the FM. In some cases, they have been refined
manually by adding subfeatures (e.g., adding CRUD methods to
manage application participants). This results in a FM, presented
in the following subsections. Note that this FM is not meant to be a
complete representation of existing on-chain traceability features,
but provides its most salient characteristics. A complete analysis
through a systematic literature review is left for future work.

The resulting FM is composed of 53 different features, split across
three different core features. The first core feature, SmartCon-
tracts, gather features included in the smart contracts. The se-
lection of the subfeatures of SmartContracts represents the
configuration of the on-chain part of the application. The second
core feature, named Storage, regroups the features that address
how and where traceability data is stored. Finally, the last core fea-
ture, Frontend, represents the off-chain part of the application.

4.2 Feature Smart Contracts
The first feature of the model is SmartContracts (Figure 1). It
represents the on-chain part of the traceability application, com-
posed of a collection of smart contract instances. This part of the
FM also involves three different constraints, expressed in Table 2.

Figure 1: Focused view of the SmartContract FM

This feature is divided into two subfeatures: the management of
participants, and the traceability methods used. The feature Par-
ticipants distinguish two important aspects: individuals, that
will interact with the traceability smart contracts and are identified
by a public address, and roles, that can be assigned to individuals.
Using roles is optional in the model, as access control can be done
using only public addresses (e.g., only a given set of individuals
can add records in a given record collection). However, they can
be useful to implement Role-based Access Control (i.e., in a supply
chain, identify the suppliers, carriers, and buyers). Besides roles, in-
dividuals can be classified through types: they can either be human,
service, or oracle (from the Oracle pattern [39]).

Three traceability methods can be selected in conjunction or as
standalone in the model. The subfeature StateMachine allows
tracking state changes on-chain. A state machine is defined by a set
of state variables and commands, that transform its state [31]. For
each transition, it is possible to define a set of individuals and roles
that are entitled to trigger the transition between two states. The
current implementation behind the subfeature StateMachine
only allows the creation of basic state machines where each state
only has at most one previous and one following state. Nonetheless,
this aspect will be improved in future works. AssetTracking
consists of storing data on real-world assets. Each asset has a set of
owners and a set of "entitled" individuals and roles that can modify
it. A state machine can be attached to an asset: for instance, a batch
can be stored, shipped, or delivered. Assets can either simply be
stored as a simple data structure, or as tokens (as proposed in [19]).
Storing assets as tokens facilitates their transfer between individu-
als. For instance, a batch can be sent from the supplier to the carrier.
Tokenization is a common blockchain-based design pattern [39],
standardized for many blockchains such as the ERC721 standard for
Ethereum2. Finally, RecordCollections allows bulk storage

2https://eips.ethereum.org/EIPS/eip-721

https://eips.ethereum.org/EIPS/eip-721


Nicolas Six, Nicolas Herbaut, Roberto Erick Lopez-Herrejon, and Camille Salinesi

Table 1: Blockchain traceability research used to design and test the FM

Ref Title Authors Item Part of
[3] Ensuring transparency and traceability of food local products: A blockchain applica-

tion to a Smart Tourism Region.
Baralla et al. Food

Founda-
tional
set

[6] Blockchain-based traceability in Agri-Food supply chain management: A practical
implementation.

Caro et al. Food

[13] A blockchain implementation prototype for the electronic open source traceability of
wood along the whole supply chain.

Figorilli et al. Wood

[19] Blockchain-based application for the traceability of complex assembly structures Kuhn et al. Manufactured
items

[36] Blockchain-based data traceability platform architecture for supply chainmanagement Wei et al. Goods
[15] Blockchain-based solution for the traceability of spare parts in manufacturing Hasan et al. Spare parts Test set[7] Blockchain-based food supply chain traceability: a case study in the dairy sector Casino et al. Food

Table 2: Feature model constraints

Range Operator Target
DeleteIndividualByRole ⇒ Roles

IndividualsSetup ⇐⇒ CreateIndividualAtSetup
RolesSetup ⇐⇒ CreateRoleAtSetup

RecordRegistration ⇐⇒ RecordHistory
RecordHistory ⇐⇒ RecordsCollectionSetup
AssetTracking ⇐⇒ AssetsData
AssetsData ⇐⇒ AssetsSetup
StateMachine ⇐⇒ StateMachineData

StateMachineData ⇐⇒ StateMachineSetup

of records in arrays. These records are stored as described in the
feature Storage. As with others, a collection has a set of "entitled"
individuals and roles that can append new records.

4.3 Feature Storage
The second feature of this model is Storage (Figure 2), divided
in two aspects. For the first aspect, data can be stored in multiple
formats. In some applications, it is a suite of timestamped records.
These records can be either data on a specific event that occurred in
the traceability process or regularly pushed traceability data (e.g.,
real-time temperature).

Figure 2: Focused view of the Storage FM.

The FM further refines the subfeature RecordHistory in
two: StructuredRecords and HashedRecords (not shown
in Figure 2). Where the first one can contain any type of data,

the second one is a timestamped hash of a StructuredRecord.
These records can be used when it is not desirable to store data
on-chain for confidentiality reasons or storage limitations. In this
case, each structured record is stored off-chain in a database, then
hashed and stored on-chain as it. This storage strategy is a common
blockchain design pattern namedOff-chain data storage Pattern [39].
Traceability data can also be stored as objects representing As-
setsData, or as a set of states and the transition history between
themwhen using a StateMachine. These dependencies between
storage type and traceability methods imply a set of constraints
(Table 2). Indeed, the selection of a specific traceability method
should automatically select the related setup form and storage type
features. Finally, a mandatory feature named ContractMeta-
data is in charge of storing the address of every smart contract
deployed for a traceability process. This feature includes the usage
of the Factory Pattern [39], as the factory deploys and keeps track
of existing contract instances.

Regarding the storage emplacement, data can either be stored
on-chain or off-chain. On-chain data is stored in smart contracts fol-
lowing the Data Contract Pattern, that separates data storage from
logic contracts (e.g., controllers) [39]. Events can also be emitted
when something occurs (e.g., storing a new record, firing a transi-
tion). Traceability data can also be stored off-chain, in databases.
The Database feature is mandatory in the FM, as smart contract
metadata must at least be stored off-chain to allow retrieving the
address of existing contracts. However, traceability data can either
be stored off-chain, on-chain, or both.

4.4 Feature Frontend
The last feature is Frontend (Figure 3). The frontend application
can be used to set up the traceability process through the feature
DeploymentView.

Individuals, roles, and traceability assets/states/collections are
not defined statically in the code but dynamically as parameters
passed when instantiating the smart contracts. Thus, the user has
to specify these data to set up the traceability process. One feature
that is BlockchainNetwork, specifies the targeted network: in
this model, either the Ethereum testnet (for testing purposes, free
to use) or mainnet (in production). Users can then interact with
deployed smart contracts through the application to leverage the
aforementioned features.



Using SPLs to Create Blockchain Products: Application to Supply Chain Traceability

Figure 3: Frontend FM.

5 PLATFORM CONSTRUCTION
The FM guides the possible selection of features by the user when
configuring products. However, this task is burdensome when per-
formed manually. In this work, a web platform has been built to
ease the configuration of a product. It notably integrates a con-
figurator and a FM visualizer, that was adapted from Kuiter et al.
work [20]. This platform also integrates a generator based on tem-
plates to output a working product from the user configuration.
The following subsections respectively discuss the construction of
the configurator and the generator.

5.1 Product Configuration
We implemented two different panels on the web platform to ease
the configuration. The first panel displays a tree of features, gen-
erated using as input the on-chain traceability FM. Some of the
features are already pre-selected, as the FM contains mandatory
features. The user can either select the inclusion or the exclusion
of a feature by selecting the corresponding box. Each selection will
trigger the constraint engine, which will automatically include or
exclude features based on the constraints formulated along the FM.

The configuration also has two different states: its validity and its
completeness. The first one indicates if a configuration is valid, i.e.,
if constraints are satisfied. As the configurator prevents selecting
two conflictual features, the user cannot make a selection that
results in an invalid configuration. The second one indicates if the
configuration is complete, i.e., all the features are either selected
or deselected. The user can rely on these indicators to know if the
configuration step is complete or not.

The second panel shows the FM itself, to visualize the on-chain
traceability domain and its available features. The visualizer guides
the user during the configuration by changing the color of selected
or deselected features respectively in green or red. It allows to
quickly notice the impact of selecting one feature on others, and
the features that remain to be selected.

5.2 Product Generation
From a valid and complete product configuration, the web platform
is capable of generating a working product leveraging a genera-
tor based on Template-Based Code Generation (TBCG). TBCG is
a technique from the MDE field that consists of generating code
based on templates, constituted of static text with embedded dy-
namic portions that are evaluated by a template engine to output

functioning code [17]. Such evaluation also requires providing data
to fill the dynamic portions of the text.

In this work, the task of evaluating templates is performed by
Mustache, a logic-less web template system3. Mustache is capable of
evaluating any provided text input that contains a series of tags (i.e.,
dynamic portions), providing it a suitable JSON object to populate
the tags with data. This template system handles features such as
optional code blocks, text completion, and loops.

From the configuration made by the user on the web platform, a
JSON object is generated containing all of its choices, then ingested
by Mustache to process the templates. For the on-chain part, the
smart contract templates are written in Solidity [11], a language
to implement Ethereum smart contracts. The default Mustache
tag has been modified from the default notation ({{ }}) to the block
comment symbols used in Solidity (/* */ ), to allowwritingMustache
instructions in Solidity comments. This allows for developing and
testing smart contract templates without raising any errors caused
by the Mustache notation and preserves productivity-enhancing
features of Integrated Development Environments such as static
code analysis. The approach taken to develop the templates is based
on subtractive code generation: all of the features are included in
the templates, and Mustache removes or modifies them according
to the configuration. For instance, the following code block (Listing
1) will be conditionally rendered in the final product only if the
feature AddRoleDynamically has been selected by the user.
1 /* #AddRoleDynamically */
2 function addRoleToP(address _p, string _rName) public

{
3 [...]
4 }
5 /* /AddRoleDynamically */

Listing 1: Solidity template code sample

Figure 4 describes the chosen architecture for the on-chain part
of the application. At first, the user deploys a single factory contract
(1). A factory contract, designed following the Factory pattern [39],
is in charge of creating other contract instances at instantiation
(e.g., participant contracts) (2). The factory contract also acts as a
contract registry, by storing created contracts’ addresses. Once this
deployment is completed, the user can interact with controllers (3).
Each on-chain feature is implemented as a pair of two contracts: a
data contract in charge of holding data collections and getters/set-
ters to manipulate them, and a controller contract to interact with
data contracts. These controllers also enforce specific conditions
to modify the data (e.g., verifying asset ownership before updating
it). The separation between logic and data is a common blockchain
design pattern that also increases upgradeability: controllers can
be changed without having to migrate the data from one contract
to another [39]. Otherwise, this operation would be very expensive
in terms of storage and costs and tedious to perform.

The different features defined in the FM can be traced to this
architecture. One controller/data smart contract pair is in charge
of participants and roles, whereas three controllers/data contract
smart pairs are responsible for the different traceability methods
defined in the FM. As the user can select one to three different
traceability methods, some of these contracts might not be present

3https://mustache.github.io/

https://mustache.github.io/


Nicolas Six, Nicolas Herbaut, Roberto Erick Lopez-Herrejon, and Camille Salinesi

Participants controller
contract

Participants data
contract

State machine
controller contract

State machine data
contract

Records controller
contract

Records
data contract

Assets controller
contract

Assets data contract

User

Factory contract

(1) Deploy
factory

contract

(2) Create
contracts

(3) Interacts
with

optional 
contracts

mandatory 
contracts

Figure 4: Smart contract architecture

in the final product. However, the participant data/controller smart
contract pair will always be present, although the role features
might not be depending on the configuration.

For the off-chain part, a web application has been developed,
where pages are conditionally included in the final product depend-
ing on the configuration. For instance, if the user does not select
the Roles feature, the web page to configure or allocate roles to
users will not be included in the final product.

6 EVALUATION
The main motivations for using SPLs are the reduction of develop-
ment costs, the reduction of time needed to create an application
and an increased code quality [28]. However, the produced artifacts
using the SPL still have to satisfy the application requirements. In
this section, the requirements satisfaction and the cost of generated
products are evaluated by being compared to reference implemen-
tations from a set of existing studies.

6.1 Protocol
The protocol used in the evaluation of the contribution is the fol-
lowing. First, a sample of two studies has been chosen, called the
Test Set in Table 1. This selection has been performed following two
criteria: (1) the source code is available online and (2) the functional
requirements of the application proposed in the study can be clearly
identified and extracted. Then, for each study, the following steps
have been conducted:

(1) Extract main functional requirements4 formulated by the
authors for their on-chain traceability application.

(2) Configure and generate a product using the web platform
from these requirements.

(3) Assess the satisfaction of formulated requirements towards
the produced blockchain application.

(4) Compare the operating cost of deploying the on-chain part of
the product and the implementation proposed by the authors.

During the second step, the configuration of a product is guided
by the functional requirements. However, some features are left to
be configured at the end, as these features do not have any impact
4For the sake of brevity, we extracted only a subset of functional requirements that
involve writing/modifying data.

on the satisfaction of the requirements. To arbitrate on these fea-
tures, the source code of the reference paper implementation has
been used to extend these requirements. Finally, if some features
remain unselected after the configuration, they are automatically
deselected. Indeed, in the Ethereum ecosystem, implementing ad-
ditional features increases the operational cost of smart contracts.
Only one product is generated for each reference paper, however,
many more products that also suit the specified requirements could
have been generated. Nonetheless, this generated product is the
closest from the reference implementation proposed in each refer-
ence paper.

Regarding the fourth step, the operating cost will be measured
in gas, a unit that represents the cost of performing an atomic
operation on an EVM-compatible5 blockchain. It is computed by
summing all the low-level operations performed during the oper-
ation (so-called opcodes). As the templates of the SPL have been
written using Solidity, this metric is very relevant to assessing and
comparing the performance of blockchain applications. However,
other metrics might be considered for other technologies. This
aspect is discussed in Subsection 7.1.

The evaluation of the proposed SPL will be considered satisfying
if the products generated from the web platform sufficiently match
the requirements formulated by the authors of reproduced appli-
cations, and if the gas cost for the deployment and the execution
of the generated smart contracts is satisfactory compared to the
reference papers implementations. For the latter, the gas cost of
each implementation is shown in Figure 5.

6.2 Spare Part Study Comparison
The first study chosen for the evaluation discusses a blockchain-
based traceability system for spare parts purchasing in manufactur-
ing [15]. The main motivation for this study is the lack of reliable
tracing and tracking of spare parts and their ownership, especially
when they are employed in sensible domains, such as aeronautics.
From this study, a set of 13 functional requirements have been iden-
tified and classified (Table 3). Then, a configuration has been created
based on these requirements, and the corresponding product has
been generated and deployed to assess its performance.

6.2.1 Feature Selection. Two traceability features have been se-
lected. The first feature is AssetTracking, as a representation
of a spare part must be created by an OEM (Original Equipment
Manufacturer) for ownership traceability purposes. As there is no
need for modeling tokenized assets, the StructuredAssets
subfeature is used. Then, the second chosen feature is StateMa-
chine, as it is required to trace the current state of purchasing
new spare parts. Regarding the Participants feature, only in-
dividuals have been included in the configuration. Indeed, there is
no need to create groups of individuals (e.g., roles) in this scenario.
The configuration does not include individual types either, as there
are no oracle or external services specified.

For storage concerns, the spare parts study does not specify any
off-chain storage. However, events are emitted along the process
of refilling spare parts. Thus, the EventsEmission feature has

5The EVM (Ethereum Virtual Machine) is used by nodes to execute smart contracts.



Using SPLs to Create Blockchain Products: Application to Supply Chain Traceability

Table 3: Spare parts study functional requirements (SR: satisfied in reference paper, SP: satisfied in the generated product).

Category ID Requirement SR SP

Purchase
request

R.1.1 The engineer shall be able to submit a purchase request. Yes Yes
R.1.2 The line manager shall be able to approve a purchase request. Yes Yes
R.1.3 The procurement manager shall be able to approve a purchase request if the requested spare part

within the request is missing from the inventory.
Yes Yes

Purchase
quotation

R.1.4 The procurement manager shall be able to submit purchase quotations for a requested spare part. Yes Yes
R.1.5 The engineer shall be able to select a purchase quotation for a requested spare part. Yes Yes
R.1.6 The procurement manager shall be able to confirm the availability of the requested spare part. Yes Partially

Purchase
order

R.1.7 The engineer shall be able to submit a purchase order for a requested spare part. Yes Yes
R.1.8 The line manager shall be able to approve a purchase order. Yes Yes
R.1.9 The purchase manager shall be able to purchase the spare part specified by the purchase order. Yes Yes
R.1.10 The engineer shall be able to request a spare part from the inventory. Yes Yes
R.1.11 The engineer shall be able to submit a purchase order for a requested spare part. Yes Yes

Spare part
transfer

R.1.12 An OEM (Original Equipment Manufacturer) shall be able to create a spare part entry. No Yes
R.1.13 Any participant shall be able to transfer the spare part ownership to another. No Yes

been included. Also, the StateData and the AssetsData stor-
age type subfeatures have also been included, due to the specified
constraints between features.

6.2.2 Requirements Satisfaction. After the generation of a product
based on this configuration, the satisfaction of requirements can
then be assessed (Table 3). In total, 12 of the 13 specific requirements
are marked as satisfied. Indeed, the generated product is able to
support these requirements by leveraging a state machine to track
the state of spare parts refilling, and the ownership of spare parts
through assets. However, one requirement has been marked as
partially filled. The requirement R6 is difficult to satisfy with the
current implementation of the product, as it requires establishing
a communication system between the OEM and the procurement
manager to ask for spare part availability. As we only evaluate the
on-chain part of both applications (i.e., smart contracts), R.1.4 and
R.1.12 have been marked as satisfied. These requirements demand
to store some documents on IPFS (Inter-Planetary File System), a
decentralized storage system [4], then store the document reference
(so-called tag) in the smart contract. Both the spare-part study
implementation and the generated product can do that, however,
they do not propose a frontend feature to store a document on IPFS
for the moment. Note that requirements R.1.12 and R.1.13 have
been marked as unsatisfied in the spare-part study implementation.
Indeed, only one hardcoded spare part has been found in the spare-
part study implementation code, and no function allows the transfer
of a spare part from one participant to another.

6.2.3 Performance Assessment. To evaluate the performance ratio
between the smart contract proposed in the spare-part study and
the generated product, we designed a test scenario for spare part
refilling, from the request to the purchase. This scenario covers the
functional requirements specified in Table 3. Figure 5 compiles the
differences from 1 to 8 executions.

The process to compute these metrics is the following. At first,
the cost of deploying the smart contracts is assessed. This cost is
separated from others as usually it is paid only once by the user,
at deployment. However, this is not the case for the spare-part
study architecture. Then, each function was executed, both in the

Figure 5: Gas cost of executing several times the reference
implementations and generated products.

smart contract proposed in the spare-part study and the generated
product. For the latter, the followed scenario involved the creation
of an on-chain state machine using the same states as the spare-part
study, then transitioning from one state to another providing the
same parameters as the first spare part study.

The cost of deploying the generated product is up to 10 431
963 gas, whereas the smart contract proposed in the spare-part
study costs 1 513 078 gas to be deployed. However, the generated
product allows the creation of a new traceability process using
already deployed contracts, where the smart contract proposed in
the spare-part study has to be redeployed to be used when starting
a new traceability process. Thus, the deployment of smart contracts
is not a one-time cost in the spare-part study and has to be paid
for each traceability process created. Also, the implementation cost
of the generated product includes features for asset management,
specified in the spare-part study. However, these features are miss-
ing from the spare-part study implementation. Regarding the cost
of executing the scenario once the deployment is performed, the
spare-part study cumulates a gas cost of 329 840, where the gen-
erated product adds up to 2 248 064 gas. Note that two features
specified in the requirements are missing from the spare-part study
implementation, thus the cost of the generated product for the first
11 requirements can be adjusted to 1 970 268 gas.

Figure 5 displays a tendency of the execution cost of both spare-
part study implementation and generated products. To extend these



Nicolas Six, Nicolas Herbaut, Roberto Erick Lopez-Herrejon, and Camille Salinesi

results, we also computed the cost of executing the scenario several
times. As for the spare-part study implementation, the cost is ob-
tained for𝑁 execution by summing𝑁 time for both the deployment
and the function execution cost. In the product generated, the cost
is obtained by summing 𝑁 times the function execution cost and
only then adding the deployment cost. Even if these cost models
appear simplistic at first sight, they correctly represent the actual
cost for EVM-based languages such as Solidity, since EVM imposes
a deterministic execution model and fixed code deployment costs.
This difference in calculation method is explained as the generated
product’s smart contracts do not have to be redeployed to create a
new process. More rationale on identified cost differences between
these two implementations is given in Section 7.

6.3 Dairy Products Study Comparison
For the second chosen study, a blockchain-based food supply chain
traceability for dairy products is introduced [7]. As safety is a criti-
cal aspect of food supply chains, blockchain and smart contracts
can be used to build a secure and trustworthy architecture for food
supply chain traceability. In their work, Casino et al. propose such
architecture through a concrete use case for the traceability of dairy
products. Eleven functional requirements have been identified and
classified in this study (Table 4). From these requirements, a config-
uration has been made on the web platform, and the corresponding
product has been generated for comparison.

6.3.1 Feature Selection. This case study both involves the tracking
of asset ownership, records, and state changes in a process. The
three different tracking methods have been selected to address
these requirements: AssetTracking, RecordsHistory, and
StateMachine. Also, as there is no need for modeling tokenized
assets, the StructuredAssets subfeature is used.

For the Participants main feature, the paper describes the
need to define two roles. The first one is the Stakeholders role:
stakeholders are involved in the milk transformation process. The
second one is the Administrators role. Members of this role group
are employees from the dairy company and oversee the blockchain
traceability application. They are able to perform administration
operations, such as adding new stakeholders. The presence of roles
in this application justifies the selection of the Role feature. Ac-
cording to the dairy products study, it is also possible to create
new stakeholders or delete them at any moment. This involves the
following features and their subfeatures: CreateIndividual,
DeleteIndividual, and AddRole. However, Individual-
Types have not been added into the configuration, as there is no
explicitly mentioned oracles or services.

Regarding the Storage feature, the study does not mention
the emission of events. As this is an expensive feature in terms of
gas cost, EventEmission has been excluded from the configu-
ration. The other storage subfeatures, notably the ones related to
the traceability data, were automatically selected.

6.3.2 Requirements Satisfaction. Once the configuration step is
finished, we assessed the satisfaction of the extracted requirements
(Table 4). In total, 8 out of 11 requirements have been marked
as satisfied, 2 requirements marked as partially satisfied, and one
requirement marked as unsatisfied. In our SPL, an asset can only

be weakly attached to a process (here, state machine instances),
using the additional data field to reference the instance. Thus, the
requirements R.2.8 and R.2.9 have also both beenmarked as partially
satisfied. Regarding the requirement R.2.7, it is not satisfied as it
demands a feature to stale an ongoing process: this aspect is not
handled by the generated product. Also, as we only evaluate smart
contracts in the evaluation, the requirement R.2.5 is satisfied. Indeed,
as in the first study, it is possible to attach an IPFS tag to an asset
in the generated product, to link it to a document. However, this
requires uploading the document beforehand, a feature not handled
by the web platform at the moment.

6.3.3 Performance Assessment. The cost of deploying the smart
contracts is assessed, then each function was executed, both in
the smart contract proposed in the first reference paper and the
generated product. Figure 5 shows the resulting costs from 1 to
8 executions. The cost of deploying the generated product is up
to 15 400 174 gas, whereas the smart contract proposed in the
dairy products study costs 6 748 484 gas to be deployed. As in
the first paper, this is not a one-time cost for the dairy products
study implementation: smart contracts have to be redeployed for
each legal agreement signed between stakeholders and the dairy
company in charge of the application. For the functions-related
costs, the dairy products study implementation sums up a gas cost
of 1 044 928, and the generated product a gas cost of 2 004 322. As
in the spare parts study comparison, we also computed the cost
of executing the scenario several times. Like the first paper, the
implementation cost is added only once to the generated product
total gas cost, whereas it is added 𝑁 times for the dairy products
study implementation.

7 DISCUSSION
7.1 Research Questions
In the evaluation section, the relevance of the approach is assessed
by replicating on-chain traceability applications found in other
works using the web platform. The gas cost of generated products
was also assessed by comparing it to the gas cost found for the
reference studies implementations. This section discusses these
results in the light of formulated research questions (Section 1).

7.1.1 RQ1. To address the first research question, we compared
the requirements satisfaction rate of the generated products and
the reference papers code. Indeed, if it is possible to replicate most
of the existing blockchain-based traceability applications by only
using the web platform, the SPL approach is relevant. It has been
shown that the web platform was able to produce blockchain ap-
plications that satisfy most of the requirements expressed by the
studies that were used as reference. Yet, some of the requirements
were not fully satisfied. A reason is the genericity of the products
that can be generated by the web platform. Indeed, the templates
have been designed to be flexible rather than implementing specific
domain-oriented features. An illustration of this flexibility is the
management of roles: rather than using data structures tailored
after the possible roles in a traceability application, a generic data
structure named Role is implemented. Also, domain-specific fea-
tures might be missing from the generated product. This has been
faced during the evaluation (Section 6), where some requirements



Using SPLs to Create Blockchain Products: Application to Supply Chain Traceability

Table 4: Dairy products study functional requirements (SR: satisfied in reference paper, SP: satisfied in generated product).

Category ID Requirement SR SP

Product
management

R.2.1 An administrator or a stakeholder shall be able to create a product. Yes Yes
R.2.2 An administrator shall be able to change the stakeholder of a product. Yes Yes
R.2.3 A stakeholder shall be able to change the stakeholder of a product if owned. Yes Yes
R.2.4 An administrator or a stakeholder shall be able to push a new record for a given product. Yes Yes
R.2.5 An administrator or a stakeholder shall be able to attach a chemical test to a product. Yes Yes

Milk
transformation

process
management

R.2.6 An administrator or a stakeholder shall be able to create a new milk transformation process. Yes Yes
R.2.7 An administrator or a stakeholder shall be able to disable a milk transformation process. Yes No
R.2.8 An administrator shall be able to link a product to a milk transformation process. Yes Partially
R.2.9 A stakeholder shall be able to link a product to a milk transformation process if owned. Yes Partially

Stakeholder
management

R.2.10 An administrator shall be able to disable a stakeholder. Yes Yes
R.2.11 An administrator shall be able to create a new stakeholder. Yes Yes

need to verify a specific condition or execute a defined operation
before changing the traceability process state. Nevertheless, the
design of the SPL facilitates the integration of new domain-oriented
features. In this case, the generated product is solid ground to start
implementing more complex features on it.

7.1.2 RQ2. The second research question consists of evaluating
if differences between applications generated from an SPL or im-
plemented using a traditional software engineering approach exist.
For these applications, the gas cost of deploying and then execut-
ing several times a defined scenario has been measured. Then, the
divergence of design and code between these applications has been
studied to explain the measured gas costs. In the spare parts study,
the generated product was more expensive to deploy and execute
several times, and for the dairy products study, less expensive after
3 executions. This difference is mainly due to two architectural
aspects: the redeployment of smart contracts when willing to re-
launch a new traceability process, and the deployment of numerous
contracts to facilitate contract upgradeability. Indeed, redeploying a
contract requires reallocating a large amount of storage to initialize
state variables and store the source code. The products generated
by the web platform are designed to avoid this issue: a new state
machine (by extension, a traceability process) can be created using
a dedicated function. The separation of concerns between data and
logic also addresses this issue, as a new controller can be deployed
to upgrade some features in generated products rather than rede-
ploying everything. However, this approach has a drawback: the
logic required for the separation of concerns and easier upgradeabil-
ity requires the deployment of larger smart contracts. This results
in a more expensive deployment for generated products.

The implementation of the generated products features and ref-
erence study implementations also differs. For the latter, hardcoded
values were found, notably for the definition of participants and
roles. This leads to decreased gas costs, as there is no additional
feature for participants dynamic management. On the opposite, the
generated products derived from our SPL are flexible and foster
maintainability and upgradeability. The flexibility of this approach
increases the operating costs of the application. Nevertheless, the
high gas costs observed during the evaluation of the SPL might
be reduced in future works by implementing features to reduce

the code and needed storage size, to the detriment of upgradeabil-
ity. Also, the deployment of smart contracts and the execution of
functions is free on private blockchains networks, such as Proof-
of-Authority-based Ethereum networks. In this context, it is not
always necessary to optimize the application for gas-cost reduction.

It should also be noted that although the gas cost is an accurate
metric to describe Ethereum-based smart contract performance,
it is not systematically generalizable to any blockchain technol-
ogy. Indeed, there is no gas cost at all on other non-EVM-based
blockchains, such as Hyperledger Fabric. Other metrics might be
considered to assess the performance of blockchain applications in
future works using these technologies. For instance, the resource
usage of an application (e.g., CPU, RAM, storage size, etc.) could be
monitored. The cost of executing the features themselves could also
vary depending on the blockchain used. As an example, a feature
for data confidentiality requires to implement a function to encrypt
data on Ethereum-based blockchains. On Hyperledger Fabric, this is
unnecessary as it is possible to restrict the read access of a contract
to a defined set of participants, using channels [2].

7.2 Lessons Learned
The main advantage identified during the completion of the study
was the time saved compared to manually developing traceability
applications. Indeed, after the identification of desired requirements
in these works, the configuration and the generation of blockchain
applications can be done in minutes. Also, the quality of generated
products benefits from the integration of good practices, design
patterns, and standards in core assets. However, the main drawback
to this approach is the time overhead needed to set up the SPL
(feature analysis, FM development, templates development). Com-
pared to a traditional software engineering approach, additional
time has been needed to extract the features from the literature,
structure them in a feature model, and implement the templates
taking in mind the possible combinations between the features as
well as the organization between smart contracts (e.g. separating
logic and data). Furthermore, this work does not address the chal-
lenges of SPL evolution, as the web platform was built over a new
feature model. Additional tasks not carried out in this work might
be needed to handle the SPL evolution, as illustrated in [1]. This
approach might not be tailored for a company willing to implement



Nicolas Six, Nicolas Herbaut, Roberto Erick Lopez-Herrejon, and Camille Salinesi

a particular blockchain solution, but might suit IT services compa-
nies that want to provide a wide range of blockchain products with
shared commonalities to their customers.

The templating engine used in this contribution was enough
to illustrate the capability of generating blockchain products from
configurations. However, a domain engineer may feel limited by the
templating engine when implementing many templates for large-
scale SPLs. The implementation of the different features within
templates might also be tedious, as it must take into account all the
possible combinations of features and possible nestings.

Nonetheless, this issue can be mitigated in the blockchain field
by different means. First, smart contracts can be designed in a way
that the resulting architecture is a set of loosely coupled smart
contracts. This approach eases the addition of new features to the
SPL. Such architecture is notably introduced by Tonelli et al. [35],
as they implement a microservices system with blockchain smart
contracts. Consequently, the smart contract architecture proposed
in this work was designed with modularity as a main concern. Sec-
ond, many design patterns, standards, and commonly reused code
blocks already exist. As identified by Chen et al., 26% of Ethereum
smart contracts code block are from reused sources, notably, ERC20-
related contracts [8]. Indeed, ERC206 is a standard for the creation
of fungible tokens on Ethereum. This existing code can be easily
bundled into a feature, reusable in many SPLs.

7.3 Research Challenges
Using SPLs to create blockchain applications raises new research
challenges to address. In this paper, the Solidity language has been
chosen to develop smart contracts. However, a wider range of lan-
guages exists to develop smart contracts for one or other blockchain
technologies (e.g., Solidity, Rust, etc.). Future FMs of blockchain
products could contain a feature for the selection of a specific smart
contract language. This feature could yield SPLs that are able to
produce the same application for multiple blockchain technolo-
gies. It would allow developers to focus on the application to build
rather than the blockchain target behind and its technical speci-
ficities. Still, there is an issue with the implementation of such
features: the programming model might differ between different
blockchains. For instance, Ethereum is account-based, whereas
other blockchains such as Bitcoin, rely on a UXTO model [5]. A
consequence of these different paradigms could be the impossibil-
ity to design some features with specific blockchain technologies.
Therefore, more research is needed to assess the generalisability of
this approach to other domains or other SPL paradigms.

Also, this paper proposes a domain-oriented FM (on-chain trace-
ability), yet another type of FM could be created around existing
blockchain features. The resulting SPL could allow the creation
of generic blockchain applications that provide a solid ground for
developers to start implementing domain features above. The evo-
lution of SPLs, when core assets (e.g., templates, FMs) evolve over
time to address newer requirements or changes in the technology
used [24], is also a challenge for blockchain SPLs. This issue is very
relevant to blockchain: due to the novelty of the field, many exist-
ing standards, patterns, and commonly reused block codes might
change in the future, impacting existing features. As mentioned

6https://ethereum.org/en/developers/docs/standards/tokens/erc-20

in Subsection 7.2, this is an issue that companies might face when
experimenting SPLs for blockchain applications. Future research
on blockchain-based SPLs should consider this issue and include
mechanisms to handle the evolution of blockchain core assets.

8 CONCLUSION
As the development of blockchain applications is still tedious and
error-prone, the usage of an SPL can help in the systematic reuse of
existing code, good practices, and standards (e.g., Ethereum ERCs)
to build robust and efficient applications. This paper denotes the
relevance of leveraging SPLs for the design and implementation of
blockchain-based applications with an exemplified approach. First,
a feature model for on-chain traceability applications is introduced,
built by extracting features from 5 different works in this field. From
this model, a web platform is proposed to allow the configuration
of an on-chain application. The web platform also includes a code
generator that reuses this configuration to feed a templating en-
gine that produces a working blockchain application, without any
coding. By specifying its desired features, the user is capable of
generating an application for on-chain traceability that suits its
needs. Also, the produced code is designed to be highly modular,
thus easing the addition of new features, either through adding
extra features in the feature model or manually. This approach is
validated by using the web platform to recreate existing on-chain
traceability applications proposed in the literature.

Many research challenges still have to be addressed, such as the
management of the SPL evolution considering the rapid pace of
blockchain development. Yet, this paper paves theway for blockchain-
backed solutions created with the SPL method.

OPEN SCIENCE
Following open science principles, the source code associated to
web platform introduced in this paper and the results obtained
in the evaluation of the contribution are available on GitHub7. A
rationale is also given to change the proposed feature model and
its related code templates to other domains and purposes.

ACKNOWLEDGEMENTS
This work is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) grant RGPIN-2017-
05421, and the Mitacs Globalink Research Award grant IT30564.

REFERENCES
[1] Muhammad Abbas, Robbert Jongeling, Claes Lindskog, Eduard Paul Enoiu,

Mehrdad Saadatmand, and Daniel Sundmark. 2020. Product line adoption in
industry: an experience report from the railway domain. In Proceedings of the
24th ACM Conference on Systems and Software Product Line: Volume A-Volume A.
1–11.

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In Proceedings of the thirteenth EuroSys
conference. 1–15.

[3] Gavina Baralla, Andrea Pinna, Roberto Tonelli, Michele Marchesi, and Simona
Ibba. 2021. Ensuring transparency and traceability of food local products: A
blockchain application to a Smart Tourism Region. Concurrency and Computation:
Practice and Experience 33, 1 (2021), e5857.

[4] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561 (2014).

7https://github.com/harmonica-project/BANCO

https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://github.com/harmonica-project/BANCO


Using SPLs to Create Blockchain Products: Application to Supply Chain Traceability

[5] Lars Brünjes andMurdoch J Gabbay. 2020. UTxO-vs account-based smart contract
blockchain programming paradigms. In International Symposium on Leveraging
Applications of Formal Methods. Springer, 73–88.

[6] Miguel Pincheira Caro, Muhammad Salek Ali, Massimo Vecchio, and Raffaele
Giaffreda. 2018. Blockchain-based traceability in Agri-Food supply chain man-
agement: A practical implementation. In 2018 IoT Vertical and Topical Summit on
Agriculture-Tuscany (IOT Tuscany). IEEE, 1–4.

[7] Fran Casino, Venetis Kanakaris, Thomas K Dasaklis, Socrates Moschuris, Spiros
Stachtiaris, Maria Pagoni, and Nikolaos P Rachaniotis. 2021. Blockchain-based
food supply chain traceability: a case study in the dairy sector. International
Journal of Production Research 59, 19 (2021), 5758–5770.

[8] Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan Huang, and Zibin Zheng.
2021. Understanding code reuse in smart contracts. In 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
470–479.

[9] Olivia Choudhury, Nolan Rudolph, Issa Sylla, Noor Fairoza, and Amar Das. 2018.
Auto-generation of smart contracts from domain-specific ontologies and semantic
rules. In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 963–970.

[10] Krzysztof Czarnecki and Eisenecker Ulrich. 2000. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, Reading, MA, USA. 864 pages.

[11] Chris Dannen. 2017. Introducing Ethereum and Solidity. Vol. 1. Springer.
[12] Victor Amaral de Sousa and Corentin Burnay. 2021. MDE4BBIS: A Framework

to Incorporate Model-Driven Engineering in the Development of Blockchain-
Based Information Systems. In 2021 Third International Conference on Blockchain
Computing and Applications (BCCA). IEEE. https://doi.org/10.1109/bcca53669.
2021.9657015

[13] Simone Figorilli, Francesca Antonucci, Corrado Costa, Federico Pallottino, Lu-
ciano Raso, Marco Castiglione, Edoardo Pinci, Davide Del Vecchio, Giacomo
Colle, Andrea Rosario Proto, et al. 2018. A blockchain implementation prototype
for the electronic open source traceability of wood along the whole supply chain.
Sensors 18, 9 (2018), 3133.

[14] Tomasz Gorski and Jakub Bednarski. 2020. Applying Model-Driven Engineering
to Distributed Ledger Deployment. IEEE Access 8 (2020), 118245–118261. https:
//doi.org/10.1109/access.2020.3005519

[15] Haya R. Hasan, Khaled Salah, Raja Jayaraman, Raja Wasim Ahmad, Ibrar Yaqoob,
and Mohammed Omar. 2020. Blockchain-Based Solution for the Traceability
of Spare Parts in Manufacturing. IEEE Access 8 (2020), 100308–100322. https:
//doi.org/10.1109/ACCESS.2020.2998159

[16] Mike Hearn and Richard Gendal Brown. 2016. Corda: A distributed ledger. Corda
Technical White Paper 2016 (2016).

[17] Sven Jörges. 2013. Construction and evolution of code generators: A model-driven
and service-oriented approach. Vol. 7747. Springer. 29–31 pages.

[18] Suntae Kim, Sooyong Park, Young Beom Park, Jeong Ah Kim, Young-Hwa Cho,
Jae-Young Choi, and Chin-Chol Kim. 2018. A Feature based Content Analysis of
Blockchain Platforms. In 2018 Tenth International Conference on Ubiquitous and
Future Networks (ICUFN). IEEE. https://doi.org/10.1109/icufn.2018.8436843

[19] Marlene Kuhn, Felix Funk, Guanlai Zhang, and Jörg Franke. 2021. Blockchain-
based application for the traceability of complex assembly structures. Journal of
Manufacturing Systems 59 (2021), 617–630.

[20] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter Saake.
2018. Getting rid of clone-and-own: moving to a software product line for
temperature monitoring. In Proceedings of the 22nd International Systems and
Software Product Line Conference-Volume 1. 179–189.

[21] Sotirios Liaskos, Tarun Anand, and Nahid Alimohammadi. 2020. Architecting
blockchain network simulators: a model-driven perspective. In 2020 IEEE In-
ternational Conference on Blockchain and Cryptocurrency (ICBC). IEEE. https:
//doi.org/10.1109/icbc48266.2020.9169413

[22] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo Weber,
and Alexander Ponomarev. 2019. Caterpillar: a business process execution engine

on the Ethereum blockchain. Software: Practice and Experience 49, 7 (2019),
1162–1193. https://doi.org/10.1002/spe.2702

[23] Qinghua Lu, An Binh Tran, Ingo Weber, Hugo O'Connor, Paul Rimba, Xi-
wei Xu, Mark Staples, Liming Zhu, and Ross Jeffery. 2020. Integrated model-
driven engineering of blockchain applications for business processes and asset
management. Software: Practice and Experience 51, 5 (nov 2020), 1059–1079.
https://doi.org/10.1002/spe.2931

[24] Maíra Marques, Jocelyn Simmonds, Pedro O Rossel, and María Cecilia Bastarrica.
2019. Software product line evolution: A systematic literature review. Information
and Software Technology 105 (2019), 190–208.

[25] Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista, Elgar Gong,
Gabrielle Fletcher, Ryan Sanayhie, Henry M Kim, and Marek Laskowski. 2019.
Understanding a revolutionary and flawed grand experiment in blockchain: the
DAO attack. Journal of Cases on Information Technology (JCIT) 21, 1 (2019),
19–32.

[26] Muhammad Baqer Mollah, Jun Zhao, Dusit Niyato, Kwok-Yan Lam, Xin Zhang,
Amer MYM Ghias, Leong Hai Koh, and Lei Yang. 2020. Blockchain for future
smart grid: A comprehensive survey. IEEE Internet of Things Journal 8, 1 (2020),
18–43.

[27] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[28] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. 2005. Software product
line engineering: foundations, principles, and techniques. Vol. 1. Springer.

[29] Kyleen W Prewett, Gregory L Prescott, and Kirk Phillips. 2020. Blockchain
adoption is inevitable—Barriers and risks remain. Journal of Corporate accounting
& finance 31, 2 (2020), 21–28.

[30] Fabian Schär. 2021. Decentralized finance: On blockchain-and smart contract-
based financial markets. FRB of St. Louis Review (2021).

[31] Fred B Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR) 22, 4 (1990),
299–319.

[32] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. 2007. Generic semantics of feature diagrams. Computer networks 51,
2 (2007), 456–479.

[33] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. Science of Computer Programming 79 (2014),
70–85.

[34] Feng Tian. 2016. An agri-food supply chain traceability system for China based
on RFID & blockchain technology. In 2016 13th international conference on service
systems and service management (ICSSSM). IEEE, 1–6.

[35] Roberto Tonelli, Maria Ilaria Lunesu, Andrea Pinna, Davide Taibi, and Michele
Marchesi. 2019. Implementing a microservices system with blockchain smart
contracts. In 2019 IEEE International Workshop on Blockchain Oriented Software
Engineering (IWBOSE). IEEE, 22–31.

[36] Yihang Wei. 2020. Blockchain-based Data Traceability Platform Architecture for
Supply Chain Management. In 2020 IEEE 6th Intl Conference on Big Data Security
on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart
Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS).
IEEE, 77–85.

[37] Maximilian Wohrer and Uwe Zdun. 2020. Domain Specific Language for Smart
Contract Development. In 2020 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). IEEE. https://doi.org/10.1109/icbc48266.2020.9169399

[38] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[39] Xiwei Xu, Cesare Pautasso, Liming Zhu, Qinghua Lu, and Ingo Weber. 2018. A
pattern collection for blockchain-based applications. In Proceedings of the 23rd
European Conference on Pattern Languages of Programs. 1–20.

[40] Nejc Zupan, Prabhakaran Kasinathan, Jorge Cuellar, and Markus Sauer. 2020.
Secure smart contract generation based on petri nets. In Blockchain Technology
for Industry 4.0. Springer, 73–98.

https://doi.org/10.1109/bcca53669.2021.9657015
https://doi.org/10.1109/bcca53669.2021.9657015
https://doi.org/10.1109/access.2020.3005519
https://doi.org/10.1109/access.2020.3005519
https://doi.org/10.1109/ACCESS.2020.2998159
https://doi.org/10.1109/ACCESS.2020.2998159
https://doi.org/10.1109/icufn.2018.8436843
https://doi.org/10.1109/icbc48266.2020.9169413
https://doi.org/10.1109/icbc48266.2020.9169413
https://doi.org/10.1002/spe.2702
https://doi.org/10.1002/spe.2931
https://doi.org/10.1109/icbc48266.2020.9169399

	Abstract
	1 Introduction
	2 Background 
	3 Related Work 
	3.1 Smart Contract Code Generation
	3.2 Blockchain and Model-Driven Engineering
	3.3 Blockchain and SPL

	4 Feature Model Design
	4.1 Construction Method
	4.2 Feature Smart Contracts
	4.3 Feature Storage
	4.4 Feature Frontend

	5 Platform Construction
	5.1 Product Configuration
	5.2 Product Generation

	6 Evaluation
	6.1 Protocol
	6.2 Spare Part Study Comparison
	6.3 Dairy Products Study Comparison

	7 Discussion
	7.1 Research Questions
	7.2 Lessons Learned
	7.3 Research Challenges

	8 Conclusion
	References

