
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Quality-aware Analysis and Optimisation of
Virtual Network Functions

Daniel-Jesus Munoz
ITIS Software, Universidad de Málaga,

Andalucía Tech
Málaga, Spain

danimg@lcc.uma.es

Mónica Pinto
ITIS Software, Universidad de Málaga,

Andalucía Tech
Málaga, Spain

pinto@lcc.uma.es

Lidia Fuentes
ITIS Software, Universidad de Málaga,

Andalucía Tech
Málaga, Spain
lff@lcc.uma.es

ABSTRACT
The softwarisation and virtualisation of network functionality is
the last milestone in the networking industry. Software-Defined
Networks (SDN) and Network Function Virtualization (NFV) offer
the possibility of using software to manage computer and mobile
networks and build novel Virtual Network Functions (VNFs) de-
ployed in heterogeneous devices. To reason about the variability of
network functions and especially about the quality of a software
product defined as a set of VNFs instantiated as part of a service
(i.e., Service Function Chaining), a variability model along with a
quality model is required.

However, this domain imposes certain challenges to quality-
aware reasoning of service function chains, such as numerical fea-
tures or configuration-level Quality Attributes (QAs) (e.g., energy
consumption). Incorporating numerical reasoning with quality data
into SPL analyses is challenging and tool support is rare. In this
work, we present 3 groups of operations: model report, aggregate
functions to dynamically convert QAs at the feature-level into the
configuration-level, and quality-aware optimisation. Our objective
is to test the most complete reasoning tools to exploit the extended
variability with quality attributes needed for VNFs.

CCS CONCEPTS
• Software and its engineering → Abstraction, modeling and
modularity; Software product lines; Software performance;
Requirements analysis; • Theory of computation → Automated
reasoning; • Computing methodologies → Representation of
mathematical objects.

KEYWORDS
virtual network function, quality attribute, variability, numerical
feature. reasoning, optimization

ACM Reference Format:
Daniel-Jesus Munoz, Mónica Pinto, and Lidia Fuentes. 2022. Quality-aware
Analysis and Optimisation of Virtual Network Functions. In Proceedings
of 26th ACM International Systems and Software Product Lines Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC’22, 12-16 September, 2022, Graz, Austria
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(SPLC’22). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
The softwarisation and virtualisation of network functionality is
a new trend in Industry 4.0, especially for emergent mobile tech-
nologies such as Beyond 5G networks (B5G). The objective is to
turn networks into general-purpose platforms providing smart con-
nectivity to a plethora of devices. Software-Defined Networking
(SDN) [32] and Network Function Virtualization (NFV) [26], are
widely accepted paradigms to address the new structure of network
architectures. SDN aims to introduce network programming capa-
bility and NFV is an innovative, but complementary paradigm that
promotes the virtualisation technology to disengage network func-
tions from dedicated hardware appliances and transform them into
software components, so-called virtual network functions (VNFs).
Then, user applications demanding a network service turn out to
be a request for running a set of VNFs at the application plane
on servers. These application services (i.e., VNFs) can be tailored
for certain applications family (e.g., virtual reality, video delivery
or distributed games), domains like IoT, or allocated to a class of
customers, or certain mobile network operators.

Next-generation networks such as 6G promise to provide a large
set of agile services, custom-made and providing user-defined Qual-
ity of Service (QoS), such as latency or energy consumption. In-
deed, there is a growing interest in energy-efficient orchestration
of VNFs, being this the main goal of the DAEMON project that
supports this work 1. Therefore, to reason about the variability of
network functions and especially about the quality of a software
product defined as a set of VNFs instantiated as part of a service
(i.e., Service Function Chaining), a variability model along with a
quality model is required. Unfortunately, the heterogeneity in the
network complicates the relationship between variability and qual-
ity of VNFs configurations [42]. In addition, this domain imposes
certain challenges to quality-aware reasoning of service function
chains, such as numerical features or configuration-level Quality
Attributes (QAs) such as energy consumption. Incorporating numer-
ical reasoning with quality data into SPL analyses is challenging
and tool support is rare.

While the majority of works in SDN area focuses mainly on
applying Artificial Intelligence approaches, such as deep learn-
ing, reinforcement learning or control theory to proactively adapt
VNFs chains to network workload and current resources, little
work focus on customizing a set of VNFs considering different
alternatives providing variable QoS [11] [21]. In this work, we

1European H2020 funded project DAEMON: https://h2020daemon.eu/

1

https://orcid.org/0000-0002-1398-9423
https://orcid.org/0000-0002-5376-742X
https://orcid.org/0000-0002-5677-7156
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://h2020daemon.eu/

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’22, 12-16 September, 2022, Graz, Austria Daniel-Jesus Munoz, Mónica Pinto, and Lidia Fuentes

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(Energy, ℤ, Joules)
parent

Hyper V:
-D: M
-U: 6
-S: H

Performance

(Time, ℤ, Seconds)

Docker:
-D: L
-U: 7
-S: H

Vanilla:
-D: H
-U: 2
-S: M

parent

ONAP Istanbul:
-D: H
-U: 7
-S: M

OPNFV Jerma:
-XOR

parent

ℤℤ

Throughput

Main:
-D: L
-U: 8
-S: H

Testnet:
-D: H
-U: 8
-S: L

parent

OpenStack:
-D: M
-U: 7
-S: H

OpenVIM:
-D: M
-U: 8
-S: H

OpenSourceMANO:
-XOR

 is

parent

AWS:
-D: H
-U: 6
-S: H

Azure:
-D: H
-U: 5
-S: H

Firewall Gateway

Monitor

parent

VNFs:
-XOR

Kubernetes:
-XOR

Manager:
-XOR

VNS
(Root)

VARIABILITY AND QUALITY OLOG MODEL

 has
 has

 has has

Relationship
(Arrow)

Relationship
(Arrow)

Legend

Complete
Configurations

Quality
Attributes

ℤ : Integer set

Fs : Features

NF : Numerical F

Aggregation Functions:
-Dependency(D): Maximum
-Usability(U): Mean
-Security(S): Minimum

Fs

Fs

Fs

QAs

Fs

LeafLeaf

InstanceInstance

QAs :

CCs:

QMC

Binary relationship
[CCsid, QAsid]

has
NF

Cross Constraints:
- 4 < ONAP Istanbul > 0
- ONAP Istanbul excludes Kubernetes

Quality
Measured

Configurations
QMC :

Figure 1: An extract of the variability and quality olog of the software product line Virtual Network System(VNS)

apply SPL technologies to the quality-aware reasoning, customiza-
tion and optimization of VNFs chains for specific user services.
Typical quality attributes considered in the DAEMON project are
latency and energy efficiency, so we argue we need to incorporate
feature-level and configuration-level QAs, the two main approaches
for quality reasoning of variability models according to [39, 47].
Feature-level QAs, are modelled as attributes directly linked to single
features, such as response time or any cost associated with each
feature. Second, configuration-level QAs, which cannot be quan-
tified at the feature-level and must be measured and associated
at the configuration-level. Two examples of this are performance
or energy consumption [39, 47]. However, existing works mainly
focus on feature-level QAs using attributes [6, 33, 46, 52] so they
do not apply to energy-efficient SDNs, and only a few of them
deal with both [46, 57]. Further, these works do not fully support
real-world SPLs and advanced reasoning, and neither are easy to
extend. For example, FAMA framework [6] supports extended FMs
with attributes as quality information. However, it cannot support
generating the optimal configuration within a range of values for a
specific quality (e.g., minimise a VNF’s energy consumption above 1
Watt) [51]. With the objective of modelling and reasoning flexibility,
we proposed a Category Theory (CT) [3] framework for SPLs. There,
we unified FMs andQuality Models (QMs) [35] in a single model and
tool. It has the potential to support complex relationships and the
quality-reasoning of numerical FMs. We consider quality-reasoning
to any Automatic Analysis of Feature Models operations with QAs
on their resolution. For instance, request VNFs consuming 1 Watt
and with a cost under 10$.

In this work, we highlight three groups of operations needed
for VNFs’ quality-aware reasoning. The first one is a model report,
which covers type and number features, type and number of con-
straints, size of the configuration and measured spaces, and QAs meta-
data. The second group are the aggregate functions, which define
how to convert QAs in the feature-level into the configuration-
level in the form of addition, product, mean, and approximation

arithmetic equations. The last one is optimisation like maximum,
minimum, (weighted) multi-objective, and range objective. In sec-
tion 3, we analyse the support that current tools provide to those
groups of operations. Additionally, we define and implement in our
CT framework the necessary reasoning algorithms in Section 3. For
the evaluation Section 5, we selected the 4 most complete tools:
CQL IDE [35], ClaferMoo [39], AAFM Python Framework [18], and
SATIBEA [23]. Alongside our new CT reasoning algorithms, we val-
idated those tools for 5 different real-world SPLs with different QAs
and a variety of reasoning operations of the three groups. Finally,
we compare their capabilities and performance when generating
results. Our main contribution is to provide a set of tools to perform
the necessary quality-aware operations for VNFs orchestration.

2 QUALITY-AWARE REASONING OF SDN
VNFs orchestration to compose SFCs has complex requirements for
low latency, energy and security among others [32]. In this section,
we analyse with an SPL perspective the quality-aware reasoning
operations that could guide such orchestration processes. We sum-
marised the operations in 3 groups: model analysis, aggregation of
attributes values, and optimal search. For illustration purposes, we
will provide several examples based on a reduced SPL of our Virtual
Network Orchestration System represented by theVNS model of
Figure 1. To include a single model with variability alongside all
types of QAs, we draw an olog based on our CT framework. In
other words, ologs are the categorical counterpart of completely
extended FMs [48].

VNS is a real-world problem that we are solving in the context
of the DAEMON project and contains different virtual networkman-
agers, containers for virtualisation software (e.g., Kubernetes) and 3
common VNFs, following the proposed standard reference archi-
tecture for the Management And Network Orchestration (MANO)
of VNFs [26]. Figure 1 shows a simplified version that comprises 18
boolean and 1 numerical features, 1 propositional and 1 arithmetic

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Quality-aware Analysis and Optimisation of Virtual Network Functions SPLC’22, 12-16 September, 2022, Graz, Austria

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

constraints, and 3 feature-level and 2 configuration-level QAs: hard-
ware Dependency, Usability, Security, Energy and Time respectively.
The performance and energy metrics are obtained after several runs
with specialised tools like Watts Up? Pro and multimetres, while
the other 3 are consensus from industrial partners.

We can find many reasoning operations in the SPL literature [4,
25].Wemade a selection based onDAEMON requirements; they can
be summarised on an analysis of the virtualised network properties
and an optimal orchestration of VNFs:

• Type and number of the features: A reasoner counts every
feature in the model per type and domain. Classic features
have a boolean domain [27] indicating their existence in
a configuration. Numerical features expand that domain
to integer, real, etc. [36], and identify many states of a fea-
ture (e.g., Throughput). In Figure 1 the features are boxes
identified by F 𝑠 and NF respectively.

• Type and number of model constraints: A reasoner counts ev-
ery model constraint. Classic constraints are propositional
logic comprising connectives (i.e., and, or), negations, impli-
cations and exclusions [27]. Our SPLs also need arithmetic
constraints like inequalities with additions, subtractions,
multiplications, divisions and modules. Figure 1 contains
one of each summarised at the bottom. Non-linear con-
straints are theoretically possible as a combination of them
(e.g., power) [36].

• Number of configurations: A reasoner counts every valid
complete configuration of a model; in other words, it counts
the configuration space that the model represents. While
the fastest reasoners perform it by pure model counting
(e.g., sharpSAT and boolean decision diagrams), the most
common alternative is to construct and enumerate them
(e.g., Clafer) [36]. The configuration space represented by
Figure 1 is 63 configurations.

To this set of operations, DAEMON requires specific ones for
QAs. These are novel, as the integration of variability and quality
models are mainly unexplored as already discussed in Section 1:

• Number of qualitymeasured configurations: A reasoner counts
how many configuration measurements are for all QAs. As
Figure 1 is completely measured for its 5 QAs, its measured
configuration space is 63 * 5 = 315 measurements.

• Number, names, values and domains of feature-level and
configuration-level QAs: A reasoner counts everyQApresent
in the model and details their type, range and domain.
QAs can be grouped into 8 different types, where the most
common ones are performance, usability and security [9].
Configuration-level QAs in a model provide the range of
measurements in the configuration space. However, feature-
level QAs provide a range of values for their respective
feature space, and additionally, aggregate functions. Finally,
any QA must define its domain (i.e., metric). As in Figure 1,
whereVNS comprises 5 QAs, hardware Dependency (D),
Usability (U), and Security (S) at the feature-level, and Time
and Energy at the configuration-level.

2.1 Aggregate Operations
To compute a configuration-level value of a QA based on feature-
level values, we need one aggregate function per QA. Hence, ag-
gregations are functions for approximating the quality of config-
urations [55]. Feature-level attributes have clear advantages like
smaller space (feature versus configuration space) and can be used
in prediction functions, but they come at the cost of accuracy, man-
ageability and maintainability (e.g., energy consumption [37]). This
means that, while in theory any QA can be represented by attributes
and functions, in the real world that niche is shared between the two
spaces. Consequently, feature attributes with aggregate functions
have their place in SPLs.

The most trivial type of aggregation is the addition (e.g., calcu-
lating the final additive cost in $ of individual components [4]),
but we could define any sort of arithmetic function, including non-
linear functions like Gauss approximation or predictive perfor-
mance model functions [50]. For instance, the configuration value
ofVNS dependency is the Maximum value of the individual val-
ues in each feature. On the other hand, Minimum calculates VNS
security value. Finally, features’ usability is calculated as the aggre-
gate Mean. Not every QA is a numerical metric [14]. If we take a
closer look to Figure 1, we can see that dependency and security
range is a non-numerical scale (i.e. Low,Medium andHigh), on the
contrary, usability is numeric (i.e., [0,10]), and hence the aggrega-
tions must consider this in their definitions and implementations.
To close the discussion about VNS QAs, we clarify that time in
seconds and energy in joules are configuration-level QAs, and there-
fore they do not need aggregation functions, as these values were
obtained directly by experimentation. Indeed, time and energy are
two examples of complex QAs, which the most accurate values are
obtained by experimentation because they are difficult to calculate
with aggregation functions.

2.2 Optimal Search Operations
In SPLs, optimisation problems are the ones of finding, from the
quality measured space, the best configurations with certain quality
values [39]. To define and guide the search, we must define objec-
tive functions. The most common objectives in the literature are
maximise and minimise functions. If an objective considers more
than one QA, we are dealing with multi-objective optimisation. In
this type of complex optimisation is common that no QA can be
better off without making another one worse off. Hence, we are in
the field of calculating a set of similar high-quality configurations -
the Pareto frontier.

To prevent confusion, aggregation takes feature-level QAs as
input and transforms them into configuration-level QAs by calculat-
ing each corresponding value with an aggregates function. While
objective function acts more like a configuration space filter where
its inputs and outputs are configuration-level QAs.

However, that is very interesting reasoning-wise, as we can
apply function composition, allowing us to include feature-level
QAs into optimisation problems by pre-aggregating QAs values.
For instance, in Figure 1 dependency aggregation is the maximum,
which provides the dependency of aVNS configuration. But then,
we can apply the same function as an objective (i.e., maximise) to

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SPLC’22, 12-16 September, 2022, Graz, Austria Daniel-Jesus Munoz, Mónica Pinto, and Lidia Fuentes

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

obtain the configurations with the highest dependency. That would
not have been possible without aggregating before optimising.

Considering that composition, we could perform multi-objective
optimisation considering both, feature-level and configuration-level
QAs, in the same function. For example, only after aggregating,
we can define the following objective search forVNS: Maximise
Usability and Security while Minimise Dependency, Time and Energy.

Additionally, we can define and use new quality domains based
on the ones that already exist in the model. We elaborate on this
with an example in VNS. As we know that the energy rate of
a system is its energy consumption divided by its runtime (e.g.,

𝑊𝑎𝑡𝑡𝑠 =
𝐽𝑜𝑢𝑙𝑒𝑠

𝑆𝑒𝑐𝑜𝑛𝑑𝑠
), we could redefine the previous multi-objective

as Maximise Usability and Security while Minimise Dependency and

Energy Rate, with Energy Rate =
𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑖𝑚𝑒
.

3 RELATEDWORK
This section summarises our search for proper reasoning solutions
for virtualised networks, including QoS, SPL tools with support for
quality reasoning, and optimisation algorithms.

3.1 QoS in Software-Defined Networking
QoS is the capability of a network to provide the required ser-
vices for selected network traffic. Quality assurance of network
services is based on measuring QAs, where the key factors are:
path length, throughput, latency/performance, security, hardware
dependency, capacity/usability, and energy [34]. To make things
worst, those QAs are negatively influencing one another. For exam-
ple, a high latency (e.g., due to incorrect ordering of VNFs) leads to
failure of packet handling policies, thus increasing the vulnerabil-
ities, which degrades security as it creates incidents. Similarly to
SPL quality-aware reasoning, there are works in the literature that
define QoS-aware approaches to solve these issues. Likewise, hy-
brid QoS approaches are multi-objective optimisations. Most of the
approaches rely on machine learning, like [43] where the authors
guide the orchestration of VNFs via Deep Reinforcement Learn-
ing. Another example of deep learning from DAEMON partners is
vrAIn [1]. An alternative is heuristic algorithms for near-optimal
orchestration. An example is [19], where heuristic formulas are
based on linear programming. Another alternative is statistic ap-
proaches like [8] where a dynamic statistic multiplexing governs
the network orchestrator. Finally, we find network intelligence as
the new trend [2], where an example from DAEMON partners is
Nuberu [20] based on Bayesian algorithms.

3.2 Tools Supporting Quality-Aware Reasoning
Existing SPL tools [25] provide at least the basic features and con-
straints defined in FODA (Feature-oriented Domain Analysis) [27].
Additionally, each tool supports a different set of extensions, such
as numerical features, attributes, and complex constraints [25], and
a different set of reasoning operations [4, 5]. We are interested in
tools that allow performing some quality reasoning. Regarding the
techniques to generate optimal configurations, we included a subset
of them, since they are mostly based on the same algorithms (e.g.
based on IBEA [22, 23, 44]) and offer similar operations.

Quality Modelling. Typically, an SPL engineer would like to
obtain the configurations with a QA below a threshold (e.g., SFC
configurations that consume less than 3 Joules) or generate the
best-qualified configuration (e.g. trade-off between energy con-
sumption and performance). We have already discussed the differ-
ences between feature-level and configuration-level QAs. These
QAs are classified in [46] as feature-wise and variant-wise respec-
tively. Feature-level QAs are the most common in the literature,
and are supported by ClaferMoo [39], FAMA [6], FeatureIDE [33],
pure::variants 2, SPL Conqueror [46] and STEAM [52]. In QAM-
Tool [57] authors use an alternative representation and extend
the FM by incorporating QA-specific features in a sub-tree. An-
other alternative is to have some external storage to relate features
and quality measurements as usually done in genetic algorithms
(SATIBEA [23], MILPIBEA [44], MO-DAGAME [40]). An exception
is the GIA algorithm [38], defined to be applied to an attributed
FM that also uses the Z3 solver. Only a few approaches, such as
QAMTool [57] and HADAS [37], support QAs at the configuration-
level. SPL Conqueror supports them only partially by calculating
an approximated value for the feature attributes based on the set of
measured configurations during the generation of the product con-
figuration. Our CT framework [35] supports both the feature-level
and configuration-level QAs.

Formalising and Solving Variability Models with Qualities.
SPL tools (labelled with T: in Table 1) that only support feature-level
QAs (ClaferMoo, FAMA, pure::variant) commonly use a declarative
paradigm (e.g. CSP, BDD, SAT) to represent the FM and reason
about its quality. In other cases, an external quality model is de-
fined (e.g., a goal model), and the QAs measurements are usually
linked to the configurations through a database. The FM is still rep-
resented using a declarative paradigm, but an additional structure
is used to store and reason about configuration-level QAs. This
is the case with the SPL Conqueror, HADAS and QAMTool tools.
SPL Conqueror creates a performance model by using sampling
and aggregation techniques and uses this model to approximate
a near-optimal configuration. The HADAS tool uses Clafer plus a
relational database, and the QAMTool uses the NFR framework [56]
to externally represent QAs in a goal model. For algorithms generat-
ing optimum configurations (labelled with A: in Table 1), a genetic
algorithm is usually complemented with a representation of the FM
as genes and with a measurements database with the feature-level
QA measurements. In some cases, a declarative solver is also used,
as in the SATIBEA algorithm, which is defined as a combination
of an SAT solver and the IBEA genetic algorithm and the GIA al-
gorithm that uses a Z3 solver. In [35], authors discuss the benefits
and drawbacks of approaches to defining an external quality model
with two important conclusions: (1) most existing solutions are
not directly compatible with automated quality-reasoning, and (2)
SPL reasoning lacks a “unified” model that appropriately supports
quality metrics. STEAM uses abduction and deduction reasoning.
Our CT framework defines a unified model with native support
for quality reasoning, although the algorithms must be provided at
run-time, as they are not pre-established in CT tools.

2https://www.pure-systems.com/pv-update/additions/doc/latest/pv-user-manual.pdf

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Quality-aware Analysis and Optimisation of Virtual Network Functions SPLC’22, 12-16 September, 2022, Graz, Austria

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Support for reasoning about quality in variability modelling.

T:
Cl
af
er
M
oo

T:
FA

M
A

T:
Fe
at
ur
eI
D
E

T:
pu

re
::v
ar
ia
nt
s

T:
SP

L
Co

nq
ue
ro
r

T:
Q
A
M
To

ol
T:
H
A
D
A
S

T:
ST

EA
M

A
:S
AT

IB
EA

A
:M

IL
PI
BE

A
A
:G
IA

A
:M

O
-D

A
G
A
M
E

CT
fr
am

ew
or
k

Quality Modelling
Feature-level QAs (Quality information is linked to individual features)
Configuration-level QAs (Quality information is linked to valid configurations)

Formalising and Solving Variability Models with Qualities
Declarative Paradigm (CSP solver, BDD solver, SAT solver, ...)
Declarative Paradigm + Additional Assets (SAT solver + database, ...)
Search-Based Software Engineering + FM representation
Alternative Formalisation (Abduction/Deduction reasoning, Category Theory)

Automatic Quality Reasoning
Model Analyses Operations (satisfiability, count features, count configurations, ...) Q

Aggregation Function Operations
* Addition Q Q Q Q Q Q Q Q Q Q Q Q Q

* Product Q Q Q Q Q Q

* Mean Q Q

* Approximation arithmetic equation Q Q

Optimal Search Operations
* Maximum Q Q Q Q Q Q Q Q Q

* Minimum Q Q Q Q Q Q Q Q

* Multiobjective Q Q Q Q Q Q

* Range optimisation Q Q Q

It supports the characteristic. Out of the scope of the approach. T: The approach is a SPL tool.
It partially supports the characteristic. Q Quality-aware version of the operation. A: The approach is an algorithm that takes a FM as input.
It doesn’t support the characteristic.

Automatic Quality Reasoning. All SPL tools (labelled with T:
in Table 1) offer some level of model analysis operations. Clafer-
Moo, FAMA, FeatureIDE, pure::variants and STEAM provide im-
plementations of all or a subset of the operations defined in [5]
(e.g. satisfiability, type and number of features, type and number
of model constraints, number of configurations). Others (e.g. SPL
Conqueror, QAMTool, HADAS) use a third-party variability mod-
elling language that provides such support. Algorithms (labelled
with A: in Table 1) focus on optimisation, and these model-analysis
operations are out of their scope. Regarding quality-aware oper-
ations, current approaches do not natively support the complete
set of quality-aware operations. Native support would mean that
the variability model implements quality-enriched operations as
primitives. Regarding the aggregation function and the optimal
search operations, the support is variable, as shown in Table 1. The
operations supported by ClaferMoo are almost as complete as in
our approach. It supports both addition and product aggregation
functions, and it supports all the optimisation operations under
consideration in this paper. pure::variants also supports addition,
product and mean aggregation functions, although approximation
arithmetic equations are not supported, and thus, reasoning about
the combination of several quality attributes is not possible. Neither
optimal search operations are supported. SPL Conqueror supports

addition, product and some equations and allows optimal search
operations with maximum and ranges. FeatureIDE, QAMTool and
HADAS do not provide any support for optimisation. Regarding the
genetic algorithms, they approximate optimal configurations using
sampling strategies and considering feature-level QAs. They all
support the addition aggregation function and the maximum, mini-
mum and multi-objective search operations. They do not support
range optimisation. Again, our CT framework has the potential to
support all the quality-aware operations discussed in Table 1, but
the reasoning algorithms must be implemented in CT and provided
at run-time.

There are otherworks related to the quality of SPLs [13] [15] [54] [31,
41, 53] [10, 12, 16, 17, 30] that do not focus on the same quality-
reasoning operations as our approach, so they are out of the scope
of this paper.

4 QUALITY-AWARE ALGORITHMS FOR
CATEGORY THEORY FRAMEWORKS

Our objective with this section is to provide a running alternative
to the tools and algorithms of Table 1 covering as many operations
as possible. Consequently, we use our CT framework for SPLs to
define the algorithms necessary for the operations discussed in

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SPLC’22, 12-16 September, 2022, Graz, Austria Daniel-Jesus Munoz, Mónica Pinto, and Lidia Fuentes

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Section 2. Although this part of our work can be applied to any
quality-enriched SPL, we highlight that this work was developed in
the context DAEMON project, and other projects that apply SPLs
to networking, IoT and Edge-computing systems (see the acknowl-
edgement section). The contributions of this work make possible
practical use of SPLs for energy-aware orchestration of VNFs, which
had been impossible or at least much harder with current SPL ap-
proaches with a limited capacity for quality-aware reasoning of
configuration-level quality attributes like energy footprint.

4.1 Foundations of Category Theory
Category Theory (CT) is an algebraic theory of mathematical struc-
tures [3]. It allows to capture and relate similar structures while
abstracting from the individual specifics of their dissimilarities. A
category C represents spaces as a collection of objects with func-
tional relationships via arrows (i.e., morphisms). The key concepts
of CT are:

• Object: a structured class 𝑋 ∈ Ob(C), graphically depicted
as a node •𝑋 .

• Arrow: a structure-preserving function depicted
𝑋• 𝑎−→ 𝑌•.

– Identity: for every 𝑋 ∈ Ob(C), we have the arrow
𝑋• id−−→ 𝑋• .

– Composition: if
𝑋• 𝑎1−−→ 𝑌• and

𝑌• 𝑎2−−→ 𝑍•, then also
𝑋• 𝑎2 ◦ 𝑎1−−−−−−→ 𝑍•. Composition is associative, i.e.,
𝑎1 ◦ (𝑎2 ◦ 𝑎3) = (𝑎1 ◦ 𝑎2) ◦ 𝑎3.

• Category: Ob(C) ∪ Arr(C) in a labelled directed graph.
• Functor: a process F between categories 𝐶 and 𝐷 depicted

𝐶• 𝐹−→ 𝐷• , which preserves identity and function composition.
Also, we shall introduce algebraic data integration CT concepts [7]:

• Path: a finite sequence of composed arrows:
𝑋0• 𝑎1−−→ 𝑋1• · · ·𝑋𝑛−1• 𝑎𝑛−−→ 𝑋𝑛• .

• Generalised Element: a morphism
𝑈• elem−−−−→ 𝑋• , where 𝑈 is

a select “unit” object.
• Instance: a set-valued functor assigning values to elements.

4.2 Unifying Variability and Quality in a
Categorical Model

In [35], we detail a CT framework that unifies numerical VMs with
QAs as a category where features and QAs are objects, and data
types, hierarchical relationships, and quality and feature constraints
are arrows. We use this model to represent SPLs as categories. The
transformation is graphically represented in Figure 2, being the
basis for the algorithms for quality-aware operations that we detail
in the next subsection.

Concretely, our framework comprises 3 data-type objects (i.e.,
Boolean, Integer, and String for characters sets) and 5 structured
objects. Figure 2 helps an tiny example based on the SPL represented
in Figure 1 model.

The most important one is the Schema, which defines the uni-
fied variability and quality model structure: elements, properties,
hierarchical relationships and structural relationships. We can think
about them as arrays of variables without set values. Naturally, Fea-
tures represents any feature domain of FMs, Feature Level Qualities
represents extended FMs attributes, and Qualities the items present

in quality models (i.e., similar to features in an FM). The rest of
the elements are sets of identifiers or a set of related identifiers
(Binary Relationship). Those 3 last elements are necessary to relate
configuration-level QAs to the respective set of features forming a
specific Configuration.

The rest are Instances of certainDomains of the elements of the
schema. In other words, they populate the schema. For simplicity,
the schema would be blank FM, and the instances are the names of
the features, cardinalities, etc.

4.3 Quality Operations in Category Theory
Considering that we can use the variability and quality modelling
framework within CT and that we analysed the quality-aware rea-
soning operations, we need to find a flexible CT reasoner that
supports the implementation. Consequently, we choose the CT
state-of-the-art tool: the Categorical Query Language (CQL) IDE 3.
CQL is a functorial language used for functional programming
based on lambda calculus. While for low-level details we kindly
point the readers to [29], we present now an overview of the CQL
main assets:

• Basic data types and functions are defined as global objects
and arrows (e.g., B for boolean domain).

• A structured category is a schema of objects and different
types of arrows (e.g., Figure 1).

• A functor is a query over an input schema to an output
schema. For composed reasoning, the input schema of an
intermediate functor must be the same as the output schema
of the previous functor.

• A literal instance generates variables and assigns the values.
• The reasoning is an eval instance of a schema literal.

Having all the necessary background, we can now implement cate-
gorical reasoning in CQL IDE. We repeat the same sequence, hence
starting with model analysis operations.

In Algorithm 1wemerged all the self-analysis operations in a sin-
gle operation called Model Report. Its inputs are certain categorical
objects of the model: the features (i.e., F s), the complete configura-
tions identifier (i.e., CCs), the QAs identifier (i.e., QAs) and their
relationships in the Quality Measured Configurations (QMC). Its
outputs are calculated with a composition of 9 lambda functions,
which sequentially are:

(1) Number of boolean and numerical features given by instan-
tiated elements in F s.

(2) Number of first-order logic and arithmetic constraints given
by instantiated elements in F s without/with inequalities
or numerical calculations respectively.

(3) The size of the conf iguration and themeasured spaces given
by the valid identifiers in CCs and their presence in QMC
respectively. In other words, howmany configurations have
been measured for each QA.

(4) Themeta-data of feature and configuration-level QAs, which
are extracted from F s and QAs objects respectively.

While we defined model report as operations directly performed
on the model (i.e., on the feature space), some reasoners perform
them on the configuration space, once configurations are generated.

3CQL IDE main website: https://www.categoricaldata.net/

6

https://www.categoricaldata.net/

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Quality-aware Analysis and Optimisation of Virtual Network Functions SPLC’22, 12-16 September, 2022, Graz, Austria

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Schema (defines SPL structure)

Features
Feature Level

Qualities
has

Configuration

Set of IDs

IDs Binary
Relationship

Has

Configuration
Level Qualities

Has

QualitiesSet of IDs

Schema (defines SPL structure)

Features
Feature Level

Qualities
has

Configuration

Set of IDs

IDs Binary
Relationship

Has

Configuration
Level Qualities

Has

QualitiesSet of IDsVNS Quality-Aware Space

VNS Configuration Space

Extended Feature Model

U = 6 U = 2
U = 2

VNF

Kubernetes
Manager

Main
Testnet

Firewall
Gateway

Quality
Model

Performance

Energy:
Integer:
Joules

VNS Quality-Aware Space

VNS Configuration Space

Extended Feature Model

U = 6 U = 2
U = 2

VNF

Kubernetes
Manager

Main
Testnet

Firewall
Gateway

Quality
Model

Performance

Energy:
Integer:
Joules

Domains

String
Domain

Integer
Domain

Data
Manipulation

Functions

Cross-tree
Constraints

Boolean
Domain

Domains

String
Domain

Integer
Domain

Data
Manipulation

Functions

Cross-tree
Constraints

Boolean
DomainHas

Feature Instances

Manager

Main ...

Gateway

Feature Instances

Manager

Main ...

Gateway

Qualities Instances

Energy Joules

1 2 n...

Qualities Instances

Energy Joules

1 2 n...

Attribute Instances

U 6 2

Attribute Instances

U 6 2

Has

Has

Has

Has

Has

Same Space

Same Space

Legend

Categorical Object

Feature Feature Level Quality

UsabilityU

Quality AttributeQA

Relationship
(Arrow)

Relationship
(Arrow)

Figure 2: Unification of Extended Variability Models and Quality Models into a Category

While the feature space is more complex, is also more scalable.
The flexibility to functionally configure a reasoner is one of the
main advantages of CT tools, and that alongside compositions is a
declared need for advanced reasoning of SPLs [52].

Algorithm 1: Categorical Model Report
Input: Populated F 𝑠 , CC𝑠 , QMC, QA𝑠

(bool, num, logic, arithm, confs, measured[]) = [0, . . ., 0];
bool = Add(𝜆(𝑥 ∈ F 𝑠 | !𝑥 .𝑛𝑢𝑚) : 1);
num = Add(𝜆(𝑥 ∈ F 𝑠 | 𝑥 .𝑛𝑢𝑚) : 1);
logic = Add(𝜆(𝑥 ∈ F 𝑠 .𝑤ℎ𝑒𝑟𝑒 | 𝑥 .𝑜𝑝𝑠 ∉ [=, +, ...,%]) : 1);
arithm = Add(𝜆(𝑥 ∈ F 𝑠 .𝑤ℎ𝑒𝑟𝑒 | 𝑥 .𝑜𝑝𝑠 ∈ [=, +, ...,%]) : 1);
confs = Add(𝜆(CC𝑠 .𝑖𝑑) : 1);
measured[QA]=Add(𝜆(CC.𝑓 .𝑎𝑡𝑡 ∨ CC.𝑖𝑑 ∈ QMC) : 1);
(FQAs, CCQAs) = [’ ’, ’ ’];
FQAs = ConcatIfNew(𝜆(𝑥 ∈ F 𝑠 .𝑎𝑡𝑡) :
[𝑥 .𝑛𝑎𝑚𝑒, 𝑥 .𝑣𝑎𝑙, 𝑥 .𝑑𝑜𝑚, 𝑥 .𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛]);

CCQAs =
ConcatIfNew(𝜆(𝑥 ∈ 𝑄𝐴𝑠) : [𝑥 .𝑛𝑎𝑚𝑒, 𝑥 .𝑣𝑎𝑙, 𝑥 .𝑑𝑜𝑚]);
Result: bool, num, logic, arithm, confs, measured, FQAS, CCQAs

Next in line is Algorithm 2wherewe approximate the configuration-
level value of each feature-level QA based on its specific aggregation
function. The method consists of going over every configuration
identifier in CCs, and retrieving their respective features, attributes
and functions (originally located in F s). That retrieved information
is the input of a lambda function, which simply runs aggregate
functions with their related attributes (i.e., 𝑓 (𝑥)).

Finally, we present Algorithm 3 where we search for configura-
tions with desired QAs. To cover all types of QAs in this algorithm,
we pre-composed Algorithm 2, whose results are temporarily stored
in the extended QMC (i.e., eQMC) structured object. Provided that,
the algorithm goes through every configuration identifier where
the lambda function filters them based on the provided objective
function. For clarity reasons we simplified the resulting data as only
generating identifiers, but if we needed feature names and final QA
values, we would need to provide and access F 𝑠 and QA𝑠 objects
within the algorithm.

Algorithm 2: Categorical Aggregation of Attributes
Input: Populated CC𝑠
AggregatedQAs = [][];
forall 𝑐𝑐 ∈ CC𝑠 do

Func = [];
Func = Push(𝜆(𝑥 ∈ 𝑐𝑐.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒.𝑎𝑡𝑡) : 𝑥 .𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛);
AggregatedQAs[cc.id] = Push(
𝜆(𝑥 ∈ 𝑐𝑐.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒.𝑎𝑡𝑡, 𝑓 ∈ 𝐹𝑢𝑛𝑐 | 𝑓 = 𝑥 .𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛) : 𝑓 (𝑥));

end
Result: AggregatedQAs

Algorithm 3: Categorical Quality Optimisation
Input: Populated QMC, CC𝑠 , Objectives
eQMC = [QMC.cc, (QMC.qa ∪ Aggregation(CCs))];
Result: (𝜆𝑥 ∈ 𝑒𝑄𝑀𝐶 | 𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 (𝑥 .𝑞𝑎𝑠) :

[𝑥 .𝑐𝑐.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑥 .𝑞𝑎𝑠])

5 EMPIRICAL VALIDATION
In this section, we are going to test Section 4 algorithms, compar-
ing their capabilities and reasoning times with the most complete
solvers, in the context of VNFs orchestration and configuration.
The concrete research questions are:

RQ 1: Which is the level of empirical support that the state-of-
the-art currently has to represent and provide reasoning to quality-
measured VNFs?

RQ2: Is our CT framework for SPLs a feasible alternative to analyse
and optimise VNFs orchestration?

RQ 3: How do the alternative tools scale for the complete set of
quality-aware reasoning operations present in SDNs systems?

5.1 Methodology and Setup
Table 2 shows the 5 SPLs we have used for validation. They are
all real-world SPLs with different properties (e.g., size) as a means
to reinforce the results and conclusions. As far as we know, our
approach is the only work that applies SPLs to SDN/NFV domain, so
we had to usemodels from other domains as validation objects. Also,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SPLC’22, 12-16 September, 2022, Graz, Austria Daniel-Jesus Munoz, Mónica Pinto, and Lidia Fuentes

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Variability details generated with reporting operations in CQL IDE of the SPLs with quality attributes analysed

SPL Description Features Constraints Configurations Quality Attributes

P𝑖𝑧𝑧𝑎

Italian
vendor
machine
[28]

• Boolean: 12
• Numerical: 1 Empty

• Total SAT: 42
• Measured: 84

• Feature level:
(1) Cost ∈ (5,25) $:

Function: Addition
• Configuration level:

(2) Time ∈ (1,103) 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

T𝑟𝑢𝑐𝑘
Truck

factory [45] • Boolean: 33 • Logic: 10 • Total SAT: 234
• Measured: 234

• Feature level:
(1) Size ∈ [0,10)𝑚𝑒𝑡𝑟𝑒𝑠2:

Function: Product

JH𝑖𝑝𝑠𝑡𝑒𝑟

Software
generator

[24]
• Boolean: 45 • Logic: 13 • Total SAT: 26,256

• Measured: 105,024

• Feature level:
(1) Usability ∈ (0, 10):
Function: Addition

(2) Battery ∈ (0, 20):
Function: Addition

(3) Footprint ∈ (0, 10):
Function: Addition

• Configuration level:
(4) Compileable ∈ [true, false]

(1) VNS
and

(2) 𝐹𝑢𝑙𝑙VNS

Virtual
Network
System

Figure 1 version:
• Boolean: 18
• Numerical: 1

Full version:
• Boolean: 40
• Numerical: 3

Figure 1 version:
• Logic: 1
• Arithmetic: 1

Full version:
• Logic: 63
• Arithmetic: 4

Figure 1 version:
• Total SAT: 63
• Measured: 315

Full version:
• Total SAT: 2,130,000
• Measured: 10,650,000

• Feature level:
(1) Dependency ∈ [L, M, H]:
Function: Maximum

(2) Usability ∈ (1, 10):
Function: Mean

(3) Security ∈ [L, M, H]:
Function: Minimum

• Configuration level:
(4) Time ∈ (1,103) 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
(5) Energy ∈ (1,103) 𝑗𝑜𝑢𝑙𝑒𝑠

quality-measured virtualised networks use cases are not available
in the literature, so 3 of the SPLs are from different domains, but,
they are third-party use cases, well-known in the literature, and
share certain quality-reasoning requirements like Cost in $ and
Battery minimisation.

We present them ordered by the size of their configuration
space. The smallest is P𝑖𝑧𝑧𝑎, taken from [28] and including the
QAs additive Cost in $ at the feature-level and Time in seconds
at the configuration-level. With 6 times its configurations space,
we have T𝑟𝑢𝑐𝑘 , which we extracted from [45] and extended with
random values of amultiplicative Size in squaredmetres as a feature-
level QA. A larger case with a measured space 449 times bigger is
JH𝑖𝑝𝑠𝑡𝑒𝑟 , which already included the QAs: Usability, Battery, and
memory Footprint as additive QAs at the feature-level, and textit-
Compileable, a binary QA (i.e., yes or no) at the configuration-level.
The largest model is the complete version of the one represented in
Figure 1, the DAEMON’s VNS SPL. For completeness, we also in-
cluded the reduced version represented in Figure 1. We distinguish
them as 𝐹𝑢𝑙𝑙VNS andVNS respectively. 𝐹𝑢𝑙𝑙VNS comprises
40 boolean and 3 numerical features, 64 logic and 4 arithmetic con-
straints, and space of 2+ million configurations. Its QAs are the
same as in Figure 1; consequently, its QAs space is of 10+ million
configurations measurements.

Considering our analysis summarised in Table 1, we selected
the most complete open-source tools for each group of reasoning

operations: (1) ClaferMoo [39] due to its support of feature-level
QAs and certain flexibility to define functions; (2) AAFM Python
framework for its speed at the cost of not supporting QAs, (3) SATI-
BEA [23] as the representative of IBEA based genetic algorithm for
optimisation due to its documentation and user support, and finally
(4) CQL IDE, the state-of-the-art CT tool. The different models and
data-sets are available at:

https://github.com/danieljmg/SPLC22

We ran the presented SPLs and tools on a desktop computer
comprising an Intel(R) Core i7-4790 CPU@3.60 GHz processor with
16 GB of memory RAM and an SSD running an up-to-dateWindows
10 H22H1 X86_64 with the latest supported versions of the tools
and shared libraries (e.g., Java JDK 18.0.2). Besides double-checking
the internal statistics of each tool, we measured reasoning time
with the Windows PowerShellMeasure-Command {. . .}. Initial JAVA
virtual machine overhead was purposely removed, and it is not
affecting the time results.

5.2 Self-analysis and optimisation operations
results

In Table 3 we present the first set of results in the form of reason-
ing time in seconds; as SATIBEA does not currently support these
operations, it is not present in this comparison. We grouped them
into 4 operations which should return similar information to what

8

https://github.com/danieljmg/SPLC22

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Quality-aware Analysis and Optimisation of Virtual Network Functions SPLC’22, 12-16 September, 2022, Graz, Austria

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 3: Averaged performance in seconds of reporting operations in state-of-the-art reasoners for Table 2 models
We tagged the performance with asterisks if the reasoner ignored QAs at the configuration-level

Reasoner: ClaferMoo AAFM Python Framework CQL IDE
SPLs: P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟

Features 0.2 s 0.2|2.7 s 0.2 s 0.3 s 0.02 s 0.02|0.39 s 0.03 s 0.05 s 0.04 s 0.05|0.55 s 0.06 s 0.07 s
Constraints 0.2 s 0.2|2.73 s 0.2 s 0.3 s 0.02 s 0.02|0.39 s 0.03 s 0.05 s 0.04 s 0.05|0.55 s 0.06 s 0.07 s
Configurations *0.5 s *1.05|213 s *1.4 s *2.7 s *0.15 s *0.2|60 s *0.24 s *5.03 s 0.17 s 0.19|156.4 s 0.22 s 1.98 s
QAs *0.9 s *1.7|4.3 s *2.1 s *2.9 s Unsupported Unsupported Unsupported Unsupported 0.06 s 0.11|3.4 s 0.14 s 0.19 s

Mean: *0.45 s *0.79|55.6 s *0.98 s *1.55 s *0.06 s *0.09|20.2 s *0.1 s *1.71 s 0.08 s 0.1|40.3 s 0.12 s 0.58 s

has been presented in Table 2. While AAFM Python framework rea-
soning is fast, it did not support QAs. Likewise, ClaferMoo did not
support QAs at the configuration-level. When an operation is com-
pletely unsupported, we show in the table Unsupported. However,
if the support is partial, they are tagged with an asterisk. In Table 4
we present the second set of results that involves the aggregate
reasoning. Each column is a variation of the aggregate reasoning,
and they are ordered from the simplest to the most complex. The
first row is a direct aggregation without constraints of all the QAs
of that SPL. The Constrained row implies reasoning by randomly
excluding one feature. Similarly, the Range row limits the values of
a (feature-level) QA. Note that we are not constraining based on the
aggregated total value but the individual feature-level QA value. In
these results, an asterisk means that the reasoner did not support
the specific aggregate function. As detailed in Table 1 of the related
work in Section 3, ClaferMoo only supports addition and product
in Z domain, while SATIBEA just addition. Hence, they did not
support anyVNS aggregate function (i.e., maximum, mean and
minimum). In those cases, we swap the domains to Z Addition to
allow time comparisons. The last set of results is in Table 5, where
we perform an optimisation operation with different types of ob-
jectives. We first compose the aggregations for the feature-level
QAs. In the first row, weMin/Maximise individual QAs and average
the runtime results. In the second row, we defined the following
multi-objectives:

• P𝑖𝑧𝑧𝑎: Minimise Time and total Cost.
• T𝑟𝑢𝑐𝑘 : Minimise total Size1 * Size2.
• JH𝑖𝑝𝑠𝑡𝑒𝑟 : Maximise compileable and total Usability ∧

Minimise total Battery and Footprint.
• VNSs: Maximise total Usability and Security ∧ Minimise

total Dependency, Time and Energy.
As we can see, in the case of T𝑟𝑢𝑐𝑘 we duplicated its single QA Size
into Size1 and Size2 in order to be able to perform a multi-objective
test. The weighted objectives for the third row were similar but in-
cluded random weights for the different QAs (e.g., MinimiseVNS
0.3*Time, 0.7*Energy). Finally, for the last row we defined the fol-
lowing objectives:

• P𝑖𝑧𝑧𝑎: Minimise total Cost per second.
• T𝑟𝑢𝑐𝑘 : Minimise Size1 * Size2.
• JH𝑖𝑝𝑠𝑡𝑒𝑟 : Minimise total Battery + total Footprint.
• VNSs: Minimise energy rate.

In this case, an asterisk indicates that the reasoner did not sup-
port modelling configuration-level QAs. In that case, we provided
random values to allow some level of comparison. Nevertheless,
ClaferMoo and SATIBEA do not currently support weighted and

new domain objectives. SATIBEA sampling parameters are config-
ured as suggested in the documentation: 20000 evolutions [23].

5.3 Discussion and Scalability Results
Which is the level of empirical support that the state-of-the-art cur-
rently has to represent and provide reasoning to quality-measured
VNFs

In this subsection we answer the RQs by considering the results
of Tables 1 to 5. The goal of RQ1 is to assess if we can successfully
apply SPL tools to reason about quality-aware orchestration of
VNFs, and in general to the SDN/NFV domain [21]. Only those
SPLs tools that include numerical features, complex constraints and
support reasoning and optimization of configuration-level QA apply
to this domain. While in the current situation we find academic
tools for very specific and basic reasoning, in practice the network
industry will discard them as they are not enough by themselves.
Additionally, those tools are not directly configurable or extendable,
and there is where CQL IDE with our CT operations highlights.
The RQ1 answer is that the best current tools could be viable
if they are extended like we are doing with CQL IDE, that is,
they provide a unified solution beyond boolean features, logic
constraints, additive attributes, and max/minimise optimisation.

The RQ2 answer is that our algorithms feasibly extend
CQL IDE for all the quality-aware operations, and hence it
provides support for managing QoS in VNFs orchestration.
Although, we should mention that CT knowledge is not very com-
mon in the industry, which is required to properly adjust such
flexible tools.

Regarding run-times, if we are only analysing SDNs variability,
AAFM Python Framework is the fastest with a worst performance
of 60 seconds. Similarly, for simple aggregation and optimisation
functions, SATIBEA is the fastest. This was expected, as it always
works with the same number of samples, and increasing them is
not translated to higher accuracy as is stated in the literature [23].
ClaferMoo tends to be the slowest, sometimes due to how their
reasoning algorithms work, like counting by enumeration [36].
However, it covers more operations than the average. Nevertheless,
we consider CQL IDE the proper alternative for the DAEMON
project, as it is among the fastest ones while supporting all sorts
of quality-aware reasoning. In summary, and answering RQ3, all
the solutions scale linearly, but without being always the fastest,
CQL IDE shines for its large application domain.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

SPLC’22, 12-16 September, 2022, Graz, Austria Daniel-Jesus Munoz, Mónica Pinto, and Lidia Fuentes

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 4: Averaged performance in seconds of aggregation operations in state-of-the-art reasoners for Table 2 models
For unsupported advanced aggregations, we switched them for addition and tagged their performance with an asterisk

Reasoner: ClaferMoo SATIBEA CQL IDE
SPLs: P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟

Unconstrained 0.95 s *1,8|236 s 2.15 s 2.99 s 1.67 s *1.79|2.33 s *1.85 s 1.78 s 0.27 s 0.39|211 s 0.42 s 2.68 s
Constrained 0.97 s *1.89|237 s 2.17 s 3.01 s Unsupported Unsupported Unsupported Unsupported 0.27 s 0.4|212 s 0.42 s 2.69 s
Range 0.95 s *1.8|232 s 2.15 s 2.94 s Unsupported Unsupported Unsupported Unsupported 0.27 s 0.41|212 s 0.43 s 2.69 s

Mean: 0.957 s *1.83|235 s 2.16 s 2.98 s 1.67 s *1.79|2.33 s *1.85 s 1.78 s 0.27 s 0.4|212 s 0.423 s 2.69 s

Table 5: Averaged performance in seconds of optimisation operations in state-of-the-art reasoners for Table 2 models
We tagged the performance with an asterisk if the reasoner ignores quality attributes at the configuration level

Reasoner: ClaferMoo SATIBEA CQL IDE
SPLs: P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟

Min/Maximise *0.98 s *1.87|344 s 2.23 s *4.36 s *1.67 s *1.79|2 s 1.85 s *1.78 s 0.38 s 0.52|274 s 0.68 s 3.48 s
Multiobjective *1.02 s *1.97|355 s 2.38 s *4.5 s *1.85 s *2.01|2,1 s 2.03 s *1.95 s 0.42 s 0.67|312 s 0.78 s 3.95 s
Weighted Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported 0.42 s 0.68|317 s 0.82 s 4.02 s
New Domain Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported 0.41 s 0.63|274 s 0.73 s 3.47 s

Mean: *1 s *1.92|349 s 2.31 s *4.43 s *1.76 s *1.9|2,05 s 1.94 s *1.87 s 0.41 s 0.63|294 s 0.75 s 3.73 s

5.4 Threats to Validity
Internal Validity. To control randomness, we repeated the experi-
ments 97 times and averaged the results for a confidence level of
95% with a 10% margin of error [49]. Additionally, we are aware
of the need to extend this validation with tool’s accuracy and the
reasons based on their specific reasoning techniques. Nevertheless,
we considered the selected experiments and discussion sufficient
for the aim of this work.

External Validity. By choosing the real-world SPLs of Table 2
we pretended to cover a variety of properties, QAs and functions
commonly found in VNF cases. Nonetheless, we are aware that
they do not cover every possible casuistic. While one could argue
that large spaces are not enough, and colossal spaces should be
tested, we should mention that larger spaces are very rare for VNF
orchestrators. The problem in SDN systems is the complexity of the
reasoning and not the size of it. Testing our algorithms with just
one CT reasoner could be another threat. The problem is that CT
tools besides CQL IDE are also rare due to the intrinsic abstraction
and knowledge requirement.

6 CONCLUSION AND FUTUREWORK
The domain of SDN and NFV, Edge computing and IoT is challeng-
ing for quality-aware reasoning of configurations. AAFM provides
reasoning tools and algorithms that we can apply to improve the
quality of service, being energy efficiency the most critical in those
domains. However, we found limitations when applied to the con-
text of VNFs orchestrations in the DAEMON project. In short, there
is a lack of understanding, methods, and tools designed explicitly
for advanced quality-aware analysis and optimisation that consider
interactions between feature and configuration-level QAs.

In this work, we start by uncovering the quality-based reasoning
operations necessary in the DAEMON project and grouped them
into: model analysis, aggregation functionality, and optimisation
based on objectives. We follow by analysing the state-of-the-art of

AAFM methods and tools that supports any share of those opera-
tions and summarised the outcomes in Table 1. As we found the
need for a complete alternative, we defined and implemented in
CQL IDE the quality-aware reasoning algorithms of those opera-
tions for our CT framework for SPLs. Next, we empirically tested
the state-of-the-art alongside our proposal for 5 different real-world
SPLs with several QAs and up to 20 different quality-aware reason-
ing operations.

For RQ1 we conclude that current tools could be viable if they
are extended like we are doing with CQL IDE, that is, they provide
a unified solution. For RQ2 we state that a CT tool like CQL IDE
has the flexibility and potential to cover all the operations, but its
feasibility depends on having CT knowledge in the team – as in
our case with the DAEMON project. Finally, in RQ3 we highlight
that the selection of the reasoning tool will depend on the set of
operations that the SDN system needs; while all the tools scale
linearly, some of them are faster than others for specific operations
(e.g., SATIBEA for basic near-optimal search). As a final statement, if
the objective is that VNF orchestrators automatically rely on AAFM,
all the tools in the current literature need to extend their support
beyond boolean features, logic constraints, additive attributes and
Pareto optimisation. Our CQL IDE algorithms are a solution for
that.

As an extension, we plan to analyse the trade-off between scal-
ability and accuracy in optimisation operations. Additionally, we
also plan to implement sampling and learning techniques in CQL
IDE, as well as exploit other tools.

ACKNOWLEDGMENTS
This work is supported by the EuropeanUnion’s H2020 research and
innovation programme under grant agreement DAEMON101017109,
by the projects co-financed by FEDER funds LEIAUMA18-FEDERJA-
15, MEDEA RTI2018-099213-B-I00 and Rhea P18-FR-1081 and the
PRE2019-087496 grant from the Ministerio de Ciencia e Innovación.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Quality-aware Analysis and Optimisation of Virtual Network Functions SPLC’22, 12-16 September, 2022, Graz, Austria

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Jose A Ayala-Romero, Andres Garcia-Saavedra, Xavier Costa-Perez, and George

Iosifidis. 2021. Demonstrating a Bayesian Online Learning for Energy-Aware
Resource Orchestration in vRANs. In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 1–2.

[2] Albert Banchs, Marco Fiore, Andres Garcia-Saavedra, and Marco Gramaglia.
2021. Network intelligence in 6G: Challenges and opportunities. In Proceedings
of the 16th ACMWorkshop on Mobility in the Evolving Internet Architecture. 7–12.

[3] Michael Barr and Charles Wells. 1990. Category theory for computing science.
Prentice Hall, Hoboken, New Jersey, USA.

[4] David Benavides. 2019. Variability Modelling and Analysis During 30 Years.
In From Software Engineering to Formal Methods and Tools, and Back - Essays
Dedicated to Stefania Gnesi on the Occasion of Her 65th Birthday. Springer Berlin
Heidelberg, Berlin, Heidelberg, 365–373. https://doi.org/10.1007/978-3-030-
30985-5_21

[5] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
analysis of feature models 20 years later: A literature review. Information Systems
35, 6 (2010), 615 – 636. https://doi.org/10.1016/j.is.2010.01.001

[6] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated
Reasoning on Feature Models. In Advanced Information Systems Engineering,
Oscar Pastor and João Falcão e Cunha (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 491–503.

[7] Kristopher S Brown, David I Spivak, and Ryan Wisnesky. 2019. Categorical
data integration for computational science. Computational Materials Science 164
(2019), 127–132.

[8] Shubhajeet Chatterjee, Mohammad J Abdel-Rahman, and Allen B MacKenzie.
2021. On Optimal Orchestration of Virtualized Cellular Networks with Statistical
Multiplexing. IEEE Transactions on Wireless Communications (2021).

[9] Michel R. V. Chaudron. 2012. Quality Assurance in Model-Based Software Devel-
opment: Challenges and Opportunities. In Software Quality. Process Automation
in Software Development, Stefan Biffl, Dietmar Winkler, and Johannes Bergsmann
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–9.

[10] João Choma Neto., Thelma E. Colanzi., and Aline M. M. Miotto Amaral. 2017. Ap-
plication of Memetic Algorithms in the Search-based Product Line Architecture
Design: An Exploratory Study. In Proceedings of the 19th International Confer-
ence on Enterprise Information Systems - Volume 2: ICEIS,. INSTICC, SciTePress,
Setubal, Portugal, 178–189. https://doi.org/10.5220/0006363201780189

[11] Emanuel et al. Coutinho. 2018. Research Opportunities in Quality Assessment of
Internet of Things, Software Defined Networks and Network Function Virtualiza-
tion Environments. International Workshop on ADVANCEs in ICT Infrastructures
and Services (ADVANCE 2018) (2018), 43.

[12] Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. 2016. Search-Based Similarity-Driven Behavioural SPL Testing. In Pro-
ceedings of the Tenth International Workshop on Variability Modelling of Software-
Intensive Systems (Salvador, Brazil) (VaMoS ’16). Association for Computing
Machinery, New York, NY, USA, 89–96. https://doi.org/10.1145/2866614.2866627

[13] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2019. MetricHaven:
More than 23,000 Metrics for Measuring Quality Attributes of Software Product
Lines. In Proceedings of the 23rd International Systems and Software Product Line
Conference - Volume B (Paris, France) (SPLC ’19). Association for Computing
Machinery, New York, NY, USA, 25–28. https://doi.org/10.1145/3307630.3342384

[14] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2020. Fast Static Anal-
yses of Software Product Lines: An Example with More than 42,000 Metrics.
In Proceedings of the 14th International Working Conference on Variability Mod-
elling of Software-Intensive Systems (Magdeburg, Germany) (VAMOS ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 8, 9 pages.
https://doi.org/10.1145/3377024.3377031

[15] Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid. 2019. Metrics
for analyzing variability and its implementation in software product lines: A
systematic literature review. Information and Software Technology 106 (2019),
1–30. https://doi.org/10.1016/j.infsof.2018.08.015

[16] Thiago do Nascimento Ferreira, Silvia Regina Vergilio, and Marouane Kessentini.
2020. Applying Many-Objective Algorithms to the Variability Test of Software
Product Lines. In Proceedings of the 5th Brazilian Symposium on Systematic and
Automated Software Testing (Natal, Brazil) (SAST 20). Association for Computing
Machinery, New York, NY, USA, 11–20. https://doi.org/10.1145/3425174.3425211

[17] Jaime Font, Lorena Arcega, Øystein Haugen, and Carlos Cetina. 2018. Achieving
Feature Location in Families ofModels Through the Use of Search-Based Software
Engineering. IEEE Transactions on Evolutionary Computation 22, 3 (2018), 363–377.
https://doi.org/10.1109/TEVC.2017.2751100

[18] José A. Galindo and David Benavides. 2020. A Python Framework for the
Automated Analysis of Feature Models: A First Step to Integrate Community
Efforts. In Proceedings of the 24th ACM International Systems and Software Product
Line Conference - Volume B (SPLC ’20). ACM, New York, NY, USA, 52–55. https:
//doi.org/10.1145/3382026.3425773

[19] Meihui Gao, Bernardetta Addis, Mathieu Bouet, and Stefano Secci. 2018. Optimal
orchestration of virtual network functions. Computer Networks 142 (2018), 108–
127.

[20] Gines Garcia-Aviles, Andres Garcia-Saavedra, Marco Gramaglia, Xavier Costa-
Perez, Pablo Serrano, and Albert Banchs. 2021. Nuberu: Reliable RAN virtu-
alization in shared platforms. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking. 749–761.

[21] M. Gramaglia, L. Fuentes, M. Pinto, Daniel-Jesus Munoz, and et al. 2021. DAE-
MON Deliverable 3.1: Initial design of real-time control and VNF intelligence
mechanisms. This project has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under grant agreement
No.101017109..

[22] Jianmei Guo, Jia Hui Liang, Kai Shi, Dingyu Yang, Jingsong Zhang, Krzysztof
Czarnecki, Vijay Ganesh, and Huiqun Yu. 2019. SMTIBEA: a hybrid multi-
objective optimization algorithm for configuring large constrained software
product lines. Software & Systems Modeling 18, 2 (2019), 1447–1466.

[23] Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. 2015.
Combining Multi-Objective Search and Constraint Solving for Configuring Large
Software Product Lines. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. Association for Computing Machinery, New York,
NY, USA, 517–528. https://doi.org/10.1109/ICSE.2015.69

[24] Jose-Miguel Horcas, José A. Galindo, Ruben Heradio, David Fernandez-Amoros,
and David Benavides. 2021. Monte Carlo Tree Search for Feature Model Analyses: A
General Framework for Decision-Making. Association for Computing Machinery,
New York, NY, USA, 190–201. https://doi.org/10.1145/3461001.3471146

[25] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2019. Software Product
Line Engineering: A Practical Experience. In Proceedings of the 23rd International
Systems and Software Product Line Conference - Volume A (Paris, France) (SPLC
’19). ACM, New York, New York, USA, 164–176. https://doi.org/10.1145/3336294.
3336304

[26] ETSI ISG. 2014. Network Functions Virtualisation standards. (2014).
[27] Kyo C Kang, SholomGCohen, James AHess, William E Novak, and A Spencer Pe-

terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[28] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and
Ina Schaefer. 2017. Is There a Mismatch between Real-World Feature Models
and Product-Line Research?. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
Association for Computing Machinery, New York, NY, USA, 291–302. https:
//doi.org/10.1145/3106237.3106252

[29] Georg P Loczewski. 2018. A++ and the Lambda Calculus: Principles of Functional
Programming. tredition, Berlin, Germany.

[30] Roberto E. Lopez-Herrejon, Lukas Linsbauer, and Alexander Egyed. 2015. A
systematic mapping study of search-based software engineering for software
product lines. Information and Software Technology 61 (2015), 33–51. https:
//doi.org/10.1016/j.infsof.2015.01.008

[31] Lars Luthmann, Timo Gerecth, and Malte Lochau. 2019. Sampling strategies for
product lines with unbounded parametric real-time constraints. International
Journal on Software Tools for Technology Transfer 21 (2019), 613–633. https:
//doi.org/10.1007/s10009-019-00532-4

[32] T. Mahmoodi M. Condoluci. 2018. Softwarization and virtualization in 5G mobile
networks: Benefits, trends and challenges. Computer Networks 146 (2018), 65–84.

[33] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Quality Assurance for Feature Models and Configurations.
Springer International Publishing, Cham, 81–94. https://doi.org/10.1007/978-3-
319-61443-4_8

[34] Seyedakbar Mostafavi, Vesal Hakami, and Maryam Sanaei. 2021. Quality of
service provisioning in network function virtualization: a survey. Computing
103, 5 (2021), 917–991.

[35] Daniel-Jesus Munoz, Dilian Gurov, Monica Pinto, and Lidia Fuentes. 2021. Cate-
gory Theory Framework for Variability Models with Non-functional Require-
ments. In Advanced Information Systems Engineering, Marcello La Rosa, Shazia
Sadiq, and Ernest Teniente (Eds.). Springer International Publishing, Cham, 397–
413.

[36] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. 2019.
Uniform Random Sampling Product Configurations of Feature Models That Have
Numerical Features. In Proceedings of the 23rd International Systems and Software
Product Line Conference - Volume A (Paris, France). ACM, New York, New York,
USA, 289–301. https://doi.org/10.1145/3336294.3336297

[37] Daniel-Jesus Munoz, Mónica Pinto, and Lidia Fuentes. 2018. Finding correlations
of features affecting energy consumption and performance of web servers using
the HADAS eco-assistant. Computing 100, 11 (2018), 1155–1173.

[38] Rafael Olaechea, Derek Rayside, Jianmei Guo, and Krzysztof Czarnecki. 2014.
Comparison of Exact and Approximate Multi-Objective Optimization for Soft-
ware Product Lines. In Proceedings of the 18th International Software Product Line
Conference - Volume 1 (Florence, Italy) (SPLC ’14). Association for Computing Ma-
chinery, New York, NY, USA, 92–101. https://doi.org/10.1145/2648511.2648521

[39] Rafael Olaechea, Steven Stewart, Krzysztof Czarnecki, and Derek Rayside.
2012. Modelling and Multi-Objective Optimization of Quality Attributes in
Variability-Rich Software. In Proceedings of the Fourth International Workshop
on Nonfunctional System Properties in Domain Specific Modeling Languages

11

https://doi.org/10.1007/978-3-030-30985-5_21
https://doi.org/10.1007/978-3-030-30985-5_21
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.5220/0006363201780189
https://doi.org/10.1145/2866614.2866627
https://doi.org/10.1145/3307630.3342384
https://doi.org/10.1145/3377024.3377031
https://doi.org/10.1016/j.infsof.2018.08.015
https://doi.org/10.1145/3425174.3425211
https://doi.org/10.1109/TEVC.2017.2751100
https://doi.org/10.1145/3382026.3425773
https://doi.org/10.1145/3382026.3425773
https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1145/3461001.3471146
https://doi.org/10.1145/3336294.3336304
https://doi.org/10.1145/3336294.3336304
https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1007/s10009-019-00532-4
https://doi.org/10.1007/s10009-019-00532-4
https://doi.org/10.1007/978-3-319-61443-4_8
https://doi.org/10.1007/978-3-319-61443-4_8
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/2648511.2648521

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

SPLC’22, 12-16 September, 2022, Graz, Austria Daniel-Jesus Munoz, Mónica Pinto, and Lidia Fuentes

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

(Innsbruck, Austria). ACM, New York, New York, USA, Article 2, 6 pages.
https://doi.org/10.1145/2420942.2420944

[40] Gustavo G. Pascual, Roberto E. Lopez-Herrejon, Mónica Pinto, Lidia Fuentes,
and Alexander Egyed. 2015. Applying multiobjective evolutionary algorithms to
dynamic software product lines for reconfiguring mobile applications. J. Syst.
Softw. 103 (2015), 392–411. https://doi.org/10.1016/j.jss.2014.12.041

[41] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau,
and Ina Schaefer. 2019. Product Sampling for Product Lines: The Scalability
Challenge. In Proceedings of the 23rd International Systems and Software Product
Line Conference - Volume A (Paris, France) (SPLC ’19). Association for Computing
Machinery, New York, NY, USA, 78–83. https://doi.org/10.1145/3336294.3336322

[42] Tie Qiu, Jiancheng Chi, Xiaobo Zhou, Zhaolong Ning, Mohammed Atiquzzaman,
and Dapeng Oliver Wu. 2020. Edge computing in industrial internet of things:
Architecture, advances and challenges. IEEE Communications Surveys & Tutorials
22, 4 (2020), 2462–2488.

[43] Joan S Pujol Roig, David M Gutierrez-Estevez, and Deniz Gündüz. 2019. Man-
agement and orchestration of virtual network functions via deep reinforcement
learning. IEEE Journal on Selected Areas in Communications 38, 2 (2019), 304–317.

[44] Takfarinas Saber, David Brevet, Goetz Botterweck, and Anthony Ventresque.
2020. MILPIBEA: Algorithm for Multi-objective Features Selection in (Evolving)
Software Product Lines, In Evolutionary Computation in Combinatorial Opti-
mization - 20th European Conference, EvoCOP 2020, Held as Part of EvoStar
2020, Seville, Spain, April 15-17, 2020, Proceedings. Evolutionary Computation in
Combinatorial Optimization - 20th European Conference, EvoCOP 2020, Held as
Part of EvoStar 2020, Seville, Spain, April 15-17, 2020, Proceedings 12102, 164–179.
https://doi.org/10.1007/978-3-030-43680-3_11

[45] Anna Schmitt, Christian Bettinger, and Georg Rock. 2018. Glencoe–a tool for
specification, visualization and formal analysis of product lines. In Transdis-
ciplinary Engineering Methods for Social Innovation of Industry 4.0. IOS Press,
Amsterdam, The Netherlands, 665–673.

[46] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner,
Sven Apel, and Gunter Saake. 2012. SPL Conqueror: Toward Optimization of
Non-Functional Properties in Software Product Lines. Software Quality Journal
20, 3–4 (sep 2012), 487–517. https://doi.org/10.1007/s11219-011-9152-9

[47] Norbert Siegmund, Stefan Sobernig, and Sven Apel. 2017. Attributed Variability
Models: Outside the Comfort Zone. In Proceedings of the 11th Joint Meeting
on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
ACM, New York, New York, USA, 268–278. https://doi.org/10.1145/3106237.
3106251

[48] David I Spivak and Robert E Kent. 2012. Ologs: a categorical framework for
knowledge representation. PloS one 7, 1 (2012), e24274.

[49] C.R. Systems. 2022. Sample Size Calc. https://www.surveysystem.com/sscalc.
htm.

[50] Paul Temple, Mathieu Acher, Jean-Marc Jézéquel, Léo Noel-Baron, and José
Galindo. 2017. Learning-based performance specialization of configurable systems.
Ph. D. Dissertation. IRISA, Inria Rennes; University of Rennes 1.

[51] Pablo Trinidad. 2012. Automating the analysis of stateful feature models. Ph. D.
Dissertation. Universidad de Sevilla. https://idus.us.es/handle/11441/55765

[52] Pablo Trinidad, Antonio Ruiz-Cortés, and David Benavides. 2013. Automated
Analysis of Stateful FeatureModels. Springer Berlin Heidelberg, Berlin, Heidelberg,
375–380. https://doi.org/10.1007/978-3-642-36926-1_30

[53] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. 2018. A Classification of Product Sam-
pling for Software Product Lines. In Proceedings of the 22nd International Sys-
tems and Software Product Line Conference - Volume 1 (Gothenburg, Sweden)
(SPLC ’18). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3233027.3233035

[54] TobiasWägemann, Ramin Tavakoli Kolagari, and Klaus Schmid. 2019. ADOOPLA
- Combining Product-Line- and Product-Level Criteria in Multi-objective Opti-
mization of Product Line Architectures. In Software Architecture, Tomas Bures,
Laurence Duchien, and Paola Inverardi (Eds.). Springer International Publishing,
Cham, 126–142.

[55] Lanxin Yang, He Zhang, Haifeng Shen, Xin Huang, Xin Zhou, Guoping Rong,
and Dong Shao. 2021. Quality Assessment in Systematic Literature Reviews:
A Software Engineering Perspective. Information and Software Technology 130
(2021), 106397. https://doi.org/10.1016/j.infsof.2020.106397

[56] Anton Yrjönen and Janne Merilinna. 2009. Extending the NFR framework with
measurable non-functional requirements. In Proceedings of the 2nd International
Workshop on Non-functional System Properties in Domain Specific Modeling Lan-
guages, Marko Boškoviæ, Dragan Gaševiæ, Claus Pahl , and Bernhard Schätz
(Eds.). ACM, New York, New York, USA, 0–14. 2nd International Workshop
on Non-functional System Properties in Domain Specific Modeling Languages,
NFPinDSML2009, NFPinDSML2009 ; Conference date: 04-10-2009 Through 04-
10-2009.

[57] Guoheng Zhang, Huilin Ye, and Yuqing Lin. 2014. Quality attribute modeling
and quality aware product configuration in software product lines. Softw. Qual.
J. 22, 3 (2014), 365–401. https://doi.org/10.1007/s11219-013-9197-z

12

https://doi.org/10.1145/2420942.2420944
https://doi.org/10.1016/j.jss.2014.12.041
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1007/978-3-030-43680-3_11
https://doi.org/10.1007/s11219-011-9152-9
https://doi.org/10.1145/3106237.3106251
https://doi.org/10.1145/3106237.3106251
https://www.surveysystem.com/sscalc.htm
https://www.surveysystem.com/sscalc.htm
https://idus.us.es/handle/11441/55765
https://doi.org/10.1007/978-3-642-36926-1_30
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1016/j.infsof.2020.106397
https://doi.org/10.1007/s11219-013-9197-z

	Abstract
	1 Introduction
	2 Quality-aware Reasoning of SDN
	2.1 Aggregate Operations
	2.2 Optimal Search Operations

	3 Related Work
	3.1 QoS in Software-Defined Networking
	3.2 Tools Supporting Quality-Aware Reasoning

	4 Quality-Aware Algorithms for Category Theory Frameworks
	4.1 Foundations of Category Theory
	4.2 Unifying Variability and Quality in a Categorical Model
	4.3 Quality Operations in Category Theory

	5 Empirical Validation
	5.1 Methodology and Setup
	5.2 Self-analysis and optimisation operations results
	5.3 Discussion and Scalability Results
	5.4 Threats to Validity

	6 Conclusion and Future Work
	Acknowledgments
	References

