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ABSTRACT
The softwarisation and virtualisation of network functionality is
the last milestone in the networking industry. Software-Defined
Networks (SDN) and Network Function Virtualization (NFV) offer
the possibility of using software to manage computer and mobile
networks and build novel Virtual Network Functions (VNFs) de-
ployed in heterogeneous devices. To reason about the variability of
network functions and especially about the quality of a software
product defined as a set of VNFs instantiated as part of a service
(i.e., Service Function Chaining), a variability model along with a
quality model is required.

However, this domain imposes certain challenges to quality-
aware reasoning of service function chains, such as numerical fea-
tures or configuration-level Quality Attributes (QAs) (e.g., energy
consumption). Incorporating numerical reasoning with quality data
into SPL analyses is challenging and tool support is rare. In this
work, we present 3 groups of operations: model report, aggregate
functions to dynamically convert QAs at the feature-level into the
configuration-level, and quality-aware optimisation. Our objective
is to test the most complete reasoning tools to exploit the extended
variability with quality attributes needed for VNFs.

CCS CONCEPTS
• Software and its engineering → Abstraction, modeling and
modularity; Software product lines; Software performance;
Requirements analysis; • Theory of computation → Automated
reasoning; • Computing methodologies → Representation of
mathematical objects.

KEYWORDS
virtual network function, quality attribute, variability, numerical
feature. reasoning, optimization
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1 INTRODUCTION
The softwarisation and virtualisation of network functionality is
a new trend in Industry 4.0, especially for emergent mobile tech-
nologies such as Beyond 5G networks (B5G). The objective is to
turn networks into general-purpose platforms providing smart con-
nectivity to a plethora of devices. Software-Defined Networking
(SDN) [32] and Network Function Virtualization (NFV) [26], are
widely accepted paradigms to address the new structure of network
architectures. SDN aims to introduce network programming capa-
bility and NFV is an innovative, but complementary paradigm that
promotes the virtualisation technology to disengage network func-
tions from dedicated hardware appliances and transform them into
software components, so-called virtual network functions (VNFs).
Then, user applications demanding a network service turn out to
be a request for running a set of VNFs at the application plane
on servers. These application services (i.e., VNFs) can be tailored
for certain applications family (e.g., virtual reality, video delivery
or distributed games), domains like IoT, or allocated to a class of
customers, or certain mobile network operators.

Next-generation networks such as 6G promise to provide a large
set of agile services, custom-made and providing user-defined Qual-
ity of Service (QoS), such as latency or energy consumption. In-
deed, there is a growing interest in energy-efficient orchestration
of VNFs, being this the main goal of the DAEMON project that
supports this work 1. Therefore, to reason about the variability of
network functions and especially about the quality of a software
product defined as a set of VNFs instantiated as part of a service
(i.e., Service Function Chaining), a variability model along with a
quality model is required. Unfortunately, the heterogeneity in the
network complicates the relationship between variability and qual-
ity of VNFs configurations [42]. In addition, this domain imposes
certain challenges to quality-aware reasoning of service function
chains, such as numerical features or configuration-level Quality
Attributes (QAs) such as energy consumption. Incorporating numer-
ical reasoning with quality data into SPL analyses is challenging
and tool support is rare.

While the majority of works in SDN area focuses mainly on
applying Artificial Intelligence approaches, such as deep learn-
ing, reinforcement learning or control theory to proactively adapt
VNFs chains to network workload and current resources, little
work focus on customizing a set of VNFs considering different
alternatives providing variable QoS [11] [21]. In this work, we

1European H2020 funded project DAEMON: https://h2020daemon.eu/

1
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Figure 1: An extract of the variability and quality olog of the software product line Virtual Network System(VNS)

apply SPL technologies to the quality-aware reasoning, customiza-
tion and optimization of VNFs chains for specific user services.
Typical quality attributes considered in the DAEMON project are
latency and energy efficiency, so we argue we need to incorporate
feature-level and configuration-level QAs, the two main approaches
for quality reasoning of variability models according to [39, 47].
Feature-level QAs, are modelled as attributes directly linked to single
features, such as response time or any cost associated with each
feature. Second, configuration-level QAs, which cannot be quan-
tified at the feature-level and must be measured and associated
at the configuration-level. Two examples of this are performance
or energy consumption [39, 47]. However, existing works mainly
focus on feature-level QAs using attributes [6, 33, 46, 52] so they
do not apply to energy-efficient SDNs, and only a few of them
deal with both [46, 57]. Further, these works do not fully support
real-world SPLs and advanced reasoning, and neither are easy to
extend. For example, FAMA framework [6] supports extended FMs
with attributes as quality information. However, it cannot support
generating the optimal configuration within a range of values for a
specific quality (e.g., minimise a VNF’s energy consumption above 1
Watt) [51]. With the objective of modelling and reasoning flexibility,
we proposed a Category Theory (CT) [3] framework for SPLs. There,
we unified FMs andQuality Models (QMs) [35] in a single model and
tool. It has the potential to support complex relationships and the
quality-reasoning of numerical FMs. We consider quality-reasoning
to any Automatic Analysis of Feature Models operations with QAs
on their resolution. For instance, request VNFs consuming 1 Watt
and with a cost under 10$.

In this work, we highlight three groups of operations needed
for VNFs’ quality-aware reasoning. The first one is a model report,
which covers type and number features, type and number of con-
straints, size of the configuration and measured spaces, and QAs meta-
data. The second group are the aggregate functions, which define
how to convert QAs in the feature-level into the configuration-
level in the form of addition, product, mean, and approximation

arithmetic equations. The last one is optimisation like maximum,
minimum, (weighted) multi-objective, and range objective. In sec-
tion 3, we analyse the support that current tools provide to those
groups of operations. Additionally, we define and implement in our
CT framework the necessary reasoning algorithms in Section 3. For
the evaluation Section 5, we selected the 4 most complete tools:
CQL IDE [35], ClaferMoo [39], AAFM Python Framework [18], and
SATIBEA [23]. Alongside our new CT reasoning algorithms, we val-
idated those tools for 5 different real-world SPLs with different QAs
and a variety of reasoning operations of the three groups. Finally,
we compare their capabilities and performance when generating
results. Our main contribution is to provide a set of tools to perform
the necessary quality-aware operations for VNFs orchestration.

2 QUALITY-AWARE REASONING OF SDN
VNFs orchestration to compose SFCs has complex requirements for
low latency, energy and security among others [32]. In this section,
we analyse with an SPL perspective the quality-aware reasoning
operations that could guide such orchestration processes. We sum-
marised the operations in 3 groups: model analysis, aggregation of
attributes values, and optimal search. For illustration purposes, we
will provide several examples based on a reduced SPL of our Virtual
Network Orchestration System represented by theVNS model of
Figure 1. To include a single model with variability alongside all
types of QAs, we draw an olog based on our CT framework. In
other words, ologs are the categorical counterpart of completely
extended FMs [48].

VNS is a real-world problem that we are solving in the context
of the DAEMON project and contains different virtual networkman-
agers, containers for virtualisation software (e.g., Kubernetes) and 3
common VNFs, following the proposed standard reference archi-
tecture for the Management And Network Orchestration (MANO)
of VNFs [26]. Figure 1 shows a simplified version that comprises 18
boolean and 1 numerical features, 1 propositional and 1 arithmetic

2
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constraints, and 3 feature-level and 2 configuration-level QAs: hard-
ware Dependency, Usability, Security, Energy and Time respectively.
The performance and energy metrics are obtained after several runs
with specialised tools like Watts Up? Pro and multimetres, while
the other 3 are consensus from industrial partners.

We can find many reasoning operations in the SPL literature [4,
25].Wemade a selection based onDAEMON requirements; they can
be summarised on an analysis of the virtualised network properties
and an optimal orchestration of VNFs:

• Type and number of the features: A reasoner counts every
feature in the model per type and domain. Classic features
have a boolean domain [27] indicating their existence in
a configuration. Numerical features expand that domain
to integer, real, etc. [36], and identify many states of a fea-
ture (e.g., Throughput). In Figure 1 the features are boxes
identified by F 𝑠 and NF respectively.

• Type and number of model constraints: A reasoner counts ev-
ery model constraint. Classic constraints are propositional
logic comprising connectives (i.e., and, or), negations, impli-
cations and exclusions [27]. Our SPLs also need arithmetic
constraints like inequalities with additions, subtractions,
multiplications, divisions and modules. Figure 1 contains
one of each summarised at the bottom. Non-linear con-
straints are theoretically possible as a combination of them
(e.g., power) [36].

• Number of configurations: A reasoner counts every valid
complete configuration of a model; in other words, it counts
the configuration space that the model represents. While
the fastest reasoners perform it by pure model counting
(e.g., sharpSAT and boolean decision diagrams), the most
common alternative is to construct and enumerate them
(e.g., Clafer) [36]. The configuration space represented by
Figure 1 is 63 configurations.

To this set of operations, DAEMON requires specific ones for
QAs. These are novel, as the integration of variability and quality
models are mainly unexplored as already discussed in Section 1:

• Number of qualitymeasured configurations: A reasoner counts
how many configuration measurements are for all QAs. As
Figure 1 is completely measured for its 5 QAs, its measured
configuration space is 63 * 5 = 315 measurements.

• Number, names, values and domains of feature-level and
configuration-level QAs: A reasoner counts everyQApresent
in the model and details their type, range and domain.
QAs can be grouped into 8 different types, where the most
common ones are performance, usability and security [9].
Configuration-level QAs in a model provide the range of
measurements in the configuration space. However, feature-
level QAs provide a range of values for their respective
feature space, and additionally, aggregate functions. Finally,
any QA must define its domain (i.e., metric). As in Figure 1,
whereVNS comprises 5 QAs, hardware Dependency (D),
Usability (U), and Security (S) at the feature-level, and Time
and Energy at the configuration-level.

2.1 Aggregate Operations
To compute a configuration-level value of a QA based on feature-
level values, we need one aggregate function per QA. Hence, ag-
gregations are functions for approximating the quality of config-
urations [55]. Feature-level attributes have clear advantages like
smaller space (feature versus configuration space) and can be used
in prediction functions, but they come at the cost of accuracy, man-
ageability and maintainability (e.g., energy consumption [37]). This
means that, while in theory any QA can be represented by attributes
and functions, in the real world that niche is shared between the two
spaces. Consequently, feature attributes with aggregate functions
have their place in SPLs.

The most trivial type of aggregation is the addition (e.g., calcu-
lating the final additive cost in $ of individual components [4]),
but we could define any sort of arithmetic function, including non-
linear functions like Gauss approximation or predictive perfor-
mance model functions [50]. For instance, the configuration value
ofVNS dependency is the Maximum value of the individual val-
ues in each feature. On the other hand, Minimum calculates VNS
security value. Finally, features’ usability is calculated as the aggre-
gate Mean. Not every QA is a numerical metric [14]. If we take a
closer look to Figure 1, we can see that dependency and security
range is a non-numerical scale (i.e. Low,Medium andHigh), on the
contrary, usability is numeric (i.e., [0,10]), and hence the aggrega-
tions must consider this in their definitions and implementations.
To close the discussion about VNS QAs, we clarify that time in
seconds and energy in joules are configuration-level QAs, and there-
fore they do not need aggregation functions, as these values were
obtained directly by experimentation. Indeed, time and energy are
two examples of complex QAs, which the most accurate values are
obtained by experimentation because they are difficult to calculate
with aggregation functions.

2.2 Optimal Search Operations
In SPLs, optimisation problems are the ones of finding, from the
quality measured space, the best configurations with certain quality
values [39]. To define and guide the search, we must define objec-
tive functions. The most common objectives in the literature are
maximise and minimise functions. If an objective considers more
than one QA, we are dealing with multi-objective optimisation. In
this type of complex optimisation is common that no QA can be
better off without making another one worse off. Hence, we are in
the field of calculating a set of similar high-quality configurations -
the Pareto frontier.

To prevent confusion, aggregation takes feature-level QAs as
input and transforms them into configuration-level QAs by calculat-
ing each corresponding value with an aggregates function. While
objective function acts more like a configuration space filter where
its inputs and outputs are configuration-level QAs.

However, that is very interesting reasoning-wise, as we can
apply function composition, allowing us to include feature-level
QAs into optimisation problems by pre-aggregating QAs values.
For instance, in Figure 1 dependency aggregation is the maximum,
which provides the dependency of aVNS configuration. But then,
we can apply the same function as an objective (i.e., maximise) to

3
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obtain the configurations with the highest dependency. That would
not have been possible without aggregating before optimising.

Considering that composition, we could perform multi-objective
optimisation considering both, feature-level and configuration-level
QAs, in the same function. For example, only after aggregating,
we can define the following objective search forVNS: Maximise
Usability and Security while Minimise Dependency, Time and Energy.

Additionally, we can define and use new quality domains based
on the ones that already exist in the model. We elaborate on this
with an example in VNS. As we know that the energy rate of
a system is its energy consumption divided by its runtime (e.g.,

𝑊𝑎𝑡𝑡𝑠 =
𝐽𝑜𝑢𝑙𝑒𝑠

𝑆𝑒𝑐𝑜𝑛𝑑𝑠
), we could redefine the previous multi-objective

as Maximise Usability and Security while Minimise Dependency and

Energy Rate, with Energy Rate =
𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑖𝑚𝑒
.

3 RELATEDWORK
This section summarises our search for proper reasoning solutions
for virtualised networks, including QoS, SPL tools with support for
quality reasoning, and optimisation algorithms.

3.1 QoS in Software-Defined Networking
QoS is the capability of a network to provide the required ser-
vices for selected network traffic. Quality assurance of network
services is based on measuring QAs, where the key factors are:
path length, throughput, latency/performance, security, hardware
dependency, capacity/usability, and energy [34]. To make things
worst, those QAs are negatively influencing one another. For exam-
ple, a high latency (e.g., due to incorrect ordering of VNFs) leads to
failure of packet handling policies, thus increasing the vulnerabil-
ities, which degrades security as it creates incidents. Similarly to
SPL quality-aware reasoning, there are works in the literature that
define QoS-aware approaches to solve these issues. Likewise, hy-
brid QoS approaches are multi-objective optimisations. Most of the
approaches rely on machine learning, like [43] where the authors
guide the orchestration of VNFs via Deep Reinforcement Learn-
ing. Another example of deep learning from DAEMON partners is
vrAIn [1]. An alternative is heuristic algorithms for near-optimal
orchestration. An example is [19], where heuristic formulas are
based on linear programming. Another alternative is statistic ap-
proaches like [8] where a dynamic statistic multiplexing governs
the network orchestrator. Finally, we find network intelligence as
the new trend [2], where an example from DAEMON partners is
Nuberu [20] based on Bayesian algorithms.

3.2 Tools Supporting Quality-Aware Reasoning
Existing SPL tools [25] provide at least the basic features and con-
straints defined in FODA (Feature-oriented Domain Analysis) [27].
Additionally, each tool supports a different set of extensions, such
as numerical features, attributes, and complex constraints [25], and
a different set of reasoning operations [4, 5]. We are interested in
tools that allow performing some quality reasoning. Regarding the
techniques to generate optimal configurations, we included a subset
of them, since they are mostly based on the same algorithms (e.g.
based on IBEA [22, 23, 44]) and offer similar operations.

Quality Modelling. Typically, an SPL engineer would like to
obtain the configurations with a QA below a threshold (e.g., SFC
configurations that consume less than 3 Joules) or generate the
best-qualified configuration (e.g. trade-off between energy con-
sumption and performance). We have already discussed the differ-
ences between feature-level and configuration-level QAs. These
QAs are classified in [46] as feature-wise and variant-wise respec-
tively. Feature-level QAs are the most common in the literature,
and are supported by ClaferMoo [39], FAMA [6], FeatureIDE [33],
pure::variants 2, SPL Conqueror [46] and STEAM [52]. In QAM-
Tool [57] authors use an alternative representation and extend
the FM by incorporating QA-specific features in a sub-tree. An-
other alternative is to have some external storage to relate features
and quality measurements as usually done in genetic algorithms
(SATIBEA [23], MILPIBEA [44], MO-DAGAME [40]). An exception
is the GIA algorithm [38], defined to be applied to an attributed
FM that also uses the Z3 solver. Only a few approaches, such as
QAMTool [57] and HADAS [37], support QAs at the configuration-
level. SPL Conqueror supports them only partially by calculating
an approximated value for the feature attributes based on the set of
measured configurations during the generation of the product con-
figuration. Our CT framework [35] supports both the feature-level
and configuration-level QAs.

Formalising and Solving Variability Models with Qualities.
SPL tools (labelled with T: in Table 1) that only support feature-level
QAs (ClaferMoo, FAMA, pure::variant) commonly use a declarative
paradigm (e.g. CSP, BDD, SAT) to represent the FM and reason
about its quality. In other cases, an external quality model is de-
fined (e.g., a goal model), and the QAs measurements are usually
linked to the configurations through a database. The FM is still rep-
resented using a declarative paradigm, but an additional structure
is used to store and reason about configuration-level QAs. This
is the case with the SPL Conqueror, HADAS and QAMTool tools.
SPL Conqueror creates a performance model by using sampling
and aggregation techniques and uses this model to approximate
a near-optimal configuration. The HADAS tool uses Clafer plus a
relational database, and the QAMTool uses the NFR framework [56]
to externally represent QAs in a goal model. For algorithms generat-
ing optimum configurations (labelled with A: in Table 1), a genetic
algorithm is usually complemented with a representation of the FM
as genes and with a measurements database with the feature-level
QA measurements. In some cases, a declarative solver is also used,
as in the SATIBEA algorithm, which is defined as a combination
of an SAT solver and the IBEA genetic algorithm and the GIA al-
gorithm that uses a Z3 solver. In [35], authors discuss the benefits
and drawbacks of approaches to defining an external quality model
with two important conclusions: (1) most existing solutions are
not directly compatible with automated quality-reasoning, and (2)
SPL reasoning lacks a “unified” model that appropriately supports
quality metrics. STEAM uses abduction and deduction reasoning.
Our CT framework defines a unified model with native support
for quality reasoning, although the algorithms must be provided at
run-time, as they are not pre-established in CT tools.

2https://www.pure-systems.com/pv-update/additions/doc/latest/pv-user-manual.pdf
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Table 1: Support for reasoning about quality in variability modelling.
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Quality Modelling
Feature-level QAs (Quality information is linked to individual features)
Configuration-level QAs (Quality information is linked to valid configurations)

Formalising and Solving Variability Models with Qualities
Declarative Paradigm (CSP solver, BDD solver, SAT solver, ...)
Declarative Paradigm + Additional Assets (SAT solver + database, ...)
Search-Based Software Engineering + FM representation
Alternative Formalisation (Abduction/Deduction reasoning, Category Theory)

Automatic Quality Reasoning
Model Analyses Operations (satisfiability, count features, count configurations, ...) Q

Aggregation Function Operations
* Addition Q Q Q Q Q Q Q Q Q Q Q Q Q

* Product Q Q Q Q Q Q

* Mean Q Q

* Approximation arithmetic equation Q Q

Optimal Search Operations
* Maximum Q Q Q Q Q Q Q Q Q

* Minimum Q Q Q Q Q Q Q Q

* Multiobjective Q Q Q Q Q Q

* Range optimisation Q Q Q

It supports the characteristic. Out of the scope of the approach. T: The approach is a SPL tool.
It partially supports the characteristic. Q Quality-aware version of the operation. A: The approach is an algorithm that takes a FM as input.
It doesn’t support the characteristic.

Automatic Quality Reasoning. All SPL tools (labelled with T:
in Table 1) offer some level of model analysis operations. Clafer-
Moo, FAMA, FeatureIDE, pure::variants and STEAM provide im-
plementations of all or a subset of the operations defined in [5]
(e.g. satisfiability, type and number of features, type and number
of model constraints, number of configurations). Others (e.g. SPL
Conqueror, QAMTool, HADAS) use a third-party variability mod-
elling language that provides such support. Algorithms (labelled
with A: in Table 1) focus on optimisation, and these model-analysis
operations are out of their scope. Regarding quality-aware oper-
ations, current approaches do not natively support the complete
set of quality-aware operations. Native support would mean that
the variability model implements quality-enriched operations as
primitives. Regarding the aggregation function and the optimal
search operations, the support is variable, as shown in Table 1. The
operations supported by ClaferMoo are almost as complete as in
our approach. It supports both addition and product aggregation
functions, and it supports all the optimisation operations under
consideration in this paper. pure::variants also supports addition,
product and mean aggregation functions, although approximation
arithmetic equations are not supported, and thus, reasoning about
the combination of several quality attributes is not possible. Neither
optimal search operations are supported. SPL Conqueror supports

addition, product and some equations and allows optimal search
operations with maximum and ranges. FeatureIDE, QAMTool and
HADAS do not provide any support for optimisation. Regarding the
genetic algorithms, they approximate optimal configurations using
sampling strategies and considering feature-level QAs. They all
support the addition aggregation function and the maximum, mini-
mum and multi-objective search operations. They do not support
range optimisation. Again, our CT framework has the potential to
support all the quality-aware operations discussed in Table 1, but
the reasoning algorithms must be implemented in CT and provided
at run-time.

There are otherworks related to the quality of SPLs [13] [15] [54] [31,
41, 53] [10, 12, 16, 17, 30] that do not focus on the same quality-
reasoning operations as our approach, so they are out of the scope
of this paper.

4 QUALITY-AWARE ALGORITHMS FOR
CATEGORY THEORY FRAMEWORKS

Our objective with this section is to provide a running alternative
to the tools and algorithms of Table 1 covering as many operations
as possible. Consequently, we use our CT framework for SPLs to
define the algorithms necessary for the operations discussed in
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Section 2. Although this part of our work can be applied to any
quality-enriched SPL, we highlight that this work was developed in
the context DAEMON project, and other projects that apply SPLs
to networking, IoT and Edge-computing systems (see the acknowl-
edgement section). The contributions of this work make possible
practical use of SPLs for energy-aware orchestration of VNFs, which
had been impossible or at least much harder with current SPL ap-
proaches with a limited capacity for quality-aware reasoning of
configuration-level quality attributes like energy footprint.

4.1 Foundations of Category Theory
Category Theory (CT) is an algebraic theory of mathematical struc-
tures [3]. It allows to capture and relate similar structures while
abstracting from the individual specifics of their dissimilarities. A
category C represents spaces as a collection of objects with func-
tional relationships via arrows (i.e., morphisms). The key concepts
of CT are:

• Object: a structured class 𝑋 ∈ Ob(C), graphically depicted
as a node •𝑋 .

• Arrow: a structure-preserving function depicted
𝑋• 𝑎−→ 𝑌•.

– Identity: for every 𝑋 ∈ Ob(C), we have the arrow
𝑋• id−−→ 𝑋• .

– Composition: if
𝑋• 𝑎1−−→ 𝑌• and

𝑌• 𝑎2−−→ 𝑍•, then also
𝑋• 𝑎2 ◦ 𝑎1−−−−−−→ 𝑍•. Composition is associative, i.e.,
𝑎1 ◦ (𝑎2 ◦ 𝑎3) = (𝑎1 ◦ 𝑎2) ◦ 𝑎3.

• Category: Ob(C) ∪ Arr(C) in a labelled directed graph.
• Functor: a process F between categories 𝐶 and 𝐷 depicted

𝐶• 𝐹−→ 𝐷• , which preserves identity and function composition.
Also, we shall introduce algebraic data integration CT concepts [7]:

• Path: a finite sequence of composed arrows:
𝑋0• 𝑎1−−→ 𝑋1• · · ·𝑋𝑛−1• 𝑎𝑛−−→ 𝑋𝑛• .

• Generalised Element: a morphism
𝑈• elem−−−−→ 𝑋• , where 𝑈 is

a select “unit” object.
• Instance: a set-valued functor assigning values to elements.

4.2 Unifying Variability and Quality in a
Categorical Model

In [35], we detail a CT framework that unifies numerical VMs with
QAs as a category where features and QAs are objects, and data
types, hierarchical relationships, and quality and feature constraints
are arrows. We use this model to represent SPLs as categories. The
transformation is graphically represented in Figure 2, being the
basis for the algorithms for quality-aware operations that we detail
in the next subsection.

Concretely, our framework comprises 3 data-type objects (i.e.,
Boolean, Integer, and String for characters sets) and 5 structured
objects. Figure 2 helps an tiny example based on the SPL represented
in Figure 1 model.

The most important one is the Schema, which defines the uni-
fied variability and quality model structure: elements, properties,
hierarchical relationships and structural relationships. We can think
about them as arrays of variables without set values. Naturally, Fea-
tures represents any feature domain of FMs, Feature Level Qualities
represents extended FMs attributes, and Qualities the items present

in quality models (i.e., similar to features in an FM). The rest of
the elements are sets of identifiers or a set of related identifiers
(Binary Relationship). Those 3 last elements are necessary to relate
configuration-level QAs to the respective set of features forming a
specific Configuration.

The rest are Instances of certainDomains of the elements of the
schema. In other words, they populate the schema. For simplicity,
the schema would be blank FM, and the instances are the names of
the features, cardinalities, etc.

4.3 Quality Operations in Category Theory
Considering that we can use the variability and quality modelling
framework within CT and that we analysed the quality-aware rea-
soning operations, we need to find a flexible CT reasoner that
supports the implementation. Consequently, we choose the CT
state-of-the-art tool: the Categorical Query Language (CQL) IDE 3.
CQL is a functorial language used for functional programming
based on lambda calculus. While for low-level details we kindly
point the readers to [29], we present now an overview of the CQL
main assets:

• Basic data types and functions are defined as global objects
and arrows (e.g., B for boolean domain).

• A structured category is a schema of objects and different
types of arrows (e.g., Figure 1).

• A functor is a query over an input schema to an output
schema. For composed reasoning, the input schema of an
intermediate functor must be the same as the output schema
of the previous functor.

• A literal instance generates variables and assigns the values.
• The reasoning is an eval instance of a schema literal.

Having all the necessary background, we can now implement cate-
gorical reasoning in CQL IDE. We repeat the same sequence, hence
starting with model analysis operations.

In Algorithm 1wemerged all the self-analysis operations in a sin-
gle operation called Model Report. Its inputs are certain categorical
objects of the model: the features (i.e., F s), the complete configura-
tions identifier (i.e., CCs), the QAs identifier (i.e., QAs) and their
relationships in the Quality Measured Configurations (QMC). Its
outputs are calculated with a composition of 9 lambda functions,
which sequentially are:

(1) Number of boolean and numerical features given by instan-
tiated elements in F s.

(2) Number of first-order logic and arithmetic constraints given
by instantiated elements in F s without/with inequalities
or numerical calculations respectively.

(3) The size of the conf iguration and themeasured spaces given
by the valid identifiers in CCs and their presence in QMC
respectively. In other words, howmany configurations have
been measured for each QA.

(4) Themeta-data of feature and configuration-level QAs, which
are extracted from F s and QAs objects respectively.

While we defined model report as operations directly performed
on the model (i.e., on the feature space), some reasoners perform
them on the configuration space, once configurations are generated.

3CQL IDE main website: https://www.categoricaldata.net/
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Figure 2: Unification of Extended Variability Models and Quality Models into a Category

While the feature space is more complex, is also more scalable.
The flexibility to functionally configure a reasoner is one of the
main advantages of CT tools, and that alongside compositions is a
declared need for advanced reasoning of SPLs [52].

Algorithm 1: Categorical Model Report
Input: Populated F 𝑠 , CC𝑠 , QMC, QA𝑠

(bool, num, logic, arithm, confs, measured[]) = [0, . . ., 0];
bool = Add(𝜆(𝑥 ∈ F 𝑠 | !𝑥 .𝑛𝑢𝑚) : 1);
num = Add(𝜆(𝑥 ∈ F 𝑠 | 𝑥 .𝑛𝑢𝑚) : 1);
logic = Add(𝜆(𝑥 ∈ F 𝑠 .𝑤ℎ𝑒𝑟𝑒 | 𝑥 .𝑜𝑝𝑠 ∉ [=, +, ...,%]) : 1);
arithm = Add(𝜆(𝑥 ∈ F 𝑠 .𝑤ℎ𝑒𝑟𝑒 | 𝑥 .𝑜𝑝𝑠 ∈ [=, +, ...,%]) : 1);
confs = Add(𝜆(CC𝑠 .𝑖𝑑) : 1);
measured[QA]=Add(𝜆(CC.𝑓 .𝑎𝑡𝑡 ∨ CC.𝑖𝑑 ∈ QMC) : 1);
(FQAs, CCQAs) = [’ ’, ’ ’];
FQAs = ConcatIfNew(𝜆(𝑥 ∈ F 𝑠 .𝑎𝑡𝑡) :
[𝑥 .𝑛𝑎𝑚𝑒, 𝑥 .𝑣𝑎𝑙, 𝑥 .𝑑𝑜𝑚, 𝑥 .𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛]);

CCQAs =
ConcatIfNew(𝜆(𝑥 ∈ 𝑄𝐴𝑠) : [𝑥 .𝑛𝑎𝑚𝑒, 𝑥 .𝑣𝑎𝑙, 𝑥 .𝑑𝑜𝑚]);
Result: bool, num, logic, arithm, confs, measured, FQAS, CCQAs

Next in line is Algorithm 2wherewe approximate the configuration-
level value of each feature-level QA based on its specific aggregation
function. The method consists of going over every configuration
identifier in CCs, and retrieving their respective features, attributes
and functions (originally located in F s). That retrieved information
is the input of a lambda function, which simply runs aggregate
functions with their related attributes (i.e., 𝑓 (𝑥)).

Finally, we present Algorithm 3 where we search for configura-
tions with desired QAs. To cover all types of QAs in this algorithm,
we pre-composed Algorithm 2, whose results are temporarily stored
in the extended QMC (i.e., eQMC) structured object. Provided that,
the algorithm goes through every configuration identifier where
the lambda function filters them based on the provided objective
function. For clarity reasons we simplified the resulting data as only
generating identifiers, but if we needed feature names and final QA
values, we would need to provide and access F 𝑠 and QA𝑠 objects
within the algorithm.

Algorithm 2: Categorical Aggregation of Attributes
Input: Populated CC𝑠
AggregatedQAs = [][];
forall 𝑐𝑐 ∈ CC𝑠 do

Func = [];
Func = Push(𝜆(𝑥 ∈ 𝑐𝑐.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒.𝑎𝑡𝑡) : 𝑥 .𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛);
AggregatedQAs[cc.id] = Push(
𝜆(𝑥 ∈ 𝑐𝑐.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒.𝑎𝑡𝑡, 𝑓 ∈ 𝐹𝑢𝑛𝑐 | 𝑓 = 𝑥 .𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛) : 𝑓 (𝑥));

end
Result: AggregatedQAs

Algorithm 3: Categorical Quality Optimisation
Input: Populated QMC, CC𝑠 , Objectives
eQMC = [QMC.cc, (QMC.qa ∪ Aggregation(CCs))];
Result: (𝜆𝑥 ∈ 𝑒𝑄𝑀𝐶 | 𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 (𝑥 .𝑞𝑎𝑠) :

[𝑥 .𝑐𝑐.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑥 .𝑞𝑎𝑠])

5 EMPIRICAL VALIDATION
In this section, we are going to test Section 4 algorithms, compar-
ing their capabilities and reasoning times with the most complete
solvers, in the context of VNFs orchestration and configuration.
The concrete research questions are:

RQ 1: Which is the level of empirical support that the state-of-
the-art currently has to represent and provide reasoning to quality-
measured VNFs?

RQ2: Is our CT framework for SPLs a feasible alternative to analyse
and optimise VNFs orchestration?

RQ 3: How do the alternative tools scale for the complete set of
quality-aware reasoning operations present in SDNs systems?

5.1 Methodology and Setup
Table 2 shows the 5 SPLs we have used for validation. They are
all real-world SPLs with different properties (e.g., size) as a means
to reinforce the results and conclusions. As far as we know, our
approach is the only work that applies SPLs to SDN/NFV domain, so
we had to usemodels from other domains as validation objects. Also,
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Table 2: Variability details generated with reporting operations in CQL IDE of the SPLs with quality attributes analysed

SPL Description Features Constraints Configurations Quality Attributes

P𝑖𝑧𝑧𝑎

Italian
vendor
machine
[28]

• Boolean: 12
• Numerical: 1 Empty

• Total SAT: 42
• Measured: 84

• Feature level:
(1) Cost ∈ (5,25) $:

Function: Addition
• Configuration level:

(2) Time ∈ (1,103) 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

T𝑟𝑢𝑐𝑘
Truck

factory [45] • Boolean: 33 • Logic: 10 • Total SAT: 234
• Measured: 234

• Feature level:
(1) Size ∈ [0,10)𝑚𝑒𝑡𝑟𝑒𝑠2:

Function: Product

JH𝑖𝑝𝑠𝑡𝑒𝑟

Software
generator

[24]
• Boolean: 45 • Logic: 13 • Total SAT: 26,256

• Measured: 105,024

• Feature level:
(1) Usability ∈ (0, 10):
Function: Addition

(2) Battery ∈ (0, 20):
Function: Addition

(3) Footprint ∈ (0, 10):
Function: Addition

• Configuration level:
(4) Compileable ∈ [true, false]

(1) VNS
and

(2) 𝐹𝑢𝑙𝑙VNS

Virtual
Network
System

Figure 1 version:
• Boolean: 18
• Numerical: 1

Full version:
• Boolean: 40
• Numerical: 3

Figure 1 version:
• Logic: 1
• Arithmetic: 1

Full version:
• Logic: 63
• Arithmetic: 4

Figure 1 version:
• Total SAT: 63
• Measured: 315

Full version:
• Total SAT: 2,130,000
• Measured: 10,650,000

• Feature level:
(1) Dependency ∈ [L, M, H]:
Function: Maximum

(2) Usability ∈ (1, 10):
Function: Mean

(3) Security ∈ [L, M, H]:
Function: Minimum

• Configuration level:
(4) Time ∈ (1,103) 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
(5) Energy ∈ (1,103) 𝑗𝑜𝑢𝑙𝑒𝑠

quality-measured virtualised networks use cases are not available
in the literature, so 3 of the SPLs are from different domains, but,
they are third-party use cases, well-known in the literature, and
share certain quality-reasoning requirements like Cost in $ and
Battery minimisation.

We present them ordered by the size of their configuration
space. The smallest is P𝑖𝑧𝑧𝑎, taken from [28] and including the
QAs additive Cost in $ at the feature-level and Time in seconds
at the configuration-level. With 6 times its configurations space,
we have T𝑟𝑢𝑐𝑘 , which we extracted from [45] and extended with
random values of amultiplicative Size in squaredmetres as a feature-
level QA. A larger case with a measured space 449 times bigger is
JH𝑖𝑝𝑠𝑡𝑒𝑟 , which already included the QAs: Usability, Battery, and
memory Footprint as additive QAs at the feature-level, and textit-
Compileable, a binary QA (i.e., yes or no) at the configuration-level.
The largest model is the complete version of the one represented in
Figure 1, the DAEMON’s VNS SPL. For completeness, we also in-
cluded the reduced version represented in Figure 1. We distinguish
them as 𝐹𝑢𝑙𝑙VNS andVNS respectively. 𝐹𝑢𝑙𝑙VNS comprises
40 boolean and 3 numerical features, 64 logic and 4 arithmetic con-
straints, and space of 2+ million configurations. Its QAs are the
same as in Figure 1; consequently, its QAs space is of 10+ million
configurations measurements.

Considering our analysis summarised in Table 1, we selected
the most complete open-source tools for each group of reasoning

operations: (1) ClaferMoo [39] due to its support of feature-level
QAs and certain flexibility to define functions; (2) AAFM Python
framework for its speed at the cost of not supporting QAs, (3) SATI-
BEA [23] as the representative of IBEA based genetic algorithm for
optimisation due to its documentation and user support, and finally
(4) CQL IDE, the state-of-the-art CT tool. The different models and
data-sets are available at:

https://github.com/danieljmg/SPLC22

We ran the presented SPLs and tools on a desktop computer
comprising an Intel(R) Core i7-4790 CPU@3.60 GHz processor with
16 GB of memory RAM and an SSD running an up-to-dateWindows
10 H22H1 X86_64 with the latest supported versions of the tools
and shared libraries (e.g., Java JDK 18.0.2). Besides double-checking
the internal statistics of each tool, we measured reasoning time
with the Windows PowerShellMeasure-Command {. . .}. Initial JAVA
virtual machine overhead was purposely removed, and it is not
affecting the time results.

5.2 Self-analysis and optimisation operations
results

In Table 3 we present the first set of results in the form of reason-
ing time in seconds; as SATIBEA does not currently support these
operations, it is not present in this comparison. We grouped them
into 4 operations which should return similar information to what
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Table 3: Averaged performance in seconds of reporting operations in state-of-the-art reasoners for Table 2 models
We tagged the performance with asterisks if the reasoner ignored QAs at the configuration-level

Reasoner: ClaferMoo AAFM Python Framework CQL IDE
SPLs: P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟

Features 0.2 s 0.2|2.7 s 0.2 s 0.3 s 0.02 s 0.02|0.39 s 0.03 s 0.05 s 0.04 s 0.05|0.55 s 0.06 s 0.07 s
Constraints 0.2 s 0.2|2.73 s 0.2 s 0.3 s 0.02 s 0.02|0.39 s 0.03 s 0.05 s 0.04 s 0.05|0.55 s 0.06 s 0.07 s
Configurations *0.5 s *1.05|213 s *1.4 s *2.7 s *0.15 s *0.2|60 s *0.24 s *5.03 s 0.17 s 0.19|156.4 s 0.22 s 1.98 s
QAs *0.9 s *1.7|4.3 s *2.1 s *2.9 s Unsupported Unsupported Unsupported Unsupported 0.06 s 0.11|3.4 s 0.14 s 0.19 s

Mean: *0.45 s *0.79|55.6 s *0.98 s *1.55 s *0.06 s *0.09|20.2 s *0.1 s *1.71 s 0.08 s 0.1|40.3 s 0.12 s 0.58 s

has been presented in Table 2. While AAFM Python framework rea-
soning is fast, it did not support QAs. Likewise, ClaferMoo did not
support QAs at the configuration-level. When an operation is com-
pletely unsupported, we show in the table Unsupported. However,
if the support is partial, they are tagged with an asterisk. In Table 4
we present the second set of results that involves the aggregate
reasoning. Each column is a variation of the aggregate reasoning,
and they are ordered from the simplest to the most complex. The
first row is a direct aggregation without constraints of all the QAs
of that SPL. The Constrained row implies reasoning by randomly
excluding one feature. Similarly, the Range row limits the values of
a (feature-level) QA. Note that we are not constraining based on the
aggregated total value but the individual feature-level QA value. In
these results, an asterisk means that the reasoner did not support
the specific aggregate function. As detailed in Table 1 of the related
work in Section 3, ClaferMoo only supports addition and product
in Z domain, while SATIBEA just addition. Hence, they did not
support anyVNS aggregate function (i.e., maximum, mean and
minimum). In those cases, we swap the domains to Z Addition to
allow time comparisons. The last set of results is in Table 5, where
we perform an optimisation operation with different types of ob-
jectives. We first compose the aggregations for the feature-level
QAs. In the first row, weMin/Maximise individual QAs and average
the runtime results. In the second row, we defined the following
multi-objectives:

• P𝑖𝑧𝑧𝑎: Minimise Time and total Cost.
• T𝑟𝑢𝑐𝑘 : Minimise total Size1 * Size2.
• JH𝑖𝑝𝑠𝑡𝑒𝑟 : Maximise compileable and total Usability ∧

Minimise total Battery and Footprint.
• VNSs: Maximise total Usability and Security ∧ Minimise

total Dependency, Time and Energy.
As we can see, in the case of T𝑟𝑢𝑐𝑘 we duplicated its single QA Size
into Size1 and Size2 in order to be able to perform a multi-objective
test. The weighted objectives for the third row were similar but in-
cluded random weights for the different QAs (e.g., MinimiseVNS
0.3*Time, 0.7*Energy). Finally, for the last row we defined the fol-
lowing objectives:

• P𝑖𝑧𝑧𝑎: Minimise total Cost per second.
• T𝑟𝑢𝑐𝑘 : Minimise Size1 * Size2.
• JH𝑖𝑝𝑠𝑡𝑒𝑟 : Minimise total Battery + total Footprint.
• VNSs: Minimise energy rate.

In this case, an asterisk indicates that the reasoner did not sup-
port modelling configuration-level QAs. In that case, we provided
random values to allow some level of comparison. Nevertheless,
ClaferMoo and SATIBEA do not currently support weighted and

new domain objectives. SATIBEA sampling parameters are config-
ured as suggested in the documentation: 20000 evolutions [23].

5.3 Discussion and Scalability Results
Which is the level of empirical support that the state-of-the-art cur-
rently has to represent and provide reasoning to quality-measured
VNFs

In this subsection we answer the RQs by considering the results
of Tables 1 to 5. The goal of RQ1 is to assess if we can successfully
apply SPL tools to reason about quality-aware orchestration of
VNFs, and in general to the SDN/NFV domain [21]. Only those
SPLs tools that include numerical features, complex constraints and
support reasoning and optimization of configuration-level QA apply
to this domain. While in the current situation we find academic
tools for very specific and basic reasoning, in practice the network
industry will discard them as they are not enough by themselves.
Additionally, those tools are not directly configurable or extendable,
and there is where CQL IDE with our CT operations highlights.
The RQ1 answer is that the best current tools could be viable
if they are extended like we are doing with CQL IDE, that is,
they provide a unified solution beyond boolean features, logic
constraints, additive attributes, and max/minimise optimisation.

The RQ2 answer is that our algorithms feasibly extend
CQL IDE for all the quality-aware operations, and hence it
provides support for managing QoS in VNFs orchestration.
Although, we should mention that CT knowledge is not very com-
mon in the industry, which is required to properly adjust such
flexible tools.

Regarding run-times, if we are only analysing SDNs variability,
AAFM Python Framework is the fastest with a worst performance
of 60 seconds. Similarly, for simple aggregation and optimisation
functions, SATIBEA is the fastest. This was expected, as it always
works with the same number of samples, and increasing them is
not translated to higher accuracy as is stated in the literature [23].
ClaferMoo tends to be the slowest, sometimes due to how their
reasoning algorithms work, like counting by enumeration [36].
However, it covers more operations than the average. Nevertheless,
we consider CQL IDE the proper alternative for the DAEMON
project, as it is among the fastest ones while supporting all sorts
of quality-aware reasoning. In summary, and answering RQ3, all
the solutions scale linearly, but without being always the fastest,
CQL IDE shines for its large application domain.
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Table 4: Averaged performance in seconds of aggregation operations in state-of-the-art reasoners for Table 2 models
For unsupported advanced aggregations, we switched them for addition and tagged their performance with an asterisk

Reasoner: ClaferMoo SATIBEA CQL IDE
SPLs: P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟

Unconstrained 0.95 s *1,8|236 s 2.15 s 2.99 s 1.67 s *1.79|2.33 s *1.85 s 1.78 s 0.27 s 0.39|211 s 0.42 s 2.68 s
Constrained 0.97 s *1.89|237 s 2.17 s 3.01 s Unsupported Unsupported Unsupported Unsupported 0.27 s 0.4|212 s 0.42 s 2.69 s
Range 0.95 s *1.8|232 s 2.15 s 2.94 s Unsupported Unsupported Unsupported Unsupported 0.27 s 0.41|212 s 0.43 s 2.69 s

Mean: 0.957 s *1.83|235 s 2.16 s 2.98 s 1.67 s *1.79|2.33 s *1.85 s 1.78 s 0.27 s 0.4|212 s 0.423 s 2.69 s

Table 5: Averaged performance in seconds of optimisation operations in state-of-the-art reasoners for Table 2 models
We tagged the performance with an asterisk if the reasoner ignores quality attributes at the configuration level

Reasoner: ClaferMoo SATIBEA CQL IDE
SPLs: P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎 VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟 P𝑖𝑧𝑧𝑎VNS|𝐹𝑢𝑙𝑙 T𝑟𝑢𝑐𝑘 JH𝑖𝑝𝑠𝑡𝑒𝑟

Min/Maximise *0.98 s *1.87|344 s 2.23 s *4.36 s *1.67 s *1.79|2 s 1.85 s *1.78 s 0.38 s 0.52|274 s 0.68 s 3.48 s
Multiobjective *1.02 s *1.97|355 s 2.38 s *4.5 s *1.85 s *2.01|2,1 s 2.03 s *1.95 s 0.42 s 0.67|312 s 0.78 s 3.95 s
Weighted Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported 0.42 s 0.68|317 s 0.82 s 4.02 s
New Domain Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported Unsupported 0.41 s 0.63|274 s 0.73 s 3.47 s

Mean: *1 s *1.92|349 s 2.31 s *4.43 s *1.76 s *1.9|2,05 s 1.94 s *1.87 s 0.41 s 0.63|294 s 0.75 s 3.73 s

5.4 Threats to Validity
Internal Validity. To control randomness, we repeated the experi-
ments 97 times and averaged the results for a confidence level of
95% with a 10% margin of error [49]. Additionally, we are aware
of the need to extend this validation with tool’s accuracy and the
reasons based on their specific reasoning techniques. Nevertheless,
we considered the selected experiments and discussion sufficient
for the aim of this work.

External Validity. By choosing the real-world SPLs of Table 2
we pretended to cover a variety of properties, QAs and functions
commonly found in VNF cases. Nonetheless, we are aware that
they do not cover every possible casuistic. While one could argue
that large spaces are not enough, and colossal spaces should be
tested, we should mention that larger spaces are very rare for VNF
orchestrators. The problem in SDN systems is the complexity of the
reasoning and not the size of it. Testing our algorithms with just
one CT reasoner could be another threat. The problem is that CT
tools besides CQL IDE are also rare due to the intrinsic abstraction
and knowledge requirement.

6 CONCLUSION AND FUTUREWORK
The domain of SDN and NFV, Edge computing and IoT is challeng-
ing for quality-aware reasoning of configurations. AAFM provides
reasoning tools and algorithms that we can apply to improve the
quality of service, being energy efficiency the most critical in those
domains. However, we found limitations when applied to the con-
text of VNFs orchestrations in the DAEMON project. In short, there
is a lack of understanding, methods, and tools designed explicitly
for advanced quality-aware analysis and optimisation that consider
interactions between feature and configuration-level QAs.

In this work, we start by uncovering the quality-based reasoning
operations necessary in the DAEMON project and grouped them
into: model analysis, aggregation functionality, and optimisation
based on objectives. We follow by analysing the state-of-the-art of

AAFM methods and tools that supports any share of those opera-
tions and summarised the outcomes in Table 1. As we found the
need for a complete alternative, we defined and implemented in
CQL IDE the quality-aware reasoning algorithms of those opera-
tions for our CT framework for SPLs. Next, we empirically tested
the state-of-the-art alongside our proposal for 5 different real-world
SPLs with several QAs and up to 20 different quality-aware reason-
ing operations.

For RQ1 we conclude that current tools could be viable if they
are extended like we are doing with CQL IDE, that is, they provide
a unified solution. For RQ2 we state that a CT tool like CQL IDE
has the flexibility and potential to cover all the operations, but its
feasibility depends on having CT knowledge in the team – as in
our case with the DAEMON project. Finally, in RQ3 we highlight
that the selection of the reasoning tool will depend on the set of
operations that the SDN system needs; while all the tools scale
linearly, some of them are faster than others for specific operations
(e.g., SATIBEA for basic near-optimal search). As a final statement, if
the objective is that VNF orchestrators automatically rely on AAFM,
all the tools in the current literature need to extend their support
beyond boolean features, logic constraints, additive attributes and
Pareto optimisation. Our CQL IDE algorithms are a solution for
that.

As an extension, we plan to analyse the trade-off between scal-
ability and accuracy in optimisation operations. Additionally, we
also plan to implement sampling and learning techniques in CQL
IDE, as well as exploit other tools.
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