
Assessing the alignment between the information needs of developers and the
documentation of programming languages: A case study on Rust

FILIPE R. COGO, Centre for Software Excellence, Huawei, Canada

XIN XIA, Software Engineering Application Technology Lab, Huawei, China

AHMED E. HASSAN, School of Computing, Queen’s University, Canada

Programming language documentation refers to the set of technical documents that provide application developers with a description
of the high-level concepts of a language (e.g., manuals, tutorials, and API references). Such documentation is essential to support
application developers in the effective use of a programming language. One of the challenges faced by documenters (i.e., personnel that
design and produce documentation for a programming language) is to ensure that documentation has relevant information that aligns
with the concrete needs of developers. In this paper, we present an automated approach to support documenters in evaluating the
differences and similarities between the concrete information need of developers and the current state of documentation (a problem
that we refer to as the topical alignment of a programming language documentation). Our approach leverages semi-supervised topic
modelling that uses domain knowledge to guide the derivation of topics. We initially train a baseline topic model from a set of
Rust-related Q&A posts that represent the concrete information needs of developers. We then use this baseline model to determine
the distribution of topic probabilities of each document of the official Rust documentation. Afterwards, we assess the similarities
and differences between the topics of the Q&A posts and the official documentation. Our results show that there is a relatively high
level of topical alignment in Rust documentation. Still, information about specific topics is scarce in both the Q&A websites and the
documentation, particularly related topics with programming niches such as network, game, and database development. For other
topics (e.g., related topics with language features such as structs, patterns and matchings, and foreign function interface), information
is only available on Q&A websites while lacking in the official documentation. Finally, we discuss implications for programming
language documenters, particularly how to leverage our approach to prioritize topics that should be added to the documentation.

CCS Concepts: • Software and its engineering → Software creation and management.

Additional Key Words and Phrases: documentation, programming languages, Rust, Q&A websites, StackOverflow, RustForum, topic
models, domain knowledge

ACM Reference Format:
Filipe R. Cogo, Xin Xia, and Ahmed E. Hassan. 2021. Assessing the alignment between the information needs of developers and the
documentation of programming languages: A case study on Rust. In ACM Transactions on Software Engineering and Methodology.

ACM, New York, NY, USA, 36 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Programming language documentation is the set of technical documents that describe high-level concepts of a pro-
gramming language and allow application developers to learn and use the language in an effective way [80]. This
documentation is officially maintained and distributed and typically includes a description of the language concepts,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
Manuscript submitted to ACM

1

ar
X

iv
:2

20
2.

04
43

1v
1 

 [
cs

.S
E

] 
 8

 F
eb

 2
02

2

https://doi.org/10.1145/1122445.1122456


TOSEM, October 2021, Cogo, et al.

reference manuals, usage examples, and tooling tutorials. Examples of such a documentation include the Java Documen-

tation1, the Rust Documentation2, and the Go Documentation3, among others. Without a sufficient set of documents,
both novice and experienced developers lack the necessary information about using a programming language to address
their needs and improve their knowledge.

The documentation of a programming language needs to be periodically updated and to follow along with the
language evolution. To produce informative documents and to plan the allocation of resources to documentation
related activities, documenters (i.e., personnel devoted to writing documentation) should be able to identify the most
important and practical topics that developers need and to compare such topics against the current version of the
documentation [65]. Documenters should also be able to identify topics of the documentation that are not well covered
and prioritize topics that should be improved. Similarly, documenters should be able to identify sufficiently documented
topics (in relation to developers’ information needs) to avoid redundancies in the maintained documentation. We refer
to topical alignment of the documentation of a programming language as the difference between the topics that make
up the concrete information needs of developers and the covered topics by the current state of the documentation.
Maximizing the topical alignment of the produced documentation is not a trivial task, as documenters are not always
aware of the concrete information needs of developers.

Complete and accurate documentation is of fundamental importance to provide developers with information about
the usage of a programming language. Despite its importance, assessing the topical alignment of the documentation of
a programming language is an open research problem [65, 73]. Typically, communities and sponsors around different
programming languages employ expensive and time-consuming survey methods to assess the topical alignment of
their documentation [1, 2, 7]. In this paper, we describe a machine learning-based approach to tackle this important
problem. The main idea behind our approach is to build two models – one that represents the information needs of
developers and another one that represents the covered topics by the current documentation of the language – and
then assess the similarity and dissimilarities between the models. To build such models, we use semi-supervised topic
modelling [47] that leverages domain knowledge, represented by a set of associated keywords with each topic (a.k.a.
anchor words), to guide the derivation of latent topics from textual information [33, 35, 47, 71].

We demonstrate the practical application of our approach by empirically assessing the topical alignment of the Rust
official documentation. Rust is a programming language that is steadily gaining the attention of software engineering
practitioners, being voted as the “most loved” language by developers for over six consecutive years [8]. Nonetheless,
when participants of the annual Rust Survey [5] are asked about what the Rust community can do to improve Rust’s
adoption, respondents frequently answer that training and documentation are two essential efforts. Therefore, beyond
demonstrating the application of our approach, an empirical study of the topical alignment of Rust documentation
provides practical recommendations to an important community of documenters.

For our case study, we encode the Rust domain knowledge into 47 different knowledge units (KUs) that are induced
from a manual categorization of the language’s official documentation [20]. A KU represents a set of related concepts
that a skilled Rust developer must know. Each KU is associated with one topic that our semi-supervised topic model
derives. Each KU is also associated with a set of anchor words (e.g., the “primitive type” KU is associated with anchor
words such as “tuple” and “array”) that are given as input to the semi-supervised topic models. We then build a concrete
model from the data of Question & Answer (Q&A) websites [38, 49, 72, 76], which are popular venues where developers

1https://docs.oracle.com/en/java/
2https://www.rust-lang.org/learn
3https://golang.org/doc/

2

https://docs.oracle.com/en/java/
https://www.rust-lang.org/learn
https://golang.org/doc/


Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

actively seek for information about programming [42, 74]. In addition, we build a documentation model from the data of
the official Rust documentation.

For both the concrete and documentation models, we analyze the prevalence of each KU (i.e., the number of documents
in which a KU occurs). Based on the prevalences, we identify the convergent KUs (i.e., the KUs that are highly prevalent
in both the concrete and documentation models), the divergent KUs (i.e., the KUs that are highly prevalent in the
concrete model but not in the documentation model), and the absent KUs (i.e., KUs with a low prevalence in both
models). We also analyze the awareness of each KU (i.e., the number of answers that each KU receives in the Q&A posts
that are associated with the KU). Based on these analyses, we answer three research questions (RQs):

RQ1) How the prevalence of KUs differs between the concrete information needs of developers and the
Rust documentation?
In general, there is a strong agreement between the concrete information needs of developers and the contents of the

official Rust documentation. Still, specific KUs that are associated with many Q&A posts have a low coverage by the Rust

documentation. We also observed KUs that are seldomly discussed in Q&A websites and also have a low coverage by the

official documentation.

RQ2) How many KUs are absent, divergent, or convergent in the Rust documentation?
We identified ten absent, six divergent, and ten convergent KUs in terms of the frequency of occurrence, half of the absent

KUs categorized as a KU for programming niches (e.g., network, game, and database development). In addition, one-third of

the KUs that are categorized as language features (e.g., structs, patterns and matchings, and foreign function interface) are

divergent.

RQ3) Do convergent, divergent, and absent KUs exhibit different awareness in Q&A websites?
In general, absent KUs have higher ranks of attention (i.e., number of answers in Q&A posts) and lower ranks of agreement

(i.e., the odds of having an accepted answer), suggesting KUs that should be prioritized by documenters (e.g., logging and

command line arguments parsing). Conversely, convergent KUs have lower ranks of attention and higher ranks of agreement.

The main contributions of our paper are:

• Methodological: We propose an approach to assess the topical alignment of the documentation of a programming
language using semi-supervised topic models of the posts of Q&A websites and a language’s documentation. To
foster further research in the area of topical alignment of programming languages, we also provide supplementary
material that contains our data and trained model.

• Technical: We perform an empirical study about the topical alignment of the Rust documentation, followed by
a discussion of the implications of our findings for documenters of programming languages. In our empirical
study, we develop a set of metrics and visualizations to assess the topical alignment of the documentation of a
programming language. Our empirical study also identifies topics that lack coverage from the Rust documentation
and which of such topics should be prioritized by documenters.

• Conceptual: We modelled the domain knowledge of Rust through a careful analysis of the official documentation
that is maintained by the community. Our domain knowledge is validated by a specialist with years of contribution
to the analyzed material (as one of the core contributors of Rust documentation). Our domain knowledge is
encoded as anchor words and it can be used by a variety of semi-supervised topic modelling techniques that
adopt this knowledge representation format [33, 35, 47, 71].

3



TOSEM, October 2021, Cogo, et al.

Paper organization: Section 2 motivates our study. Section 3 provides background material. Section 4 presents our
data collection procedure. Section 5, describes our results. Section 6 discusses the implications of our findings for
documenters. Section 7 reflects on the threats to the validity of our study. Finally Section 8 presents our conclusions.

2 MOTIVATION

It is common for communities in charge of maintaining programming languages to release surveys to understand
the users’ opinions about diverse aspects of the language. By analyzing the latest surveys from five of the “most
loved” languages4 [8] (in order, Rust, Python, Kotlin, Go, and Julia), we found that users mention the importance
of documentation in all of these surveys. In the Rust survey, participants (𝑛 = 8, 323) were asked about what they
think could be done to improve the adoption of Rust, and the largest category of answers was “documentation and
training” [5]. In the Python survey, 14% of the respondents (𝑛 > 28, 000) pointed “clear documentation” as the answer
to an open question about their three favourite features of the language [4]. The Kotlin survey (𝑛 = 1, 163) showed that
almost 25% of the respondents use the language’s official documentation to set up a project. One of the conclusions
drawn by the Kotlin community based on their survey is that “to increase the level of satisfaction with Kotlin Multiplatform,

we need to continue to improve and maintain the documentation” [16]. Participants of the Go survey (𝑛 = 9, 648) were
asked about what could be done to make the Go community more welcoming, and 21% of the respondents of this
question (𝑛 = 275) pointed to “improvement of learning resources and documentation” [2]. In addition, other 62% of the
respondents (𝑛 = 2, 476) pointed that they struggle to “find enough information to fully implement a feature of my
application” in the official Go documentation. Similarly, in the Julia survey (𝑛 = 2, 565), 26% of the respondents said that
“insufficient documentation” is one of the biggest non-technical problems with the language [9].

The survey responses show that documentation quality is paramount in promoting the adoption and the usage of
a programming language. Moreover, communities devoted to the development of a programming language are, in
general, willing to improve documentation. Also, the official documentation occasionally lacks information, compelling
developers to find alternative forms to obtain information. Therefore, documenters of programming languages will
benefit from new approaches to understand the state of the maintained documentation, especially if these approaches
are less costly than conducting surveys. As the development of the official documentation of a programming language
typically depends on a centralized team and follows a push-based distribution model (i.e., documenters are responsible
for the definition of the available information), each update to the documentation contents needs to be carefully
considered. In particular, to maximize the utility of the documented information, documenters want to assess the
alignment between the maintained documents and the information needs of developers. This requirement is exemplified
in the surveys mentioned above. For example, one of the questions in the Go survey asks “how helpful is official Go
documentation for achieving your programming goals” [2]? Also, one of the immediate actions stated by the Kotlin
community in response to the results of their documentation-related questions includes “focus (...) on common user

scenarios that are not well covered in documentation” [16].
In this paper, we describe a machine learning-based approach that documenters can adopt to assess the alignment

between the concrete information needs of developers (represented by related posts in Q&Awebsites) and a programming
language’s documentation (represented by the officially maintained documentation). The information needs from
developers are represented by the topics derived from Q&A websites, as this type of documentation follows a pull-
based distribution model (i.e., information seekers are responsible for the definition of the available information), and

4We did not find any survey for the TypeScript language, featured second on the rank of “most loved” languages.

4



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

developers post legitimate questions to obtain voluntary answers from other developers. Our approach, described in
detail in Section 4.1, uses semi-supervised topic modelling that leverages domain knowledge to cluster documents into
topics (each topic associated with one KU from Rust). We first build a concrete model using data from rust-related Q&A
posts, then we use this model to derive the topics of the official Rust documentation. A set of KU metrics, described in
detail in Section 4.2, are extracted from the built models and compared against each other, providing documenters with
information about the similarities between the concrete and the documentation models in terms of these KUs.

3 BACKGROUND AND RELATEDWORKS

This section discusses the background material of our study, as well as related works. Section 3.1 presents prior studies
about programming language documentation and software documentation in general. Section 3.2 presents prior works
that extracted developer’s information needs from Q&Awebsites. Section 3.3 presents a semi-supervised topic modelling
technique called Anchored Correlation Explanation (CorEx), and discusses the advantages of applying this specific
technique over unsupervised techniques to mine textual data.

3.1 Programming languages documentation for software engineering

In the context of software engineering, programming language documentation refers to the technical information that
communicates to developers concepts about the usage of a programming language (i.e., high-level concepts), in contrast
with its implementation (i.e., formal definitions) [68]. Examples of such documents include manuals, training material,
and API references. The maintenance of programming language documentation is deemed as a fundamental practice
since the initial days of software engineering. In 1963, refering to the documentation of the IPL-V programming language
(released a few years earlier), Allen [62] wrote that “the main documentation of IPL-V can be considered complete, official

and almost permanently fixed” and that the concern of future updates to the language documentation was addressed:
“(...) documentation is kept on tape with procedures for updating and modifying the documentation”. Yngve et al. [80]
described some of the pioneering research in programming languages documentation, recognizing the importance and
discussing the challenges of maintaining this type of documentation. Interestingly, more recent research recognizes
(general) documentation maintenance as an often overlooked software engineering practice [52, 56], pointing to the
cost of maintaining documentation as one of the drivers of this scenario.

At the intersection of programming languages documentation and software engineering automation, researchers
proposed different approaches to automatically generate documentation, often by analyzing the structure of source code.
Such automated approaches aim to supporting different development tasks (such as exception handling [40]) and different
niches (such as scientific programming [61]). Automated approaches are also used to generate documentation to different
features of the language, such as its API [59, 69, 81], components [60], and specific syntatic expressions [30]. One of the
main challenges faced by automated documentation tools is to capture the information needs of developers [53, 54, 73].
For example, Robillard et al. [65] discussed that research in automated documentation should produce results that
better support the information needs of developers. Treude et al. [73] proposed an automated tool to extract tasks from
documentation to help bridging the gap between the documentation structure and information needs of developers.
Also, the increasing popularity of Q&A websites as a source of documentation has been explored by researchers to
capture the information needs of developers [42, 78].

Nonetheless, most of the existing approaches to automate programming language documentation do not generate
information that directly supports the decision-making process of designers, producers, and curators of documentation
(i.e., documenters). Instead, most of the existing automated approaches focus on supporting program comprehension by

5



TOSEM, October 2021, Cogo, et al.

developers (i.e., the users of the documentation) [45]. Although the automatic generation of documentation [51] and the
identification of information needs of developers can be leveraged to support documentation activities, documenters
have different requirements than developers that passively consume the documentation. For example, due to limited
resources, documenters need to prioritize documentation effort [58]. As a consequence, automated techniques to support
documenters’ decision-making are necessary, particularly those techniques that are focused on external documenters
that produce material about the usage and features of a programming language, without any particular association with
a specific software system. Such documenters, as described in Section 2, are typically organized as dedicated teams
around a specific programming language.

3.2 Topic Modelling Q&A websites

Q&A websites (e.g., Stack Overflow) are popular venues where developers discuss technical aspects of programming.
These websites allow users to post questions about a topic and to obtain answers from other users. A post in a Q&A
website combines the question and the associated answers. Such information has been leveraged by software engineering
researchers to understand what developers discuss about a variety of technologies. Information from posts are used to
investigate the topic trends and challenges in areas such as mobile development [67], security [79], blockchain [75],
machine learning [37], big data [36], deep learning frameworks [43, 49], configuration as code [63], concurrency [29],
internet of things [32], chatbots [28], and new programming languages [41].

In prior works, the discussion topics in Q&A websites are learned via unsupervised topic models trained over
the textual data of the posts [38]. Topic models learn two hidden components from the data of Q&A websites. The
first component is the set of topics, with each topic being described as a probability distribution of word types. The
second component is the set of documents, with each document being described as a probability distribution of topics
(each document corresponds to a unique post). By associating topics with documents (posts), researchers leverage the
metadata of the posts to calculate metrics that denote the popularity and the difficulty of the topics [28, 29, 31, 36] (e.g.,
the popularity of a topic is measured as the number of times a topic is associated with a post).

The usage of unsupervised topic modelling techniques incurs the cost of topic labelling. After using an unsupervised
technique to extract the set of topics from the data, researchers must manually inspect the words with the largest prob-
ability to label a topic. However, it is not trivial to systematically assign labels to topics, and this task typically involves
manually analyzing the top words in each topic, measuring the inter-rater agreement between researchers [41], merging
related topics [36], and discarding meaningless topics [37]. Existing efforts to systematically assign labels to topics
involve the derivation of reference architectures and the posterior mapping of topics to layers of the architecture [49, 75].
Still, topics can be difficult to be interpreted, and some are especially hard to make sense of due to ambiguities. For
example, Hindle et al. [50] shows that domain experts are more likely to produce accurate topic labels than non-experts.
Moreover, topic models are susceptible to over-representation of frequent (i.e., more general) topics – an effect called
“rich topics get richer” [46]. As a result, unsupervised techniques hardly represent all the topics that agree with the
researchers’ knowledge about the studied domain, especially when topics of interest are underrepresented in a corpus.
To address this challenge, one can adopt a semi-supervised topic model that uses encoded domain knowledge to bias
the derivation of topics towards topics of interest.

3.3 Topic modelling with domain knowledge

Anchored CorEx [47] is a semi-supervised topic modelling technique that does not assume a probabilistic generative
model and avoids the need of adjusting parameters of a prior probability distribution such as in LDA-based topic

6



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

models [39]. Anchored CorEx also accepts the integration of domain knowledge in the form of anchor words, i.e., a set
of keywords that are associated with the topics of interest. These anchor words act as markers that help the model to
distinguish particular topics from others.5 Therefore, the generated topics can be pre-labelled according to the assigned
meaning to their associated set of anchor words.

3.3.1 Anchored Correlation Explanation. The CorEx approach to topic modelling finds the set of topics that better
“explain” the dependence (a.k.a. correlation) between each topic (a group of words) and the documents in the data [70].
Consequently, the learned parameters by CorEx are interpreted as the “association” between the topic and a document.
Estimating dependence is a powerful characteristic of CorEx to represent topics without having to adjust any distribution
parameter. The generated topic models by CorEx assign an individual weight for each topic in a document (i.e., the sum
of the topic probabilities vary from 0 to𝑚, where𝑚 is the number of topics). In the CoreEx theory, the total correlation
is expressed as 𝑇𝐶 (𝑋𝐺 ;𝑌 ) =

∑
𝑖∈𝐺 𝐼 (𝑋𝑖 : 𝑌 ) − 𝐼 (𝑋𝐺 : 𝑌 ), where 𝐼 is the mutual information of two random variables,

𝑋𝑖 is a word type, 𝑋𝐺 is a specifc subset of all word types 𝐺 , and 𝑌 represents a topic. CorEx finds the configuration of
topics that are the “most informative” of the words and documents by maximizing𝑇𝐶 (𝑋 𝑗 ;𝑌1, . . . , 𝑌𝑚), where 𝑌1, . . . , 𝑌𝑚
are topics and 𝑋 𝑗 the corresponding set of word types of each topic, for 𝑗 = 1, ...,𝑚. Each topic contributes differently to
the total correlation of the model. In turn, each document of the corpus contributes differently to the total correlation
of a topic.

An extension to CorEx is Anchored CorEx [47], which accepts the incorporation of domain knowledge into the
topic models. A set of anchor words [35] representing topics of interest is input to the model, with different anchoring
strategies producing different results in terms of topic derivation. When anchoring for topic separability, the best
strategy is to assign a set of (potentially exclusive) anchor words to each topic. During training, the association between
anchor words and each topic is emphasized by a parameter 𝛽 that controls the anchor strength. The ability to incorporate
anchor words to nudge the topic’s derivation is a valuable feature of CorEx, as it produces topics that capture a variety
of related concepts to Rust and that are of interest to documenters.

In our study of the conceptual alignment of Rust documentation, the ability to cluster posts into topics is one of the
most critical quality attributes of a topic model, since the studied metrics (described in Section 4.2) are based on the
probability of a topic in a document. Regarding the ability to cluster documents into topics (by associating a document
to the topic with the highest probability), Anchored CorEx is shown to be better or comparable to other semi-supervised
topic models in two benchmark datasets (Disaster Refief Articles and 20 News Group) [47], with respect both to the
intracluster quality (homogeneity) and the inter clusters quality (adjusted mutual information).

4 APPROACH

This section describes our approach to assess the topical alignment of the documentation of programming languages
(Section 4.1) and to calculate metrics for our empirical study of the topical alignment of Rust documentation (Section 4.2).
Figure 1 depicts the overview of our approach.

4.1 Deriving concrete and documentation models

We adopt three main steps to derive the concrete and the documention models. We first extract anchor words and KUs
from the language documentation (Section 4.1.1) and review the extraction results with a domain expert. In the next
step, we derive a semi-supervised topic model from Q&A websites using the extracted anchor words to guide the topics

5Anchor words is a related concept to prototypes in general clustering [55].

7



TOSEM, October 2021, Cogo, et al.

Concrete model

Documentation
model

Derive  
documentation  

model

Extract anchor  
words and KUs

1

4

Calculate 
prevalence 

of KUs

Deriving concrete and  
documentation models (Section 4.1)

Measuring topical
alignment (Section 4.2)

RQ1. How the prevalence of
KUs differs between the

concrete information needs of
developers and the Rust

documentation?

RQ2. How many KUs are
absent, divergent, or

convergent in the Rust
documentation?

RQs (Section 5)

RQ3. Do convergent,
divergent, and absent KUs
exhibit different awareness

in Q&A websites?

Calculate 
awareness 

of KUs

Q&A
websites

Domain expert review
Language

documentation

Derive concrete model
3

2

Anchor words & KUs

Fig. 1. The overview of our approach to studying the topical alignment of Rust documentation.

derivation (Section 4.1.3). Afterwards, we derive the topics of the official language documentation by leveraging the
topics of the concrete model that was built in the previous step (Section 4.1.4).

4.1.1 Extract anchor words and KUs:

A KU is defined as a group of thematically related concepts within a general knowledge domain (e.g., a programming
language). In the knowledge domain of programming languages, each KU encapsulates a set of related concepts that
need to be understood by developers. For example, developers need to understand how to operate different primitive

data types (e.g., scalars, arrays, and tuples) to properly use the language. Hence, primitive data types can be identified as
a KU of a programming language. The documentation of a programming language describes KUs such that developers
can understand and operationalize the different concepts of the language.

To identify KUs for our case study on Rust, we thoroughly read the official documentation of the language and
categorize its contents into KUs. More specifically, we analyze the contents of 8 documents [20] that cover the major
relevant concepts of the language and are officially distributed with the standard Rust installation (in particular, we
analyzed the documentation that is distrbuted with Rust version 1.49.0), namely The Book [21], The Reference [22], The
Cargo Book [11], The rustc Book [24], The rustdoc Book [25], Rust by Example [17], Nomicon [26], and the Edition
Guide [14]. During the categorization of the Rust documentation into KUs, we also extract a set of associated keywords
with each KU. Such keywords are used as the anchor words of our semi-supervised topic models.

4.1.2 Domain expert review:

We validate the extracted KUs and anchor words from the Rust documentation with a domain expert that actively
participates in the Rust documentation community6 for several years. The domain expert suggested the creation of
three additional KUs (and their respective anchor words), as well as the splitting of another KU and additional anchor
words for some of the KUs that were originally derived. At the end of this process, we ended up with 47 KUs and their
associated anchor words (the associated anchor words with each KU are described in Table 8 of Appendix A). The KUs
are grouped into four categories and shown in Table 1.

4.1.3 Derive concrete model:

6https://prev.rust-lang.org/en-US/community.html

8

https://prev.rust-lang.org/en-US/community.html


Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

Table 1. Derived KUs from the official Rust documentation and their respective categories.

Category Description Knowledge Units

Data types Data structures that are natively
provided by the Rust language.

Advanced types, Collections, Enumeration, Generics, Primitive types, Smart
pointers, and Structs

Development tooling Tools to support the development
of Rust applications.

Build, Compilation, Debugging, Dependency management, Documentation,
IDE, Installation and setup, Modularization, Testing, and Linters

Language features Functionalities and attributes that
are natively provided the the Rust
language.

Aliasing, Advanced Functions and Closures, Casting, Control flow, Distri-
bution channels, Exception handling, File I/O, Foreign Functional Interface,
Functional language features, Lifetime, Macros, Mutability, Object orienta-
tion, Operators and symbols, Ownership, Patterns and matchings, Traits, and
Unsafe Rust

Programming niche Specialized set of features that suits
particular applications of Rust.

Audio, Async, Command line arguments parsing, Command line interface,
Concurrency, Database, Embedded development, Formatted print, Game
development, Logging, Network development, and Web development

Extract data from Q&A
websites

Select Rust related posts
from Stack Oveflow Topic modelling

Number of
topics

Anchor
strength

Collect and pre-process data from Q&A websitesQ&A
websites

Anchor words & KUs

Concrete modelCorpus 
(Q&A posts)

Pre-process the  
contents of the posts

Fig. 2. The performed steps to derive the concrete model.

The concrete model of a programming language documentation represents the legitimate information needs of
developers, as expressed by the voluntary discussions in Q&A websites. Figure 2 shows the performed steps to derive
the concrete model for our Rust case study. We initially collect and proccess data from Q&A websites to generate our
corpus. We then use Anchored CorEx [47] (see Section 3.3) to derive topics from the corpus, setting the anchor strength
and number of topics parameters. We use the extracted anchor words of Section 4.1.1 as prototypes [48, 71] to each of
the derived topics. In the following, we describe how we collect data from Q&A websites and how we derive our topic
model.

Collect and pre-process data from Q&A websites. Our data collection process encompasses three steps: extract
data from Q&A websites, in which we obtain data from Stack Overflow – a popular Q&A website for general programing
related discussions – and Rust Forum – a specific Q&A website maintained by the Rust community, select Rust related
posts of Stack Overflow, in which we select Rust related posts from Stack Overflow, and pre-process the contents of the

posts, in which prepare our data for our topic modelling.

Extract data from Q&A websites: We extract metadata about the posts of two Q&A websites: Stack Overflow and Rust

Forum. Data from Stack Overflow is publicly available through the Stack Exchange Data Explorer [27] tool, from which
we collect the Posts.xml file containing metadata about the posts (the file was downloaded on January 11th, 2021).
Each post entry consists of either a question or one of its associated answers. We match the Id field of a question (i.e.,
an entry whose PostIdType field is equal to 1) with the ParentId field of an answer (i.e., an entry with PostIdType

equal to 2) to link the question and the associated answers that belong to the same post. Table 2 describes the collected
metadata of each post in Stack Overflow.

The Rust Forum website is built upon the open-source Discourse [12] platform, which allows data to be collected
using an API [13]. We start by collecting all the questions7 under the “help” category (i.e., the category of questions that
7We access the https://users.rust-lang.org/c/help/5.json?page={page_number} API endpoint, where page_number is a placeholder to paginate the results.

9

https://users.rust-lang.org/c/help/5.json?page={page_number}


TOSEM, October 2021, Cogo, et al.

Table 2. The posts metadata collected from Stack Overflow and Rust Forum.

Metadata Description Stack Overflow Rust Forum

Post contents The textual information of
the question and answers.

The Body field of the question and the as-
sociated answers.

The cooked field of the question and the
associated answers.

Post title The associated title with the
post.

The Title field of the question. The title field of the question.

Accepted answer date The date of the accepted an-
swer of the post.

The CreationDate field of the an-
swer whose Id field matches the
AcceptedAnswerId field of the question.

The created_at field of the answer
whose accepted_answer field is true.

Number of answers The number of associated
answers with the post.

The number of ParentId fields of the an-
swers that match the Id field of the ques-
tion.

The number of topic_id fields of the an-
swers that match the id field of the ques-
tion.

Tags The user assigned tags to
the post.

The Tags field. –

are meant to request help from users of the forum). We select questions of the “help” category because this is the category
under which developers discuss technical issues about the usage of Rust to solve programming problems and makes up
more than 65% of all posts (the other two larger categories of posts include “uncategorized” and “announcements” that,
together with “help”, make up more than 92% of all posts). After obtaining metadata of all questions, we collect the
metadata of all answers8 associated with each question. Data from Rust Forum was collected on February 9th, 2021.
Similar to the data from Stack Overflow, a post combines the original question and its associated answers. We use the
id field of a question and the topic_id field of an answer to link the question and the associated answers of the same
post. In total, we collected 14, 520 posts from Rust Forum along with 81, 225 answers. Table 2 describes the collected
metadata of each post in the Rust Forum and on Stack Overflow.

Select Rust related posts of Stack Overflow: In Stack Overflow, developers can discuss the solution of problems related
with any programming language. Since we collect all posts from Stack Overflow, we need to select posts that are
related to Rust. To this end, we leverage the user-assigned tags to identify all posts of interest. In particular, we search
for all tags in Stack Overflow that have “rust” as a prefix, ending up with a total of 12 tags (including the “rust” tag).
In addition, we derive a set of keywords from the language’s documentation [20] that Stack Overflow users could
potentially use to tag a Rust-related post. We identified ambiguous keywords that could be used to tag posts related
with other programming languages (e.g., “generics”, “closure”, and “enum”). For sanity checking, we manually analyze
all tags of the posts that are tagged with any of the derived keywords, then we remove keywords that are associated
with unrelated posts. For instance, many posts with the tag “generics” also have the tag “java” and, for this reason, we
remove “generic” from our initial tag set. Table 9 in Appendix B shows our initial set of Rust related tags.

After determining the initial set of keywords, we adopt a similar approach to prior works [57, 67, 75] to expand
the initial set of tags and to remove irrelevant tags. More specifically, to expand the initial set of tags, we first search
for all posts that contain any of our initial tags of Table 9, from which we identify an additional 2,887 tags that are
associated with those posts. To remove any irrelevant tags out of the 2,887 tags, we perform a filtering process based on
two thresholds, namely tag exclusivity threshold (TET) and tag significance threshold (TST):

8We access the https://users.rust-lang.org/t/-/{topic_id}.json?page={page_number} API endpoint, where topic_id is a placeholder for the question id
field and page_number is a placeholder to paginate the results

10

https://users.rust-lang.org/t/-/{topic_id}.json?page={page_number}


Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

TET𝑡𝑎𝑔 =
Number of Rust posts𝑡𝑎𝑔
Number of total posts𝑡𝑎𝑔

> 50%

TST𝑡𝑎𝑔 =
Number of Rust posts𝑡𝑎𝑔

Number of Rust posts with the most popular tag
> 1%

where:

Number of Rust posts𝑡𝑎𝑔 = number of posts tagged with both 𝑡𝑎𝑔 and any of the initial Rust related tags.
Number of total posts𝑡𝑎𝑔 = number of posts tagged with 𝑡𝑎𝑔.
The most popular tag = “rust”, which tags 19, 335 posts tagged with any of the initial Rust related tags.

The rationale for filtering out tags with TET𝑡𝑎𝑔 <= 50% is to remove tags that are not exclusive of Rust related
posts. The rationale for filtering out tags with TST𝑡𝑎𝑔 <= 1% is that tags with high TET can be associated with a very
low number of Rust related posts. In these cases, TST will indicate a low confidence level in the tag’s significance to
denote a post of interest. We manually inspect the tags that survive to our threshold criteria and select the tags that are
exclusively related to Rust. In addition to the tags shown in Table 9, three other tags are added to our tag set during this
manual inspection process: “lifetime”, “serde”, and “borrowing”. By selecting the posts with any of these tags, we ended
up with 19, 603 posts along with 22, 715 answers. Formally, we denote the set of selected posts in each Q&A website 𝑞
as 𝑃𝑞 .

Pre-process the contents of the posts: To prepare our data for our topic modelling, we concatenate the post title and the
post contents (see Table 2) of each Q&A website. We then combine the posts of both Q&A websites in a unique set of
posts. Finally, we perform six pre-processing steps:

(1) Remove code snippets within <code></code>.
(2) Remove HTML tags.
(3) Remove punctuation and non-alphabetic characters.
(4) Replace compound anchor words with their underscored format.
(5) Lemmatize.
(6) Remove stop words.

To remove HTML tags, we use the BeautifulSoup9 library. We replace any occurrence of a compound anchor word
in a post by its underscored format. For example, whenever we identify the occurrence of the “primitive type” anchor
word in a post, we replace such an occurrence with “primitive_type”. The provided anchor words to the topic modelling
technique are also replaced by their underscored format. The rationale for this preprocessing step is to ensure that
compound anchor words can be properly captured during the derivation of topics. For lemmatization and stop word
removal, we used the NLTK10 library. After performing the six aforementioned pre-process steps, we tokenize the
contents of the posts and obtain our corpus for the Q&A websites (see Figure 2).

Topic modelling.We use the Anchored CorEx implementation [10] to automatically derive topics from the contents
of the Rust related posts and to assign a set of topics to each post. Two parameters are given to the topic modelling
technique: the number of topics and the anchor strength (i.e., the probability weight assigned to the anchor words in
relation to the other words in a topic).

9https://pypi.org/project/beautifulsoup4/
10https://www.nltk.org/

11

https://pypi.org/project/beautifulsoup4/
https://www.nltk.org/


TOSEM, October 2021, Cogo, et al.

Topic0

2

4

6

8

10

To
ta

l C
or

re
la

tio
n

Fig. 3. The distibution of the topic TC of the model with 47 anchored topics.

Number of topics: Ideally, our topic models should have the same number of topics as the number of derived KUs, since
this characteristic ensures a one-on-one mapping of anchor words and topics, which facilitates our analyses in terms of
KUs. We perform two steps to determine whether we can obtain quality topics in a model that has the same number of
topics as KUs (or whether, instead, more topics would be needed). In our first step, we derive two tentative topic models,
one with 47 anchored topics (one topic per KU) and another model with the same 47 anchored topics and an additional
non-anchored topic. We then manually analyze the additional non-anchored topic to verify the interpretability of this
topic. We find that this additional topic is composed of commonly used words by developers in Q&A websites that
cannot be directly related to a KU of Rust. Specifically, the top-5 words in this topic are think, make, thing, case, and
need. In a second step, we decompose the models’ overall total correlation (TC) (see Section 3.3) into a distribution of
individual topic TCs that are calculated during model training [70]. If we observe relatively small values of topic TC in
this distribution (in relation to the higher values of TC), then the number of topics of the model is sufficient to explain
the correlation in the data, and additional topics will not contribute to the overall TC [47]. Figure 3 shows that the
model with 47 anchored topics presents a good compromise between the ability to explain the correlation in the data
without additional topics and the requirement of one-on-one mapping of anchor words and topics. Assuming that a
one-on-one mapping exists between anchor words and topics, we label a topic with the KU that is associated with the
set of anchor words of that topic. For this reason, during our analysis of the topic model (Section 5), we use the terms
KU and topic interchangeably. In our formal definitions, we denote the set of topics as 𝐾 .

Anchor strength: To determine the anchor strength (see Section 3.3), we tentatively build models with anchor strength
parameters 𝛽 = {2, 5, 10, 15}. For each of the tentative models, we manually inspect the generated topics and qualitatively
evaluate how well the top 20 words in the topic agree with the associated KU with that topic (via assigned anchor
words). Based on this qualitative evaluation, we conclude that an anchor strength parameter 𝛽 = 10 produces the
best topic-word distribution among the tentative models. The 47 derived topics are shown in Table 8 of Appendix C.
Deriving the concrete model results in a topic model𝑀Concrete with estimate probabilities 𝑝 (𝑦 |𝑥) of a certain topic 𝑦 to
occur in a document (i.e., a Q&A post) 𝑥 , given the words in 𝑥 .

4.1.4 Derive documentation model:

The derivation of the documentation model encompasses the two depicted steps of Figure 4. First, we pre-process the
contents of each document of the official Rust documentation, from which we obtain a corpus of the documentation.
Next, we calculate the distribution of topics that occur in each document of the corpus.

12



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

Concrete model

Language
documentation

Documentation
model

Pre-process the  
contents of the documents 

Calcualte topic distribution  
of each document

Corpus
(documents)

Fig. 4. The performed steps to derive the documentation model.

Pre-process the contents of the documents. The official Rust documentation consists of a series of books. In turn,
each book consists of a set of chapters that cover different aspects of the language. To build the corpus of the official
language documentation, we collect each chapter of the eight documents described in Section 4.1.1, in addition to
the chapters of three reference API documents, namely The Rust Core Allocation and Collections Library [18], The
Rust Core Library [19], and the Rust Standard Library [23]. These eleven books represent the complete documentation
distributed with the standard installation of Rust version 1.49.0. The books are distributed in a standard html format
that is automatically generated by the mdBook tool11. To pre-process the contents of each book chapter, we initially
parse the respective html files and extract the text within any <p></p> tags. We then concatenate all the extracted text
that is associated with the same html file (as each file contains the material of one book chapter). Finally, we apply
the same preprocessing steps described in Section 4.1.3 and tokenize the extracted text from the Rust documentation.
In total, our corpus contains 4, 754 documents, each one corresponding to a book chapter.12 We then use the Rust
documentation corpus and the concrete model (see Section 4.1.3) to build our documentation model.
Calculate the topic distribution of each document. The documentation model of a programming language repre-
sents the topics that occur in each document of the language’s documentation. By deriving the documentation model,
our objective is to measure the topical alignment of Rust documentation by comparing the prevalence of the topics of
the concrete model against the prevalence of the topics of the documentation model (further details about the calculation
of topic prevalence is given in Section 4.2). The comparison between topics of the concrete and the documentation
model is based on two assumptions. Our first assumption is that we only compare topics that occur in both models.
As we derive the concrete model using induced anchor words from the language’s documentation, topics that occur
in the concrete model also occur in the documentation by definition. Hence, we need to suppress topics that occur
exclusively in the documentation model. The suppression of exclusive topics of the documentation model does not
limit the measurement of topical alignment, as we are not interested in making claims regarding topics that occur
only in the documentation. For instance, we do not suggest removing topics that are not mentioned in any Q&A post
from the documentation, as a missing topic from Q&A websites might be due to the wide coverage of that topic by
the documentation. Our second assumption is that we perform a paired comparison of topics between the Q&A posts
and the official documentation. By paired comparison, we mean comparing the same topics (word types distribution)
between the concrete and the documentation models.

To satisfy our two assumptions, we leverage the 𝑀Concrete model to calculate the probability of each topic from
𝑀Concrete to occur in each document of the official documentation collection. This procedure contrasts with the derivation
of a new semi-supervised topic model from data of the official language’s documentation, potentially containing different
topics than the topics of the concrete model. To derive the documentation model, we apply the same optimization
procedure as described in Section 3.3 to assign topics to each document of the language’s official documentation. More

11https://github.com/rust-lang/mdBook
12In total, there are 4, 771 chapters in the books of the official Rust documentation. However, 17 of such chapters do not contain any textual information
within <p></p> tags, leaving us with a total of 4, 754 useful chapters.

13

https://github.com/rust-lang/mdBook


TOSEM, October 2021, Cogo, et al.

KU
metrics

Prevalence 
metrics

Awareness 
metrics

Affinity

Popularity

Attention

Agreement

Frequency

Attraction

Dominance

From Q&A posts

From the distribution of topic probabilities

Co-frequency

Occurrence

Co-occurrence

Fig. 5. The taxonomy of our KU metrics.

specifically, for each document of the official documentation, we calculate the configuration of topics 𝑌Concrete from the
concrete model that maximizes 𝑇𝐶 (𝑋Documentation;𝑌Concrete), where 𝑋Documentation ⊆ 𝑋Concrete (i.e., the word types
of the documentation model is constrained to the word types of the concrete model). We use the predict function
provided by CorEx [10] as the implementation of our optimization procedure. The output of this procedure is the
probability of each topic 𝑦 of 𝑌Concrete in each document 𝑥 of the official documentation.

4.2 Measuring topical alignment

The concrete and documentation models represent an estimate of the probability distribution 𝑝 (𝑦 |𝑥) of a certain topic 𝑦
in a post or a document 𝑥 , given the word types in 𝑥 . We leverage the estimated probabilities of each model to calculate
different metrics that measure the topical alignment between the concrete and the documentation models. As we have
an one-on-one mapping between KUs and topics, our metrics denote specific characteristics of a KU (e.g., the frequency
of a KU) from the measure of properties of the associated topic (e.g., the frequency that the associated topic with the
KU occurs in the documents of the corpus). Figure 5 shows the taxonomy of our KU metrics. Two higher-level groups
of metrics are the prevalence metrics (studied in Sections 5.1 and 5.2) and the awareness metrics (studied in Section 5.3).
Three of the prevalence metrics, namely occurrence, co-occurrence, and dominance, are used as the basis for the definition
of other four metrics: frequency, which measures how often a topic occurs in a post or document, co-frequency, which
measures how often two topics co-occur in a post or document, popularity, which measures how often a topic has
the highest association with a post or document, and affinity, which measures the expectation of two topics to occur
together in a post or document. Three additional metrics are defined as an awareness metric: attraction, which measures
the response rate associated with a topic in the Q&A websites, attention, which measures the number of responses to a
post in a topic, and agreement, which measures the rate of accepted answers associated with a topic. The awareness
metrics are calculated from metadata of the Q&A websites (see Table 2) and, therefore, are defined only for the concrete
model (as we do not have a direct association between a Q&A post and a document from Rust documentation).

4.2.1 Calculate prevalence of KUs:

Occurrence: Q&A posts and documents can involve related concepts to different KUs. Therefore, we wish to denote the
occurrence of a topic in a post or document. A topic 𝑦 occurs in a post or document 𝑥 if the topic probability is larger
than 50%:

14



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

occurrence(𝑦, 𝑥) =

1, if 𝑝 (𝑦 |𝑥) > 0.5

0, otherwise

Co-occurrence: More than one KU might occur in the same document. Hence, we wish to denote the co-ocurrence of
two topics in a document. Two topics 𝑦′ and 𝑦′′ are co-occurrent if both topics occur in a document 𝑥 :

co-occurrence(𝑦′, 𝑦′′, 𝑥) =

1, if occurrence(𝑦′, 𝑥) + occurrence(𝑦′′, 𝑥) > 1

0, otherwise

Dominance: Although multiple KUs might occur in the same post or document, each of the KUs in a post or document
has a different ability to denote the main subject topic. To differentiate a KU that is the main subject of post or document
from a KU that is as a supplementary subject, we wish to denote the most representative (a.k.a. dominant) topic from
the set of topics in a post or document. The dominant topic of a post or document 𝑥 is the topic 𝑦 with the largest
probability:

dominance(𝑥) = 𝑦 : 𝑝 (𝑦 |𝑥) = max(𝑝 (𝑦 |𝑥)),∀𝑥 ∈ 𝑃

Frequency: A KU can occur more or less frequently in the posts and documents. Hence, we want to measure how often
the same topic occurs across the posts or documents. The frequency of a topic 𝑦 is measured as the number of posts or
documents 𝑥 in which 𝑦 occurs:

frequency(𝑦) = |{𝑦 : occurrence(𝑦, 𝑥) > 0,∀𝑥 ∈ 𝑃}|

Co-frequency: Two KUs can occur in conjunton in the same post or document. Hence, we want to measure how often
each pair of KUs occurs in a post or document. The co-frequency of a pair of topics 𝑦′ and 𝑦′′ is the total number of
times that these two topics occur in the same post or document 𝑥 .

co-frequency(𝑦′, 𝑦′′) = |{(𝑦′, 𝑦′′) : coocurrence(𝑦′, 𝑦′′, 𝑥) > 0,∀𝑥 ∈ 𝑃}|

Popularity: The frequency with which a KU is the main subject topic of a post or document differs depending on the KU.
Therefore, we want to measure how often a certain topic is the dominant topic of a post or document. The popularity of
a topic 𝑦 is measured as the number of post or documents 𝑥 in which 𝑦 is dominant:

popularity(𝑦) = |{𝑦 : dominance(𝑥) = 𝑦,∀𝑥 ∈ 𝑃}|

Affinity: KUs that often co-occur in the same post or document share a high level of affinity. Although the relatedness
of two KUs can be observed from the co-frequency metric, KUs that occur too infrequently in comparison with other
KUs are penalized by this metric. We want to measure the affinity of a pair of topics normalized by the number of

15



TOSEM, October 2021, Cogo, et al.

occurrences of both KUs. Affinity is calculated as the number of times that a pair of topics 𝑦′ and 𝑦′′ co-occur in a post
or document divided by the mean frequency of the topics:

affinity(𝑦′, 𝑦′′) = cofrequency(𝑦′, 𝑦′′)
(frequency(𝑦′) + frequency(𝑦′′))/2

The affinity metric represents the expectation of two KUs to occur in the same post or document. The metric values
range from 0 to 1, with the minimum value representing that the two topics never co-occur and the maximum value
representing that whenever one topic occurs in a post or document, the other topic also occurs.

4.2.2 Calculate awareness of KUs:

Attraction: Associated posts with specific KUs can attract more attention from developers than those associated with
others KUs. Q&A posts that do not receive any comment from developers indicate that developers are not seeking for
related information about the KUs that occur in that post. Therefore, to denote the attraction of developers by a KU, we
measure the response rate of a KU that is dominant in the assciated discussion with a post. Formally, let 𝑎(𝑥) be the
number of answers of a post 𝑥 . The attraction of a topic 𝑦 is defined by:

attraction(𝑦) = |{𝑥 : dominance(𝑥) = 𝑦 ∧ 𝑎(𝑥) > 0,∀𝑥 ∈ 𝑃}|
|{𝑥 : dominance(𝑥) = 𝑦,∀𝑥 ∈ 𝑃}|

The attraction metric ranges from 0 to 1, with the minimum value occurring when none of the Q&A posts 𝑥 for
which the topic 𝑦 is dominant have an answer. The maximum value occurs when all posts 𝑥 for which the topic 𝑦 is
dominant have an answer. The dominant topic is used in this metric because we assume that posts without an answer
will be better represented by the dominant topic. If the topic 𝑦 is never dominant, then attraction is not defined for 𝑦.

Attention: The number of answers that a Q&A post receives can be understood as the amount of attention that developers
draw in that post. Since multiple topics can occur in the same Q&A post, each topic can contribute with a different
weight for attracting attention to that post. The attention of a topic 𝑦 is the average probability 𝑝 (𝑦 |𝑥) weighted by the
number of answers in a post 𝑥 :

attention(𝑦) =

∑
𝑥 ∈𝑃

{𝑝 (𝑦 |𝑥) × 𝑎(𝑥) : occurrence(𝑦, 𝑥) > 0}∑
𝑥 ∈𝑃

{𝑝 (𝑦 |𝑥) : occurrence(𝑦, 𝑥) > 0}

The attention metric represents how much a KU contributes to the total number of answers of the posts for which
the KU occurs.

Agreement: The degree with which developers agree with the description of the solution of a programming problem
can vary. Q&A posts that have an accepted answer indicate that developers agree with a certain solution to a problem.
Therefore, we want to denote the association of a KU with the developers’ ability to agree with an accepted answer.
Formally, let 𝑎′(𝑥) ≠ 0 if and only if the post 𝑥 has an accepted answer. We define the agreement of a topic 𝑦 as the
proportion of posts 𝑥 in which 𝑦 occurs and that have an accepted answer:

agreement(𝑦) = |{𝑥 : occurrence(𝑦, 𝑥) > 0 ∧ 𝑎′(𝑥) ≠ 0,∀𝑥 ∈ 𝑃}|
|{𝑥 : occurrence(𝑦, 𝑥) > 0,∀𝑥 ∈ 𝑃}|

16



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

The agreement metric ranges from 0 to 1, with the minimum value representing that none of the posts that topic 𝑦
occurs have an accepted answer and the maximum value representing that all posts that topic 𝑦 occurs have an accepted
answer.

5 RESULTS

This section describes the motivation, approach, and results of each of our RQs. Sections 5.1, 5.2, and 5.3 discusses RQ1,
RQ2, and RQ3, respectively.

5.1 How the prevalence of KUs differs between the concrete information needs of developers and the
Rust documentation?

Motivation: Documenters need to assess how likely is the actual state of the documentation to match the information
needs of developers and to reason about the timing for revising the contents of the documentation. In this RQ, we
quantify the topical alignment between the concrete and the documentation model of Rust by determining how similar
is the prevalence of KUs between these two models.

5.1.1 Analysis of frequency and popularity metrics:

Approach: For both the concrete and documentation models, we analyze the distribution of the frequency and popularity
metrics along the set of all KUs (see Section 4.2.1 for a definition of such metrics). With this analysis, we identify the
most frequent and popular KUs in both models and observe the shape of such distributions. To measure the extent
to which the frequency and popularity deviate from a normal distribution, we calculate the adjusted Fisher-Pearson
standardized moment 𝐺1 coefficient of skewness and interpret the absolute value of the coefficient as follows [77]:
almost symetric, if −0.5 ≤ 𝐺1 ≤ 0.5, slight skew, if 0.5 < 𝐺1 ≤ 1.0, or skew, if𝐺1 > 1.0. We then analyze whether there is
a significant correlation between the popularity or the frequency of KUs between the concrete and the documentation
models, and whether a significant correlation exists between the two metrics within the same model. From this analysis,
we observe the extent to which KUs are equaly prevalent in the two models and whether KUs that are supplementary (as
measured by its frequency) are also the main subject (as measured by its popularity) of the individual posts or documents.
To measure the correlation, we calculate the Spearman 𝜌 coefficient and interpret its absolute value as follows [64]:
negligible, if 0 ≤ |𝜌 | ≤ 0.10, weak, if 0.10 < |𝜌 | ≤ 0.39, moderate, if 0.39 < |𝜌 | ≤ 0.69, strong, if 0.69 < |𝜌 | ≤ 0.89, or very
strong, if 0.89 < |𝜌 | ≤ 1. All hypotheses testing are two-sided and performed under a significance level of 𝛼 = 0.05.

Results: In terms of the rank of frequency and popularity of KUs, there is a strong agreement between the
concrete and the documentation models. Figures 6a and 6b show both the frequency and popularity of each KU in
the concrete and the documentation models, respectively. The frequency and the popularity of the KUs follow a skewed
distribution (see Table 3), except for the distribution of the frequency in the documentation model. This observation
indicates that few KUs account for most of the individual occurrences and dominances in the documents. Table 4 shows
that there is a strong correlation between the frequency of the KUs of the concrete and the documentation models
(𝜌 = 0.72, 𝑝-value = 1.59 · 10−8), as well as between the KUs popularity (𝜌 = 0.73, 𝑝-value = 6.13 · 10−9). In the concrete
model, the frequency of the KUs weakly correlates with the popularity (𝜌 = 0.53, 𝑝-value = 1.11× 10−4), suggesting the
degree to which the same KU occurs either as a supplementary or as the main subject of the posts. In turn, the same
correlation is moderate in the documentation model (𝜌 = 0.65, 𝑝-value = 7.70 × 10−7).

5.1.2 Analysis of the co-frequency and affinity metrics:
17



TOSEM, October 2021, Cogo, et al.

0 5000 10000 15000 20000
Command line arguments parsing

Logging
Database

Advanced Functions and Closures
Game development

Advanced Types
File I/O

Installation and setup
Network development
Distribution channels

Embedded development
Macros
Async

Enumeration
Casting

Unsafe Rust
Command line interface

Web development
Debugging

Testing
IDE

Concurrency
Control flow

Foreing function interface
Build

Audio
Smart pointers

Linters
Mutability

Lifetime
Traits

Functional language features
Documentation

Dependency management
Compilation

Aliasing
Patterns and Matchings

Generics
Modularization
Error handling

Object Orientation
Ownership
Collections

Operators and symbols
Formatted print
Primitive types

Structs

Frequency
Popularity

(a) Concrete model

0 500 1000 1500 2000 2500 3000
Database

Game development
Linters

Command line arguments parsing
Logging

Installation and setup
Web development

File I/O
Advanced Functions and Closures

Network development
Debugging

Distribution channels
IDE

Foreing function interface
Async

Command line interface
Build

Enumeration
Macros

Concurrency
Audio

Patterns and Matchings
Structs

Control flow
Embedded development

Testing
Unsafe Rust

Mutability
Formatted print

Lifetime
Dependency management

Modularization
Smart pointers

Compilation
Aliasing

Error handling
Casting

Functional language features
Traits

Generics
Documentation

Object Orientation
Ownership

Operators and symbols
Advanced Types

Collections
Primitive types

Frequency
Popularity

(b) Documentation model

Fig. 6. The frequency and popularity of each KU (sorted by frequency) in the concrete and documentation models of Rust.

Table 3. The skewness of the distribution of the prevalence metrics in the concrete and conceptual models of Rust documentation.

Model Metric Skewness

𝐺1 coefficient Significant?

Concrete Frequency 0.21 (almost symetric) Yes
Popularity 4.36 (skew) Yes

Co-frequency 1.68 (skew) Yes
Affinity 1.46 (skew) Yes

Documentation Frequency 3.64 (skew) Yes
Popularity 4.99 (skew) Yes

Co-frequency 2.78 (skew) Yes
Affinity 1.23 (skew) Yes

Approach:We first analyze the distribution of the number of KUs that occur in the same post or document of each
model. The objective of this analysis is two-fold: first, we want to analyze the extent to which more than one KU is
associated with the same post or document, rendering the co-frequency and affinity metrics valid. Second, we want
to evaluate how the concrete model agrees with the documentation model in terms of the number of KUs per post
or document. We use the one-sided Mann-Whitney procedure to test the null hypothesis that the number of KUs
per post of the concrete model is significantly larger than the number of KUs per document of the documentation
model (𝛼 = 0.05).13 In case the null hypothesis is rejected, we calculate the Cliff’s Delta 𝑑 coeficient [44] to measure

13The null hypothesis was stated after visualizing the distributions of the number of KUs per document in the concrete and documentation models.

18



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

Table 4. The correlation between the same metric for two different models of Rust documentation and the correlation between
different metrics for the same model of Rust documentation.

Metrics Comparison Constant Correlation

𝜌 coefficient Significant?

Frequency & Popularity Different models, constant metric Frequency 0.72 (strong) Yes
Popularity 0.73 (strong) Yes

Constant model, different metrics Concrete model 0.36 (weak) Yes
Documentation model 0.65 (moderate) Yes

Co-frequency & Affinity Different models, constant metric Co-frequency 0.79 (strong) Yes
Affinity 0.69 (strong) Yes

Constant model, different metrics Concrete model 0.93 (very strong) Yes
Documentation model 0.75 (strong) Yes

the effect size of the difference. We interpret the coefficient according to the following thresholds [66]: negligible, if
0 ≤ |𝑑 | < 0.147, small, if 0.147 ≤ |𝑑 | < 0.330, medium, if 0.330 ≤ |𝑑 | < 0.474, or large, if 0.474 ≤ |𝑑 | ≤ 1. As for the
co-frequency and the affinity metrics, we first analyze the skewness of the distributions of the two metrics in the two
models using the Fisher-Pearson standardized moment 𝐺1 coefficient. This analysis shows whether there are pairs
of KUs that are more prevalent than others. Then, for both the co-frequency and the affinity metrics of each pair of
KUs, we analyze the Spearman 𝜌 rank correlation between the concrete and documentation models, as well as within
the same models. The coefficients of skewness and correlation are interpreted according to the thresholds given in
Section 5.1.1.

Results: Multiple KUs occur in association within the same post or document. Still, compared with the
documentation model, the concrete model tends to have a significantly larger number of KUs per post.
Figure 7 shows that the median number of KUs that occur per post is 9 in the concrete model, while the median number
of KUs per document in the documentation model is 2. The difference in the number of KUs per post or document
between the two models is statistically significant (𝑝-value < 0.05) and the effect size is large (|𝑑 | = 0.748). As for
the co-frequency and affinity metrics, Table 3 shows that the distribution of both metrics are skew in both models,
suggesting that few pairs of KUs are responsible for most of the co-occurrences in the posts and documents (which also
holds valid when we consider the co-occurrences relative to the average frequency of the two KUs). In addition, Table 4
shows that there is a strong correlation between the twomodels with respect to the rank of the co-frequency
and the affinity metrics. The correlations between the co-frequency and the affinity metrics within the same model
are very strong and strong, respectively, showing that the two metrics share similar factors that influence their values
within a model.

How the prevalence of KUs differs between the concrete information needs of developers and the
Rust documentation?

There is a strong agreement between the concrete and documentation models of Rust in terms of the rank of
frequency and popularity metrics. The agreement is also strong for the rank of co-frequency and affinity metrics.
Although the co-frequency and affinity metrics have a high correlation within the concrete and documentation
models, the same does not hold for the frequency and popularity metrics, for which the correlation within the
models are weak and moderate, respectively.

19



TOSEM, October 2021, Cogo, et al.

0 10 20 30 40 50
KUs per post or document

Model
Concrete
Documentation

Fig. 7. The distribution of the number of KUs that occur in the same document for the concrete and the documentation models of
Rust.

Table 5. Adopted cuttoff points to determine the high and low ranked KUs.

Model High rank cutoff Low rank cutoff

Concrete 50𝑡ℎ percentile 25𝑡ℎ percentile
Documentation 75𝑡ℎ percentile 50𝑡ℎ percentile

5.2 How many KUs are absent, divergent, or convergent in the Rust documentation?

Motivation: Documenters need to determine which KUs differ between the concrete and documentation models. In
particular, documenters can differentiate between KUs that are associated with three different types of KU alignment,
based on the rank of KUs in the concrete and documentation models with respect to the frequency metric. The three
categories of KU alignment are absent, divergent, and convergent. An absent KU is a KU that is low ranked in both
models. Documenters should be aware of absent KUs as they represent concepts that are rarely documented in both
models. A divergent KU is a KU that is high ranked in the concrete model but is low ranked in the documentation
model. Documenters should consider improving the amount (or enhancing the quality) of information about divergent
KUs in the official documentation, as these KUs indicate that there is high demand of information by developers and
a scarcity of the same information type in the official documentation. Finally, a convergent KU is a KU that is high
ranked in both the concrete and the documentation models. Documenters should be mindful of convergent KUs to
avoid allocating resources to document redundant information.

Approach: To categorize the KUs into convergent, divergent, and absent, we first divide the rank of KUs into three
segments, where the cutoff point of the segments are determined according to the percentiles of the frequency metric.
We call a KU as high ranked KU if this KU is ranked above the associated cutoff point with the highest ranked segment.
Similarly, we call a KU as low ranked KU if the KU is ranked below the cutoff point for the lowest ranked segment. As the
distribution of the frequency metric has a different shape in the two models (see Section 5.1.1), we adopt different cutoff
points depending on the model. We tried several combinations of cutoffs and we found that the configuration shown
in Table 5 yields interpretable and informative results. To aid the interpretability of our analysis of the types of KU
alignment, we present the findings using an infographics in which the line color represents the type of KU alignment,
while the line thickness represents the rank distance between the same KU on the concrete and documentation models.

Results: We observe the existence of ten absent KUs for macros, distribution channels, network development,
installation and setup, file I/O, advanced types, game development, advanced functions and closures, database, logging,

20



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

Primitive types
Primitive types

Collections

Collections

Advanced Types

Advanced Types
Operators and symbols Operators and symbols

Ownership
Ownership

Object Orientation
Object Orientation

Documentation

Documentation

Generics

Generics

Traits

Traits

Functional language features

Functional language features

Casting

Casting

Error handling

Error handlingAliasing
AliasingCompilation
Compilation

Smart pointers

Smart pointers

Modularization

Modularization

Dependency management

Dependency management
Lifetime Lifetime

Formatted print

Formatted printMutability
Mutability

Unsafe Rust

Unsafe Rust

Embedded development

Embedded development

Testing

Testing

Control flow
Control flow

Structs

Structs

Patterns and Matchings

Patterns and Matchings

Audio

Audio
Concurrency

Concurrency

Macros

Macros

Enumeration

Enumeration

Build

BuildCommand line interface
Command line interface

Async

Async

Foreing function interface

Foreing function interface

IDE

IDE

Distribution channels

Distribution channels

Debugging

Debugging

Network development
Network development

Advanced Functions and Closures

Advanced Functions and Closures

File I/O
File I/O

Web development

Web development
Installation and setup

Installation and setup

Logging

Logging

Command line arguments parsing

Command line arguments parsing

Linters

Linters

Game development

Game development
Database

Database

Concrete Documentation

Absent Divergent Convergent

Fig. 8. The absent, divergent, and convergent KUs in terms of the frequency metric.

and command line arguments parsing. In addition to the absent KUs, we observed the existence of six divergent
KUs for structs, patterns and matchings, linters, audio, build, and foreign function interface. Finally, we also observe
the existence of ten convergent KUs for primitive types, operators and symbols, collections, ownership, object
orientation, error handling, generics, documentation, functional language features, and documentation. Figure 9 shows
the absent, divergent, and convergent KUs in terms of popularity.14

Table 6a shows the proportion of KUs that pertain to each category grouped by the type of KU alignment (see Table 1
in Section 4.1 for a description of the category of KUs). We observe that 50% of the absent KUs are categorized as a
KU for programming niche, suggesting that documenters should consider improving the documentation of these KUs
to support the adoption of Rust for those niches. In addition, 40% of the absent KUs are for the category of language
features. Most of the convergent KUs are categorized as KUs for data types (30%) and language features (60%), suggesting

14For reference, we also show KUs that were not categorized as absent, divergent, or convergent according to the cuttoff points shown in Table 5.

21



TOSEM, October 2021, Cogo, et al.

Table 6. The relationship between the proportion of each type of KU alignment and the proportion of different categories of KUs.

(a) Proportion of KUs in each category of KUs grouped by the
type of KU alignment.

KU alignment Category of KUs Proportion of KUs

Absent Development tooling 10.0%
Language features 40.0%
Programming niche 50.0%

Divergent Data types 16.7%
Development tooling 33.3%
Language features 33.3%
Programming niche 16.7%

Convergent Data types 30.0%
Development tooling 10.0%
Language features 60.0%

(b) The proportion of absent, divergent, and convergent KUs
grouped by the category of KUs.

Category of KUs KU alignment Proportion of KUs

Data types Divergent 14.2%
Convergent 42.8%

Development tooling Absent 10.0%
Divergent 20.0%
Convergent 10.0%

Language features Absent 22.0%
Divergent 33.0%
Convergent 11.0%

Programming niche Absent 41.6%
Divergent 8.3%

that documenters do emphasize elementary KUs that occur frequently in the concrete documentation model. Table 6b
shows the proportion of absent, divergent, or convergent KUs grouped by the category of the KUs. We can observe that
the category of KUs for programming niche has a high proportion of absent KUs (41.6%). In addition, the category of
KUs for data types has a high proportion of convergent KUs (42.8%). Also noteworthy is the proportion of divergent
KUs categorized as language features (33%), suggesting that the official Rust documentation should consider improving
the coverage of this category of KUs.

How many KUs are absent, divergent, or convergent in the Rust documentation?

In addition to six divergent KUs and ten convergent KUs, we identify ten absent KUs in terms of the frequency
metric, half of them categorized as KUs for programming niches (e.g., network, game, and database development).
Also, one third of the KUs that are categorized as language features are divergent.

5.3 Do convergent, divergent, and absent KUs exhibit different awareness in Q&A websites?

Motivation: Documenters will benefit from recognizing KUs that need to be prioritized by their documentation
efforts. By triangulating awareness metrics from the concrete documentation model with the types of KU alignment,
documenters can reason about KUs that should be prioritized in the documentation. In particular, documenters can
assess the extent to which developers can find information about convergent, divergent and absent KUs in the form of
answers to Q&A posts and, based on this assessment, decide how to prioritize certain KUs to update the maintained
documentation.

Approach:We initially calculate the three awareness metrics for all KUs, from which we obtain three ranked lists of
KUs and their respective median attraction, attention, and agreement. We then use the Spearman 𝜌 rank correlation to
verify whether there is any significant difference between each pair of awareness metrics that are calculated for the
KUs (the estimated 𝑟ℎ𝑜 coefficient is interpreted as described in Section 5.1.1).

Next, we categorize each KU according to their type of KU alignment (see Section 5.2) and calculate the median
of each metric for each of the three types of KU alignment. We then compare the rank of the absent, divergent, and
convergent KUs for the same metric. Our comparison consists of using the Mann-Whitney procedure (𝛼 = 0.05) to
perform a post-hoc hypothesis testing of the difference between one type of KU alignment (e.g., convergent KUs) and
another type of KU alignment (e.g., divergent KUs) for a given awareness metric. For each of the awareness metrics, we

22



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

test three hypotheses that compares convergent vs. divergent KUs, convergent vs. absent KUs, and divergent vs. absent
KUs. After observing the median of each awareness metric for each type of KU alignment, we decide whether to choose
a one- (difference between medians is less than 5%) or two-sided (difference between medians is greater or equals to
5%) test and, when a two-sided is chosen, the direction of the test. We correct the multiple hypothesis tests using the
Bonferroni procedure [34] over the groups of equivalent comparisons across the different metrics. For instance, we
correct the three tests for the convergent vs. divergent comparison across the attraction, attention, and agreement
metrics. For each rejected null hypothesis, we calculate the magnitude of the difference using the Cliff’s Delta estimator
of effect size, with the same interpretation of the estimates as described in Section 5.2.

Results: Three out of four KUs with the lowest rank for attraction are absent in the Rust documentation,
indicating KUs that occur in few documents and often remain unanswered. Figure 9 shows the ranked KUs by
their attraction, attention, and agreement metrics. We observe a relatively uniform distribution of values for the same
metric across the different KUs. The median attraction, attention, and agreement are, respectively, 82.2%, 4.66, and
48.0%. The median value of each metric grouped by type of KU alignment is shown in Table 7a. In terms of correlation
between the awareness metrics, the only correlated rank of KUs is between the attention and agreement metrics
(𝜌 = −0.653, moderate) with the correlation estimate suggesting a decreasing monotonic relationship between the ranks
(i.e., while the rank of a KU is high for the attention metric, the rank for the same KU is low for the agreement metric
and vice-versa). The correlation between the rank of KUs for the attraction and attention, as well as for the attraction
and agreement, is not statistically significant (𝛼 = 0.05), suggesting that these metrics do not share common factors
associated to their values.

Observing Figure 9a, there is no evident pattern that separates absent, divergent, and convergent KUs in
the rank of KUs by the attraction metric. Nonetheless, the rank of KUs by the attention and agreement metrics
present clear yet contrary patterns. Figure 9b suggests that the attention metric tends to be larger for absent and
divergent KUs than for convergent KUs, whereas the difference between absent and divergent KUs is not apparent.
In turn, Figure 9c suggests that the agreement metric tends to be larger for convergent KUs than for absent
and divergent KUs, while the difference between absent and divergent KUs is also unclear. Table 7b shows the results
of our hypothesis tests, which partially confirm our initial observation of Figure 9. Particularly for the attraction metric,
the difference between the rank of absent, divergent, and convergent KUs is not statistically significant. Also, divergent
and absent KUs have no statistically significant differences for any of the awareness metrics. However, the difference
between convergent and absent KUs is statistically significant for both the attention and agreement metrics, as well
as the difference between convergent and divergent KUs with respect to the agreement metric. All the statistically
significant differences have a large effect size.

The observation that the attention of convergent KUs is systematically smaller than that of absent KUs indicates
that convergent KUs typically occur in Q&A posts that receive fewer answers. However, by definition, convergent
KUs are also associated with a larger proportion of the documentation. The high amount of associated documents can
be related to the fact that most of such KUs are for data types and language features, i.e., they are elementary KUs
(see Section 5.1.1) that are required by almost every Rust developer and related to many other KUs. In turn, the low
amount of answers in Q&A posts can be related to the fact that information about such elementary KUs occurs with
a high frequency in the concrete documentation and, therefore, generate fewer discussions in the form of answers
in Q&A posts. The aforementioned conjectures about the attention of convergent and absent KUs are supported by
triangulation with the agreement of those two KU alignments. The agreement for convergent KUs is significantly larger

23



TOSEM, October 2021, Cogo, et al.

Tra
its

Lin
ter

s

Sm
art

 po
int

ers

Te
stin

g

Adv
an

ced
 Ty

pe
s

Pri
mitiv

e t
yp

es

Gen
eri

cs

En
um

era
tio

n IDE

Colle
cti

on
s

Distr
ibu

tio
n c

ha
nn

els

Dep
en

de
ncy

 m
an

ag
em

en
t
Build

Docu
men

tat
ion

Com
pila

tio
n

Macr
os

Life
tim

e

Pa
tte

rns
 an

d M
atc

hin
gs

Ins
tal

lat
ion

 an
d s

etu
p

Err
or 

ha
nd

ling

Con
tro

l fl
ow
Str

uct
s

Deb
ug

gin
g

Mod
ula

riz
ati

on

Unsa
fe 

Rust

Cast
ing

Adv
an

ced
 Fu

nct
ion

s a
nd

 Clos
ure

s

Fu
nct

ion
al 

lan
gu

ag
e f

ea
tur

es

Em
be

dd
ed

 de
ve

lop
men

t

Owne
rsh

ip

Muta
bili

ty

Ope
rat

ors
 an

d s
ym

bo
ls

File
 I/O

Com
man

d l
ine

 ar
gu

men
ts 

pa
rsi

ng

Alias
ing

Obje
ct 

Orie
nta

tio
n

Com
man

d l
ine

 in
ter

fac
e

Con
cur

ren
cy

For
matt

ed
 pr

int

For
ein

g f
un

cti
on

 in
ter

fac
e

Data
ba

se
Aud

io
Asyn

c

Web
 de

ve
lop

men
t

Gam
e d

ev
elo

pm
en

t

Log
gin

g

Netw
ork

 de
ve

lop
men

t0.0

0.2

0.4

0.6

0.8

1.0

At
tra

ct
io

n

Absent Divergent Convergent

(a) Attraction metric

IDE

Log
gin

g
Aud

io

Em
be

dd
ed

 de
ve

lop
men

t

Lin
ter

s

Sm
art

 po
int

ers

Data
ba

se

Com
man

d l
ine

 ar
gu

men
ts 

pa
rsi

ng

Com
man

d l
ine

 in
ter

fac
e

Gam
e d

ev
elo

pm
en

t

Adv
an

ced
 Ty

pe
s

Asyn
c

Con
cur

ren
cy

Unsa
fe 

Rust

Distr
ibu

tio
n c

ha
nn

els

Con
tro

l fl
ow
Macr

os

Te
stin

g

Life
tim

e

Netw
ork

 de
ve

lop
men

t

En
um

era
tio

n
Build

Adv
an

ced
 Fu

nct
ion

s a
nd

 Clos
ure

s

Com
pila

tio
n

Dep
en

de
ncy

 m
an

ag
em

en
t

Docu
men

tat
ion

Cast
ing

Ope
rat

ors
 an

d s
ym

bo
ls

Muta
bili

ty

Alias
ing

Mod
ula

riz
ati

on

Web
 de

ve
lop

men
t

Owne
rsh

ip

Err
or 

ha
nd

ling

Gen
eri

cs

Pa
tte

rns
 an

d M
atc

hin
gs

Obje
ct 

Orie
nta

tio
n

Deb
ug

gin
g

Fu
nct

ion
al 

lan
gu

ag
e f

ea
tur

es

Pri
mitiv

e t
yp

es

For
ein

g f
un

cti
on

 in
ter

fac
e
Tra

its

Ins
tal

lat
ion

 an
d s

etu
p

Colle
cti

on
s

Str
uct

s
File

 I/O

For
matt

ed
 pr

int
0

2

4

6

8

At
te

nt
io

n

Absent Divergent Convergent

(b) Attention metric

File
 I/O

Pri
mitiv

e t
yp

es

Cast
ing

For
matt

ed
 pr

int

Ope
rat

ors
 an

d s
ym

bo
ls

Muta
bili

ty

Alias
ing

Owne
rsh

ip
Tra

its

Colle
cti

on
s

Gen
eri

cs

Fu
nct

ion
al 

lan
gu

ag
e f

ea
tur

es

Obje
ct 

Orie
nta

tio
n

Life
tim

e

Pa
tte

rns
 an

d M
atc

hin
gs

Err
or 

ha
nd

ling

En
um

era
tio

n

Adv
an

ced
 Ty

pe
s

Str
uct

s

Adv
an

ced
 Fu

nct
ion

s a
nd

 Clos
ure

s

Macr
os

Docu
men

tat
ion

Unsa
fe 

Rust

For
ein

g f
un

cti
on

 in
ter

fac
e

Con
tro

l fl
ow

Sm
art

 po
int

ers

Deb
ug

gin
g

Te
stin

g
Lin

ter
s

Mod
ula

riz
ati

on

Distr
ibu

tio
n c

ha
nn

els
Asyn

c

Com
pila

tio
n

Com
man

d l
ine

 ar
gu

men
ts 

pa
rsi

ng

Dep
en

de
ncy

 m
an

ag
em

en
t

Con
cur

ren
cy

Gam
e d

ev
elo

pm
en

t

Ins
tal

lat
ion

 an
d s

etu
p

Em
be

dd
ed

 de
ve

lop
men

t

Data
ba

se

Web
 de

ve
lop

men
t

Netw
ork

 de
ve

lop
men

t
BuildAud

io

Com
man

d l
ine

 in
ter

fac
e

Log
gin

gIDE
0.0

0.1

0.2

0.3

0.4

0.5

Ag
re

em
en

t

Absent Divergent Convergent

(c) Agreement metric

Fig. 9. KUs ranked by their attraction, attention, and agreement metrics.

Table 7. The relationship between awareness metrics and types of KU alignment.

(a) Median attraction, attention, and agreement
metrics for absent, divergent, and convergent KUs.

KU alignment Awareness met-
ric

Median

Absent Attraction 75.0%
Attention 5.17
Agreement 41.0%

Divergent Attraction 84.0%
Attention 4.53
Agreement 46.0%

Convergent Attraction 85.0%
Attention 4.36
Agreement 52.0%

(b) Rank-based comparison between absent, divergent, and convergent KUs for
attraction, attention, and agreement metrics.

Awareness met-
ric

Null hypothesis (𝐻0) Reject 𝐻0? Cliff’s Delta (𝑑)

Attraction Convergent = divergent No —
Convergent ≤ absent Yes 0.56 (large)
Divergent ≤ absent No —

Attention Convergent ≥ divergent No —
Convergent ≥ absent Yes −0.62 (large)
Divergent = absent No —

Agreement Convergent ≤ divergent Yes 0.90 (large)
Convergent ≤ absent Yes 0.76 (large)
Divergent ≤ absent No —

than for absent (and divergent) KUs, suggesting that developers are more likely to accept an answer for a post that is
related to a thoroughly documented KU.

24



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

Do convergent, divergent, and absent KUs exhibit different awareness in Q&A websites?

Absent and convergent KUs tend to have opposite patterns of attention and agreement. Absent KUs have high
ranked values for the attention metric and low ranked values for the agreement metric. Conversely, convergent
KUs have low ranked values for attention and high ranked values for agreement. A statistically significant
difference between the ranks of KUs for the divergent and convergent KUs concerning the agreement metric
exists. All these differences regarding the ranks of KUs have a large effect size.

6 DISCUSSION

This section discusses the results described in Section 5. We draw practical implications for documenters of programming
languages and externally validate our results. Our discussion is organized into two sections. In Section 6.2, we discuss
the usage of our approach by documenters that want to decide what topics of the documentation should be prioritized
when updating the documentation. In Section 6.2, we triangulate our results with external resources to validate our
approach to measure the topical alignment of Rust.

6.1 Prioritization of documentation contents and topical alignment

The generated results by applying our approach can be leveraged by documenters to identify KUs that are not well
covered by the documentation and decide which of such KUs to prioritize when updating the documentation. For
instance, an analysis of the absent KUs suggests documentation topics that should be improved, as absent KUs lack in
both the concrete and the documentation models. To decide which absent KUs should be prioritized when incorporating
new information into the documentation, documenters can search for absent KUs that often attract responses in Q&A
posts (i.e., high attraction or attention) but still have a low rate of agreement. One example is the KU for distribution
channels that, although being highly ranked in terms of attraction, is low ranked in terms of agreement. The same
triangulation can be performed for divergent KUs. When deciding which divergent KUs to prioritize, documenters
should consider the rank of the awareness metrics associated with those KUs. For example, documenters should consider
prioritizing divergent KUs with higher levels of attraction or attention and lower levels of agreement, as information
seekers will find it challenging to obtain accepted answers about divergent KUs from Q&A posts. One example is the
KU for build, which is associated with high attention but still exhibits low agreement. In addition, by analyzing the
agreement metric of convergent KUs, documenters can spot information that, although widely covered by the official
documentation, has a high number of posts that remain unanswered in Q&A websites.

When designing instruments for collecting data from the documentation users (e.g., surveys), documenters can
leverage our approach to decide with more confidence which questions to emphasize. One of the approaches used by
documenters to understand the opportunities to improve a programming language’s official documentation is to release
surveys to developers. Despite the accurate, detailed, and significant information received through surveys, collecting
and analyzing data using this instrument can require high amounts of time and effort. One important lesson learned
by applying our approach to assess the topical alignment of Rust documentation is that it is relatively easy to obtain
data to build a concrete model of the information needs of developers. After setting up a basic infrastructure for data
collection and model training, documenters can efficiently perform iterative analyses to validate and refine hypotheses
and complement the results of their survey efforts. For example, consider a closed question of the latest survey released
by the Go community that asks “when using official Go documentation, have you struggled with any of the following”.

25



TOSEM, October 2021, Cogo, et al.

Among all answers for this question (𝑛 = 2, 476), 31% selected “none of the statements apply to me”, showing that
documenters will benefit from having a form of iteratively refining research questions. Furthermore, documenters can
vary the form of domain knowledge specification (e.g., by considering different KUs or associating different anchor
words to the existing KUs), such that different KUs of interest can be incorporated into the documentation models, and
new analysis can be performed about more specific or general topics. As another example of the Go survey, the question
“how helpful is official Go documentation for achieving your programming goals in the following areas” contains a
set of seven pre-specified answers. Based on the obtained responses, documenters can use our approach to further
understand the documentation of related KUs with the “least helpful” areas. More concretely, in the example question
of the Go survey, the most popular answer was “using modules”. Documenters can then hypothesize about a set of
modules that developers might be encountering difficulty finding documentation about and add those modules as KUs
to a new iterative run of our approach. Nonetheless, our approach is not intended to replace surveys as a form of
assessing developers’ information needs but, rather, to complement this instrument. In this sense, much of the analyses
of the KU metrics can be used to either inform the design of the documentation or to inform the development of other
data collection instruments, such as surveys.

In Section 5.1.2, we found that multiple KUs typically co-occur in the same document, which suggests that document-
ing information about Rust often requires the compilation of multiple subjects in a single document. We also compared
the distribution of the number of KUs that co-occur in the same document between the concrete and documentation
models. We found that a large difference exists between the distributions. These observations suggest that documenters
should carefully consider how KUs should be combined in the same document to match developers’ information needs.
A possible solution that documenters can consider regarding the presentation of multiple KUs is cross-linking related
KUs in the official documentation. The distribution of the co-frequency and affinity metrics of the concrete model can
be used to assess which required information by developers typically involves more than one KU. The co-frequency
and affinity metrics can highlight pairs of KUs for which documenters should pay attention to the differences and
similarities. For instance, by manually inspecting the ranked list of pairs of KUs with the highest affinity, we observe
that the KUs for traits and object orientation have a high affinity. Although this observation is not surprising, given
that both KUs share a remarkably high number of related concepts, in fact, traits do not support all features of an object
in a strict sense. In particular, the dynamic binding mechanism of traits does not support the concept of inheritance
typically found in languages designed as object-oriented (e.g., Java). Therefore, pairs of KUs with high co-frequency
and affinity can help documenters to identify KUs for which developers will benefit from examples that promote the
comparison between related concepts of one KU to another, as well as KUs whose differences and similarities should be
better emphasized in the documentation.

6.2 External validation

In Section 5.1, we found that the rank of prevalent KUs is similar between the concrete and documentation models.
This observation suggests that, with some exceptions, developers seeking for information will find similar distributions
of KUs among posts of Q&A websites and the official documentation. Still, it is valuable to pay attention to the absent
and divergent KUs, as they represent topical misalignments. Table 6a shows that the associated KUs with programming
niches are at a higher risk of being absent from the Rust documentation. In addition, a close inspection in the ranked KUs
by attraction shows that the KU for game development receives fewer answers than other absent KUs. This observation
can be externally validated by examining the Rust Game Development Survey released in 2020 [6]. When asked about
the negative aspects of using Rust for game development, respondents often point to documentation as one of these

26



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

aspects, which confirms that developers do have an interest in improving the documentation related to the KU for game
development. It is also noteworthy the willingness of the Rust community to promote the adoption of the language
for other niches that are associated with absent KUs. For example, a working group for database development (one
of the absent KUs) was recently created, and the Rust users already publicly expressed their wish for documentation
improvement: “I’d love to see some “database book” that covers connections, drivers, pools, has examples for every feature

and gives overview of ecosystem. Individual project would benefit greatly from better docs” [3]. These observations suggest
that engaged communities promoting the adoption of Rust for programming niches that are associated with absent KUs
should attract documenters. Interestingly, some well documented programming niches (e.g., embedded development,
which has a specialized book in the official documentation [15]), are not deemed as divergent nor absent, suggesting
that these niches are likely well prepared for a potentially growing community of developers.

In the last few years, the Rust community ran the Rust Survey [5] to understand the evolution, challenges, and
opportunities of the language. One of the survey questions regards the difficulty of specific topics. Participants have
pointed out that lifetime, ownership, macros, trait bounds, and async are the most “tricky or very difficult” topics,
respectively. We observe that, while the KUs for traits and ownership are perceived as difficult, they are also associated
with convergent KUs. A plausible relationship between the perceived difficulty of such KUs and their high frequency
on Q&A websites and the documentation is that information about those KUs might be noisy and often scattered over
many documents, making it difficult for developers to pinpoint the information that discusses specificities of these
KUs. Therefore, documenters could consider new forms of organizing documentation regarding those KUs, focusing on
understanding specific pain points from developers on those KUs, and tackling more specific issues around those KUs
in the documentation. Additionally, the KU for macros is both absent and perceived as difficult by developers, raising a
flag to documenters regarding the quality and completeness of the documentation around this specific KU.

7 THREATS TO VALIDITY

This section discuss the threats to the validity of our study.

Selection of Rust related posts from Stack Overflow:As we leverage the tags from Stack Overflow to identify Rust
related posts, our set of posts can be incomplete (i.e., we might have missed some Rust related posts). The incompleteness
stems from the fact that some users might use an unrelated tag to Rust that our selection procedure did not capture.
Nonetheless, we expect that this threat is satisfactorily mitigated by expanding the list of intially selected posts using
the TET and TST thresholds.
Anchor words definition: Our set of anchor words were directly derived from the official Rust documentation. Still,
the set of anchor words were used to train topic models from data from Q&A websites. Therefore, some of the adopted
terminology can differ between the two data sources. Nonetheless, to mitigate this threat, we use the all known related
terms to compose our set of associated anchor words with a KU and validated the terminology with a domain expert.
KU metrics: A fundamental principle to the validity of our metrics (i.e., the ability of our metrics to capture the
prevalence and awareness of a KU) is the quality of the topic-document assignment of our models. With regards to
this factor, during our analyses, we performed sanity checkings to ensure that the topics assigned to each post were in
fact corrected. We observe that our topic models can reliably determine the set of topics in a post. However, we also
observe that the ability of the dominant topic to distinguish the main subject of a post is smaller. We also verified the
ability of our metrics to measure distinct phenomena by running different correlation analyses. Although some degree

27



TOSEM, October 2021, Cogo, et al.

of correlation exist between our metrics, we can verify that these metrics are able to measure different aspects related
to the prevalence and difficulty of a KU.
Definition of absent, divergent, and convergent KUs: To categorize KU into the three types of KU alignment
we adopted a cutoff threshold to separate the rank of KUs into segments. We experimented with many different
combinations of cutoff values in search for a configuration that allowed us to obtain interpretable and presentable
results. For example, during our experimentation, we searched for a cutoff set up that included at least one of the three
types of KU alignment and that included a certain number of KU in each type such that we could discuss the results
in the paper. Nonetheless, documenters interested in using our approach can experiment with other cutoff values,
depending on how conservatively they want to represent the three types of KU alignment.

8 CONCLUSIONS

In this paper, we present a machine learning-based approach to study the topical alignment of programming languages
documentation, defined as the difference between the concrete developers’ information needs and the current state
of the documentation. Our approach uses a non-parametric semi-supervised topic model to derive the set of topics
from posts of Q&A websites. Such topic model represents the topics that make up the concrete information needs of
developers, and it is used to derive the topics of the programming language documentation. We also propose a set of
metrics to measure and evaluate the differences and similarities between the topics of the Q&A websites and the topics
of the programming language documentation. Based on our approach, we perform an empirical study using Rust as a
case study.

Our empirical study reveals that, in general, the distribution of topics that make up the concrete information needs of
developers share a high degree of similarity with the topics of Rust documentation. Nonetheless, our study highlights
topics for which the Rust documentation requires improvement, and indicates missing topics from the documentation
that developers are not able to obtain answers from Q&A websites. More generally, we identified that KUs that occur
with less frequency in both the Q&A websites and the official documentation are often associated with KUs that are
categorized as programming niches (e.g., network, game, web, and database development). Those KUs also have a a high
number of answers in Q&A websites but, at the same time, have lower odds of having an accepted answer. In addition,
KUs that are categorized as language features (e.g., structs, patterns and matchings, and foreign function interface)
often occur in Q&A websites but not in the official documentation of Rust. These observations are noteworthy, as they
suggest KUs that should receive priority from documenters when updating the documentation. Our study contributes
to the body of knowledge regarding the documentation of programming languages, and is of particular interest for
practitioners that are engaged in actively producing information instead of passively consuming information from the
documents collection.

REFERENCES
[1] 2007. The Java SE Documentation Survey. https://blogs.oracle.com/thejavatutorials/the-java-se-documentation-survey. [Online; accessed

03-Jun-2021].
[2] 2020. Go Developer Survey 2020 Results. https://blog.golang.org/survey2020-results#TOC_9.. [Online; accessed 03-Jun-2021].
[3] 2020. Kickstarting a database-wg. https://internals.rust-lang.org/t/kickstarting-a-database-wg/9696/5/. [Online; accessed 19-Jun-2021].
[4] 2020. Python Developers Survey 2020 Results. https://www.jetbrains.com/lp/python-developers-survey-2020/. [Online; accessed 18-Jun-2021].
[5] 2020. Rust 2020 Survey Results. https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html. [Online; accessed 01-Apr-2021].
[6] 2020. Rust Game Development - Ecosystem Survey. https://gamedev.rs/blog/survey-01/. [Online; accessed 19-Jun-2021].
[7] 2020. Rust Survey 2019 reveals the need for more documentation. https://jaxenter.com/rust-survey-2019-171246.html. [Online; accessed 03-Jun-2021].
[8] 2020. Stack Overflow Developer Survey 2020. https://insights.stackoverflow.com/survey/2020. [Online; accessed 21-Mar-2021].

28

https://blogs.oracle.com/thejavatutorials/the-java-se-documentation-survey
https://blog.golang.org/survey2020-results#TOC_9.
https://internals.rust-lang.org/t/kickstarting-a-database-wg/9696/5/
https://www.jetbrains.com/lp/python-developers-survey-2020/
https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html
https://gamedev.rs/blog/survey-01/
https://jaxenter.com/rust-survey-2019-171246.html
https://insights.stackoverflow.com/survey/2020


Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

[9] 2020. User & Developer Survey 2020y. https://julialang.org/assets/2020-julia-user-developer-survey.pdf. [Online; accessed 18-Jun-2021].
[10] 2021. Anchored CorEx. https://github.com/gregversteeg/corex_topic/. [Online; accessed 15-Apr-2021].
[11] 2021. The Cargo Book. https://doc.rust-lang.org/cargo/. [Online; accessed 14-Apr-2021].
[12] 2021. Discourse. https://www.discourse.org/. [Online; accessed 12-Apr-2021].
[13] 2021. Discourse API Documentation. https://docs.discourse.org/. [Online; accessed 12-Apr-2021].
[14] 2021. The Edition Guide. https://doc.rust-lang.org/edition-guide/. [Online; accessed 14-Apr-2021].
[15] 2021. The Embedded Rust Book. https://docs.rust-embedded.org/book/. [Online; accessed 21-Jun-2021].
[16] 2021. Results of the First Kotlin Multiplatform Survey. https://blog.jetbrains.com/kotlin/2021/01/results-of-the-first-kotlin-multiplatform-survey/.

[Online; accessed 18-Jun-2021].
[17] 2021. Rust by example. https://doc.rust-lang.org/rust-by-example/. [Online; accessed 14-Apr-2021].
[18] 2021. The Rust core allocation and collections library. https://doc.rust-lang.org/alloc/. [Online; accessed 14-Apr-2021].
[19] 2021. The Rust Core Library. https://doc.rust-lang.org/core/. [Online; accessed 14-Apr-2021].
[20] 2021. Rust official learning material. https://www.rust-lang.org/learn. [Online; accessed 28-Jan-2021].
[21] 2021. The Rust Programming Language. https://doc.rust-lang.org/book/. [Online; accessed 14-Apr-2021].
[22] 2021. The Rust Reference. https://doc.rust-lang.org/stable/reference/. [Online; accessed 14-Apr-2021].
[23] 2021. The Rust Standard Library. https://doc.rust-lang.org/std/. [Online; accessed 14-Apr-2021].
[24] 2021. The rustc Book. https://doc.rust-lang.org/rustc/. [Online; accessed 14-Apr-2021].
[25] 2021. The rustdoc Book. https://doc.rust-lang.org/rustdoc/. [Online; accessed 14-Apr-2021].
[26] 2021. The Rustonomicon. https://doc.rust-lang.org/nomicon/. [Online; accessed 14-Apr-2021].
[27] 2021. Stack Exchange Data Explorer. https://data.stackexchange.com/. [Online; accessed 12-Apr-2021].
[28] Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem, and Emad Shihab. 2020. Challenges in Chatbot Development: A Study of Stack

Overflow Posts. In Proceedings of the 17th International Conference on Mining Software Repositories. 174–185.
[29] Syed Ahmed and Mehdi Bagherzadeh. 2018. What do concurrency developers ask about? A large-scale study using Stack Overflow. In Proceedings of

the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. 1–10.
[30] Anwar Alqaimi, Patanamon Thongtanunam, and Christoph Treude. 2019. Automatically Generating Documentation for Lambda Expressions in

Java. In Proceedings of the IEEE/ACM 16th International Conference on Mining Software Repositories. 310–320.
[31] Moayad Alshangiti, Hitesh Sapkota, Pradeep K. Murukannaiah, Xumin Liu, and Qi Yu. 2019. Why is Developing Machine Learning Applications

Challenging? A Study on Stack Overflow Posts. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. 1–11.

[32] Mohab Aly, Foutse Khomh, and Soumaya Yacout. 2021. What Do Practitioners Discuss about IoT and Industry 4.0 Related Technologies?
Characterization and Identification of IoT and Industry 4.0 Categories in Stack Overflow Discussions. Internet of Things 14 (2021), 100364.

[33] David Andrzejewski, Xiaojin Zhu, and Mark Craven. 2009. Incorporating Domain Knowledge into Topic Modeling via Dirichlet Forest Priors. In
Proceedings of the 26th Annual International Conference on Machine Learning. 25–32.

[34] Richard A. Armstrong. 2014. When to use the Bonferroni correction. Ophthalmic and Physiological Optics 34, 5 (2014), 502–508.
[35] S. Arora, R. Ge, and A. Moitra. 2012. Learning Topic Models – Going beyond SVD. In Proceedings of the IEEE 54th Annual Symposium on Foundations

of Computer Science. 1–10.
[36] Mehdi Bagherzadeh and Raffi Khatchadourian. 2019. Going big: a large-scale study on what big data developers ask. In Proceedings of the ACM 27th

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 432–442.
[37] Abdul Ali Bangash, Hareem Sahar, Shaiful Chowdhury, Alexander William Wong, Abram Hindle, and Karim Ali. 2019. What do Developers Know

About Machine Learning: A Study of ML Discussions on StackOverflow. In Proceedings of the IEEE/ACM 16th International Conference on Mining
Software Repositories. 260–264.

[38] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What are developers talking about? An analysis of topics and trends in Stack
Overflow. Empirical Software Engineering 19 (2014), 619–654.

[39] David M. Blei and John D. Lafferty. 2006. Dynamic Topic Models. In Proceedings of the 23rd International Conference on Machine Learning (ICML ’06).
113–120.

[40] Raymond P.L. Buse and Westley R. Weimer. 2008. Automatic Documentation Inference for Exceptions. In Proceedings of the 2008 International
Symposium on Software Testing and Analysis. 273–282.

[41] Partha Chakraborty, Rifat Shahriyar, Anindya Iqbal, and Gias Uddin. 2021. How do developers discuss and support new programming languages in
technical Q&A site? An empirical study of Go, Swift, and Rust in Stack Overflow. Information and Software Technology 137 (2021), 106603.

[42] Chunyang Chen and Zhenchang Xing. 2016. Towards Correlating Search on Google and Asking on Stack Overflow. 83–92.
[43] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, and Xuanzhe Liu. 2020. A comprehensive study on challenges in deploying deep learning

based software. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 750–762.

[44] Norman Cliff. 1996. Ordinal methods for behavioral data analysis. Psuchology Press, New York, USA.
[45] Uri Dekel and James D. Herbsleb. 2009. Reading the documentation of invoked API functions in program comprehension. In Proceedings of the IEEE

17th International Conference on Program Comprehension. 168–177.

29

https://julialang.org/assets/2020-julia-user-developer-survey.pdf
https://github.com/gregversteeg/corex_topic/
https://doc.rust-lang.org/cargo/
https://www.discourse.org/
https://docs.discourse.org/
https://doc.rust-lang.org/edition-guide/
https://docs.rust-embedded.org/book/
https://blog.jetbrains.com/kotlin/2021/01/results-of-the-first-kotlin-multiplatform-survey/
https://doc.rust-lang.org/rust-by-example/
https://doc.rust-lang.org/alloc/
https://doc.rust-lang.org/core/
https://www.rust-lang.org/learn
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/std/
https://doc.rust-lang.org/rustc/
https://doc.rust-lang.org/rustdoc/
https://doc.rust-lang.org/nomicon/
https://data.stackexchange.com/


TOSEM, October 2021, Cogo, et al.

[46] Ying Fang, Heyan Huang, Ping Jian, Xin Xin, and Chong Feng. 2014. Self-adaptive topic model: A solution to the problem of “rich topics get riche”.
China Communications 11, 12 (2014), 35–43.

[47] Ryan Gallagher, Kyle Reing, David Kale, and Greg Ver Steeg. 2017. Anchored Correlation Explanation: Topic Modeling with Minimal Domain
Knowledge. Transactions of the Association for Computational Linguistics 5, 0 (2017), 529–542.

[48] Aria Haghighi and Dan Klein. 2006. Prototype-Driven Learning for Sequence Models. In Proceedings of the Human Language Technology Conference
of the NAACL. 320–327.

[49] Junxiao Han, Emad Shihab, Zhiyuan Wan, Shuiguang Deng, and Xin Xia. 2020. What do Programmers Discuss about Deep Learning Frameworks.
Empirical Software Engineering 25 (2020), 2694–2747.

[50] Abram Hindle, Christian Bird, Thomas Zimmermann, and Nachiappan Nagappan. 2012. Relating requirements to implementation via topic analysis:
Do topics extracted from requirements make sense to managers and developers?. In Proceedings of the 28th IEEE International Conference on Software
Maintenance. 243–252.

[51] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep Code Comment Generation. In Proceedings of the 26th Conference on Program Comprehension.
200–210.

[52] Mira Kajko-Mattsson. 2005. A Survey of Documentation Practice within Corrective Maintenance. Empirical Software Engineering 20 (2005), 31–55.
[53] Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams. In Proceedings of the 29th

International Conference on Software Engineering. 344–353.
[54] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An Exploratory Study of How Developers Seek, Relate, and Collect

Relevant Information during Software Maintenance Tasks. IEEE Transactions on Software Engineering 32, 12 (2006), 971–987.
[55] L.I. Kuncheva and J.C. Bezdek. 1998. Nearest prototype classification: clustering, genetic algorithms, or random search? IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews) 28, 1 (1998), 160–164. https://doi.org/10.1109/5326.661099
[56] T.C. Lethbridge, J. Singer, and A. Forward. 2003. How software engineers use documentation: the state of the practice. IEEE Software 20, 6 (2003),

35–39. https://doi.org/10.1109/MS.2003.1241364
[57] Mario Linares-Vásquez, Bogdan Dit, and Denys Poshyvanyk. 2013. An exploratory analysis of mobile development issues using stack overflow. In

Proceedings of the 10th Working Conference on Mining Software Repositories. 93–96.
[58] Paul W. McBurney, Siyuan Jiang, Marouane Kessentini, Nicholas A. Kraft, Ameer Armaly, Mohamed Wiem Mkaouer, and Collin McMillan. 2018.

Towards Prioritizing Documentation Effort. IEEE Transactions on Software Engineering 44, 9 (2018), 897–913.
[59] Paul W. McBurney and Collin McMillan. 2014. Automatic Documentation Generation via Source Code Summarization of Method Context. In

Proceedings of the 22nd International Conference on Program Comprehension. 279–290.
[60] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock, and K. Vijay-Shanker. 2013. Automatic generation of natural

language summaries for Java classes. In Proceedings of the 21st International Conference on Program Comprehension. 23–32.
[61] Michael Moser, Josef Pichler, Günther Fleck, and Michael Witlatschil. 2015. RbG: A documentation generator for scientific and engineering software.

In Proceedings of the IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering. 464–468.
[62] Allen Newell. 1963. Documentation of IPL-V. Communications of ACM 6, 3 (1963), 86–89.
[63] Akond Rahman, Asif Partho, Patrick Morrison, and Laurie Williams. 2018. What Questions Do Programmers Ask about Configuration as Code?. In

Proceedings of the IEEE/ACM 4th International Workshop on Rapid Continuous Software Engineering. 16–22.
[64] Louis M. Rea and Richard A. Parker. 2014. Designing and Conducting Survey Research: A Comprehensive Guide (4 ed.). Jossey-Bass.
[65] Martin P. Robillard, AndrianMarcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele

Lanza, Mario Linares-Vásquez, Gail C. Murphy, Laura Moreno, David Shepherd, and Edmund Wong. 2017. On-demand Developer Documentation.
In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME). 479–483.

[66] J. Romano, J.D. Kromrey, J. Coraggio, and J. Skowronek. 2006. Appropriate statistics for ordinal level data: Should we really be using t-test and
Cohen’sd for evaluating group differences on the NSSE and other surveys?. In Proceedings of the Annual Meeting of the Florida Association of
Institutional Research. 1–3.

[67] Christoffer Rosen and Emad Shihab. 2016. What are Mobile Developers Asking About? A Large Scale Study Using Stack Overflow. Empirical
Software Engineering 21 (2016), 1192–1223.

[68] Christopher J. Shaw. 1963. Jovial and Its Documentation. Communications of ACM 6, 3 (1963), 89–91.
[69] Lucas B.L. Souza, Eduardo C. Campos, Fernanda Madeiral, Klerisson Paixao, Adriano M. Rocha, and Marcelo de Almeida Maia. 2019. Bootstrapping

cookbooks for APIs from crowd knowledge on Stack Overflow. Information and Software Technology 111 (2019), 37–49.
[70] Greg Ver Steeg and Aram Galstyan. 2014. Discovering Structure in High-Dimensional Data Through Correlation Explanation. In Proceedings of the

27th International Conference on Advances in Neural Information Processing Systems. 577–585.
[71] Florian Steuber, Mirco Schoenfeld, and Gabi Dreo Rodosek. 2020. Topic Modeling of Short Texts Using Anchor Words. In Proceedings of the 10th

International Conference on Web Intelligence, Mining and Semantics. 210–219.
[72] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How do programmers ask and answer questions on the web?. In Proceedings of

the IEEE/ACM 33rd International Conference on Software Engineering. 804–807.
[73] Christoph Treude, Martin P. Robillard, and Barthélémy Dagenais. 2015. Extracting Development Tasks to Navigate Software Documentation. IEEE

Transactions on Software Engineering 41, 6 (2015), 565–581. https://doi.org/10.1109/TSE.2014.2387172

30

https://doi.org/10.1109/5326.661099
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1109/TSE.2014.2387172


Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

[74] Pradeep K. Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and Ahmed E. Hassan. 2016. What Do Client Developers Concern When Using Web
APIs? An Empirical Study on Developer Forums and Stack Overflow. In Proceedings of the IEEE International Conference on Web Services. 131–138.

[75] Zhiyuan Wan, Xin Xia, and Ahmed E. Hassan. 2019. What is Discussed about Blockchain? A Case Study on the Use of Balanced LDA and the
Reference Architecture of a Domain to Capture Online Discussions about Blockchain platforms across the Stack Exchange Communities. IEEE
Transactions on Software Engineering (2019), 1–19.

[76] Shaowei Wang, David Lo, and Lingxiao Jiang. 2013. An empirical study on developer interactions in StackOverflow. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing. 1019–1024.

[77] David Weltman and Mark Eakin. 2018. Basic Guidelines for Common Business Statistics Metrics. Business Education Innovation Journal 10, 2 (2018),
21–26.

[78] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2019. How Do Developers Utilize Source Code from Stack Overflow? Empirical
Software Enggineering 24, 2 (2019), 637–673.

[79] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. 2016. What Security Questions Do Developers Ask? A Large-Scale Study of Stack
Overflow Posts. Journal of Computer Science and Technology 31 (2016), 910–924.

[80] Victor H. Yngve and Jean E. Sammet. 1963. Toward Better Documentation of Programming Languages. Communications of ACM 6, 3 (1963), 76.
[81] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jianhua Zhao, and Feng Qin. 2016. Automatic Model Generation fromDocumentation

for Java API Functions. In Proceedings of the IEEE/ACM 38th International Conference on Software Engineering. 380–391.

31



TOSEM, October 2021, Cogo, et al.

A DESCRIPTION OF THE KUS

Table 8 shows the extracted KUs from the official documentation of Rust.

Table 8. The derived KUs from Rust’s official documentation and their respective anchor words.

Category Knowledge Unit Anchor words

Data types Primitive types type, primitive_type, scalar_type, compound_type, tuple, array, scalar,
slice

Structs struct, named_field, name_field, structure
Enumeration enum, enumeration, variant
Collections common_collections, common_collection, collections, collection, vec-

tor, hashmap, hash_map, append, index, std_collection, stdcollection,
std_collections, stdcollections, vec, hashset, hash_set

Generics generic, generic_type, concrete, abstract, monomorphization, bound,
phantom_type

Smart pointers smart_pointer, reference_counting, deref, deref_trait, drop_trait, inte-
rior_mutability, reference_cycles, cons_list, con_list, cons_function,
con_function, reference_cycle, recursive_type, dereference_operator

Advanced Types newtype, newtype_pattern, type_alias, never_type, dynami-
cally_sized_type, dst, unsized_types, dynamic_size_type, dy-
namic_size, unsize_type, unit_type

Development tooling IDE rls, rust_analyzer, ide, visual_studio
Linters rustfmt, rustfix, clippy, linter, lint, rust-clippy
Installation and setup installation, install, hello_world, rustup, rustup.rs
Modularization module, reuse, external_code, private, public, visibility, file_hierarchy,

file_hierarch, reexport, workspace
Testing test, automated_test, automate_test, assert, unit_test, integration_test,

cargo_test
Dependency management release, release_profile, library, crates_io, yank, cargo_install, lockfile,

dependency, update_dependency, cargo_publish, semver
Compilation rustc, crate, compilation_unit, crate_file, compiler, compilation,

flag, compiler_flag, compile_flag, compiler_option, compile_option,
cargo_rustc, crate_type, link_crate, abi, application_binary_interface

Build build, cargo_toml, build_script, build_rs, cargo_build
Documentation rustdoc, cargo_doc, cargodoc, doctest, document_api, rfc1574, rfc1946,

pass, passes
Debugging debug, std_fmt, debug_info, debug_symbol, debugger, rustdt,

msvc_abi, rust_gdb, gdb, rust_lldb
Language features Ownership ownership, stack, heap, reference, borrow, move, copy, partial_move,

drop, forget
Error handling error_handling, exception, recoverable_error, unrecoverable_error,

unrecover_error, panic, abort, unwind, result, option
Functional language features functional_programming, functional_style, closure, anony-

mous, anonymous_type, anonymous_function, type_anonymity,
type_anonym, iterator_trait, next_method, hof, high_order_function

Object Orientation object_oriented, object_orientation, oo, oop, object, inheritance, trait
Patterns and Matchings pattern_matching, pattern_match, match, if_let, while_let, matches
Unsafe Rust unsafe, unsafety, memory_unsafety, unsafe_trait, raw_pointer, trans-

mute
Traits advanced_trait, associated_types, operator_overload, de-

fault_type_parameter, trait_implementation, implement_trait,
supertrait

Advanced Functions and Closures function_pointer, function_point, return_closure, returning_closure,
hrtb, higher_rank_trait_bound

32



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

Macros macro, declarative_macro, procedural_macro, metaprogramming, de-
rive_macro

Operators and symbols operators, symbols, literal, constant, const
Distribution channels nightly, night, distribution_channel, distribut_channel, night_rust,

train_schedule, rust_release, next_train, release_train, feature_flag,
install_night, unstable_feature, nightly_release, night_release

Mutability variable_binding, mutable, mutability, immutable, mut, mut_modifier,
freeze, frozen

Lifetime variable_shadow, shadow, variable_binding, block, scope, raii, lifetime,
drop, scope, out_scope, lifetime_annotation

Casting cast, casting, type_conversion, type_inference, from_trait, into_trait,
tryfrom, tryinto, tostring, fromstr

Aliasing alias, type_alias
Control flow condition, boolean_condition, boolean_condit, control_flow, decision,

loop, break, continue, std_iter, named_loop
File I/O file_read, file_write, file_method, read_only, readonly, file_descriptor,

write_only, writeonly, line_file, std_io, open_options
Foreing function interface ffi, foreign_function_interface, foreign_interface, foreign_function,

foreign_library, snappy, libc, wrap, foreign_global, no_mangle, bind-
gen

Programming niche Concurrency concurrency, concurrent, race_condition, deadlock, multithread,
thread, process, spawn, message_pass, producer, consumer, mutex,
mutexes, std_sync, std_thread, rayon

Game development game, roguelike, sokoban, game_engine, windowing, physics, render-
ing, fmod, openal, ggez

Web development web, web_development, web_api, rocket, actix_web, diesel, sqlx, oauth,
cookie, oauth2, html, css, webassembly, http, http_request

Network development openssl, network, network_layer, dns, tcp_ip, ip, tcp, udp, std_net, ftp,
smtp, cryptography, encryption, certificate

Embedded development embed, embedded, microcontroller, qemu, interrupt, spi, uart, rs232,
usb, i2c, ttl

Database database, sqlx, db, mongodb, sqlite, postgres, mysql, sql, driver, orms,
orm, elasticsearch

Logging logging, log, console_logger, env_logger, log4rs, fern, syslog, log
Audio audio, midi, music, audio_decoder, audio_decode, audio_encoder, au-

dio_encode, libsoundio
Command line interface command_line, argument_parse, ansi_terminal, ansi_term, terminal,

ansi, termcolor
Formatted print format_print, formatted_print, formating, format, print, format-

ting_trait, format_trait
Async tokio, async_std, mio, future
Command line arguments parsing clap, structopt, std_env_arg

B INITIAL TAG SET

Table 9 shows the initial set of Rust related tags.

33



TOSEM, October 2021, Cogo, et al.

Table 9. Our initial set of Rust related tags.

Category
Tag

Derived fromStackOver-
flow

Derived from documen-
tation

General “rust” –
Language feature “rust-macros” “borrow”

“rust-proc-macros” “borrow-checker”
“rust-obsolete” “supertrait”
“rust-crates” “unsafe”
– “refcell”
– “collections”
– “crate”

Development tool “rust-cargo” “rustc”
“rust-tokio” “rustup”
“rust-diesel’ “rustdoc”
“rust-actix” “rustfix”
“rust-rocket’ “clippy”
“rust-warp” “rls”
“rust-chrono” –
“rust-piston” –

C DERIVED TOPICS

Table 10 shows the top 20 words of the semi-supervised topic model associated with the concrete model.

Table 10. The top 20 words of each derived topic of the concrete model.

Topic (associated KU) Word types

Advanced Types unstable, newtype, specialization, dst, type_alias, dynamically_sized_type, unsized_type, unit_type, un-
boxed_closures, fn_traits, const_fn, unsize, type_alias_impl_trait, never_type, newtype_pattern, type_ascription,
associated_type_defaults, dynamic_size, specialized, newtypes

Collections vec, vector, iter, map, hashmap, element, item, collection, std_collection, index, string, hashset, collect, hash_map,
push, iterator, len, into_iter, append, usize

Enumeration enum, variant, enums, enumeration, myenum, union, discriminant, tag, untagged, e0015, nil, exhaustive, tagged,
strum, variant1, strum_macros, variant2, uninhabited, discriminator, boolean

Generics trait, type, generic, parameter, bound, concrete, generic_type, abstract, note, sized, monomorphization, required,
requirement, ops, constraint, known, annotation, inference, mismatch, accept

Primitive types value, type, element, vector, slice, array, tuple, scalar, primitive_type, length, integer, indexing, tuples, val, f64,
pair, f32, arr, contiguous, elem

Smart pointers deref, interior_mutability, derefmut, case, smart_pointer, actually, mean, memory, doe, reason, example, different,
instead, data, reference_counting, possible, kind, understand, fact, place

Structs struct, structs, structure, impl, self, fn, pub, field, deserialize, foo, phantomdata, member, serialize, mystruct,
bool, eq, name_field, constructor, named_field, u32

Build build, cargo, cargo_toml, cargo_build, build_script, project, toml, github, registry, building, git, 1ecc6299db9ec823,
built, manifest, edition, latest, profile, builder, ci, cdylib

Compilation build, cargo, rustc, compilation, compiled, flag, compile, crate, library, abi, crate_type, cargo_rustc, compiler,
compiling, v0, aborting, compiler_flag, previous, information, verbose

Debugging debug, std_fmt, gdb, debugger, derive, debug_info, partialeq, fmt, breakpoints, debuginfo, formatter, rustdt,
unoptimized, display, rust_gdb, debug_symbol, serde, codelldb, debugging, openocd

Dependency management library, cargo, dependency, release, package, crate_io, semver, standard, version, cargo_install, author, lockfile,
yank, party, publish, compatibility, update_dependency, published, utils, publishing

34



Assessing the alignment between the information needs of developers and Rust documentation TOSEM, October 2021,

Documentation test, pas, passed, passing, pass, doctest, cargo_doc, run_test, utilizing, new_string, testresult, arg3, arg2, mycall-
back, redacted, den, d4h0, spice, fluff, alleviates

IDE ide, vscode, rls, intellij, visual_studio, thanks, lot, right, maybe, help, post, yes, thank, language, issue, people,
try, great, guess, thought

Installation and setup install, installed, hello_world, rustup, installation, x86_64, gnu, usr, toolchain, toolchains, rustlib, unknown, ld,
libstd, pc, installing, libcore, cc, msvc, ubuntu

Linters closed, topic, reply, day, automatically, wa, allowed, longer, clippy, lint, new, invite, rustfmt, comment, open,
question, hello, linting, linter, alice

Modularization crate, module, import, public, private, workspace, exported, visibility, submodule, submodules, publicly, privacy,
mod, reexport, external, export, unresolved, importing, imported, external_code

Testing test, assert, unit_test, cargo_test, it_works, integration_test, assert_eq, my_test, cfg, testing, should_panic,
test_foo, super, bench, some_test, assertion, bencher, integration, measured, suite

Advanced Functions and
Closures

function_pointer, hrtb, return_closure, returning_closure, higher_rank_trait_bound, function_point, call_it,
add_closure, higher_order, amet, dolor, f8, cortex_m_semihosting, 0x14, 0x28, 0x00, stm32f4, toabc, fnset,
vec_closure

Aliasing trait, type, parameter, define, alias, type_alias, defined, associated, definition, following, specify, named, defining,
constrained, defines, rh, mul, inherent, unconstrained, ranked

Casting convert, cast, casting, fromstr, type_inference, tryfrom, tostring, tryinto, type_conversion, conversion, convert-
ing, converted, try_from, try_into, tryfromsliceerror, i8, u16, digit, e0605, convertible

Control flow loop, break, continue, condition, decision, control_flow, iteration, event, controlflow, looping, infinite, skip,
std_iter, quit, subsequent, continuously, met, panic_handler, iterative, panicinfo

Distribution channels nightly, stable, unstable_feature, night, nightlies, feature_flag, feature, rust_release, nightly_release, beta,
build_run, experimental, stabilized, rust1, multirust, stability, intrinsic, gate, enabling, stabilization

Error handling result, error, err, option, panic, panicking, abort, exception, error_handling, unwind, return, catch_unwind, std,
unwrap, src, message, failure, invalid, success, fails

File I/O std_io, file_read, file_descriptor, io, readonly, line_file, stdin, read, read_line, file_write, bufreader, buffer, bufread,
reader, byte, expect, buf, stdout, input, line

Foreing function interface extern, wrap, ffi, libc, no_mangle, c_void, bindgen, macro_use, stdcall, c_double, foreign_function, link_name,
c_int, serde_derive, snappy, typedef, no_std, rustc_serialize, c_str, winapi

Functional language fea-
tures

lifetime, parameter, closure, outlive, function, anonymous, infer, argument, fnmut, conflicting, anonymous_type,
body, fnonce, functional_programming, anonymous_function, captured, capture, iterator_trait, callback, inferred

Lifetime lifetime, reference, dropped, drop, scope, variable, block, live, lifetime_annotation, long, raii, valid, life, shadow,
e0597, static, e0495, temporary, explicit, variable_binding

Macros macro, procedural, procedural_macro, macro_rules, derive_macro, ident, expr, declarative, declarative_macro,
tt, metaprogramming, expansion, ty, proc, originates, token, tokenstream, expand, generate, macro_export

Mutability borrow, reference, mutable, mut, immutable, mutate, mutability, checker, borrows, occurs, mutably, refcell, ref,
cell, e0502, borrow_mut, e0499, modify, mutation, content

Object Orientation trait, implement, generic, method, implementing, object, implemented, inheritance, implementation, oop,
composition, box, oo, boxed, object_oriented, polymorphism, partialord, ord, equality, delegate

Operators and symbols function, type, const, array, expression, operator, constant, literal, signature, expected, i32, returning, mismatched,
e0308, syntax, declare, opaque, expects, overloading, overload

Ownership reference, borrow, mutable, ownership, value, owned, borrowing, pointer, moved, heap, copy, closure, stack,
drop, borrowed, forget, clone, allocated, moving, owns

Patterns and Matchings match, ok, err, let, pattern_matching, pattern_match, str, parse, matching, false, errorkind, from_str, eprintln,
arm, msg, as_str, unreachable, matched, branch, parsing

Traits trait, implement_trait, associated_type, trait_implementation, e0277, supertrait, satisfied, dyn, marker, subtrait,
dispatch, impls, blanket, mytrait, e0599, unsized, vtable, e0119, implementors, default_type_parameter

Unsafe Rust unsafe, safe, transmute, raw_pointer, unsafety, from_raw_parts_mut, ptr, memory_unsafety, mem, assume_init,
soundly, as_ptr, safety, raw, undefined, as_mut_ptr, ub, repr, c_char, from_raw_parts

Async future, async, tokio, mio, await, async_std, stream, poll, executor, map_err, ready, asynchronous, and_then,
block_on, pin, reactor, fut, streamext, tokio_core, polled

Audio think, thing, make, really, ha, like, good, time, sure, need, audio, know, bit, point, way, probably, better, look,
used, problem

Command line arguments
parsing

clap, subcommand, structopt, subcommands, from_os_str, argmatches, rdi, rax, mov, appsettings, rsi, rsp, eax,
required_unless, rcx, rdx, load_yaml, retq, movq, ret

35



TOSEM, October 2021, Cogo, et al.

Command line interface terminal, command_line, target, file, linux, run, command, running, ansi, bin, window, directory, linker, path,
program, exit, failed, link, linking, script

Concurrency thread, spawn, channel, mutex, std_sync, blocking, std_thread, task, threaded, process, concurrent, rayon,
spawning, concurrently, concurrency, multithreaded, deadlock, mutexes, producer, send

Database database, db, postgres, driver, sql, mysql, sqlite, postgresql, mongodb, sqlx, orm, elasticsearch, query, table, conn,
id, schema, select, queryable, row

Embedded development embedded, embed, interrupt, performance, faster, optimization, stm32, microcontroller, qemu, fast, usb, cpu,
number, size, speed, slower, large, slow, small, firmware

Formatted print println, print, format, main, to_string, output, printing, printed, formatting, push_str, formatted, num, format-
ting_trait, format_print, gen_range, format_trait, letter, printer, 02x, uncomment

Game development game, rendering, physic, ggez, windowing, game_engine, draw, image, width, height, render, graphic, pixel,
texture, opengl, gaming, roguelike, color, player, screen

Logging log, logging, env_logger, levelfilter, log4rs, set_logger, syslog, simple_logger, loglevelfilter, setloggererror, fern,
logger, console, appenders, production, rust_log, essential, pipeline, infrastructure, rolling

Network development server, network, tcp, ip, openssl, std_net, udp, certificate, encryption, connection, socket, dns, tcpstream, ftp,
net, bind, telnet, connect, smtp, tcplistener

Web development http, server, web, html, hyper, actix, reqwest, diesel, rocket, actix_web, webassembly, http_request, request,
cookie, client, cs, com, response, org, lang

36


	Abstract
	1 Introduction
	2 Motivation
	3 Background and related works
	3.1 Programming languages documentation for software engineering
	3.2 Topic Modelling Q&A websites
	3.3 Topic modelling with domain knowledge

	4 Approach
	4.1 Deriving concrete and documentation models
	4.2 Measuring topical alignment

	5 Results
	5.1 How the prevalence of KUs differs between the concrete information needs of developers and the Rust documentation?
	5.2 How many KUs are absent, divergent, or convergent in the Rust documentation?
	5.3 Do convergent, divergent, and absent KUs exhibit different awareness in Q&A websites?

	6 Discussion
	6.1 Prioritization of documentation contents and topical alignment
	6.2 External validation

	7 Threats to validity
	8 Conclusions
	References
	A Description of the KUs
	B Initial tag set
	C Derived topics

