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Abstract—We present a scalable solution method based on
an alternating direction method of multipliers and graphics
processing units (GPUs) for rapidly computing and tracking
a solution of alternating current optimal power flow (ACOPF)
problem. Such a fast computation is particularly useful for
mitigating the negative impact of frequent load and generation
fluctuations on the optimal operation of a large electrical grid.
To this end, we decompose a given ACOPF problem by grid
components, resulting in a large number of small independent
nonlinear nonconvex optimization subproblems. The computa-
tion time of these subproblems is significantly accelerated by
employing the massive parallel computing capability of GPUs.
In addition, the warm-start ability of our method leads to faster
convergence, making the method particularly suitable for fast
tracking of optimal solutions. We demonstrate the performance
of our method on grids having up to 70,000 buses by solving
associated optimal power flow problems with both cold start and
warm start.

Index Terms—alternating current optimal power flow, alter-
nating direction method of multipliers, graphics processing unit

I. INTRODUCTION

The growing penetration of renewable and distributed en-
ergy resources into electrical grids brings attention to dis-
tributed solution methods for solving alternating current op-
timal power flow (ACOPF) problems to efficiently control
and optimize a potentially huge-scale grid [1]. In contrast to
centralized optimization methods such as Ipopt [2], distributed
solution methods provide a scalable computation capability,
making them particularly suitable for an environment where
the number of control units is ever increasing. Because com-
putations can be performed in a distributed fashion, they are
also less vulnerable to privacy threats and cyber attacks.

Another important aspect to consider for reliable opera-
tion of the grid under such circumstances is the ability to
rapidly track an optimal solution under load and generation
fluctuations. Power generation from renewable resources is
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intrinsically uncertain, causing potentially larger fluctuations
in generation over time than those caused by traditional fuel-
based generators. Without a timely and optimal adjustment of
set points of generators, these fluctuations could incur inef-
ficiency and instability in grid operations, often represented
as repeated large deviations of the system frequency from
its nominal value. In this case, quickly tracking an optimal
solution from the previous solution is of central importance.
From the optimization perspective, this tracking ability is
closely related to the warm-start capability of the underlying
optimization methods.

Among many different distributed solution methods, the al-
ternating direction method of multipliers (ADMM) is of partic-
ular interest because of its superior computational performance
and privacy-preserving capability, as demonstrated in [3], [4],
[5]. The algorithm is also suitable for exploiting warm start
for accelerated convergence. However, the existing ADMM-
based distributed solution methods in the literature work only
on CPUs, without fully realizing their algorithmic potential for
the massive parallel computing of the ADMM subproblems.
The main reason is hardware limitations; for example, a quad-
core CPU can run up to 8 threads, whereas a GPU can run
tens of thousands of threads and more simultaneously.

Although GPUs have shown great success in accelerating
machine learning algorithms such as deep neural networks,
they have made little progress in advancing the algorithms for
nonlinear optimization problems such as ACOPF. One of the
main reasons is the lack of an efficient linear system solver for
a large-scale sparse symmetric indefinite system of equations,
for example the Karush–Kuhn–Tucker system matrix. Most
nonlinear optimization algorithms require factorization and
triangular solves of such a system of equations in order
to compute a Newton direction. These computations take a
significant amount (more than 80%) of the total computation
time. However, the sparsity of the system of equations and
inherently sequential nature of the algorithms leave little room
for accelerating their computation on GPUs, as shown in [6],
[7].

In this paper we show how we may exploit GPUs to signif-
icantly accelerate the computation time of an ADMM-based
distributed solution method, while guaranteeing convergence
of its iterates. Our approach is based on a combination of
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the two existing ADMM algorithms for ACOPF [3], [4]. We
combine the computational and theoretical merits of those
approaches, respectively, in a way that we can utilize the
enormous parallel computing capability of GPUs along with
benefiting from good theoretical properties.

In particular we exploit the computational advantages of [3]
by decomposing an ACOPF problem into many small subprob-
lems that can be solved in parallel. Many of these subproblems
have a closed-form solution and thus can be easily parallelized
on GPUs. However, other subproblems are small nonlinear
nonconvex optimization problems. To rapidly solve such prob-
lems in batch on GPUs, we employ our recently developed
batch solver, ExaTron [8], which is capable of significantly
accelerating the computation of solutions of tens of thousands
and more of small nonlinear nonconvex problems on GPUs.
We introduce our reformulation and augmented Lagrangian
techniques to fully utilize ExaTron for this purpose.

While [3] does not guarantee the convergence of its ADMM
iterates, we modify its computational procedure to apply
recent theoretical developments of [4] to establish convergence
guarantees. The resulting ADMM algorithm has both the com-
putational and theoretical benefits of [3], [4], respectively, that
can be efficiently implemented and executed on GPUs. Ex-
perimental results in Section IV demonstrate that our ADMM
algorithm on GPUs is as competitive as Ipopt for solving a
large-scale ACOPF problem having up to 70,000 buses. In
addition, our method takes advantage of warm starting, which
further provides accelerated convergence, making our method
particularly suitable for fast tracking of optimal solutions
under load and generation fluctuations.

The rest of the paper is organized as follows. In Section II
we introduce our ADMM decomposition scheme including its
formulations and convergence proof. Section III briefly de-
scribes the implementation of our ADMM algorithm on GPUs.
In Section IV we demonstrate the computational performance
of our method on GPUs over large-scale grids having up to
70,000 buses with both cold start and warm start. We compare
its computation time and solution quality with those obtained
from Ipopt. We conclude in Section V with a summary and a
brief look at future work for improving ADMM. Our algorithm
has been implemented in Julia [9] using CUDA.jl [10] and is
available at https://github.com/exanauts/ExaAdmm.jl.git.

II. ADMM FORMULATIONS FOR ACOPFS

Our ADMM formulation is a combination of the
component-based decomposition [3] and the two-level algo-
rithm [4]. The component-based decomposition enables us to
exploit the massive parallel computing capability of GPUs
by generating many small nonlinear nonconvex problems in
a form that can be efficiently solved on GPUs in parallel,
while the two-level algorithm provides theoretical grounds for
convergence guarantees of our ADMM iterates. The details
of those two formulations can be found in [3], [4]; here
we introduce their basic ideas briefly and describe the main
difference between our formulation and theirs. At the end of

this section we provide a sketch of the convergence proof of
our ADMM iterates.

A. ACOPF formulation

A rectangular formulation of an ACOPF problem is given
in (1). ACOPF computes economically optimal set points of
generators and voltage values within their lower and upper
limits that satisfy physical laws such as Ohm’s law and
Kirchhoff’s laws. These physical laws are represented in
power flow equations (1b)–(1c) and (1i)–(1l). Because of the
nonlinearity of power flow equations, ACOPF problems are
nonlinear nonconvex optimization problems and thus NP-hard.
Therefore, we typically aim to compute a stationary point as a
solution, which is a point satisfying the well-known first-order
optimality conditions.

minimize
pgi ,qgi ,wi,θi,wR

ij ,w
I
ij

∑
i∈B

∑
gi∈Gi

fgi(pgi) (1a)

subject to∑
gi∈Gi

pgi − pdi = gSi wi +
∑
j∈Bi

pij , ∀i ∈ B (1b)∑
gi∈Gi

qgi − qdi = −bSi wi +
∑
j∈Bi

qij , ∀i ∈ B (1c)√
p2
ij + q2

ij ≤ r̄ij , ∀(i, j) ∈ L (1d)√
p2
ji + q2

ji ≤ r̄ji, ∀(i, j) ∈ L (1e)

p
gi
≤ pgi ≤ pgi , ∀gi ∈ Gi,∀i ∈ B (1f)

q
gi
≤ qgi ≤ qgi , ∀gi ∈ Gi,∀i ∈ B (1g)

− 2π ≤ θi ≤ 2π, ∀i ∈ B (1h)

pij = giiwi + gijw
R
ij + bijw

I
ij , ∀(i, j) ∈ L (1i)

qij = −biiwi − bijwRij + gijw
I
ij , ∀(i, j) ∈ L (1j)

pji = gjjwj + gjiw
R
ij − bjiwIij , ∀(i, j) ∈ L (1k)

qji = −bjjwj − bjiwRij − gjiwIij , ∀(i, j) ∈ L (1l)

(wRij)
2 + (wIij)

2 = wiwj , ∀(i, j) ∈ L (1m)

θi − θj = arctan(wIij/w
R
ij), ∀(i, j) ∈ L (1n)

In (1), we have θij = (θi − θj), (ỹij + 1
2 ỹ

Sh
ij )/|aij |2 =

gii + jbii, (−ỹij)/a∗ij = gij + jbij , (−ỹij)/aij = gji + jbji,(
ỹij + 1

2 ỹ
Sh
ij

)
= gjj + jbjj , where ỹij , ỹSh

ij , and aij denote a
branch series admittance, a branch shunt admittance, and a
turns ratio between bus i (from) and bus j (to), respectively;
gSi and bSi represent a shunt conductance and susceptance at
bus i; pgi and qgi are variables for real and reactive powers
of generator gi at bus i; wRij and wIij are defined to be
vivj cos θij and vivj sin θij , respectively, with vi being the
voltage magnitude at bus i; wi and θi are for squared voltage
magnitude (= v2

i ) and angle at bus i; and pdi and qdi denote
real and reactive loads at bus i. The notations B,Bi,Gi, and
L denote a set of bus indices, a set of bus indices connected
to bus i, a set of generator indices at bus i, and a set of line
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indices connecting between buses, respectively. We note that
for (i, j) ∈ L i is a from-bus and j a to-bus.

B. Basic idea of existing ADMM formulations in [3], [4]

ADMM enables the decomposition of a given problem
with linear coupling constraints by forming an augmented
Lagrangian and performing iterates in an alternating fashion.
For example, in order to solve the following problem

minimize
x,x̄

f(x) + g(x̄)

subject to Ax+Bx̄ = c,
(2)

an augmented Lagrangian is formed as Lρ(x, x̄, y) = f(x) +
g(x̄)+yT (Ax+Bx̄−c)+(ρ/2)‖Ax+Bx̄−c‖22, and variables
are then updated sequentially in the order of x, x̄, and y.
These alternating updates enable us to decouple the problem
into subproblems involving x or x̄ variables only, facilitating
parallel computing. The decoupling of x variable from x̄
variable is a key difference from the existing augmented
Lagrangian method where we perform a joint optimization
over x and x̄.

In [3], a given ACOPF problem (1) is decomposed into
components subproblems, such as generators, branches, and
buses. Its basic idea stems from the observation that gen-
erators and buses are coupled through pgi and qgi variables
and branches and buses through pij , qij , pji, qji, wi, θi, wj , θj
variables for a given branch (i, j). By duplicating these vari-
ables and enforcing a consensus through coupling constraints,
we can reformulate the problem into an equivalent form
where it can be decomposed into component subproblems.
For example, we create pgi(i) and qgi(i) variables, duplicates
of pgi and qgi , respectively, and add coupling constraints
pgi − pgi(i) = 0 and qgi − qgi(i) = 0. Similarly, we
duplicate variables between branches and buses, resulting in
new pij(i), qij(i), pji(i), qji(i), wi(ij), θi(ij), wj(ij), θj(ij) vari-
ables and coupling constraints pij − pij(i) = 0, qij − qij(i) =
0, pji−pji(i) = 0, qji−qji(i) = 0, wi(ij)−wi = 0, θi(ij)−θi =
0, wj(ij) − wj = 0, θj(ij) − θj = 0.

By properly assigning these original and duplicate variables
into components, we can decompose the problem into com-
ponent subproblems. The generator component gi is assigned
with pgi and qgi , the bus component i with wi, θi and duplicate
variables having subscript (i), and the branch component
(i, j) with pij , qij , pji, qji, w

R
ij , w

I
ij and duplicate variables

having subscript (ij). We then constitute (1b)–(1c) with bus
i variables only and (1d)–(1e) and (1i)–(1n) with branch
(i, j) variables only. If we apply ADMM to the resulting
problem by identifying x with generator and branch variables
and x̄ with bus variables in (2), one can easily verify that an
ADMM iteration leads to subproblems consisting of individual
components only, which can be solved in a massively parallel
way (e.g., [3], [8]). In Section III we discuss parallel solves
of these types of subproblems on GPUs.

While [3] may not guarantee the convergence of its ADMM
iterates, the recent theoretical development of a two-level
algorithm [4] guarantees convergence of the ADMM for

ACOPF problems to a stationary point. In terms of the problem
formulation (2), the basic idea of the two-level scheme is to
introduce an artificial variable z to the coupling constraint and
enforce it to have a zero value as follows.

minimize
x,x̄,z

f(x) + g(x̄)

subject to Ax+Bx̄− c+ z = 0, z = 0
(3)

Clearly, (2) and (3) are equivalent. When we solve (3), how-
ever, an augmented Lagrangian method is applied on the z = 0
constraint only. In this case each iteration (called an outer iter-
ation) of the augmented Lagrangian method consists of solving
the problem Lβ(x, x̄, z) = f(x) + g(x̄) + λT z + (β/2)‖z‖22
subject to Ax + Bx̄ − c + z = 0 and updating the multiplier
β. When solving Lβ under the coupling constraint, we apply
an ADMM algorithm to it. Iterations of this inner ADMM
algorithm are called inner iterations, hence the name two-level
algorithm. Introducing such an artificial variable z enables
us to satisfy assumptions on the last block (in this case the
z variable) of the coupling constraints for the ADMM to
converge: it has the entire space as its domain and can always
find a feasible point satisfying the coupling constraints for any
given pair of (x, x̄). We refer to [4] for more details.

C. Our ADMM formulation

Our ADMM formulation for solving ACOPFs is a combi-
nation of the aforementioned two ADMM formulations [3],
[4] by taking their computational and theoretical merits, re-
spectively. In [3] many independent subproblems of small
sizes are provided that are amenable to exploiting the massive
parallel computing capability of GPUs, while the work in [4]
lays theoretical grounds for convergence guarantees. In Sec-
tion III-A we detail the reason why we may want to use the
component-based decomposition scheme of [3] for efficient
computation on GPUs and borrow theories only from [4].

To apply the theoretical framework of [4] to [3], we make
the following changes. First, an artificial variable is introduced
for each coupling constraint to reformulate (2) into (3). For
example, pgi−pgi(i) = 0 becomes pgi−pgi(i) +zpgi = 0 with
constraint zpgi = 0. We then apply an augmented Lagrangian
on constraint z = 0 only, where z denotes a vector of the
added artificial variables. The reformulation is simple and
straightforward, but it will provide us with theoretical grounds
to prove the convergence of our ADMM iterates.

Second, each branch problem is reformulated in terms of
voltage and slack variables, where slacks are for the line
limit constraints (1d)–(1e) in this case. An augmented La-
grangian is then applied to the resulting formulation on the
line limit constraints. The main reason for this reformulation
is to change the branch problems into a batch of bound-
constrained optimization problems in order to use our GPU
solver ExaTron [8] to accelerate their computation time.

Specifically, wi, wj , wRij , w
I
ij variables are replaced with

expressions in terms of vi, vj , θi, θj variables, where wi =
v2
i , wj = v2

j , w
R
ij = vivj cos θij , and wIij = vivj sin θij . The

power flow variables pij , qij , pji, qji are free variables and
explicitly defined in (1i)–(1l). In this case we can replace
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each occurrence of those variables in the problem with the
expression on the right-hand side of (1i)–(1l). After the re-
placement, (1i)–(1l) as well as (1m)–(1n) are no longer needed,
and we therefore remove all those equality constraints from
consideration. To deal with line limits (1d)–(1e), we formulate
an augmented Lagrangian on those constraints. Two new slack
variables sij and sji are introduced to transform the inequality
constraints into equalities, resulting in p2

ij + q2
ij + sij = 0 and

p2
ji + q2

ji + sji = 0 with −r̄ij ≤ sij ≤ 0 and −r̄ji ≤ sji ≤ 0.
These equality constraints are dualized, and augmented terms
are added to form an augmented Lagrangian.

The resulting formulation for the ADMM iteration of a
branch (i, j) subproblem is a bound-constrained nonlinear
nonconvex optimization problem as described in (4). It in-
volves fewer variables and constraints than does the original
branch problem. In (4), λ and ρ are a multiplier and a penalty
parameter for the ADMM algorithm, and λ̃ and ρ̃ are for
the application of an augmented Lagrangian algorithm for the
problem.

minimize
vi,vj ,θi(ij),
θj(ij),sij ,sji

λpij (pij − pij(i) + zpij )

+
ρpij

2
(pij − pij(i) + zpij )2

+ λqij (qij − qij(i) + zqij ) +
ρqij
2

(qij − qij(i) + zqij )2

+ λpji(pji − pji(i) + zpji) +
ρpji

2
(pji − pji(i) + zpji)

2

+ λqji(qji − qji(i) + zqji) +
ρqji
2

(qji − qji(i) + zqji)
2

+ λwi(v
2
i − wi + zwi(ij)

) +
ρwi

2
(v2
i − wi + zwi(ij)

)2

+ λθi(θi(ij) − θi + zθi(ij)) +
ρθi
2

(θi(ij) − θi + zθi(ij))
2

+ λwj
(v2
j − wj + zwj(ij)

) +
ρwj

2
(v2
j − wj + zwj(ij)

)2

+ λθj (θj(ij) − θj + zθj(ij)) +
ρθj
2

(θj(ij) − θj + zθj(ij))
2

+ λ̃sij (p2
ij + q2

ij + sij) +
ρ̃sij
2

(p2
ij + q2

ij + sij)
2

+ λ̃sji(p
2
ji + q2

ji + sji) +
ρ̃sji
2

(p2
ji + q2

ji + sji)
2

subject to vi ≤ vi ≤ vi, vj ≤ vj ≤ vj
− 2π ≤ θi(ij) ≤ 2π, −2π ≤ θj(ij) ≤ 2π

− r̄ij ≤ sij ≤ 0, −r̄ji ≤ sji ≤ 0

where pij , qij , pji, qji are replaced by (1i)–(1l).
(4)

Formulations for generators and buses are equivalent to [3]
except that we have an artificial variable z as in (3) for
convergence guarantees. Since z is fixed when we solve those
components subproblems, generators and buses have a closed-
form solution as in [3].

D. Convergence of our ADMM iterations

Let N denote the total number of components (the total
number of generators, branches, and buses) of a given power
grid. Our formulation to apply the two-level ADMM algorithm

Algorithm 1 Two-level algorithm for component-based de-
composition
Input: Our ADMM formulation described in Section II-C
Output: a solution (x∗, x̄∗, z∗, y∗)

1: repeat
2: while inner iteration not converged do
3: Solve for x (solutions for generators and branches).
4: Solve for x̄ (solutions for buses).
5: Solve for z.
6: Update multiplier y.
7: end while
8: Update multiplier λ and penalty β.
9: until ‖z‖ � ε

encapsulated in (5), where xi denotes generator and branch
component variables, x̄ is a bus component variable, and z is
an artificial variable. For a branch component i, we note that
its feasible region Xi is nonconvex. For generators and buses,
their feasible regions are convex, as described in Section III-B.
Without loss of generality, we can assume that Xi and X̄ are
compact. The reason is that in practice there is a limit on
power flow for each branch.

minimize
xi∈Xi,x̄∈X̄,z

N∑
i=1

fi(xi)

subject to Ax+Bx̄+ z = 0, z = 0

where x = (x1, . . . , xN )

(5)

By taking an augmented Lagrangian of (5) on the z = 0
constraint and applying similar techniques to prove Theorem
1 of [4], one can easily verify that global convergence to a
stationary point of the original ACOPF problem follows.

III. IMPLEMENTATION OF THE ADMM ALGORITHM ON
GPUS

Algorithm 1 describes the overall procedure of our ADMM
algorithm to solve an ACOPF problem. Basically, our ADMM
algorithm is designed to utilize massively parallel computing
while retaining convergence guarantees: each of the solve and
multiplier update routines described in lines 3–8 of Algo-
rithm 1 can be executed in parallel. We have implemented
these routines entirely on GPUs, without any data transfer
between CPUs and GPUs.

In this section we present our design considerations to
efficiently implement an ADMM algorithm on GPUs, and we
discuss the reason why we may want to use the component-
based decomposition instead of the network decomposition
scheme of [4]. We then introduce the details of our implemen-
tation on GPUs for each solve and multiplier update routine.

A. Design principles on efficient GPU implementation

In [11] the authors presented a GPU-based linear system
solver for symmetric indefinite system of equations. Its appli-
cation in Ipopt to ACOPF problems [6], however, has shown
a much slower computation time than the times obtained from
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using existing CPU-based linear solvers. In [7] the authors
compared performance between a variety of existing CPU-
and GPU-based linear solvers (including Nvidia’s cuSOLVER)
on linear systems of equations that originate from ACOPF
problems. Their findings demonstrate that no significant accel-
eration has been observed by using GPU-based linear solvers.

In this regard, if we were to use the network decomposition
of [4], we would have to solve a number of ACOPF subprob-
lems on GPUs. As long as we use the existing optimization
algorithms, such as Ipopt, computation time will significantly
depend on that of linear system solves, which will in turn show
degraded performance on GPUs, as observed in [6], [7].

These observations in the literature lead us to look for other
approaches that do not heavily rely on accelerating the solve
time of a sparse linear system of equations. Component-based
decomposition provides favorable problem structures that can
be massively exploited via the GPU’s parallel computing
capability. Generators and buses subproblems in lines 3–4
of Algorithm 1 have a closed-form solution as well as the
solves and updates in lines 5–8, as described in Section III-B.
Therefore, their solutions can be directly and efficiently com-
puted in parallel on GPUs by employing a large number of
threads. The only exceptions are branch subproblems, which
are nonlinear nonconvex optimization problems as described
in (4). In this case we employ our recently developed GPU-
based batch nonlinear programming solver [8].

From the standpoint of parallel computing, another benefit
of component-based decomposition is that it is highly scalable.
The size of each subproblem is independent of the size of the
grid network of a given ACOPF problem. Only the number
of subproblems increases in this case. This independence
implies that we can easily scale up the ADMM algorithm by
employing more computational resources, such as the number
of GPUs, to deal with additional subproblems in parallel.

B. Our GPU-based implementation

Mathematically, the subproblems for generators (line 3 of
Algorithm 1) and for z (line 5 of Algorithm 1) take the
following form:

minimize
l≤x≤u

1

2
xTQx− cTx

(⇒) x∗ = max(l,min(u,Q−1c)),

(6)

where Q is strongly convex.1 In the case of generators, entries
for Q come from their quadratic objective function and penalty
terms. For the z variable, Q is formed from their penalty terms.
We note that (l, u) = (−∞,∞) when we solve for the z
variable.

1We abuse the notation x here. In (6), x is not the same as x in line 3 of
Algorithm 1.

The subproblems for buses have the following form where
Q (of their penalty terms) is strongly convex as well.

minimize
x

1

2
xTQx− cTx

subject to Ax = b (µ)

(⇒) µ∗ = (AQ−1AT )−1(AQ−1c− b)
x∗ = Q−1(c−ATµ∗)

(7)

In (7), µ denotes a multiplier for constraint Ax = b. The
matrix A has two rows corresponding to the real and reactive
power flow equations (1b)–(1c), respectively. They are linearly
independent of each other; therefore, AQ−1AT is nonsingular,
and µ∗ is well defined.

For the multiplier updates, the following update rules are
used:

y ← y + ρ(Ax+Bx̄+ z)

λ← Π[λ,λ] (λ+ βz) ,
(8)

where Π[λ,λ] is a projection operator onto their lower and
upper bounds, λ and λ, respectively.

Since the aforementioned subproblems and multiplier up-
date rules have a closed-form solution, their implementation
on GPUs is straightforward: we launch the same number of
threads on GPUs as the number of elements in x, y, and λ.
Each thread updates its corresponding element in parallel.

For branch subproblems (4), we employ our GPU-based
batch nonlinear programming solver [8]. Each nonconvex
nonlinear optimization branch subproblem is solved via a
trust-region Newton’s algorithm based on a preconditioned
conjugate gradient method [12]. Nonconvexity of the branch
problem is handled via detecting and following a negative
curvature direction during the conjugate gradient iteration [13].
A batch of such subproblems are solved on GPU in parallel
by launching the same number of thread blocks (consisting
of a group of threads) as the number of branch subproblems.
Each thread block solves a specific branch subproblem.

A distinguishing feature of our GPU-based batch solver
is that it operates entirely on GPUs without requiring data
transfers between the host (CPU) and the device (GPU)
during its operation. Since the size of each branch problem
is very small (involving 6 variables only), its computational
performance heavily depends on the time for memory access.
If our solver were to require data transfer between the host
and the device, it would significantly slow the computation
time. Our solver avoids such expensive memory transfer by
implementing the entire optimization algorithm on GPUs.

IV. NUMERICAL RESULTS

In this section we demonstrate the computational perfor-
mance of our GPU-based ADMM solver described in Sec-
tions II–III over large power grids with up to a 70,000 bus
system. Our solver has the ability to solve ACOPF from
both cold start and warm start. In Section IV-B we present
experimental results of solving ACOPF from cold start ,
where we compare its performance with Ipopt [2]. We then
demonstrate the performance of our warm-start capability for
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TABLE I
DATA AND PARAMETERS FOR EXPERIMENTS

Data # Generators # Branches # Buses ρpq ρva
1354pegase 260 1,991 1,354 1e1 1e3
2869pegase 510 4,582 2,869 1e1 1e3
9241pegase 1,445 16,049 9,241 5e1 5e3

13659pegase 4,092 20,467 13,659 5e1 5e3
ACTIVSg25k 4,834 32,230 25,000 3e3 3e4
ACTIVSg70k 10,390 88,207 70,000 3e4 3e5

rapidly recomputing optimal solutions upon load changes as
we move forward in time.

A. Experiments setting

The implementation of our GPU-based ADMM solver has
been written in Julia@v1.6.3 using CUDA.jl@v3.4.2. To com-
pare the performance between our solver and Ipopt@v3.13.4,
we used PowerModels.jl@v0.18.3 [14] to solve ACOPF on
CPUs using Ipopt with MA57 being set as its linear solver.
In this case we directly solve the ACOPF formulation (1) us-
ing Ipopt. Since PowerModels.jl automatically tightens angle
difference constraints when it thinks they are too loose, we
disabled them from PowerModels.jl for a fair comparison.2

Table I shows a list of power grid files retrieved from MAT-
POWER [15] for our experiments. We performed experiments
on Nvidia’s Quadro GV100 for our GPU solver and on Intel
Xeon 6140 CPU@2.30GHz for Ipopt.

Our ADMM algorithm involves a number of parameters
such as multipliers and penalty terms on consensus constraints.
All experiments in this section were performed by using zero
as initial values for multipliers and fixed values for penalty
terms, as shown in Table I. The penalty term ρpq is for real
and reactive power generation and power flow, and ρva is for
voltage magnitude and angle. Their values are fixed throughout
the ADMM iterations. We note that large penalty values lead
to less weight on the objective value, potentially causing a
larger optimality gap. To reduce this adverse effect, we scaled
the objective value for the 70k case by multiplying it by 2. The
termination conditions for our ADMM algorithm are the same
as [4], where we set the maximum number of outer and inner
iterations to 20 and 1,000, respectively. In all our experiments
the termination conditions have been satisfied before reaching
the maximum number of outer iterations.

As a solution for our ADMM algorithm, we use real
and reactive power generation from generator problems and
voltage values from bus problems. Instead of using power
flow values from branch problems, they are recomputed from
the voltage values of bus problems for consistency. In this
case, consensus errors between bus and branch problems could
propagate to line limit constraints, resulting in higher line limit
violations than computed by (4). To reduce this type of error
propagation, we slightly tighten the line limit by allowing it
to use up to 99% of its capacity.

2A function call to constraint voltage angle difference() has been com-
mented out in the build opf() function.

TABLE II
PERFORMANCE OF SOLVING ACOPF FROM COLD-START

Data ADMM Time (secs) Solution Quality
Iterations ADMM Ipopt ‖c(x)‖∞ |f−f∗|

f∗

1354pegase 823 1.99 2.44 1.23e-03 0.05%
2869pegase 1,230 4.19 6.09 3.64e-04 0.03%
9241pegase 1,372 7.95 50.80 1.12e-03 0.08%

13659pegase 1,529 8.70 131.12 1.25e-03 0.05%
ACTIVSg25k 3,307 36.05 118.64 1.21e-02 0.09%
ACTIVSg70k 2,897 69.81 469.03 1.52e-02 2.20%

B. Performance of solving ACOPF from cold start

We measured the computational performance of cold start
of our solver and Ipopt by solving ACOPF over power grids
described in Table I. For both solvers we set the initial values
for real and reactive power generation and voltage magnitude
to the medium of their lower and upper bounds, respectively.
Voltage angles were initialized to zero, and the reference
voltage angle was fixed to zero. The initial values for power
flows were computed based on the initial voltage values.

Table II presents the computational performance of our
solver and Ipopt. The ADMM Iterations column shows the
cumulative number of inner-level ADMM iterations of our
solver. ‖c(x)‖∞ and |f−f

∗|
f∗ represent the maximum constraint

violation and the relative gap of the objective value at a
solution obtained from our solver, respectively. The relative
gap was measured by using the objective value f∗ from Ipopt.

The experimental results in Table II demonstrate that our
GPU-accelerated solver was able to quickly find a solution of
good quality from cold start. For pegase cases, the maximum
constraint violations were on the order of 10−3 or 10−4, while
the relative objective gap was less than 0.1%. For 25k and
70k cases, the constraint violations deteriorated but were still
on the order of 10−2 with the relative objective gap being
less than 2.5%. We note that the termination conditions of
ADMM algorithms typically become less strict as the number
of consensus constraints increases. In our case the number of
such constraints is on the order of 105 for the two largest
cases.

To the best of our knowledge, our solver is the first
GPU-based solver that shows such competitive computational
performance as indicated in Table II, compared with Ipopt.

C. Performance of solving ACOPF from warm start

To measure the computational performance of warm start,
we performed experiments solving ACOPF over a time hori-
zon, where each time period is solved by warm starting from
a solution obtained from the previous time period. The time
horizon has 30 time periods with each period representing
one minute. Its load profile was generated by interpolating
an hourly real-time system demand data from ISO New
England [16] into minutes. During the 30-minute time horizon,
the load changes up to 5% from its starting value. We note that
when we warm start from a given point, we take account of the
ramp rates of generators so that it holds |pgi,t+1− pgi,t| ≤ rg
for t = 1, . . . , 29, where rg is set to 2% of generator g’s
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upper limit of real power generation. To warm start Ipopt, we
set warm_start_init_point option to yes.
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Fig. 1. Cumulative computation time of warm start

Figure 1 presents the cumulative computation time of our
solver and Ipopt over the time horizon, where we solved the
first time period with cold start and we warm started the
subsequent periods. As the figure illustrates, our warm start
shows a significantly accelerated computational performance:
for pegase data in most periods it took less than 1 second to
solve; for the 25k case the computation time was usually in
1–2 seconds, with some outliers taking about 4 seconds; for
70k mostly it took less than 10 seconds for each period, with
some exceptions taking 25 seconds. We highlight that our GPU
solver solves the entire time horizon of ACTIVSg70k faster
than does Ipopt only for the first single time period.

Compared with our solver, computational gains were not
observed with Ipopt when we warm started it. The cumulative
computation time linearly increased as we moved along the
time horizon, implying that Ipopt was not taking advantage of
warm start. We initially tried with additional options such as
preventing the given point from being pushed into the interior
as shown in [17]; however, we found that those options did not
provide any computational benefits in our case. We think that
the reason is mainly that our load fluctuates more over time
than in [17], where the load changes were less than 2% over
30 minutes. In addition, we note that, as shown in Figure 1,
Ipopt failed to solve the 9241pegase case for some time periods
because of numerical issues.

The maximum constraint violations along the time horizon
are presented in Figure 2. The violations stayed on the order
of values similar to those we obtained with cold start as
listed in Table II. No significant deterioration was observed
as we moved forward in time. Since we solve the original
ACOPF (1) using ADMM until convergence (unlike solving
some simplified formulation), the solution quality is expected
to be maintained as with cold-start.

Figure 3 depicts the relative objective gap for each time
period. Similar to the results of Figure 2, the quality of the
relative objective gap was maintained at a similar level to that
obtained with cold start. We note that after the seventh period
all of the relative objective gaps became less than 1%.
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Fig. 2. Maximum constraint violation of warm start
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Fig. 3. Relative objective gap of warm start

Overall, our warm start demonstrated a substantial improve-
ment of computation time compared with cold start while
maintaining the solution quality. The computation time for
pegase data was almost in real time, taking less than 1 second
for each time period. For larger data, however, it took more
time (i.e., 30 seconds per time period).

V. CONCLUSION

We have presented the first fully GPU-based scalable op-
timization method based on ADMM for solving an ACOPF
with convergence guarantees. To rapidly solve a batch of small
nonlinear nonconvex subproblems, we developed augmented
Lagrangian techniques that enable us to reformulate those
subproblems into a batch of bound-constrained optimization
problems, in order to exploit our GPU-based batch solver
ExaTron [8]. The numerical experiments report a significant
reduction in solution wall-clock times with our GPU ADMM
solver, as compared with the Ipopt solution times, over large
grids having up to a 70,000 bus system. Moreover, the warm-
start capability of our solver demonstrated a significantly
accelerated computational performance: less than a second to
solve (a real-time performance) for up to a 13k bus system and
less than 30 seconds for a 70k system, making it particularly
suitable for rapidly tracking optimal set points of generators
under frequent load and generation fluctuations.

Our ADMM solver has considerable potential for improve-
ment. The distributed and scalable nature of our solution
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method allows us to further accelerate the computation time
by utilizing multiple GPUs. As observed in [3], [4], penalty
terms of the ADMM algorithm could significantly affect its
computation time until convergence. An automatic penalty
selection scheme based on machine learning techniques, such
as reinforcement learning, may greatly reduce the number of
ADMM iterations until convergence.
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