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AbstractWe develop dynamic dimensionality reduction based on theapproximation of the standard inner-product. The inner-product, by itself, is used as a distance measure in a widearea of applications such as document databases, e.g. latentsemantic indexing (LSI). A �rst order approximation to theinner-product is usually obtained from the Cauchy-Schwarzinequality. The method proposed in this paper re�nes such anapproximation by using higher order power symmetric func-tions of the components of the vectors, which are powers ofthe p-norms of the vectors for p = 1; 2; : : : ;m. We show howto compute �xed coe�cients that work as universal weightsbased on the moments of the probability density function as-sumed for the distribution of the components of the inputvectors in the data set. Our experiments on synthetic anddocument data show that with this technique, the similaritybetween two objects in high dimensional space for certain ap-plications can be accurately approximated by a signi�cantlylower dimensional representation.Keywords: Distance approximation, dimensionality reduc-tion, similarity search, inner-product, document databases,p-norm.1 IntroductionModern databases and applications use multiple types of digi-tal data, such as documents, images, audio, video, etc. Someexamples of such applications are document databases [7],medical imaging [17], and multimedia information systems [11,21]. The general approach is to represent the data objectsas multi-dimensional points and to measure the similaritybetween objects by the distance between the correspondingmulti-dimensional points. It is assumed that the closer thepoints, the more similar the data objects. Since the dimen-sionality and the amount of data that need to be processedincreases very rapidly, it becomes important to support e�-cient high dimensional similarity searching in large-scale sys-�This work was partially supported by the NSF under grantsEIA98-18320, IIS-9817432, CCR{9821038, and IIS99-70700.

tems. To this end, a number of index structures for retrievalof multi-dimensional data along with associated algorithmsfor similarity search have been developed [14, 2, 4]. However,it has also been noted that as dimensionality increases, queryperformance degrades signi�cantly [3]. This anomaly is re-ferred as the dimensionality curse [12] and has attracted theattention of several researchers.A popular solution to the problem of dimensionality curseis dimensionality reduction for scalable query performance [20,18] in which the dimensions of the feature vectors are re-duced to enhance the performance of the the underlying in-dexing technique. Evidently there is a trade-o� between theaccuracy obtained from the information stored in the in-dex structure and the e�ciency obtained by the reduction.The most common approaches found in the literature for di-mensionality reduction are linear-algebraic methods such asthe Singular Value Decomposition (SVD), or applications ofmathematical transforms such as the Discrete Fourier Trans-form (DFT), Discrete Cosine Transform (DCT), or DiscreteWavelet Transform (DWT). In these methods, lower dimen-sional vectors are created by taking the �rst few leading co-e�cients of the transformed vectors [1].Approximation methods in similarity queries have also at-tracted attention [18, 13]. It can be argued that approximatemethods achieve e�ciency at the expense of exact results.However exact results are di�cult to obtain in several appli-cations to begin with. One reason is that the generation offeature vectors from the original objects itself may be basedon heuristics. Besides, the semantics expected from mostapplication domains are not as strict as the exact queriesused in relational databases. For example, the QBIC projectat IBM provides the ability to run queries based on colors,shapes, and sketches [20, 11]. Similarly, Alexandria Projectat UC Santa Barbara provides similarity queries for texturedata [19]. As mentioned in the Asilomar Report on DatabaseResearch [5], imprecise information will not only appear asthe output of queries, it already appears in data sources aswell. For several applications, it is much more reasonableto de�ne approximate queries; consider a user submitting aquery such as \Are there any good Italian restaurants closeto where I live?". There is no exact answer to this querysince it is di�cult to give a perfect de�nition of goodnessand even closeness. In such instances it is useful to providean approximate answer to the given query.In this paper, we develop dynamic dimensionality reduc-tion techniques for e�cient and accurate approximation ofsimilarity evaluations between high dimensional vectors. Morespeci�cally, we focus on approximating the inner-productand consequently approximating the cosine of the angle be-



tween two vectors. To the best of our knowledge, there isno other technique for approximation of similarity computa-tion based on inner-products. In some sense, the techniquespresented here are the multi-dimensional analogues of theCauchy-Schwarz inequality, which can be thought of as a �rstorder approximation to the inner-product.Approximating the inner-product, by itself, has a numberof important applications. It is used extensively in the docu-ment database world, for example. Documents are comparedin the semantic space by comparing their multi-dimensionalrepresentations created by statistical analysis, and their sim-ilarity are measured by the cosine of the angle between thesevectors [23]. Latent Semantic Indexing (LSI) is a well-knownexample to applications that use the inner-product [16, 7, 8].The dimensionality reduction and the inner-product approx-imation techniques proposed in this paper can e�ectively beused to approximate the original similarity in a reduced di-mensional space in these and similar applications. Besidese�ciency gains in indexing, we also want to have an over-all gain on the computation time for similarity checking. Intypical applications, the amount of data is huge, thereforee�cient processing of similarity computation becomes moreimportant. If the current trends continue, large organizationswill have petabytes of data that need to be processed [5].The outline of this paper is as follows. In section 2 wedescribe the main tools used in our reduction. Section 3describes the calculation of the optimal coe�cients for theuniform distribution. The �rst set of experiments appear insection 4. Optimal coe�cients for distributions other thanthe uniform distribution, as well a dynamic update rule forthe non-parametric case of an unknown distribution are givenin section 5. Section 6 presents comparisons with well-knownmethods such as SVD, DFT, and DCT. Conclusions and fu-ture work appear in section 7.The theoretical results we use are from [9] where fast dy-namic methods for similarity by means of approximations tothe inner-product using p-norms and minimization throughleast-squares methods were introduced.2 Reduction with power symmetric functionsWe �rst summarize how we represent the high dimensionaldata of dimension n with reduced number of dimensions mwith m� n. Then we develop techniques for these represen-tatives so that the similarity measure between high dimen-sional vectors are approximated closely in the lower dimen-sional space.For a given pair of integers n; p > 0 de�ne p(z) = zp1 + zp2 + � � �+ zpn: (1)This is the p-th power symmetric function in the variablesz = (z1; z2; : : : ; zn). Equivalently,  p(z) is the p-th power ofthe p-norm kzkp. In particular kzk2 is the ordinary length ofthe vector z, and kx� yk2 is the Euclidean distance betweenx and y. Note that the ordinary Euclidean distance betweenx and y and the power symmetric functions are related bykx� yk2 =p 2(x) +  2(y)� 2 < x; y > ; (2)where < x; y > is the standard inner-product given by< x; y >= x1y1 + x2y2 + : : : + xnyn. The Cauchy-Schwarzinequality itself can be written in the form< x; y >2 �  2(x) 2(y) :Using the quantities for  p(z) computed for each datavector z in the database, we look for an approximation for

< x; y > by approximating its m-th power in the form< x; y >m � b1 1(x) 1(y)+b2 2(x) 2(y)+� � �+bm m(x) m(y)(3)for large n, where the bi are constants chosen independentlyof x and y. In our method for each high dimensional vector x,we calculate  1(x);  2(x); : : : ;  m(x), and keep these m realnumbers as a representative of the original vector x.Our assumption on the structure of the data vectors is asfollows: we have a table of a large number of n-dimensionalvectors x = (x1; ; x2; : : : ; xn) whose components are inde-pendently drawn from a common (but possibly unknown)distribution F (t) with density f(t). In the general case,the components do not need to satisfy 0 � zj � 1, nordo they have to be distributed identically. Given an arbi-trary input vector y = (y1; y2; : : : ; yn), the main problemis to �nd the vectors x in the table minimizing (with highprobability) the inner-product < x; y > without actuallycalculating all inner-products. This is done by computing 1(y);  2(y); : : : ;  m(y) and then using the m stored quanti-ties  1(x);  2(x); : : : ;  m(x) via (3).We consider approximations of the form (3) by �nding thebest set of constants b1; b2; : : : ; bm for the approximation inthe sense of least-squares. If m can be taken much smallerthan the dimension n with reasonable approximation to theinner-product, besides e�ciency gains in indexing, we alsohave an overall gain on the computation time for similaritychecking of large data sets. Note that just as the ordinary 2-norm used in the Cauchy-Schwarz inequality, the quantities p(z) used in (3) are also symmetric functions of the coor-dinates. A more general class of algorithms is obtained bytaking instead  p(qz) in (3) where qz = (q1z1; q2z2; : : : ; qnzn)with qj � 0 and q1 + q2 + � � � + qn = 1. This has the e�ectof giving a degree of importance (weight) to individual fea-tures of x and y. For computational simplicity we look at thesymmetric case in this paper, in which  p(z) is as given in(1) and z 2 In, the n-dimensional unit cube. By taking eachqj = 1=n, we can write  p(z) = np p(qz), so the calculationof the symmetric case is a particular instance.3 Determination of the optimal parametersThe best approximation in the least-squares sense minimizesZ "< x; y >m � mXj=1 bj j(x) j(y)#2dxdy (4)where dx = dx1dx2 � � � dxn, dy = dy1dy2 � � � dyn, and the inte-gral is over the 2n-dimensional unit cube I2n. The so-callednormal equations that b1; b2; : : : ; bm must satisfy are foundby di�erentiating (4) with respect to each bi, and setting theresulting expressions to zero.This results in an m � m linear system that b1; : : : ; bmmust satisfy, obtained frommXj=1 �Z  j(x) j(y) i(x) i(y) dxdy� bj =Z < x; y >m  i(x) i(y) dxdyfor 1 � i � m. Puttingai;j = Z  j(x) j(y) i(x) i(y) dxdyci = Z < x; y >m  i(x) i(y) dxdy ;



m b1 b2 b3 b4 b5 b6 b7 b82 � 116 45643 � 516n 32n � 76n4 � 59256n2 15751024n2 � 17564 n2 15751024n25 � 31256n3 98n3 � 278 n3 13532 n3 � 297160n36 � 2214096n4 1102516384n4 � 61252048n4 20212532768 n4 � 242554096 n4 3503516384n47 � 894096n5 45128n5 � 275128n5 825128n5 � 1287128 n5 1001128 n5 � 2145896 n58 � 53565536n6 43659262144n6 � 4365932768n6 2837835524288 n6 � 3972969327680 n6 3972969262144 n6 � 810818192 n6 1378377524288 n6Figure 1: < x; y >m � b1 1(x) 1(y)+ � � �+ bm m(x) m(y) : asymptotic expansion coe�cients b1; b2; : : : ; bm for the uniformdistribution.we �nd that b1; : : : ; bm satisfy the m�m linear systemAb =c. We present the mathematical treatment for the case ofthe 2�2 system that arises for m = 2, and work out in detailthe derivation of the asymptotic expansion coe�cients b1; b2in (3). The details of the proof of the general case can befound in [9]. For m = 2,a1;1 = ZI2n  1(x) 1(y) 1(x) 1(y)dxdya2;2 = ZI2n  2(x) 2(y) 2(x) 2(y)dxdya1;2 = a2;1 = ZI2n  1(x) 1(y) 2(x) 2(y)dxdyc1 = ZI2n < x; y >2  1(x) 1(y)dxdyc2 = ZI2n < x; y >2  2(x) 2(y)dxdy:These quantities can be computed exactly as functions of n.First of allZIn  1(x) 1(x)dx = nXk=1 ZIn xk 1(x)dx = n(n� 14 + 13 ):Similarly, ZIn  1(x) 2(x)dx = n(n� 16 + 14 );ZIn  2(x) 2(x)dx = n(n� 19 + 15 ):Thereforea1;1 = ZIn  1(x) 1(x)dxZIn  1(x) 1(y)dy= �ZIn  1(x) 1(x)dx�2 = n2(3n+ 112 )2:By a similar computation for a2;2 and a1;2, we �nd that the

matrix of coe�cients is" n2( 3n+112 )2 n2( 2n+112 )2n2( 2n+112 )2 n2( 5n+445 )2 #Next we compute the quantities c1 and c2 in terms of n. Wehave c1 = ZI2n( nXk=1 xkyk)2 1(x) 1(y)dxdyThere are two kinds of terms arising from the expansionof (Pxkyk)2. Diagonal terms of the form x2ry2r , and o�-diagonal terms of the form xryrxsys for r 6= s. The contri-bution of the �rst kind of terms to c1 isnZ x21y21 i(x) i(y)dxdy = n�Z x21 i(x)dx�2 = n�2n+ 112 �2 :It can be shown that o�-diagonal terms contributen(n� 1)Z x1y1x2y2 i(x) i(y)dxdy =n(n�1)�Z x1x2 i(x)dx�2 = n(n�1)�3n+ 224 �2 :Therefore c1 = n(2n+ 112 )2 + n(n� 1)(3n+ 224 )2: (5)By a similar calculation, we �ndc2 = n(5n+ 445 )2 + n(n� 1)(n+ 112 )2: (6)The resulting system satis�ed by b1; b2 isn2(3n+ 112 )2b1 + n2(2n+ 112 )2b2 =n(2n+ 112 )2 + n(n� 1)(3n+ 224 )2n2(2n+ 112 )2b1 + n2(5n+ 445 )2b2 =



n(5n+ 445 )2 + n(n� 1)(n+ 112 )2Since we are interested in these approximations for largen, it is tempting to let n!1 in the resulting linear systemand then solve for b1; b2 directly to obtain an asymptoticformula. Attempting to do this results in a singular system,however. To circumvent this problem, we include not onlythe highest order term in n, but the second highest as well.This gives in the (asymptotic) system( n16 + 124 )b1 + ( n36 + 136 )b2 = n64 + 19576( n36 + 136 )b1 + ( n81 + 8405 )b2 = n144 + 251296 (7)which is nonsingular for every n. Solving (7) symbolically forb1 and b2 and taking limits, we �ndb1 = 9� n4(4n+ 1) �! � 116 ; b2 = 5(9n� 7)16(4n+ 1) �! 4564 :This means that for m = 2, we approximate < x; y > by theexpressionr���� 116 1(x) 1(y) + 4564 2(x) 2(y)��� : (8)For general m it can be shown [9] thatai;j � n4(i+ 1)2(j + 1)2 :This matrix again has rank 1, but the inclusion of the secondhighest term works as before [9]. We omit the details of thederivation of the optimal coe�cients b1; b2; : : : ; bm for m > 2.Values of b1; : : : ; bm we have computed for various valuesof m for the uniform distribution appear in Figure 1. For theuniform distribution coe�cients with m = 2, the approxima-tion (8) we obtained does not involve the dimension n. Thisis not the case for m > 2. For instance for m = 3 the optimalleast-squares approximation to < x; y >3 is� 516n 1(x) 1(x) + 32n 2(x) 2(y)� 76n 3(x) 3(y):4 Experiments: part 1In the �rst set of experiments, we analyze the accuracy ofthe approximation technique introduced here by checking theerror made in inner-product calculations, keeping in mindthat the inner-product is directly used as distance measurein several applications, e.g. LSI.First consider the case m = 2 and the approximationgiven by (8). The graph of the average relative error madeappears in Figure 2. The dimension n ranged from 24 to 211.For each dimension n, 100 pairs of vectors x; y 2 In wereindependently generated by drawing each coordinate fromthe uniform distribution on the unit interval I. The errorcalculated for n is the average relative error of these 100experiments where the relative error of a single experimentis given by����� < x; y > � j mXj=1 bj j(x) j(y) j1=m ����� = < x; y >These are then accumulated and divided by the number ofexperiments.

For the experiments of this type with larger values ofm, again 100 pairs of vectors x; y 2 In were independentlygenerated from the uniform distribution on In. Figure 3is the plot of the error versus the original dimension forthe approximations corresponding to reduced dimension mfor m = 2; 4; 6; 8, and dimension n ranging from 16 to 256.Note that as m increases, the corresponding approximationmethod produces larger error for small n, but eventually dipsbelow the error curves for smaller m. The reason for this isthe asymptotic nature of the constants b1; b2; : : : ; bm.5 Optimal b1; b2 for various distributionsSuppose now that the coordinates of the vectors x and y aredrawn from not the uniform distribution on the unit intervalI, but some other distribution F on the real line. We assumethat F has density f . ThusF (t) = Z t�1 f(x)dx with Z 1�1 f(x)dx = 1;and Prfa < x < bg = R ba f(x)dx. The i-th moment �i of f(about the origin) is de�ned by�i = Z 1�1 xif(x)dx :We have the following general result, whose proof can befound in [9].Theorem 1 The constants b1; b2 which minimizeZIR2n �< x; y >2 �b1 1(x) 1(y)� b2 2(x) 2(y)�2dF (x)dF (y)are functions of the �rst four moments of the density f(x).They are given by the formulasb1 = �21 � 2�32 + �21�4 � 3�1�2�3�32 � �21�4 � 2�1�2�3 ;b2 = �41�2 � �1�3 � �22�32 � �21�4 � 2�1�2�3 :In view of Theorem 1, explicit formulas for the approxi-mation coe�cients b1; b2 in the expansion< x; y >2 � b1 1(x) 1(y) + b2 2(x) 2(y)can be found using Theorem 1 as soon as the �rst four mo-ments of the density are known. For most common distribu-tions, these moments can be calculated explicitly as functionsof the parameters of the distribution (see, for example [15]).A summary of these calculations for power, exponential,binomial, normal, Poisson, and Beta distributions appearsin Figure 4. The last two columns are the optimal valuesof b1 and b2 expressed in terms of the parameters of thecorresponding distribution.When the components are drawn from a distribution withan unknown density f(t) (i.e. in the non-parametric case)we can estimate and incrementally update estimates for themoments �i. If we know the empirical moments ��i = ��i(N)of density f(t), 0 � t � 1, based on samples t1; t2; : : : ; tN , itcan be shown that given tN+1, we can obtain the estimate��i(N + 1) by��i(N + 1) = 1N + 1 �N ��i(N) + tiN+1� : (9)and adjust the bi accordingly, using Theorem 1.
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Figure 2: Average relative error versus dimension n, 16 � n � 2048 for vectors from the uniform distribution with m = 2.
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Figure 3: Average relative error versus dimension n: 16 � n � 256. (Legend: 4 m = 2, 2 m = 4, ? m = 6, 3 m = 8)
Distribution Density f(x) Range b1 b2Uniform 1 0 � x � 1 � 116 4564Power cxc�1 0 � x � 1 � 2c3(c+1)2(c2+3c+4) c2(c+2)2(c+4)(c+1)2(c2+3c+4)Exponential (1=b) exp(�x=b) 0 � x � 1 b22 18Binomial �Nx�pxqN�x 0 � x � N N2p2(1�2p)np�3p+2 N2p2(np�p+1)(np�3p+2Normal 1�p2� exp(�(x��)22�2 ) �1 � x � 1 2�2�4�4+�4 �4(�2��2)(�2+�2)(�4+�4)Poisson �x exp(��)=x! 0 � x � 1 �2�+2 �2(�+2)(�+1)Beta (v+w�1)!xv�1(1�x)w�1(v�1)!(w�1)! 0 � x � 1 2v2(w�v�1)(v+w)2((v+1)2+(v+3)w) v2(w+v+1)2(w+v+3)(v+w)2((v+1)3+(v+1)(v+3)w)Figure 4: < x; y >2 � b1 1(x) 1(y) + b2 2(x) 2(y) : optimal asymptotic expansion coe�cients b1; b2 for various parametricdistributions.
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Figure 5: Error comparisons of dimensionality reduction techniques (for m = 2 and m = 4)6 Experiments: part 2The techniques presented in this paper can be readily used forapproximation of the similarity also with respect to Euclideandistance metric. Suppose x; y 2 In are two n-dimensionalreal vectors. We use the expression (2) for the Euclideandistance between x and y. Since we already have  2(x) and 2(y) stored as a part of our dimensionality reduction, it isenough to compute < x; y > to �nd the distance between twofeature vectors. By using the storedm values we approximate< x; y >, and hence approximate the original distance.Next, we compare the performance of our technique thatwe refer to as p-NORMS, with current approaches on real andsynthetic data sets. Singular Value Decomposition (SVD)and Discrete Fourier Transform (DFT) are the best knownand the most widely used approaches in the literature. Herewe also consider the Discrete Cosine Transform (DCT) fordimensionality reduction, which we found to be quite e�ec-tive in our experiments. We implemented SVD, DFT, andDCT, and our new algorithm, and analyzed their approxi-mation quality for distance measurements. We �rst computethe distance for each pair of data vectors in the data set. Amotivation for this is similarity joins, in which in the worstcase the distance between each pair is computed and is com-pared to a given threshold criteria of similarity. For similarityqueries, instead of computing the distance between each pairof vectors, the distances between the query point and all ofthe points in the data set are computed. The query pointmay be chosen from the data set or can be speci�ed by theuser.In the experiments, pairwise distances of the data vectorsare computed. We use SVD, DFT, DCT, and p-NORMS toreduce the dimensionality of high dimensional vectors. Re-duced dimensional vectors are representatives of original highdimensional vectors. We compute the distance between eachpair of vectors of smaller dimensions. The real distance isapproximated in reduced dimensional space. For each tech-nique, we compute the absolute error, i.e. di�erence betweenapproximated distance to real distance, for each pair of vec-tors. First the summation of the errors for all pairs is com-puted, then this value is divided by the number of pairs, i.e.the number of distance calculations (Note that, in the �rstpart of the experiments, error metric was the average of rel-ative errors which is a di�erent metric).

In the �rst setup, we generated 500 32-dimensional ran-dom points from the uniform distribution on I32. Pairwisedistances are calculated both for original data and reduceddimensional data. For each technique, absolute approxima-tion error of each distance calculation is summed and dividedby the total number of pairs (25,000). This calculated aver-age error gives the quality of the approximations achieved byeach technique. First, we reduce the number of dimensionsto m = 2. For other techniques, we reduce the dimensional-ity to 3 because the DFT technique produces complex num-bers therefore the second component has actually two 
oatingnumbers. Even when the other techniques use 3 coe�cients,in this case their approximation quality appears much worsethan our technique. p-NORMS gives an approximation errorwhich is 5 times less than the current approaches for n = 32dimensional vectors: the lowest error (4.6) among the imple-mented transform methods is made by SVD. On the otherhand, p-NORMS has an average absolute error of only 0.9.We repeated the experiments by increasing the numberof dimensions n and analyzing the resulting approximations.The left �gure in Figure 5 illustrates the measurements foreach of SVD, DFT, DCT, and p-NORMS. Since we use av-erage of absolute errors, the error naturally increases as di-mensionality increases. However, it can be seen that as nincreases, the quality di�erence between p-NORMS and theother three also increases. For 80-dimensional data, for in-stance, the new technique's approximation is 7.45 times bet-ter than the current best approach. For 128-dimensionaldata, the average absolute error of p-NORMS is 2.1 and theaverage absolute error of the SVD technique, the best of thethree is 18.8. Similar experiments with m = 4 for all tech-niques were also performed. The right �gure in �gure 5 illus-trates the results of these. The error in p-NORMS is about8 times less than that of SVD for 128 dimensions.We also compute the approximation quality ratio of ourtechnique with SVD, on the same data set, as dimensionalityincreases in order to illustrate the scalability of our approach.Figure 6 illustrates the superiority of p-NORMS over SVD asa function of dimensionality.We analyzed the quality of the approximations developedfor data sets where the components are drawn from a normaldistribution. We generated 500 random points from a normaldistribution with mean 0:5 and variance 1. We note thatsince the data is not restricted to be within the range [0::1] as
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Figure 6: Scalability Comparison of SVD and p-NORMSbefore, there are dimensions that are much greater than 1 inthe data set. Therefore the absolute errors of the experimentsare greater than the previous cases. Approximations basedon p-NORMS gave an error 1.6 times lower than the bestof the three other techniques, in this case SVD. Figure 7illustrates the results of these experiments.The techniques were also compared on a real documentdatabase of substrings from a large set of documents con-sisting of normalized data in I16. We reduce the number ofdimensions to m = 2 which can be indexed e�ciently [1]by spatial indexing techniques. Increasing m will increasethe accuracy of the approximations, but also will increasethe index-search time. Similar to the synthetic data case,we computed the pairwise distances and took the average ofabsolute errors made by low-dimensional distance computa-tions. Approximations based on p-NORMS performs twice aswell as SVD and 2.2 times better than DCT. We note thatSVD performs better than DCT on real data as well. Fur-ther experimental results with graphs on the performance ofp-NORMS can be found in [10].7 Conclusions and future workWe developed dynamic dimensionality reduction techniquesfor e�cient and accurate approximation of similarity mea-sures between high dimensional vectors. The method is basedon the approximation of the standard inner-product as a cer-tain function of the p-norms of the vectors. A high dimen-sional real vector x of dimension n is represented as the se-quence of values ( 1(x);  2(x); : : : ;  m(x)) where  p(x) is thep-th power of the p-norm of x. The magnitude of m controlsthe magnitude of the reduction made. Assuming that thecomponents of the vectors in the data set are identically dis-tributed, we �nd optimal universal constants b1; b2; : : : ; bm sothat the approximation< x; y >m � b1 1(x) 1(y)+b2 2(x) 2(y)+� � �+bm m(x) m(y)is the best possible for large n in the least-squares sense.This approximation is then used for estimating the inner-product, and consequently for approximating the similaritydistance between x and y. Even form = 2, the performance is
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