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Abstract

We develop dynamic dimensionality reduction based on the
approximation of the standard inner-product. The inner-
product, by itself, is used as a distance measure in a wide
area of applications such as document databases, e.g. latent
semantic indexing (LSI). A first order approximation to the
inner-product is usually obtained from the Cauchy-Schwarz
inequality. The method proposed in this paper refines such an
approximation by using higher order power symmetric func-
tions of the components of the vectors, which are powers of
the p-norms of the vectors for p = 1,2,..., m. We show how
to compute fixed coefficients that work as universal weights
based on the moments of the probability density function as-
sumed for the distribution of the components of the input
vectors in the data set. Our experiments on synthetic and
document data show that with this technique, the similarity
between two objects in high dimensional space for certain ap-
plications can be accurately approximated by a significantly
lower dimensional representation.

Keywords: Distance approzimation, dimensionality reduc-
tion, similarity search, inner-product, document databases,
p-norm.

1 Introduction

Modern databases and applications use multiple types of digi-
tal data, such as documents, images, audio, video, etc. Some
examples of such applications are document databases [7],
medical imaging [17], and multimedia information systems [11
21]. The general approach is to represent the data objects
as multi-dimensional points and to measure the similarity
between objects by the distance between the corresponding
multi-dimensional points. It is assumed that the closer the
points, the more similar the data objects. Since the dimen-
sionality and the amount of data that need to be processed
increases very rapidly, it becomes important to support effi-
cient high dimensional similarity searching in large-scale sys-
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tems. To this end, a number of index structures for retrieval
of multi-dimensional data along with associated algorithms
for similarity search have been developed [14, 2, 4]. However,
it has also been noted that as dimensionality increases, query
performance degrades significantly [3]. This anomaly is re-
ferred as the dimensionality curse [12] and has attracted the
attention of several researchers.

A popular solution to the problem of dimensionality curse
is dimensionality reduction for scalable query performance [20,
18] in which the dimensions of the feature vectors are re-
duced to enhance the performance of the the underlying in-
dexing technique. Evidently there is a trade-off between the
accuracy obtained from the information stored in the in-
dex structure and the efficiency obtained by the reduction.
The most common approaches found in the literature for di-
mensionality reduction are linear-algebraic methods such as
the Singular Value Decomposition (SVD), or applications of
mathematical transforms such as the Discrete Fourier Trans-
form (DFT), Discrete Cosine Transform (DCT), or Discrete
Wavelet Transform (DWT). In these methods, lower dimen-
sional vectors are created by taking the first few leading co-
efficients of the transformed vectors [1].

Approximation methods in similarity queries have also at-
tracted attention [18, 13]. It can be argued that approximate
methods achieve efficiency at the expense of exact results.
However exact results are difficult to obtain in several appli-
cations to begin with. One reason is that the generation of
feature vectors from the original objects itself may be based
on heuristics. Besides, the semantics expected from most
application domains are not as strict as the exact queries
used in relational databases. For example, the QBIC project
at IBM provides the ability to run queries based on colors,
shapes, and sketches [20, 11]. Similarly, Alexandria Project
at UC Santa Barbara provides similarity queries for texture
data [19]. As mentioned in the Asilomar Report on Database
Research [5], imprecise information will not only appear as
the output of queries, it already appears in data sources as
well. For several applications, it is much more reasonable
to define approximate queries; consider a user submitting a
query such as “Are there any good Italian restaurants close
to where I live?”. There is no exact answer to this query
since it is difficult to give a perfect definition of goodness
and even closeness. In such instances it is useful to provide
an approximate answer to the given query.

In this paper, we develop dynamic dimensionality reduc-
tion techniques for efficient and accurate approximation of
similarity evaluations between high dimensional vectors. More
specifically, we focus on approximating the inner-product
and consequently approximating the cosine of the angle be-



tween two vectors. To the best of our knowledge, there is
no other technique for approximation of similarity computa-
tion based on inner-products. In some sense, the techniques
presented here are the multi-dimensional analogues of the
Cauchy-Schwarz inequality, which can be thought of as a first
order approximation to the inner-product.

Approximating the inner-product, by itself, has a number
of important applications. It is used extensively in the docu-
ment database world, for example. Documents are compared
in the semantic space by comparing their multi-dimensional
representations created by statistical analysis, and their sim-
ilarity are measured by the cosine of the angle between these
vectors [23]. Latent Semantic Indexing (LSI) is a well-known
example to applications that use the inner-product [16, 7, 8].
The dimensionality reduction and the inner-product approx-
imation techniques proposed in this paper can effectively be
used to approximate the original similarity in a reduced di-
mensional space in these and similar applications. Besides
efficiency gains in indexing, we also want to have an over-
all gain on the computation time for similarity checking. In
typical applications, the amount of data is huge, therefore
efficient processing of similarity computation becomes more
important. If the current trends continue, large organizations
will have petabytes of data that need to be processed [5].

The outline of this paper is as follows. In section 2 we
describe the main tools used in our reduction. Section 3
describes the calculation of the optimal coefficients for the
uniform distribution. The first set of experiments appear in
section 4. Optimal coefficients for distributions other than
the uniform distribution, as well a dynamic update rule for
the non-parametric case of an unknown distribution are given
in section 5. Section 6 presents comparisons with well-known
methods such as SVD, DFT, and DCT. Conclusions and fu-
ture work appear in section 7.

The theoretical results we use are from [9] where fast dy-
namic methods for similarity by means of approximations to
the inner-product using p-norms and minimization through
least-squares methods were introduced.

2 Reduction with power symmetric functions

We first summarize how we represent the high dimensional
data of dimension n with reduced number of dimensions m
with m < n. Then we develop techniques for these represen-
tatives so that the similarity measure between high dimen-
sional vectors are approximated closely in the lower dimen-
sional space.

For a given pair of integers n,p > 0 define

Yp(2) =27 + 25+ + 2. (1)

This is the p-th power symmetric function in the variables
z = (z1,22,...,2n). Equivalently, ¥,(z) is the p-th power of
the p-norm ||z||,. In particular ||z||2 is the ordinary length of
the vector z, and ||z — y||2 is the Euclidean distance between
z and y. Note that the ordinary Euclidean distance between
z and y and the power symmetric functions are related by

Iz = yll2 = Vbo(2) +¢a(y) =2 <zy >, (2)

where < z,y > is the standard inner-product given by
< z,y >= z1y1 + T2y2 + ... + Tnyn. The Cauchy-Schwarz
inequality itself can be written in the form

<z,y > < a(x)Pa(y) .

Using the quantities for ,(z) computed for each data
vector z in the database, we look for an approximation for

< z,y > by approximating its m-th power in the form

<,y > & b (2) Y (Y)+barha (2)Y2(y)+ - Abm o (2) Y ()

(3)
for large n, where the b; are constants chosen independently
of z and y. In our method for each high dimensional vector z,
we calculate 11 (z),¥2(x),. .., ¥m(z), and keep these m real
numbers as a representative of the original vector x.

Our assumption on the structure of the data vectors is as
follows: we have a table of a large number of n-dimensional
vectors © = (1,,%2,...,Zn) whose components are inde-
pendently drawn from a common (but possibly unknown)
distribution F(t) with density f(¢). In the general case,
the components do not need to satisfy 0 < z; < 1, nor
do they have to be distributed identically. Given an arbi-
trary input vector y = (y1,¥2,.--,Yn), the main problem
is to find the vectors z in the table minimizing (with high
probability) the inner-product < z,y > without actually
calculating all inner-products. This is done by computing
V1(y), ¥2(y), - .., ¥m(y) and then using the m stored quanti-
ties 11)1 (T)a 11)2('T)1 RN 'l,[)m(z) via (3)

We consider approximations of the form (3) by finding the
best set of constants bi,ba, ..., by for the approximation in
the sense of least-squares. If m can be taken much smaller
than the dimension n with reasonable approximation to the
inner-product, besides efficiency gains in indexing, we also
have an overall gain on the computation time for similarity
checking of large data sets. Note that just as the ordinary 2-
norm used in the Cauchy-Schwarz inequality, the quantities
¥p(z) used in (3) are also symmetric functions of the coor-
dinates. A more general class of algorithms is obtained by
taking instead ¢, (gz) in (3) where ¢z = (q121,¢222, .- -, qn2n)
with ¢g; > 0 and g1 +¢2 + --- + go» = 1. This has the effect
of giving a degree of importance (weight) to individual fea-
tures of x and y. For computational simplicity we look at the
symmetric case in this paper, in which ,(z) is as given in
(1) and z € I", the n-dimensional unit cube. By taking each
q; = 1/n, we can write ¥, (z) = nP¢,(gz), so the calculation
of the symmetric case is a particular instance.

3 Determination of the optimal parameters

The best approximation in the least-squares sense minimizes
2
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where de = dx1dxs - - - dx,, dy = dy1dy2 - - - dy,, and the inte-
gral is over the 2n-dimensional unit cube I?". The so-called
normal equations that b1, ba, ..., b, must satisfy are found
by differentiating (4) with respect to each b;, and setting the
resulting expressions to zero.

This results in an m x m linear system that bi,...,bm
must satisfy, obtained from

3 { [ @@ dxdy} b =

/ <z,y >" Yi(x)iy) dedy

for 1 < i < m. Putting

aij = /¢j($)¢j(y)¢i($)¢i(y) dxdy
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Figure 1: < z,y >™ = biti(x)1(y) + - + bt ()Y (y) : asymptotic expansion coefficients b1, ba, . . .

distribution.

we find that by, ...
c.

, b, satisfy the m x m linear system Ab =

We present the mathematical treatment for the case of
the 2 x 2 system that arises for m = 2, and work out in detail
the derivation of the asymptotic expansion coefficients b1, bo
in (3). The details of the proof of the general case can be
found in [9]. For m = 2,

/, (@) () () (y)dady
/, n(@)a(ya(e)iny)dady
e T / @) (@) (y)dudy
/ <2,y > ¢ (2)¢ (y)dzdy

e = / <y > gala) (y)dody.
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These quantities can be computed exactly as functions of n.
First of all

/ 1 (x)r(x)d

Z/ zpp1(x)de = n(ni1 —I—%)

Similarly,
n—1 1
./lnw(mwa(m)dm S )
n—1 1
./Inwzuwa(m)dm = el
Therefore
a1 = /",[)1 1/)1 /1/)1 d’l

( / w1<x>w1<x>dx> =n2(%>2.

By a similar computation for a2 > and a;,2, we find that the

, b, for the uniform

matrix of coefficients is
2(3n+112
l n”(#53-)
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Next we compute the quantities ¢; and c¢2 in terms of n. We

have N
o= [ (o atan oy
e

There are two kinds of terms arising from the expansion
of (3 wryk)?. Diagonal terms of the form z)y?, and off-
diagonal terms of the form z,y,zsys for r # s. The contri-
bution of the first kind of terms to c; is

n/rlyﬂl) (#)i(y)dady = n (/-r?%(m)d-f)z = (*5)

It can be shown that off-diagonal terms contribute

n(n —1) /-771y1-772y21/)z‘($)1/)z‘(y)d-77dy =

n(n—1) </T1’Eg1/)z(’l7)d’6> 2 =n(n—1) (37121- 2)2 .

Therefore
e =P pnm -2 )
By a similar calculation, we find
5n + 4., n+1..
e =n(——)" +n(n—1) 19 . (6)

The resulting system satisfied by b1, ba is

3n+1 2n+1

Tl( )b1+n( )62:
2n+1 3n+ 2
(220 (0 = 1)(F5)
2,2n+ 1, 2, 0m+4.,
n(T )+ ()



5n+4 n+1.,
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Since we are interested in these approximations for large
n, it is tempting to let n — oo in the resulting linear system
and then solve for bi, by directly to obtain an asymptotic
formula. Attempting to do this results in a singular system,
however. To circumvent this problem, we include not only
the highest order term in n, but the second highest as well.

This gives in the (asymptotic) system

)? +n(n —1)(

n 1 n 1 n 19
BASNINY & Sy =
(76t o)t + (351 3002 61 T 576
n 1 n 8 n 25
AT & 2 2y, = L4 22
(36 T 360 + (g1 + a5t 24 T1206 (7

which is nonsingular for every n. Solving (7) symbolically for
b1 and by and taking limits, we find

9—n 1

b =——— —— ., b
T idnyn 0 160 72

_50O0n-7) 4
T 16(4n + 1) 64

This means that for m = 2, we approximate < =,y > by the
expression

\/‘11_6¢1(z)¢1(y) + 2—21,/)2(@1!’2(11) - ®)

For general m it can be shown [9] that

4
n

G (e
This matrix again has rank 1, but the inclusion of the second
highest term works as before [9]. We omit the details of the
derivation of the optimal coefficients b1, ba, ..., by, for m > 2.
Values of b1, ..., b, we have computed for various values
of m for the uniform distribution appear in Figure 1. For the
uniform distribution coefficients with m = 2, the approxima-
tion (8) we obtained does not involve the dimension n. This
is not the case for m > 2. For instance for m = 3 the optimal
least-squares approximation to < x,y >° is

5 3 7
—Em/)l(ﬁﬁ)?/)l(x) + 5"%(93)1/)2(1/) - gml)a(ﬁ)%(y)-

4 Experiments: part 1

In the first set of experiments, we analyze the accuracy of
the approximation technique introduced here by checking the
error made in inner-product calculations, keeping in mind
that the inner-product is directly used as distance measure
in several applications, e.g. LSI.

First consider the case m = 2 and the approximation
given by (8). The graph of the average relative error made
appears in Figure 2. The dimension n ranged from 2% to 2.
For each dimension n, 100 pairs of vectors =,y € I" were
independently generated by drawing each coordinate from
the uniform distribution on the unit interval I. The error
calculated for m is the average relative error of these 100
experiments where the relative error of a single experiment
is given by

m 1/m
<wy>— Y b)) ||/ <zy>
j=1

These are then accumulated and divided by the number of
experiments.

For the experiments of this type with larger values of
m, again 100 pairs of vectors z,y € I" were independently
generated from the uniform distribution on I™. Figure 3
is the plot of the error versus the original dimension for
the approximations corresponding to reduced dimension m
for m = 2,4,6,8, and dimension n ranging from 16 to 256.
Note that as m increases, the corresponding approximation
method produces larger error for small n, but eventually dips
below the error curves for smaller m. The reason for this is
the asymptotic nature of the constants b1, ba, ..., bn,.

5 Optimal b;,b, for various distributions

Suppose now that the coordinates of the vectors x and y are
drawn from not the uniform distribution on the unit interval
I, but some other distribution F' on the real line. We assume
that F' has density f. Thus

F(t):/; f(z)dz with /: flz)dz = 1,

and Pr{a < z < b} = fab f(x)dz. The i-th moment p; of f
(about the origin) is defined by

i = /°° z' f(z)dx .

We have the following general result, whose proof can be
found in [9].

Theorem 1 The constants bi,ba which minimize

/ <y b @) — baralaal)] dF @F ()

are functions of the first four moments of the density f(x).
They are given by the formulas
by — 2 205 + pipa — 3pa popis
= pui -
13 — pipa — 2p1papis

_ M pips — P
P2 W3 = pipa — 2pnpops
In view of Theorem 1, explicit formulas for the approxi-
mation coefficients b1, b2 in the expansion

<wzy>" & b ()Yi(y) + batha(2)ha(y)

can be found using Theorem 1 as soon as the first four mo-
ments of the density are known. For most common distribu-
tions, these moments can be calculated explicitly as functions
of the parameters of the distribution (see, for example [15]).

A summary of these calculations for power, exponential,
binomial, normal, Poisson, and Beta distributions appears
in Figure 4. The last two columns are the optimal values
of b1 and by expressed in terms of the parameters of the
corresponding distribution.

When the components are drawn from a distribution with
an unknown density f(¢) (i.e. in the non-parametric case)
we can estimate and incrementally update estimates for the
moments p;. If we know the empirical moments z; = @; (V)
of density f(t), 0 < ¢ < 1, based on samples t1,t2,...,tn, it
can be shown that given ¢ny4+1, we can obtain the estimate
i (N +1) by

4
bz_ul

1
(N +1)= ——
(N +1) =
and adjust the b; accordingly, using Theorem 1.

(N (N) + tyg1) - (9)



Figure 2: Average relative error versus dimension n, 16 < n < 2048 for vectors from the uniform distribution with m = 2.

Figure 3: Average relative error versus dimension n: 16 < n < 256. (Legend: A m =2, 0m=4,%m =06, > m = 28)
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optimal asymptotic expansion coefficients b1, by for various parametric
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Figure 5: Error comparisons of dimensionality reduction techniques (for m = 2 and m = 4)

6 Experiments: part 2

The techniques presented in this paper can be readily used for
approximation of the similarity also with respect to Euclidean
distance metric. Suppose z,y € I" are two n-dimensional
real vectors. We use the expression (2) for the Euclidean
distance between z and y. Since we already have 2 (z) and
¥2(y) stored as a part of our dimensionality reduction, it is
enough to compute < z,y > to find the distance between two
feature vectors. By using the stored m values we approximate
< z,y >, and hence approximate the original distance.

Next, we compare the performance of our technique that
we refer to as p-NORMS, with current approaches on real and
synthetic data sets. Singular Value Decomposition (SVD)
and Discrete Fourier Transform (DFT) are the best known
and the most widely used approaches in the literature. Here
we also consider the Discrete Cosine Transform (DCT) for
dimensionality reduction, which we found to be quite effec-
tive in our experiments. We implemented SVD, DFT, and
DCT, and our new algorithm, and analyzed their approxi-
mation quality for distance measurements. We first compute
the distance for each pair of data vectors in the data set. A
motivation for this is similarity joins, in which in the worst
case the distance between each pair is computed and is com-
pared to a given threshold criteria of similarity. For similarity
queries, instead of computing the distance between each pair
of vectors, the distances between the query point and all of
the points in the data set are computed. The query point
may be chosen from the data set or can be specified by the
user.

In the experiments, pairwise distances of the data vectors
are computed. We use SVD, DFT, DCT, and p-NORMS to
reduce the dimensionality of high dimensional vectors. Re-
duced dimensional vectors are representatives of original high
dimensional vectors. We compute the distance between each
pair of vectors of smaller dimensions. The real distance is
approximated in reduced dimensional space. For each tech-
nique, we compute the absolute error, i.e. difference between
approximated distance to real distance, for each pair of vec-
tors. First the summation of the errors for all pairs is com-
puted, then this value is divided by the number of pairs, i.e.
the number of distance calculations (Note that, in the first
part of the experiments, error metric was the average of rel-
ative errors which is a different metric).

In the first setup, we generated 500 32-dimensional ran-
dom points from the uniform distribution on I*?. Pairwise
distances are calculated both for original data and reduced
dimensional data. For each technique, absolute approxima-
tion error of each distance calculation is summed and divided
by the total number of pairs (25,000). This calculated aver-
age error gives the quality of the approximations achieved by
each technique. First, we reduce the number of dimensions
to m = 2. For other techniques, we reduce the dimensional-
ity to 3 because the DFT technique produces complex num-
bers therefore the second component has actually two floating
numbers. Even when the other techniques use 3 coefficients,
in this case their approximation quality appears much worse
than our technique. p-NORMS gives an approximation error
which is 5 times less than the current approaches for n = 32
dimensional vectors: the lowest error (4.6) among the imple-
mented transform methods is made by SVD. On the other
hand, p-NORMS has an average absolute error of only 0.9.

We repeated the experiments by increasing the number
of dimensions n and analyzing the resulting approximations.
The left figure in Figure 5 illustrates the measurements for
each of SVD, DFT, DCT, and p-NORMS. Since we use av-
erage of absolute errors, the error naturally increases as di-
mensionality increases. However, it can be seen that as n
increases, the quality difference between p-NORMS and the
other three also increases. For 80-dimensional data, for in-
stance, the new technique’s approximation is 7.45 times bet-
ter than the current best approach. For 128-dimensional
data, the average absolute error of p-NORMS is 2.1 and the
average absolute error of the SVD technique, the best of the
three is 18.8. Similar experiments with m = 4 for all tech-
niques were also performed. The right figure in figure 5 illus-
trates the results of these. The error in p-NORMS is about
8 times less than that of SVD for 128 dimensions.

We also compute the approximation quality ratio of our
technique with SVD, on the same data set, as dimensionality
increases in order to illustrate the scalability of our approach.
Figure 6 illustrates the superiority of p-NORMS over SVD as
a function of dimensionality.

We analyzed the quality of the approximations developed
for data sets where the components are drawn from a normal
distribution. We generated 500 random points from a normal
distribution with mean 0.5 and variance 1. We note that
since the data is not restricted to be within the range [0..1] as
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Figure 6: Scalability Comparison of SVD and p-NORMS

before, there are dimensions that are much greater than 1 in
the data set. Therefore the absolute errors of the experiments
are greater than the previous cases. Approximations based
on p-NORMS gave an error 1.6 times lower than the best
of the three other techniques, in this case SVD. Figure 7
illustrates the results of these experiments.

The techniques were also compared on a real document
database of substrings from a large set of documents con-
sisting of normalized data in I'S. We reduce the number of
dimensions to m = 2 which can be indexed efficiently [1]
by spatial indexing techniques. Increasing m will increase
the accuracy of the approximations, but also will increase
the index-search time. Similar to the synthetic data case,
we computed the pairwise distances and took the average of
absolute errors made by low-dimensional distance computa-
tions. Approximations based on p-NORMS performs twice as
well as SVD and 2.2 times better than DCT. We note that
SVD performs better than DCT on real data as well. Fur-
ther experimental results with graphs on the performance of
p-NORMS can be found in [10].

7 Conclusions and future work

We developed dynamic dimensionality reduction techniques
for efficient and accurate approximation of similarity mea-
sures between high dimensional vectors. The method is based
on the approximation of the standard inner-product as a cer-
tain function of the p-norms of the vectors. A high dimen-
sional real vector x of dimension n is represented as the se-
quence of values (¢1(z),¥2(x), ..., ¥m(x)) where ¢, (x) is the
p-th power of the p-norm of . The magnitude of m controls
the magnitude of the reduction made. Assuming that the
components of the vectors in the data set are identically dis-
tributed, we find optimal universal constants b1, ba, ..., bn so
that the approximation

<a,y>" ® b (@) (y)+botha () (y)++ - Abmthm (€)Pm (y)

is the best possible for large n in the least-squares sense.
This approximation is then used for estimating the inner-
product, and consequently for approximating the similarity
distance between z and y. Even for m = 2, the performance is
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good, and the approximation error is better than well-known
methods such as the SVD, DFT, and DCT as verified by
numerical simulations. We showed that if the components
are from a distribution with a standard density, then the
moments of the density directly determine the best constants.
If the distribution of the components of the vectors is not
known, then the method can be adapted to work dynamically
by incremental adjustment of the parameters. Further details
of our technique can be found in [9, 10].

There are a number of issues and extensions we are cur-
rently pursuing. Among these are the analytic solution of the
best constants when the distribution of the components of the
vectors in the data set are described by some arbitrary proba-
bility vector (g1, g2, ..., qn), properties of the non-parametric
update rule given in (9), and hybrid approaches which can
take advantage of various methods currently available for dy-
namic dimensionality reduction and similarity distance com-
putation.
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